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Problemas impulsivos de
ordem superior não lineares
e funcionais

RESUMO

A abordagem teórica dos problemas do tipo impulsivo tem assumido im-
portância crescente no mundo cientí�co e industrial de hoje, pelas respostas que
oferece aos problemas de pesquisa e produção industrial, nos quais as ocorrências
de descontinuidades abruptas e saltos funcionais são decisivos nos respectivos
contextos. Em suma, problemas impulsivos representam fenómenos em que
ocorrem mudanças repentinas nas suas propriedades dinâmicas .
Esses problemas são frequentes no estudo da dinâmica populacional, na

otimização de processos de produção, na biologia, nos problemas de estudo
do comportamento dos fatores ambientais, na medicina e na farmacologia, entre
outros ramos da Ciência.
Nesta teses são abordados problemas de ordem superior com valores na fron-

teira, com mudanças instantâneas na função incógnita e nas suas derivadas.
Nos últimos anos, os operadores Laplaciano e as suas variantes como, por

exemplo, p-Laplaciano e phi-Laplaciano, têm sido aplicados em várias situações
mas poucas vezes no caso descontínuo. Os três primeiros capítulos da tese
procuram contribuir para colmatar esta falha.
O caso periódico e a situação em que o domínio de de�nição não é limitado,

são mais delicados e exigem um tipo de abordagem diferente. Nos Capítulos 4,
5 e 6 apresentam-se técnicas e métodos topológicos que permitem abordar estes
tipos de problemas.
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Nonlinear and Functional
Higher Order Impulsive
Problems

ABSTRACT

The theoretical approach of impulsive problems has assumed an increasing
importance in the scienti�c and industrial world today, due to its answers to
the problems of research and industrial production, in which the occurrences
of abrupt discontinuities and functional leaps are decisive in the respective
contexts. In short, impulsive problems represent phenomena in which sudden
changes in their dynamic properties occur.
These problems are frequent in the study of population dynamics, in the

optimization of production processes, in biology, in problems of studying the
behavior of environmental factors, in medicine and pharmacology, among other
branches of science.
This thesis addresses problems of a higher order with boundary values prob-

lems with instantaneous changes in the unknown function and its derivatives.
In recent years, Laplacian operators and their variants, such as p-Laplacian

and Phi-Laplacian, have been applied in several situations, but rarely in the
discontinuous case. The �rst three chapters of the thesis seek to contribute to
�ll this gap.
The periodic case and the situation in which the domain of de�nition is

not bounded, are more delicate and require a di¤erent type of approach. In
Chapters 4, 5 and 6, topological techniques and methods are presented that
allow to approach these types of problems.
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Introduction

The theoretical approach of the impulsive type problems has assumed increasing
importance in the scienti�c and industrial world today, for the answers it o¤ers
to the research problems, industrial production,..., in which the occurrences of
abrupt discontinuities, and functional leaps, are decisive in the respective con-
texts. In short, impulsive problems adequately represent phenomena in which
sudden changes in the dynamic properties of behavior occur.
These problems are frequent in the study of population dynamics, the op-

timization of production processes, in biology, in the problems of studying the
behavior of environmental factors, in medicine and pharmacology.
For the �rst time, to our knowledge, problems of �rst-order di¤erential equa-

tions with instantaneous changes depending on an unknown function and its �rst
and second derivatives are addressed, considering the cases in which the respec-
tive jumps at each moment depend not only on the value of the function, in a
given instant, but also of its speed.
In recent years, the p-Laplacian and phi-Laplacian operators have been ap-

plied in semi-linear and quasi-linear di¤erential equations, and especially in
di¤erential equations of the non-linear type. However, problems of the impul-
sive type with general nonlinear equations and general impulsive e¤ects, have
been very rare. With this thesis we intend to ful�ll this gap, and to present
di¤erent methods and approaches, applying lower and upper solutions method,
which proved to be especially suitable for impulsive problems with boundary
values.
The present thesis is structured in six chapters, as follows:

1 - Higher Order Nonlinear Impulsive Boundary Value Problems
This �rst chapter contains some two-point impulsive boundary value prob-

lems composed by a fully di¤erential equation, which higher-order contains an
increasing homeomorphism, two-point boundary conditions, and impulsive ef-
fects.
We point out that the impulsive functions are given via multivariate gener-

alized functions, including impulses on the referred homeomorphism.
The method used applies lower and upper solutions technique together with

�xed point theory. Therefore we have not only the existence of solutions but also
the localization and qualitative data on their behavior. Moreover, a Nagumo
condition will play a key role in the arguments to estimate the second derivative.

1



2 CHAPTER 0. INTRODUCTION

2 - Half-linear impulsive problems with more general jump condi-
tions
Separated impulsive problems with a fully third order di¤erential equation,

including an increasing homeomorphism, and impulsive conditions given by
more general functions: the impulsive e¤ect in the �rst derivative can now de-
pend on the value of the second derivative on the impulsive moment. Moreover,
it is considered a general interval [a; b] for the variation of the time variable,
which introduce some modi�cations on the solution of the linear problem.
The key arguments are similar to the previous chapter.

3 - Semi-Linear Impulsive Higher Order Boundary Value Problems
In this chapter we generalize the method used in two previous chapters,

considering a two-point nth�order impulsive boundary value problems, with
a strongly nonlinear fully di¤erential equation with an increasing homeomor-
phism.
It is stressed that the impulsive e¤ects are de�ned by very general functions,

that can depend on the unknown function and its derivatives, till order n� 1:
The arguments are based on the lower and upper solutions method, together

with Leray-Schauder �xed point theorem.
An application, for n = 4; to estimate the bending of a one-sided clamped

beam under some impulsive forces, is given in the last section of the chapter.

4 - Periodic third order boundary value problems with generalized
impulsive conditions
Periodic boundary value problems require a di¤erent approach, mainly be-

cause the linear problem associated is not invertible. In particular, third-order
periodic problems are more delicate, if we want some localization data on the
unknown function or its derivatives.
Several authors apply �xed point theory, topological and coincidence degree,

lower and upper solutions, cone theory, etc. In this chapter, we use an iterative
technique together with mathematical induction. This problem covers cases
where the jumps in each moment depend not only on the value of the function
on the impulsive instant but also on the velocity and the convexity of the solution
in the referred moment.
The main tools rely on a perturbed and truncated auxiliary problem, on an

iterative technique, not necessarily monotone, as in [118], and lower and upper
solutions method.
We point out that, the nonlinear part must verify only a local monotone

condition (see 4.11) and no assumption on its periodicity or asymptotic growth
is needed.

5 - Third-order generalized discontinuous impulsive problems on
the half-line
In this chapter, we improve the existing results in the literature by presenting

weaker su¢ cient conditions for the solvability of a third-order impulsive problem
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on the half-line, with generalized impulse e¤ects. More precisely, our nonlinear-
ities do not need to be positive, nor sublinear, and the monotone assumptions
are local ones.
Our method makes use of some truncation and perturbed techniques and on

the equiconvergence at the in�nity and the impulsive points.
The last section contains an application to a boundary layer �ow problem

over a stretching sheet with and without heat transfer.

6 - Functional coupled systems with generalized impulsive condi-
tions and application to a SIRS-type model
In this chapter, we consider a �rst-order coupled impulsive system of equa-

tions with functional boundary conditions, subject to the generalized impulsive
e¤ects.
It is pointed out that this problem generalizes the classical boundary as-

sumptions, allowing two-point or multipoint conditions, nonlocal and integro-
di¤erential ones or global arguments, as maxima or minima, among others.
Our method is based on lower and upper solutions technique together with

the �xed point theory.
The main theorem is applied to a SIRS model were, to the best of our

knowledge, for the �rst time it includes impulsive e¤ects combined with global
data and the asymptotic behavior of the unknown functions.





Chapter 1

Higher Order Nonlinear
Impulsive Boundary Value
Problems

1.1 Introduction

This �rst chapter contains some two-point impulsive boundary value problems
composed by a fully di¤erential equation, which higher-order contains an in-
creasing homeomorphism, two-point boundary conditions, and generalized im-
pulsive conditions, given via multivariate generalized functions, including im-
pulses on the homeomorphism.
Consider the following two point boundary value problem with one-dimensional

�-Laplacian:8>>><>>>:
(�(u00(t)))0 + q(t)f(t; u(t); u0(t); u00(t)) = 0; t 2 J 0;
u(0) = A;

u0(0) = B;

u00(1) = C; A;B;C 2 R;

(1.1)

where
(A1) � is an increasing homeomor�sm such that �(0) = 0 and �(R) = R,
(A2) q 2 C([0; 1]) with q > 0; J := [0; 1], J 0 = Jnft1; :::; tng and

R 1
0
q(s)ds <

1; f 2 C([0; 1]� R3;R);
with the impulsive conditions8><>:
�u(tk) = I1k(u(tk); u

0(tk)); k = 1; 2; :::n; �u
(i)jt=tk = u(i)(t+k )� u(i)(t

�
k );

�u0(tk) = I2k(u(tk); u
0(tk))

��(u00(tk)) = I3k(u(tk); u
0(tk); u

00(tk));

(1.2)

5



6 CHAPTER 1. HIGHER ORDER NONLINEAR IMPULSIVE BVPS

being Iik 2 C(R2;R); i = 1; 2; and I3k 2 C(R3;R); with tk �xed points such
that 0 < t1 < t2 < ::: < tn < 1:

Our method applies lower and upper solutions technique together with �xed
point theory. Therefore we have not only the existence of solutions but also
the localization and qualitative data on their behavior. Moreover, a Nagumo
condition will play a key role in the arguments to estimate the second derivative.
For the classical approach to impulsive di¤erential equations we can refer,

as example, [9, 12, 53, 54, 75, 79, 91] and the references therein. Most of the
arguments apply critical point theory and variational techniques ([58, 112]),
�xed point results in cones ([96, 104]), bifurcation theory ([81, 108]), and lower
and upper solutions method ([42, 97]).
In this chapter we consider, as far as we know, by the �rst time the impulsive

e¤ects with dependence on the unknown variable and its derivative, and even on
its second derivative for the impulses on the homeomorphism �; which includes
the Laplacian or p-Laplacian cases.
Section 1.2 contains an uniqueness result for an associated problem to (2.1)-

(2.3) and the de�nition of lower and upper solutions, with strict inequalities
in some boundary and impulsive conditions. In Section 1.3 the main existence
and localization result is obtained via an truncation and perturbation methods
(suggested in [55, 71]) lower and upper solution technique and �xed point theory.
Last chapter section provides an example where the impulses depend on the
function and on its variation.

1.2 Auxiliary results

Let

PC[0; 1] =

�
u : u 2 C([0; 1];R) continuous for t 6= tk; u(tk) = u(t�k ); u(t

+
k )

exists for k = 1; 2; :::; n

�
and PC2[0; 1] = fu : u00(t) 2 PC[0; 1]g.
Then PC2[0; 1] is a Banach Space with norm

jju(t)jj = maxfjjujj1; jju0jj1; jju00jj1g;

where

jjwjj1 = sup
0�t�1

jw(t)j:

As a solution u of problem (1.1)-(1.2) one should consider u(t) 2 E, where
E := PC[0; 1] \ C2(J 0).
Lower and upper solutions will be given by next de�nition:
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De�nition 1.1 A function �(t) 2 E with �(�00(t)) 2 PC2[0; 1] is a lower solu-
tion of problem (1.1)-(1.2) if8>>>>>>>>>><>>>>>>>>>>:

(�(�00(t)))0 + q(t)f(t; �(t); �0(t); �00(t)) > 0
��(tk) 6 I1k(�(tk); �

0(tk))

��0(tk) > I2k(�(tk); �
0(tk))

��(�00(tk)) > I3k(�(tk); �
0(tk); �

00(tk))

�(0) 6 A;

�0(0) 6 B;

�00(1) < C:

(1.3)

A function �(t) 2 E such that �(�00(t)) 2 PC2[0; 1] and satis�es the opposite
inequalities above, is an upper solution of (1.1)-(1.2).

For the linear problem associated to (1.1) it is possible to evaluate explicitly
its solution, as it is shown in next lemma:

Lemma 1.2 The problem composed by the di¤erential equation

(�(u00(t)))0 + v(t) = 0 (1.4)

and conditions 8>>>>>>>><>>>>>>>>:

�u(tk) = I1k(u(tk); u
0(tk))

�u0(tk) = I2k(u(tk); u
0(tk))

��(u00(tk)) = I3k(u(tk); u
0(tk); u

00(tk))

u(0) = A;

u0(0) = B;

u00(1) = C

(1.5)

has a unique solution given by

u(t) = A+Bt+
X
t>tk

I1k(u(tk); u
0(tk)) +

X
t>tk

I2k(u(tk); u
0(tk)) t

+

Z t

0

Z �

0

��1

24�(C) + Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

35 d�d�:
Proof. For t 2 (tn; 1], integrating (1.4) from t to 1, we have

u00(t) = ��1
�
�(C) +

Z 1

t

v(s)ds

�
: (1.6)
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For t 2 (tn�1; tn]; with t0 := 0; by integration of (1.4), it is obtained by (1.6),

u00(t) = ��1
�Z tn

t

v(s)ds+ �
�
u00
�
t�n
���

= ��1
�Z tn

t

v(s)ds+ �
�
u00
�
t+n
��
� I3n(u(tn); u0(tn); u00(tn))

�
= ��1

�
�(C) +

Z 1

tn

v(s)ds+

Z tn

t

v(s)ds� I3n(u(tn); u0(tn); u00(tn))
�

= ��1
�
�(C) +

Z 1

t

v(s)ds� I3n(u(tn); u0(tn); u00(tn))
�
:

Therefore by induction, for t 2 (0; 1), we get

u00(t) = ��1

"
�(C) +

Z 1

t

v(s)ds�
X
t<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
: (1.7)

By integration of (1.7) in [0; t1],

u0(t�1 ) = B +

Z t1

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�:

(1.8)
Integrating (1.7) for t 2 (t1; t2]; and applying (1.2) and (1.8),

u0(t) = u0(t+1 ) +

Z t

t1

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�

= u0(t�1 ) + I21(u(t1); u
0(t1))

+

Z t

t1

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�

= I21(u(t1); u
0(t1)) +B

+

Z t

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�:

So, for t 2 [0; 1],

u0(t) =
X
t>tk

I2k(u(tk); u
0(tk)) +B (1.9)

+

Z t

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�
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Integrating (1.9) for t 2 [0; t1],

u(t�1 ) = A+

 X
t>tk

I2k(u(tk); u
0(tk)) +B

!
t1 (1.10)

+

Z t1

0

Z r

0

��1

"
�(c) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�dr

Integrating (1.9) for t 2 (t1; t2], by (1.10),

u(t) = u(t�1 ) +

 X
t>tk

I2k(u(tk); u
0(tk)) +B

!
(t� t1)

+

Z t

t1

Z �

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�d�

= A+

 X
t>tk

I2k(u(tk); u
0(tk)) +B

!
t

+

Z t

0

Z �

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�d�

Finally, for t 2 [0; 1];

u(t) = A+
X
t>tk

I1k(u(tk); u
0(tk)) +

 X
t>tk

I2k(u(tk); u
0(tk)) +B

!
t (1.11)

+

Z t

0

Z �

0

��1

"
�(C) +

Z 1

�

v(s)ds�
X
�<tk

I3k(u(tk); u
0(tk); u

00(tk))

#
d�d�:

De�ne the continuous functions �i(t; u(i)(t)), for i = 0; 1; such that

�i(t; u
(i)) =

8<:
�(i)(t); u(i)(t) > �(i)(t)

u(i)(t); �(i)(t) 6 u(i)(t) 6 �(i)(t)
�(i)(t); u(i)(t) 6 �(i)(t)

and consider the following modi�ed and perturbed problem8>>>>>>>>>>>>><>>>>>>>>>>>>>:

(�(u00(t)))0 + q(t)f(t; �0(t; u(t)); �1(t; u
0(t)); ddt�1(t; u

0(t)))

+ �1(t;u
0(t))�u0(t)

1+ju0(t)��1(t;u0(t))j = 0

�u(tk) = I1k(�0(tk; u(tk)); �1(tk; u
0(tk)))

�u0(tk) = I2k(�0(tk; u(tk)); �1(tk; u
0(tk)))

��(u00(tk)) = I3k(�0(tk; u(tk)); �1(tk; u
0(tk));

d
dt�1(tk; u

0(tk)))

u(0) = A;

u0(0) = B;

u00(1) = C:

(1.12)
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For this modi�ed problem we have the following existence and localization
result:

Lemma 1.3 Assume that �(t) and �(t) are lower and upper solutions of (1.1),
respectively, with �0(t) 6 �0(t); the continuous function f satis�es

f(t; �(t); y; z) � f(t; u(t); y; z) � f(t; �(t); y; z); (1.13)

for � � u � �; and �xed (y; z) 2 R2: If

I1k(�(tk); �
0(tk)) 6 I1k(u(tk); u

0(tk)) 6 I1k(�(tk); �
0(tk)); (1.14)

and

I2k(�(tk); y) � I2k(u(tk); y) � I2k(�(tk); y); (1.15)

for k = 1; :::; n; �(tk) 6 u(tk) 6 �(tk), �0(tk) 6 u0(tk) 6 �0(tk) and �xed y 2 R;
then every u(t) solution of problem(1.12) veri�es

�(t) 6 u(t) 6 �(t); and �0(t) 6 u0(t) 6 �0(t); for t 2 [0; 1]:

Proof. To prove the second inequalities suppose, by contradiction, that there
is t 2 [0; 1] such that u0(t) > �0(t): Therefore

sup
t2[0;1]

(u0(t)� �0(t)) := u0(�t0)� �0(�t0) > 0: (1.16)

As by boundary conditions, u0(0) � �0(0) 6 0, then �t0 6= 0. In the same way
u00(1�)� �00(1�) < 0 and then �t0 6= 1:
Let t0 = 0 and tn+1 = 1. As the max

t2[0;1]
(u0 � �0)(t) can not be achieved for

t = 1 because of boundary conditions, only two cases must be considered:

Case 1: Assume that there is p 2 f1; 2; :::; ng such that �t0 2 (tp; tp+1).
De�ne

�t1 = max
t2(tp;�t0)

ft : (u0 � �0)(t) 6 0g

and

�t2 = min
t2(�t0;tp)

ft : (u0 � �0)(t) 6 0g

If (u0 � �0)(t) > 0; 8t 2 (tp; �t0) then consider �t1 = tp: Analogously for (u0 �
�0)(t) > 0; 8t 2 (�t0; tp+1) then de�ne �t2 = tp+1:
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Therefore, by (1.13), for all t 2 (�t1; �t2);

(�(u00(t)))0 � (�(�00(t))0 > �q(t) f
�
t; �0(t; u); �1(t; u

0);
d

dt
�1(t; u

0)

�
� �1(t; u

0)� u0(t)
1 + ju0(t)� �1(t; u0)j

+ q(t)f
�
t; �(t); �0(t); �00(t)

�
= �q(t)f(t; �0(t; u); �0(t); �00(t))

� �0(t)� u0(t)
1 + ju0(t)� �0(t)j

+ q(t)f(t; �(t); �0(t); �00(t))

> �q(t)f(t; �(t); �0(t); �00(t))� �0(t)� u0(t)
1 + ju0(t)� �0(t)j

+q(t)f(t; �(t); �0(t); �00(t))

=
u0(t)� �0(t)

1 + ju0(t)� �0(t)j
> 0:

So �(u00(t))� �(�00(t)) is increasing for all t 2 (�t1; �t2).
For t 2]�t0; �t2];

0 = �(u00(�t0))� �(�00(�t0)) < �(u00(t))� �(�00(t))

and u00(t) > �00(t): Therefore (u0��0)(t) is increasing in ]�t0; t2]; which contradicts
(1.16).

Case 2: Suppose that there is p 2 f0; 1; 2; :::; n� 1g such that

sup
t2[0;1]

(u0(t)� �0(t)) := u0(tp)� �0(tp) > 0 (1.17)

or
max
t2[0;1]

(u0(t)� �0(t)) := u0(tp+1)� �0(tp+1) > 0: (1.18)

If (1.17) happens then

u00(t+p )� �00(t+p ) � 0

and, for " > 0 su¢ ciently small, we have

u00(t)� �00(t) � 0; (1.19)

u0(t)� �0(t) > 0; 8t 2 (tp; tp + "):

So, for t 2 (tp; tp + ") � [tp; tp+1];

(�(u00(t)))0 � (�(�00(t)))0 > �q(t)f
�
t; �0(t; u); �1(t; u

0);
d

dt
�1(t; u

0)

�
��

0(t)� u0(t)
1 + ju0(t)j + q(t)f(t; �(t); �

0(t); �00(t))

> u0(t)� �0(t)
1 + ju0(t)j > 0:
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There is " > 0 such that by integration on t 2 (tp; tp + ") we get that u00(t) >
�00(t), which contradicts (1.19).
Assuming (1.18), we have

max
t2[0;1]

(u0(t)� �0(t)) = u0(tp+1)� �0(tp+1) = u0(t�p+1)� �
00(t�p+1) > 0

and, by (1.2) and (1.15); we achieve to the contradiction.

0 � u0(t+p+1)� �
0(t+p+1)�

�
u0(t�p+1)� �

00(t�p+1)
�

> I2p(�0(tp+1; u); �1(tp+1; u
0))� I2p(�(tp+1); �0(tp+1))

= I2p(�0(tp+1; u); �
0(tp+1))� I2p(�(tp+1); �0(tp+1)) � 0:

Therefore u0(t) 6 �0(t); for t 2 [0; 1]: By similar arguments it can be proved
the remaining inequality and therefore

�0(t) 6 u0(t) 6 �0(t); for t 2 [0; 1]: (1.20)

By integration of (1.20) for t 2 [0; t1];

�(t) 6 u(t)� u(0) + �(0) � u(t): (1.21)

Integrating (1.20) for t 2]t1; t2]; we have, by (1.14) and (1.21),

�(t) 6 u(t)� u(t+1 ) + �(t+1 )
� u(t)� I11 (�0(t1; u); �1(t1; u0))� u(t�1 ) + I11 (�(t1); �0(t1)) + �(t�1 )
� u(t):

By recurrence, we can prove analogously, that

�(t) 6 u(t); 8t 2 [tk; tk+1] ; for k = 1; 2; :::; n:

So �(t) 6 u(t); 8t 2 [0; 1] : Applying similar arguments it can be proved the
remaining inequality and, therefore,

�(t) 6 u(t) 6 �(t); for t 2 [0; 1]:

To control the growth of the second derivative we apply a Nagumo-type
condition:

De�nition 1.4 A function f satis�es a Nagumo condition related to a pair
of functions ;� 2 PC[0; 1] \ C2(J 0), with 0 6 �0, if exists a function  :
C([0;+1); ]0;+1)) such that:

jf(t; x; y; z)j 6  (jzj), 8(t; x; y; z) 2 F (1.22)

with

F = f(t; x; y; z) 2 [0; 1]� R3 : (t) 6 x 6 �(t); 0(t) 6 y 6 �0(t)g
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and such that Z +1

�(�)

ds

 (��1(s))
>

Z 1

0

q(s)ds;

where

� := max
k=0;1;2;:::;n

������0(tk+1)� 0(tk)tk+1 � tk

���� ; ����0(tk+1)� �0(tk)tk+1 � tk

����� :
From Nagumo condition it is possible to have an a priori estimation on the

second derivative:

Lemma 1.5 Let � and � be lower and upper solutions of problem (1.1)-(1.2)
such that � � � and �0 � �0 in [0; 1]: If the continuous function f : [0; 1]�R3 !
R satis�es a Nagumo condition in the set F; then there is N � � > 0 such that
every solution u of the di¤erential equation

(�(u00(t)))0 + q(t)f(t; u(t); u0(t); u00(t)) = 0; in J 0; (1.23)

veri�es jju00jj1 � N:

Proof. Let u(t) be a solution of (1.23) such that

�(t) 6 u(t) 6 �(t) and �0(t) 6 u0(t) 6 �0(t); for t 2 [0; 1]:

By the Mean Value Theorem, there exists �0 2 (tk; tk+1) with

u00(�0) =
u0(tk+1)� u0(tk)

tk+1 � tk
; with k = 0; 1; 2; :::; n:

Moreover,

�N � �� � �0(tk+1)� �0(tk)
tk+1 � tk

� u00(�0) �
�0(tk+1)� �0(tk)

tk+1 � tk
� � � N:

If ju00(t)j � N in [0; 1]; the proof is complete.
Assume that there is � 2 [0; 1] such that ju00(�)j > N:
Consider the case where u00(�) > N: Therefore there is �1 such that u

00(�1) =
N:
If �0 < �1; suppose, without loss of generality, that

u00(t) > 0 and u00(�0) � u00(t) � N; for t 2 [�0; �1] :

So

j�(u00(t))j = jq(t)f(t; u(t); u0(t); u00(t))j 6 q(t)j (u00(t))j; for t 2 [�0; �1] ;

and, by (1.22),Z �(N)

�(u00(�0))

ds

 (��1(s)
�

Z �1

�0

j(�(u00(t))0j
 (u00(t))

dt =

Z �1

�0

jq(t)f(t; u(t); u0(t); u00(t))j
 (u00(t))

dt

6
Z �1

�0

q(t)dt <

Z 1

0

q(t)dt:
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As u00(�0) � � < N; by the monotony of �;

�(u00(�0)) 6 �(�)

and Z �(N)

�(u00(�0))

ds

 (��1p (s)
>
Z �(N)

�(�)

ds

 (��1(s)
>

Z 1

0

q(t)dt

which leads to a contradiction.
The other cases, that is,

u00(�) > N with �1 < �0;

and
u00(�) < �N with �0 < �1 or �1 < �0;

follow the same arguments to obtain a contradiction.
Therefore

ju00(t)j � N; for t 2 [0; 1]:

We recall the classical Shauder�s �xed point theorem:

Theorem 1.6 Let M be a nonempty, closed, bounded and convex subset of a
Banach space X, and suppose that T :M !M is a compact operator. Then T
as at least one �xed point in M .

1.3 Main result

The main theorem gives the existence and the localization of solution, and its
�rst and second derivatives, for the initial problem:

Theorem 1.7 Suppose that assumptions (A1)-(A3) hold and there are � and
� be lower and upper solutions, respectively, of problem (1.1)-(1.2) such that
� � � and �0 � �0 in [0; 1]:
If the continuous function f : [0; 1]�R3 ! R satis�es a Nagumo condition and
veri�es (1.13) and the impulsive functions Iik satisfy (1.14) and (1.15), then
problem (1.1)-(1.2) has at least one solution u 2 E, such that

�(t) 6 u(t) 6 �(t), �0(t) 6 u0(t) 6 �0(t) and �N 6 u00(t) 6 N , for t 2 [0; 1]

Proof. Consider the modi�ed and perturbed problem (1.12). To obtain a
solution for problem (1.12) is equivalent to �nd a function u 2 E such that

u(t) = A+Bt+
X
t>tk

I�1k(u(tk); u
0(tk)) +

X
t>tk

I�2k(u(tk); u
0(tk)) t

+

Z t

0

Z �

0

��1

24�(c) + Z 1

�

Fu(s)ds�
X
�<tk

I�3k(u(tk); u
0(tk); u

00(tk))

35 d�d�:
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where

Fu(s) : = q(s)f(s; �0(s; u(s)); �1(s; u
0(s));

d

ds
�1(s; u

0(s))

+
�1(s; u

0(s))� u0(s)
1 + ju0(s)� �1(s; u0(s))j

;

I�ik(u(tk); u
0(tk)) : = Iik(�0(tk; u(tk); �1(tk; u

0(tk)); i = 1; 2;

I�3k(u(tk); u
0(tk); u

00(tk)) : = I3k(�0(tk; u(tk)); �1(tk; u
0(tk));

d

dt
�1(tk; u

0(tk))):

Such function will be obtained as a �xed point of the operator T : E ! E,
given by

T (u)(t) : = A+Bt+
X
t>tk

I�1k(u(tk); u
0(tk)) +

X
t>tk

I�2k(u(tk); u
0(tk)) t

+

Z t

0

Z �

0

��1

24�(c) + Z 1

�

Fu(s)ds�
X
�<tk

I�3k(u(tk); u
0(tk); u

00(tk))

35 d�d�:
As T is completely continuous, by Theorem 1.6, T has a �xed point u 2 E

which is a solution of (1.12).
By Lemma 1.2 and Lemma 1.3, this function u 2 E is also a solution of the

problem (1.1).

1.4 Example

Consider the problem composed by the di¤erential equation

u000(t)

1 + (u00(t))
2 + arctan(u)� 6 (u

0(t))
3 � 2 3

p
u00(t) + 1 = 0; in [0; 1] n

�
1

2

�
;

(1.24)
the impulsive impulses given, for t1 = 1

2 ; by8><>:
�u( 12 ) = u( 12 ) + u

0( 12 );

�u0( 12 ) = �u(
1
2 ) + u

0( 12 )

��(u00( 12 )) = u( 12 );

(1.25)

and the boundary conditions 8><>:
u(0) = A;

u0(0) = B;

u00(1) = C; :

(1.26)



16 CHAPTER 1. HIGHER ORDER NONLINEAR IMPULSIVE BVPS

Problem (1.24), (1.25), (1.26) is a particular case of problem (1.1)-(1.2) with

�(w) = arctan(w)

q(t) � 1

f(t; x; y; z) = arctan(x)� 6y3 � 2 3
p
z + 1

I11(x; y) = x+ y

I21(x; y) = �x+ y
I31(x; y; z) = x:

For A 2 [�1; 0]; B 2 [�2; 1] and C 2]0; 6[; the functions

�(t) =

8<: �2t� 1 ; 0 � t � 1
2

�t� 6 ; 1
2 < t � 1

and

�(t) =

8<: t3 + t ; 0 � t � 1
2

t3 + 3t+ 2 ; 1
2 < t � 1

are, respectively, lower and upper solutions of problem (1.24), (1.25), (1.26),
considering

�0(t) =

8<: �2 ; 0 � t � 1
2

�1 ; 1
2 < t � 1;

�0(t) =

8<: 3t2 + 1 ; 0 � t � 1
2

3t2 + 3 ; 1
2 < t � 1;

�00(t) � 0 and �00(t) = 6t; in [0; 1]:
As the assumptions of Theorem 1.7 are ful�lled, therefore there is a solution

of problem (1.24), (1.25), (1.26), for A 2 [�1; 0]; B 2 [�2; 1] and C 2]0; 6[; such
that

�(t) 6 u(t) 6 �(t); �0(t) 6 u0(t) 6 �0(t); in [0; 1]:



Chapter 2

Half-linear impulsive
problems with more general
jump conditions

2.1 Introduction

Consider the separated boundary value problem which includes the third-order
fully di¤erential equation

(�(u00(t)))0 + q(t)f(t; u(t); u0(t); u00(t)) = 0; t 2 [a; b]nft1; :::; tng; (2.1)

where � is an increasing homeomorphism with �(0) = 0 and �(R) = R, q 2
C([a; b]) with q > 0 and

R b
a
q(s)ds <1; f 2 C([a; b]�R3;R); and the boundary

conditions
u(a) = A; u0(a) = B; u00(b) = C; A;B;C 2 R: (2.2)

The impulsive conditions are given by

�u(tk) = I1k(tk; u(tk); u
0(tk));

�u0(tk) = I2k(tk; u(tk); u
0(tk); u

00(tk)); (2.3)

��(u00(tk)) = I3k(tk; u(tk); u
0(tk); u

00(tk));

where k = 1; 2; :::n; ��(u00(tk)) = �(u00(t+k ))��(u00(t
�
k )); Iik 2 C([a; b]�R2;R);

i = 1; 2; and I3k 2 C([a; b]�R3;R); with tk �xed points such that a < t1 < t2 <
::: < tn < b:
Boundary value problems with impulsive jumps had been object of attention

in recent literature, not only due to applications of real phenomena, but also in
theoretical studies where some sudden discontinuities happen. See, for example,
[9, 54, 79, 91] and the references therein.
The most common methods apply a variational approach and critical point

techniques ([58, 112]), cones theory ([96, 104]), bifurcation theorems ([81, 108]),
and upper and lower solutions geometry ([42, 97]).

17
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In the recent work [12], the authors obtains the existence of solution for the
di¤erential system

(�p(�(t)u
0(t)))0 = f(t; u(t); v(t)); a:e:t 2 R;

(�q(&(t)v
0(t)))0 = g(t; u(t); v(t)); a:e:t 2 R;

with the boundary conditions

lim
t!�1

u(t) = 0; lim
t!�1

v(t) = 0;

and the impulsive e¤ects

�u(tk) = Ik(tk; u(tk); v(tk)); k 2 Z;
�v(tk) = Jk(tk; u(tk); v(tk)); k 2 Z;

via integral operators and Schauder �xed point theorem.
Motivated by this result and the above works, we consider a nonlinear third

order problem with generalized impulsive e¤ects.
To the best of our knowledge, it is the �rst result where the impulsive func-

tions can depend on several variables, such as the unknown variable and its �rst
and second derivatives. Moreover, we point out that our results can be applied
not only to classical �-Laplacian operators, but also to singular ones, in the
sense of [3, 16].
The chapter is organized in the following way: in Section 2.2 it is presented

an uniqueness result for an adequate problem associated to (2.1)-(2.3) and some
de�nitions to be used forward. Section 2.3 contains the main result: an exis-
tence and location theorem. We point out that this result is obtained without
sign or asymptotic type assumptions, due to some truncation and perturbation
techniques, suggested for instance in [23, 34, 55, 71], applying upper and lower
solutions technique and �xed point theory. Last section presents an example
where the impulsive conditions can depend on the unknown function and on its
variation given by �rst and second derivatives.

2.2 Preliminary results

Consider the sets

PCm[a; b] =

�
u : u 2 Cm([a; b];R) for t 6= tk; u

(i)(tk) = u(i)(t�k ); u
(i)(t+k )

exists for k = 1; 2; :::; n; and i = 0; 1; :::;m

�
;

which is a Banach Space with the norm

jjujj = maxfjju(i)jj1; i = 0; 1; :::;mg;

where
jjwjj1 = sup

a�t�b
jw(t)j:
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By a solution u of problem (2.1)-(2.3) we mean u(t) 2 E2, with E2 := PC2[a; b];
verifying (2.1), the boundary conditions (2.2), and the impulse e¤ects (2.3).
Next lemma provides an uniqueness result for an adequate problem related

to (2.1), the boundary conditions (2.2) and the impulsive e¤ects (2.3).

Lemma 2.1 The problem de�ned by the di¤erential equation

(�(u00(t)))0 + v(t) = 0 (2.4)

and conditions (2.2), (2.3), has a unique solution given by

u(t) = A+B (t� a) +
X
tk<t

I1k(tk; u(tk); u
0(tk))

+
X
tk<t

I2k(tk; u(tk); u
0(tk); u

00(tk) (t� tk)

+

Z t

a

Z r

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr:

Proof. Consider t 2 (tn; b]: By integration of (2.4) from t to b,

u00(t) = ��1

 
�(C) +

Z b

t

v(s)ds

!
: (2.5)

For t 2 (tn�1; tn]; integrating (2.4) and by (2.5),

u00(t) = ��1
�Z tn

t

v(s)ds+ �
�
u00
�
t�n
���

= ��1
�Z tn

t

v(s)ds+ �
�
u00
�
t+n
��
� I3n(tn; u(tn); u0(tn); u00(tn))

�
= ��1

"
�(C) +

Z b

tn

v(s)ds+

Z tn

t

v(s)ds� I3n(tn; u(tn); u0(tn); u00(tn))
#

= ��1

"
�(C) +

Z b

t

v(s)ds� I3n(tn; u(tn); u0(tn); u00(tn))
#
:

So, by mathematical induction, with t0 = a; for t 2 (a; b),

u00(t) = ��1

"
�(C) +

Z b

t

v(s)ds�
X
t<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
: (2.6)

Integrating last equality of (2.6) in [a; t1],

u0(t�1 ) = B+

Z t1

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�:

(2.7)
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From the integration of (2.6) with t 2 (t1; t2]; by (2.3) and (2.7),

u0(t) = u0(t+1 ) +

Z t

t1

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�

= u0(t�1 ) + I21(t1; u(t1); u
0(t1); u

00(t1))

+

Z t

t1

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�

= I21(t1; u(t1); u
0(t1); u

00(t1)) +B

+

Z t

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�:

Therefore, for t 2 [a; b],

u0(t) =
X
tk<t

I2k(tk; u(tk); u
0(tk); u

00(tk)) +B (2.8)

+

Z t

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�

Integrating (2.8) for t 2 [a; t1],

u(t�1 ) = A+B (t1 � a) (2.9)

+

Z t1

a

Z r

a

��1

"
�(c) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr

Integrating (2.8) for t 2 (t1; t2], by (2.9),

u(t) = u(t+1 ) +

 X
tk<t

I2k(tk; u(tk); u
0(tk); u

00(tk)) +B

!
(t� t1)

+

Z t

t1

Z r

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr

= A+ I11(t1; u(t1); u
0(t1)) + I21(t1; u(t1); u

0(t1); u
00(t1)) (t� t1) +B (t� a)

+

Z t

a

Z r

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr

So, for t 2 [a; b];

u(t) = A+
X
tk<t

I1k(tk; u(tk); u
0(tk)) +

X
tk<t

I2k(tk; u(tk); u
0(tk)u

00(tk)) (t� tk)

+B (t� a) +
Z t

a

Z r

a

��1

"
�(C) +

Z b

�

v(s)ds�
X
�<tk

I3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr:
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Next de�nition states the admissible lower and upper functions:

De�nition 2.2 A function �(t) 2 E2 with �(�00(t)) 2 PC1[a; b] is a lower
solution of problem (2.1), (2.2), (2.3) if8>>>>>>>>>><>>>>>>>>>>:

(�(�00(t)))0 + q(t)f(t; �(t); �0(t); �00(t)) � 0
��(tk) � I1k(tk; �(tk); �

0(tk))

��0(tk) � I2k(tk; �(tk); �
0(tk); z); z 2 R;

��(�00(t+k )) � I3k(tk; �(tk); �
0(tk); �

00(tk))

�(a) � A;

�0(a) � B;

�00(b) < C:

(2.10)

A function �(t) 2 E2 with �(�00(t)) 2 PC1[a; b] and satisfying the reversed
inequalities, is an upper solution of (2.1)-(2.3).

A Nagumo-type growth condition will be the key to bound the second deriv-
atives of the unknown function:

De�nition 2.3 A function f veri�es a Nagumo-type growth condition related to
some functions ;� 2 PC1[a; b], with 0 � �0, if there is  : C([0;+1); ]0;+1))
such that:

jf(t; x; y; z)j �  (jzj), for all (t; x; y; z) 2 F (2.11)

where

F = f(t; x; y; z) 2 [a; b]� R3 : (t) � x � �(t); 0(t) � y � �0(t)g;

and Z +1

�(�)

ds

 (��1(s))
>

Z b

a

q(s)ds;

with

� := max
k=0;1;2;:::;n

������0(tk+1)� 0(tk)tk+1 � tk

���� ; ����0(tk+1)� �0(tk)tk+1 � tk

����� :
The arguments of the proof require the following lemma, given in [73]:

Lemma 2.4 For v; w 2 C(I) such that v(x) � w(x), for every x 2 I, de�ne

q(x; u) = maxfv;minfu;wgg:

Then, for each u 2 C1(I) the next two properties hold:

(a) d
dxq(x; u(x)) exists for a.e. x 2 I.

(b) If u; um 2 C1(I) and um ! u in C1(I) then

d

dx
q(x; um(x))!

d

dx
q(x; u(x)) for a.e. x 2 I:
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2.3 Main result

The main theorem is an existence and localization result, as it guarantees not
only the existence of solutions but provides also some qualitative properties on
this solution.

Theorem 2.5 Let f : [a; b] � R3 ! R be a continuous function satisfying a
Nagumo-type growth condition: Assume that there are � and � lower and upper
solutions, respectively, of problem (2.1)-(2.3) such that �0(t) � �0(t) in [a; b]:
If f veri�es

f(t; �(t); y; z) � f(t; x; y; z) � f(t; �(t); y; z); (2.12)

for � � x � �; and �xed (y; z) 2 R2; and the impulsive functions verify

I1k(tk; �(tk); �
0(tk)) � I1k(tk; x; y) � I1k(tk; �(tk); �

0(tk)); (2.13)

for k = 1; :::; n; �(tk) � x � �(tk), �0(tk) � y � �0(tk);

I2k(tk; �(tk); �
0(tk); z) � I2k(tk; x; y; z) � I2k(tk; �(tk); �

0(tk); z); (2.14)

for k = 1; :::; n; �(tk) � x � �(tk), �0(tk) � y � �0(tk); and �xed z 2 R, and

I3k(tk; �(tk); y; z) � I3k(tk; x; y; z) � I3k(tk; �(tk); y; z); (2.15)

for k = 1; :::; n; �(tk) � x � �(tk), and �xed (y; z) 2 R2, then problem (2.1)-
(2.3) has at least one solution u 2 E, such that

�(t) � u(t) � �(t); �0(t) � u0(t) � �0(t) and �N � u00(t) � N; for t 2 [a; b]:

To prove this theorem we need some auxiliary results:
De�ne the continuous functions �i(t; u(i)(t)), for i = 0; 1; such that

�i(t; u
(i)) =

8<:
�(i)(t); u(i)(t) � �(i)(t)

u(i)(t); �(i)(t) � u(i)(t) � �(i)(t)
�(i)(t); u(i)(t) � �(i)(t)

and consider the following modi�ed and perturbed equation

(�(u00(t)))0 + q(t)f(t; �0(t; u(t)); �1(t; u
0(t));

d

dt
�1(t; u

0(t)) (2.16)

+
�1(t; u

0(t))� u0(t)
1 + ju0(t)� �1(t; u0(t))j

= 0;

coupled with the truncated impulsive conditions

�u(tk) = I1k(tk; �0(tk; u(tk); �1(tk; u
0(tk));

�u0(tk) = I2k(tk; �0(tk; u(tk)); �1(tk; u
0(tk);

d

dt
�1(tk; u

0(tk)); (2.17)

��(u00(tk)) = I3k(tk; �0(tk; u(tk)); �1(tk; u
0(tk));

d

dt
�1(tk; u

0(tk))):
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and boundary conditions (2.2).
Remark that by Lemma 2.4 the auxiliary problem (2.16), (2.17), (2.2) is well

de�ned.
Next lemma will prove that every solution of problem (2.16), (2.17), (2.2)

will be a solution of problem (2.1)-(2.3), too :

Lemma 2.6 Suppose that �(t) and �(t) are lower and upper solutions of prob-
lem (2.1)-(2.3), respectively, with �0(t) � �0(t); the continuous function f sat-
is�es (2.12) and the impulsive functions Iik; i = 1; 2; satisfy (2.13) and (2.14),
then every u(t) solution of problem (2.16), (2.17), (2.2) veri�es

�(t) � u(t) � �(t); and �0(t) � u0(t) � �0(t); for t 2 [a; b]:
Proof. To prove the second part of last inequality assume, by contradiction,
that there is t 2 [a; b] such that u0(t) > �0(t): Therefore

sup
t2[a;b]

(u0(t)� �0(t)) := u0(�t0)� �0(�t0) > 0: (2.18)

By boundary conditions, u0(a) � �0(a) � 0, and therefore �t0 6= a. In the same
way u00(b�)� �00(b�) < 0 and then �t0 6= b: Let t0 = a and tn+1 = b. Moreover,
by (2.2) and (2.10), the max

t2[a;b]
(u0��0)(t) can not be achieved for t = b: So two

cases must be studied:
Case 1: Assume that there is p 2 f1; 2; :::; ng such that �t0 2 (tp; tp+1).
Therefore,

max
t2(tp;tp+1)

(u0(t)� �0(t)) := u0(�t0)� �0(�t0) > 0;

and
u00(�t0)� �00(�t0) = 0:

Choose " > 0; su¢ ciently small, such that

u0(t)� �0(t) > 0 and u00(t)� �00(t) � 0; 8t 2 (�t0; �t0 + "): (2.19)

By (2.12), for all t 2 (�t0; �t0 + ");

(�(u00(t)))0 � (�(�00(t))0 � �q(t) f
�
t; �0(t; u); �1(t; u

0);
d

dt
�1(t; u

0)

�
� �1(t; u

0)� u0(t)
1 + ju0(t)� �1(t; u0)j

+ q(t)f
�
t; �(t); �0(t); �00(t)

�
= �q(t)f(t; �0(t; u); �0(t); �00(t)) (2.20)

� �0(t)� u0(t)
1 + ju0(t)� �0(t)j

+ q(t)f((t; �(t); �0(t); �00(t))

� �q(t)f(t; �(t); �0(t); �00(t))� �0(t)� u0(t)
1 + ju0(t)� �0(t)j

+q(t)f((t; �(t); �0(t); �00(t))

=
u0(t)� �0(t)

1 + ju0(t)� �0(t)j
> 0:
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So �(u00(t)) � �(�00(t) is increasing for all t 2 (�t0; �t0 + "), and, by (2.19), we
obtain the contradiction in (�t0; �t0 + "):

0 = �(u00(�t0))� �(�00(�t0)) < �(u00(t))� �(�00(t)) � 0:

Case 2: Suppose that there is p 2 f1; 2; :::; ng such that

sup
t2[a;b]

(u0(t)� �0(t)) := u0(tp)� �0(tp) > 0:

As, by De�nition 2.2 and (2.14),

�u0(tp) = I2;p(tp; �0(tp; u); �1(tp; u
0);

d

dt
�1(tp; u

00))

� I2;p(tp; �(tp); �
0(tp);

d

dt
�1(tp; u

00)) � ��0(tp);

then
sup
t2[a;b]

(u0(t)� �0(t)) := u0(t+p )� �0(t+p ) > 0: (2.21)

Consider � > 0; su¢ ciently small, such that

u0(t)� �0(t) > 0; u00(t)� �00(t) � 0; 8t 2 (tp; tp + �) : (2.22)

For t 2 (tp; tp + �) ; and, by the monotonicity of �(u00(t)) � �(�00(t)); as in
(2.20), by (2.22), De�nition 2.2 and (2.15), we obtain the contradiction

0 <

Z t

t+p

(�(u00(s)))0 � (�(�00(s))0ds

= �(u00(t))� �(u00(t+p ))� �(�00(t)) + �(�00(t+p ))
� ��(u00(t+p )) + �(�00(t+p ))
� �I3p(tp; �0(tp; u(tp)); �0(tp); �00(tp))

+I3p(tp; �(tp); �
0(tp); �

00(tp)) � 0:

Therefore u0(t) � �0(t); for t 2 [a; b]: By similar arguments it can be proved
the remaining inequality and therefore

�0(t) � u0(t) � �0(t); for t 2 [a; b]: (2.23)

By integration of (2.23) for t 2 [a; t1];

�(t) � u(t)� u(a) + �(a) � u(t): (2.24)

Integrating (2.23) for t 2]t1; t2]; we have, by (2.13) and (2.24),

�(t) � u(t)� u(t+1 ) + �(t+1 )
� u(t)� I11 (t1; �0(t1; u); �1(t1; u0))� u(t�1 ) + I11 (t1; �(t1); �0(t1)) + �(t�1 )
� u(t):
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By recurrence, it can be shown, analogously, that

�(t) � u(t); 8t 2 [tk; tk+1] ; for k = 1; 2; :::; n:

So �(t) � u(t); 8t 2 [a; b] : Applying similar arguments it can be proved the
remaining inequality and, therefore,

�(t) � u(t) � �(t); for t 2 [a; b]:

Lemma 2.7 Let � and � be lower and upper solutions of problem (2.1)-(2.3)
such that �0(t) � �0(t) in [a; b]: If the continuous function f : [a; b] � R3 ! R
satis�es a Nagumo condition in the set F; referred to � and �; then there is
N � � > 0 such that every solution u of the di¤erential equation (2.1) veri�es
jju00jj1 � N:

Proof. Let u(t) be a solution of (2.1) such that

�(t) � u(t) � �(t) and �0(t) � u0(t) � �0(t); for t 2 [a; b]:

By the Mean Value Theorem, there exists �0 2 (tk; tk+1) with

u00(�0) =
u0(tk+1)� u0(tk)

tk+1 � tk
; with k = 0; 1; 2; :::; n:

Moreover,

�N � �� � �0(tk+1)� �0(tk)
tk+1 � tk

� u00(�0) �
�0(tk+1)� �0(tk)

tk+1 � tk
� � � N:

If ju00(t)j � N in [a; b]; the proof is complete.
Assume that there is � 2 [a; b] such that ju00(�)j > N:
Consider the case where u00(�) > N: Therefore there is �1 such that u

00(�1) =
N:
If �0 < �1; suppose, without loss of generality, that

u00(t) > 0 and u00(�0) � u00(t) � N; for t 2 [�0; �1] :

So

j�(u00(t))j = jq(t)f(t; u(t); u0(t); u00(t))j � q(t)j (u00(t))j; for t 2 [�0; �1] ;

and, by (2.11),Z �(N)

�(u00(�0))

ds

 (��1(s)
�

Z �1

�0

j(�(u00(t))0j
 (u00(t))

dt =

Z �1

�0

jq(t)f(t; u(t); u0(t); u00(t))j
 (u00(t))

dt

�
Z �1

�0

q(t)dt <

Z b

a

q(t)dt:
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As u00(�0) � � < N; by the monotony of �;

�(u00(�0)) � �(�)

and Z �(N)

�(u00(�0))

ds

 (��1p (s)
�
Z �(N)

�(�)

ds

 (��1(s)
>

Z b

a

q(t)dt

which leads to a contradiction.
The other cases, that is, u00(�) > N with �1 < �0, and u

00(�) < �N with �0 <
�1 or �1 < �0, follow the same arguments to obtain a contradiction.
Therefore ju00(t)j � N; for t 2 [a; b]:
Proof of Theorem 2.5:
Consider the modi�ed and perturbed problem (2.16), (2.17), (2.2).
Obtain a solution for problem (2.16), (2.17), (2.2) is equivalent to �nd a

function u 2 E such that

u(t) = A+B (t� a) +
X
tk<t

I�1k(tk; u(tk); u
0(tk)) +

X
tk<t

I�2k(tk; u(tk); u
0(tk); u

00(tk) (t� tk)

+

Z t

a

Z r

a

��1

"
�(C) +

Z b

�

Fu(s)ds�
X
�<tk

I�3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr:

where

Fu(s) : = q(s)f(s; �0(s; u(s)); �1(s; u
0(s));

d

ds
�1(s; u

0(s))

+
�1(s; u

0(s))� u0(s)
1 + ju0(s)� �1(s; u0(s))j

;

I�1k(tk; u(tk); u
0(tk)) : = I1k(tk; �0(tk; u(tk); �1(tk; u

0(tk));

I�2k(tk; u(tk); u
0(tk); u

00(tk) : = I2k(tk; �0(tk; u(tk)); �1(tk; u
0(tk));

d

dt
�1(tk; u

0(tk)));

I�3k(tk; u(tk); u
0(tk); u

00(tk)) : = I3k(tk; �0(tk; u(tk)); �1(tk; u
0(tk));

d

dt
�1(tk; u

0(tk))):

De�ne the operator T : E ! E by

T (u)(t) : = A+B (t� a) +
X
tk<t

I�1k(tk; u(tk); u
0(tk))

+
X
tk<t

I�2k(tk; u(tk); u
0(tk); u

00(tk)) (t� tk)

+

Z t

a

Z r

a

��1

"
�(c) +

Z b

�

Fu(s)ds�
X
�<tk

I�3k(tk; u(tk); u
0(tk); u

00(tk))

#
d�dr:

As T is completely continuous, by Schauder�s �xed point theorem, T has a
�xed point u 2 E2 which is a solution of (2.16), (2.17), (2.2).
By Lemma 2.1, this function u 2 E is also a solution of the problem (2.1)-

(2.3).�
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Remark 2.8 Notice that Theorem 2.5 still holds if � be a singular ��Laplacian
operator, in the sense applied in [16] and [3], that is, if there is 0 < a < +1
such that

� :]� a; a[! R:

2.4 Example

Consider the problem composed by the di¤erential equation

(u00(t))
2
u000(t)

216
+ arctan(u)� (u0(t) + 1)3 � 4 3

p
u00(t) + 1 = 0; in [0; 1] n

�
1

2

�
;

(2.25)
the boundary conditions

u(0) = A; u0(0) = B; u00(1) = C; (2.26)

for A 2 [� 1
2 ; 4]; B 2 [0; 1] and C 2] � 2; 6[; and the impulse e¤ects given, for

t1 =
1
2 ; by 8><>:

�u( 12 ) = u( 12 ) + u
0( 12 );

�u0( 12 ) = �u(
1
2 ) + u

00( 12 )

��(u00( 12 )) = 2u
0( 12 ):

(2.27)

Remark that constant functions are not solutions of this problem (2.25),
(2.27), (2.26), which is a particular case of problem (2.1)-(2.3) with a = 0;
b = 1; and

�(w) =
w3

648
; q(t) � 1;

f(t; x; y; z) = arctan(x)� (y + 1)3 � 4 3
p
z + 1

I11(t; x; y) = x+ y;

I21(t; x; y; z) = �x+ z;
I31(t; x; y; z) = 2y:

For A 2 [� 1
2 ; 4]; B 2 [0; 1] and C 2]� 2; 6[; the functions

�(t) =

8<: �2t2 � 1
2 ; t � 1

2

�t2 � 3 ; 1
2 < t

and �(t) =

8<: t3 + t+ 4 ; t � 1
2

t3 + 3t+ 10 ; 1
2 < t;

are, respectively, lower and upper solutions of problem (2.25), (2.27), (2.26),
considering

�0(t) =

�
�4t ; t � 1

2
�2t ; 1

2 < t
; �0(t) =

�
3t2 + 1 ; t � 1

2
3t2 + 3 ; 1

2 < t
;

�00(t) =

�
�4 ; t � 1

2
�2 ; 1

2 < t
and �00(t) = 6t; in [0; 1]:
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As the assumptions of Theorem 2.5 are ful�lled, therefore there is a solution
of problem (2.25), (2.27), (2.26), such that

�(t) � u(t) � �(t); �0(t) � u0(t) � �0(t); in [0; 1]:



Chapter 3

Semi-Linear Impulsive
Higher Order Boundary
Value Problems

3.1 Introduction

This chapter studies the two point boundary value problem composed by the
one-dimensional �-Laplacian equation

(�(u(n�1)(t)))0 + q(t)f(t; u(t); :::; u(n�1)(t)) = 0; t 2 [a; b]nft1; :::; tmg; (3.1)

where � is an increasing homeomorphism such that �(0) = 0 and �(R) = R,
q 2 L1[a; b] is a positive function and f : [a; b]�Rn ! R is a L1�Carathéodory
function, together with the boundary conditions

u(j)(a) = Aj ; u
(n�1)(b) = B; j = 0; 1; :::; n� 2; Aj ; B 2 R; (3.2)

and the impulsive conditions

�u(i)(tk) = Ii;k(tk; u(tk); u
0(tk); :::; u

(n�1)(tk)); i = 0; 1; :::; n� 2;
��(u(n�1)(tk)) = In�1;k(tk; u(tk); u

0(tk); ; :::; u
(n�1)(tk)); (3.3)

being �u(i)(tk) = u(i)(t+k ) � u(i)(t�k ); i = 0; 1; :::; n � 1; k = 1; 2; :::;m; Ii;k 2
C([a; b] � Rn;R); and tk �xed points such that a = t0 < t1 < t2 < ::: < tm <
tm+1 = b:
Impulsive boundary value problems have been studied by many authors

where it is highlighted the huge possibilities of applications to phenomena where
a sudden variation happens. Indeed, these types of jumps occur in di¤erent ar-
eas such as population dynamics, engineering, control, and optimization theory,
medicine, ecology, biology and biotechnology, economics, pharmacokinetics, and
many other �elds.

29
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From a large number of items existent in the literature on classical impulsive
di¤erential problems, we mention, for instance, [24, 53, 54, 63, 66, 75] and the
references therein. The most applied arguments are based on critical point
theory and variational methods ([51, 58, 112]), �xed point theory on cones ([96,
105]), bifurcation results ([81, 108]), and upper and lower solutions techniques
suggested on ([23, 56, 72, 97]).
In the last years, p-Laplacian and �-Laplacian operators have been applied

to semi-linear, quasi-linear, and strongly nonlinear di¤erential equations, in sin-
gular and regular cases, increasing the range of theoretical and practical appli-
cations, as it can be seen, for example, in [12, 35, 55, 60, 103, 115] and in their
references. However, impulsive problems with this type of nonlinear di¤erential
equations are scarce.
In [30], it is studied the third order di¤erential equation

(�(u00(t)))0 + q(t)f(t; u(t); u0(t); u00(t)) = 0; t 2 [a; b]nft1; :::; tng;

with � is an increasing homeomorphism, q 2 C([a; b]) with q > 0 ; f 2 C([a; b]�
R3;R); the two-point boundary conditions

u(a) = A; u0(a) = B; u00(b) = C; A;B;C 2 R;

and the impulsive e¤ects are given by

�u(tk) = I1k(tk; u(tk); u
0(tk));

�u0(tk) = I2k(tk; u(tk); u
0(tk); u

00(tk));

��(u00(tk)) = I3k(tk; u(tk); u
0(tk); u

00(tk));

where k = 1; 2; :::n; I1k 2 C([a; b]� R2;R); and Iik 2 C([a; b]� R3;R); i = 2; 3:
In this work, we found a method that allows generalizing the above results

to higher-order boundary value problems with impulsive functions, depending
not only on the unknown function but also on its derivatives till order n � 1.
To best of our knowledge, it is the �rst time, where such nonlinear higher-order
problems are considered with this type of generalized impulsive functions.
This work is organized in the following way: Section 3.2 contains the func-

tional framework, some de�nitions and an explicit form for the solution of the
associated homogeneous problem. Section 3.3 presents the main existence and
localization theorem obtained via lower and upper solutions technique and a
�xed point theorem. The last section gives a technique to estimate the bending
of a one-sided clamped beam under some impulsive forces and how it can be
obtained some qualitative data about its variation.

3.2 De�nitions and preliminary results

Let

PCn�1[a; b] =

�
u : u 2 Cn�1([a; b];R) for t 6= tk; u

(i)(tk) = u(i)(t�k ); u
(i)(t+k )

exists for k = 1; 2; :::;m; and i = 0; 1; :::; n� 1

�
:
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Denote X := PCn�1[a; b]: Then X is a Banach Space with norm

jjujjX = maxfjju(i)jj1; i = 0; 1; :::; n� 1g;

where
jjwjj1 = sup

a�t�b
jw(t)j:

De�ning J := [a; b] and J 0 = Jnft1; :::; tmg; for a solution u of problem (3.1)-
(2.3) one should consider u(t) 2 E, where

E3 := PCn�1(J) \ Cn(J 0):

Next lemma provides an uniqueness result an adequate problem related to
(3.1)-(2.3).

Lemma 3.1 For v 2 PC[a; b]; the problem composed by the di¤erential equation

(�(u(n�1)(t)))0 + v(t) = 0 (3.4)

together with conditions (3.2), (2.3), has a unique solution given by

u(t) =
n�2X
i=0

 "
Ai +

X
k : tk<t

Ii;k

�
tk; u(tk); :::; u

(n�1)(tk)
�# (t� a)n�2�i

(n� 2� i)!

!

+

Z t

a

(t� s)n�2
(n� 2)! �

�1

 
�(B) +

Z b

s

v(r)dr �
X

k : tk>s

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!

ds:

Proof. Integrating the di¤erential equation (3.4) for t 2 (tm; b] we get, by (3.2),

�
�
u(n�1)(t)

�
= �(B) +

Z b

tm

v(s)ds: (3.5)

By integration of (3.4) for t 2 (tm�1; tm] one has by (3.5)

�
�
u(n�1)(t)

�
=

Z tm

t

v(s)ds� In�1;m
�
tm; u(tm); :::; u

(n�1)(tm)
�
+ �

�
u(n�1)

�
t+m
��

= � (B)� In�1;m
�
tm; u(tm); :::; u

(n�1)(tm)
�
+

Z b

t

v(s)ds

and so,

u(n�1)(t) = ��1

 
� (B)� In�1;m

�
tm; u(tm); :::; u

(n�1)(tm)
�
+

Z b

t

v(s)ds

!
Therefore, for t 2 [a; b], we have

u(n�1)(t) = ��1

 
�(B) +

Z b

t

v(s)ds�
X

k : tk>t

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!

:

(3.6)
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Integrating (3.6), for t 2 [a; t1],

u(n�2)(t) = An�2 +

Z t

a

��1(�(B) +

Z b

s

v(r)dr�

X
k : tk>s

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!

ds:

By integration of (3.6) on (t1; t2] and (2.3)

u(n�2)(t) = In�2;1

�
t1; u(t1); :::; u

(n�1)(t1)
�

+

Z t

t1

 
��1

 
�(B) +

Z b

s

v(r)dr �
X

k : tk>s

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!!

ds

Therefore, for t 2 [a; b],

u(n�2)(t) =
X

k : tk<t

�
In�2;k

�
tk; u(tk); :::; u

(n�1)(tk)
��
+An�2

+

Z t

a

 
��1

 
�(B) +

Z b

s

v(r)dr �
X

k : tk>s

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!!

ds:

Following the same method, by iterate integrations and (2.3), we obtain for
t 2 [a; b]

u(t) =
n�2X
i=0

 "
Ai +

X
k : tk<t

Ii;k

�
tk; u(tk); :::; u

(n�1)(tk)
�# (t� a)n�2�i

(n� 2� i)!

!
+

Z t

a

(t� s)n�2
(n� 2)! �

�1

 
�(B) +

Z b

s

v(s)ds�
X

k : tk>s

In�1;k

�
tk; u(tk); :::; u

(n�1)(tk)
�!

ds:

Lower and upper functions will play a key role in our method, and they are
de�ned as it follows:

De�nition 3.2 A function �(t) 2 E3 with �(�(n�1)(t)) 2 PC1[a; b] is a lower
solution of problem (3.1), (3.2), (2.3) if8>>>>>>>><>>>>>>>>:

(�
�
�(n�1)(t))

�0
+ q(t)f

�
t; �(t); �0(t); :::; �(n�1)(t)

�
� 0

�(j) (a) � Aj ; j = 0; 1; :::; n� 2;
�(n�1) (b) � B

��(i)(tk) � Ii;k(tk; �(tk); :::; �
(n�1)(tk)); i = 0; 1; :::; n� 3;

��(n�2)(tk) > In�2;k(tk; �(tk); :::; �
(n�1)(tk))

��(�(n�1)(tk)) > In�1;k(tk; �(tk); :::; �
(n�1)(tk));

(3.7)

for k = 1; 2; :::;m:
A function �(t) 2 E3 such that �(�(n�1)(t)) 2 PC1[a; b] is an upper solution of
(3.1)-(2.3) if it satis�es the opposite inequalities.
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To control the derivative u(n�1)(t) it will be applied the Nagumo condition:

De�nition 3.3 A L1-Carathéodory function f : [a; b] � Rn ! R satis�es a
Nagumo condition related to a pair of functions ;� 2 E3, with (i)(t) �
�(i)(t); for i = 0; 1; :::; n � 2; and t 2 [a; b], if there exists a function  :
C([0;+1); ]0;+1)) such that

jf(t; x0; x1; :::; xn�1)j �  (jxn�1j), for all (t; x0; x1; :::; xn�1) 2 S (3.8)

with

S := f(t; x0; x1; :::; xn�1) 2 [a; b]�Rn : (i)(t) � xi � �(i)(t); i = 0; 1; :::; n� 2g;

and Z +1

�(�)

ds

 (��1(s))
>

Z b

a

q(s)ds; (3.9)

where

� := max
k=0;1;2;:::;m

������(n�2)(tk+1)� (n�2)(tk)tk+1 � tk

���� ; ����(n�2)(tk+1)� �(n�2)(tk)tk+1 � tk

����� :
From Nagumo condition we deduce an a priori estimation for u(n�1)(t) :

Lemma 3.4 If the L1-Carathéodory function f : [a; b] � Rn ! R satis�es a
Nagumo condition in the set S; referred to the functions  and �; then there is
N � � > 0 such that every solution u of the di¤erential equation (3.1) veri�es
jju(n�1)jj1 � N:

Proof. Let u(t) be a solution of (3.1) such that

(i)(t) � u(i)(t) � �(i)(t); for i = 0; 1; :::; n� 2 and t 2 [a; b]:

By the Mean Value Theorem, there exists �0 2 (tk; tk+1) with

u(n�1)(�0) =
u(n�2)(tk+1)� u(n�2)(tk)

tk+1 � tk
; with k = 0; 1; 2; :::;m:

Moreover,

�N � �� � (n�2)(tk+1)� �(n�2)(tk)
tk+1 � tk

� u(n�1)(�0) (3.10)

� �(n�2)(tk+1)� (n�2)(tk)
tk+1 � tk

� � � N:

If
��u(n�1)(t)�� � N for every t 2 [a; b]; the proof is complete.

On the contrary, assume that there is � 2 [a; b] such that
��u(n�1)(�)�� >

N: Consider the case where u(n�1)(�) > N: Therefore there is �1 such that
u(n�1)(�1) = N: Suppose, without loss of generality, that �0 < �1: So,

u(n�1)(t) > 0 and u(n�1)(�0) � u(n�1)(t) � N; for t 2 [�0; �1] :
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So

j�(u(n�1)(t))j = jq(t)f(t; u(t); :::; u(n�1)(t))j � q(t)j (u(n�1)(t))j; for t 2 [�0; �1] ;

and Z �(N)

�(u(n�1)(�0))

ds

 (��1(s))
�
Z �1

�0

j(�(u(n�1)(t))0j
 (u(n�1)(t))

dt

=

Z �1

�0

jq(t)f(t; u(t); :::; u(n�1)(t))j
 (u(n�1)(t))

dt �
Z �1

�0

q(t)dt <

Z b

a

q(t)dt:

As u(n�1)(�0) � � < N; by the monotony of �;

�(u(n�1)(�0)) � �(�)

and, by (3.9),Z �(N)

�(u(n�1)(�0))

ds

 (��1(s))
�
Z �(N)

�(�)

ds

 (��1(s))
>

Z b

a

q(t)dt

which leads to a contradiction.
The other cases, that is, u(n�1)(�) > N with �1 < �0, and u(n�1)(�) <

�N with �0 < �1 or �1 < �0, follow the same arguments to obtain a contradic-
tion.
Therefore

��u(n�1)(t)�� � N; for t 2 [a; b]:
Forward, in our method, we will use the following lemma, given in [73]:

3.3 Existence and localization result

The main result is an existence and localization theorem, as it provides not only
the existence of solutions but also some of its qualitative properties.

Theorem 3.5 Suppose that there are � and � lower and upper solutions, re-
spectively, of problem (3.1)-(2.3) such that

�(n�2)(t) � �(n�2)(t); for t 2 [a; b]:

Assume that the L1-Carathéodory function f : [a; b]�Rn ! R satis�es a Nagumo
condition, related to � and �, and veri�es

f(t; �(t); :::; �(n�3)(t)); y; z) � f(t; x0; :::; xn�1) � f(t; �(t); :::; �(n�3)(t); y; z);
(3.11)

for �(i)(t) � xi � �(i)(t); for i = 0; :::; n� 3; and �xed (y; z) 2 R2:
Moreover, if the impulsive functions satisfy

Ij;k(tk; �(tk); :::; �
(n�1)(tk)) � Ij;k(tk; x0; :::; xn�1) � Ij;k(tk; �(tk); :::; �

(n�1)(tk));
(3.12)
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for j = 0; :::; n� 3; �(i)(tk) � xi � �(i)(tk), for i = 0; 1; :::; n� 2; k = 1; 2; :::;m;
and

In�2;k(tk; �(tk); :::; �
(n�3)(tk); y; z) � In�2;k(tk; x0; :::; xn�3; y; z) (3.13)

� In�2;k(tk; �(tk); :::; �
(n�3)(tk); y; z)

for �(i)(t) � xi � �(i)(t); for i = 0; :::; n� 3; and �xed (y; z) 2 R2, then problem
(3.1)-(2.3) has at least one solution u 2 E, such that

�(i)(t) � u(i)(t) � �(i)(t) for i = 0; 1; :::; n� 2 and �N � u(n�1)(t) � N;

for t 2 [a; b] and N given by (3.10).

Proof. De�ne the continuous functions �i, for i = 0; 1; :::; n� 2;

�i(t; u
(i)(t)) =

8<:
�(i)(t); u(i)(t) � �(i)(t)

u(i)(t); �(i)(t) � u(i)(t) � �(i)(t)
�(i)(t); u(i)(t) � �(i)(t)

and consider the following modi�ed and perturbed equation

(�(u(n�1)(t)))0 + q(t)f

�
t; �0(t; u(t)); :::; �n�2(t; u

(n�2)(t));
d

dt

�
�n�2(t; u

(n�2)(t))
��

(3.14)

+
�n�2(t; u

(n�2)(t))� u(n�2)(t)
1 + ju(n�2)(t)� �n�2(t; u(n�2)(t))j

= 0;

coupled with boundary conditions (3.2) and the truncated impulsive conditions
, for i = 0; 1; :::; n� 2;

�u(i)(tk) = Ii;k

�
tk; �0(tk; u(tk)); :::; �n�2(tk; u

(n�2)(tk);
d
dt (�n�2(tk; u

(n�2)(tk)))

�
:= I�i;k(tk);

��(u(n�1)(t)) = In�1;k

�
tk; (tk; u(tk)); :::; �n�2(tk; u

(n�2)(tk));
d
dt (�n�2(tk; u

(n�2)(tk)))

�
:= I�n�1;k(tk):

(3.15)
De�ne the operator T : E3 ! E3 by

T (u)(t) : =
n�2X
i=0

 "
Ai +

X
k : tk<t

I�i;k

#
(t� a)n�2�i
(n� 2� i)!

!

+

Z t

a

(t� s)n�2
(n� 2)! �

�1

 
�(B) +

Z b

s

v(s)ds�
X

k : tk>s

I�n�1;k

!
ds:

By Lemma 3.1, it is clear that the �xed points of T; u�; are solutions of the
initial problem (3.1)-(3.15), if they verify

�(i)(t) � u
(i)
� (t) � �(i)(t); for t 2 [a; b]and i = 0; 1; :::; n� 2:
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As T is completely continuous, by Schauder�s �xed point theorem, T has a
�xed point u 2 E; which is a solution of (3.14), (3.2), (3.15). To prove that this
solution veri�es

�(i)(t) � u(i)(t) � �(i)(t); for t 2 [a; b]; and i = 0; 1; :::; n� 2;

suppose, by contradiction, that, for i = n� 2; there is t 2 [a; b] such that

u(n�2)(t) > �(n�2)(t):

De�ne � 2 [a; b] as

sup
t2[a;b]

(u(n�2)(t)� �(n�2)(t)) := u(n�2)(�)� �(n�2)(�)) > 0: (3.16)

By (3.2) and De�nition 3.2, u(n�2)(a) � �(n�2)(a) � 0, then � 6= a. On the
other hand u(n�1)(b)� �(n�1)(b) < 0 and then � 6= b; by (3.16):
Therefore � 2]a; b[:

Case 1: Assume that there is p 2 f1; 2; :::;mg such that � 2 (tp; tp+1).

Consider � > 0 small enough such that

u(n�2)(t)� �(n�2)(t) > 0 and u(n�1)(t)� �(n�1)(t) � 0; for t 2 (�; � + �) :
(3.17)

Therefore, by (3.11) and (3.17), for all t 2 (�; � + �); we have the following
contradiction

0 � �
�
u(n�1)(t)

�0
� �

�
�(n�1)(t)

�0
� �q(t)f

�
t; �0(t; u(t)); :::; �n�2(t; u

(n�2)(t));
d

dt

�
�n�2(t; u

(n�2)(t))
��

�
�n�2

�
t; u(n�2)(t)

�
� u(n�2)(t)

1 +
��u(n�2)(t)� �n�2 �t; u(n�2)(t)��� + q(t)f

�
t; �(t); :::; �(n�1)(t)

�

= �q(t)f
�
t; �0(t; u(t)); :::; �n�3 (t; u(t)) ; �

(n�2)(t); �(n�1)(t)
�

� �(n�2)(t)� u(n�2)(t)
1 +

���u(n�2)(t)� �(n�2)(t)��� + q(t)f
�
t; �(t); :::; �(n�1)(t)

�

� �q(t)f
�
t; �(t); :::; �(n�1)(t)

�
� �(n�2)(t)� u(n�2)(t)
1 +

���u(n�2)(t)� �(n�2)(t)���
+ q(t)f

�
t; �(t); :::; �(n�1)(t)

�
=

u(n�2)(t)� �(n�2)(t)
1 +

���u(n�2)(t)� �(n�2)(t)��� > 0.
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Case 2: Consider that there exists k 2 f1; 2; :::;mg such that, or

max
t2[a;b]

�
u(n�2)(t)� �(n�2)(t)

�
:= u(n�2)(t�k )� �

(n�2)(t�k ) > 0 (3.18)

or

sup
t2[a;b]

�
u(n�2)(t)� �(n�2)(t)

�
:= u(n�2)(t+k )� �

(n�2)(t+k ) > 0: (3.19)

If (3.18) holds, then

�
�
u(n�2)(t)� �(n�2)(t)

�
� 0

and, by (3.13) and De�nition 3.2, we have the contradiction

0 � �u(n�2)(tk)���(n�2)(tk) = I�n�2;k ���(n�2)(tk)

= In�2;k

�
�0(t; u(t)); :::; �n�3 (t; u(t)) ; �

(n�2)(t); �(n�1)(t)
�
���(n�2)(tk)

� In�2;k

�
tk; �(tk); :::; �

(n�1)(tk)
�
���(n�2)(tk) > 0:

Consider now (3.19). So, there is � > 0 such that , for t 2 (tk; tk + �);

u(n�1)(t)� �(n�1)(t) � 0;

and the arguments follow by the same technique as in Case 1, to have

u(n�2)(t) � �(n�2)(t);8t 2 [a; b]:

To prove that u(n�2)(t) � �(n�2)(t);8t 2 [a; b]; the method is similar. Therefore

�(n�2)(t) � u(n�2)(t) � �(n�2); for t 2 [a; b]:

Integrating the �rst inequality in [a; t1]; we have

�(n�3)(t) � u(n�3)(t)� u(n�3)(a) + �(n�3)(a) (3.20)

= u(n�3)(t)�An�3 + �(n�3)(a) � u(n�3)(t):

For t 2 (t1; t2], by (3.12) and (3.20),

�(n�3)(t) � u(n�3)(t)� u(n�3)(t+1 ) + �(n�3)(t+1 )
� u(n�3)(t)� I�n�3;1(t1)� u(n�3)(t1)
+ In�3;1

�
t1; �(t1); :::; �

n�1(t1)
�
+ �(n�3)(t1)

� u(n�3)(t)� I�n�3;1(t1) + In�3;1
�
t1; �(t1); :::; �

(n�1)(t1)
�

� u(n�3)(t):
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Applying this method for each interval (tk; tk+1], k = 2; :::;m; we obtain

�(n�3)(t) � u(n�3)(t);8t 2 [a; b];

and, by the same technique,

�(n�3)(t) � u(n�3)(t);8t 2 [a; b]:

By iteration of these arguments, we conclude

�(i)(t) � u(i)(t) � �(i)(t), for i = 0; 1; :::; n� 2; and t 2 [a; b]:

The estimation
��u(n�1)(t)�� � N is a trivial consequence of Lemma 3.4.

3.4 Estimation for the bending of one-sided clamped
beam under impulsive e¤ects

Problems related to beam structures and especially beams that support some
forces as impulses, are part of a vast �eld of investigation in boundary value
problems theory, see, for example, [89, 76, 110, 106, 113].
In this application we consider a model to describe the bending of a beam

with length L > 1; given by the fourth-order equation

EI

A
u(4) (x) +

3

2
3
p
u0(x)ju00(x)j � ku(x)� u000(x) = 0; for x 2 ]0; L[ ; (3.21)

where E > 0 is the Young�s modulus, I > 0 the mass moment of inertia, A > 0
the cross section area, k > 0 the tension of a spring force vertically applied on
the beam; and  > 0 the shear force coe¢ cient.
At the end points the behavior of the beam is given by the following boundary

conditions
u(0) = 0; u0(0) = 1; u00(0) = 0; u000(L) = 0; (3.22)

meaning that the beam is clamped on the left end side.
For clearance, we consider only one moment of impulse which occurs at

t1 = 1: The impulsive e¤ects are given by generalized functions with dependence
on the unknown function itself, and on several derivatives till order three,

�u(1) = u(1) + u0(1)� 2u00(1)� u000(1)
�u0(1) = u(1) + u0(1)� 2u00(1)� u000(1) (3.23)

�u00(1) = �u(1)� u0(1) + u00(1) + 5u000(1)� 1
�u000(1) = u(1)� u0(1) + u00(1) + u000(1)� 1:

This problem (3.21)-(3.23) is a particular case of (3.1)-(2.3) with [a; b] =
[0; L] ; n = 4;

f(x; y0; y1; y2; y3) =
A

EI

�
3

2
3
p
y1jy2j � ky0 � y3

�
; (3.24)
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�(w) = w; q(t) � 1;m = 1; t1 = 1; and the impulsive functions given by

I0;1(t1; w0; w1; w2; w3) = w0 + w1 � 2w2 � w3
I1;1(t1; w0; w1; w2; w3) = w0 + w1 � 2w2 � w3
I2;1(t1; w0; w1; w2; w3) = �w0 � w1 + w2 + 5w3 � 1
I3;1(t1; w0; w1; w2; w3) = w0 � w1 + w2 + w3 � 1:

As a numeric example we can consider A = 1; EI = 1; k = 1;  = 6; L = 2.
In this case, the continuous functions

�(x) = 0; �(x) =
x3

6
+ x2 + x; for x 2 [0; 2] ;

are, respectively, lower and upper solutions of problem (3.24)-(3.23), according
to De�nition 3.16. In fact, for �(x) � 0 the inequalities are trivially satis�ed
and for �, we have,

�(0) = 0; �0(0) = 1; �00(0) = 2 > 0; �000(2) = 1 > 0;

��(1) = 0 � �(0) + �0(0)� 2�00(0)� �000(0) = �4
3
;

��0(1) = 0 � �(0) + �0(0)� 2�00(0)� �000(0) = �4
3
;

��00(1) = 0 < ��(0)� �0(0) + �00(0) + 5�000(0)� 1 = 4

3

��000(1) = 0 < �(0)� �0(0) + �00(0) + �000(0)� 1 = 5

3
:

The nonlinear part f(x; y0; y1; y2; y3), given by (3.24), veri�es a Nagumo condi-
tion on the set

S� =

(
(t; y0; y1; y2; y3) 2 [0; 2]� Rn : 0 � y0 � x3

6 + x
2 + x;

0 � y1 � x2

2 + 2x+ 1; 0 � y2 � x+ 2

)

with
� = max

����00(2)�� ; ���00(0)�� ; ���00(1)��	 = 4; ;
 (jy3j) := jy3j+

22

3
;

and
+1Z
�

ds

s+ 22
3

= +1 >

LZ
0

1 ds = L:

Moreover f is nondecreasing on y0 and, by Theorem 3.5, there exists a
solution u(x) of problem (3.21)-(3.23) such that

�(i)(x) 6 u(i)(x) 6 �(i)(x); i = 0; 1; 2; for x 2 [0; 2] ;
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that is

0 � u(x) � x3

6
+ x2 + x;

0 � u0(x) � x2

2
+ 2x+ 1;

0 � u00(x) � x+ 2; for x 2 [0; 2]:



Chapter 4

Periodic third order
boundary value problems
with generalized impulsive
conditions

4.1 Introduction

This section presents a nonlinear periodic third order impulsive problem com-
posed by the fully di¤erential equation

u000 (t) = f (t; u (t) ; u0 (t) ; u00 (t)) (4.1)

for a.e. t 2 Jn ft1; :::; tmg with J := [0; 1] ; where f : J � R3 ! R is a L1-
Carathéodory function, the periodic boundary conditions

u(i) (0) = u(i) (1) ; i = 0; 1; 2; (4.2)

and the impulsive e¤ects given by some generalized functions with dependence
on the nonlinear function and its �rst and second derivatives, in the form

u(i)
�
t+j
�
= Iij (u(tj); u

0(tj); u
00(tj)) ; (4.3)

where u(i)
�
t+j
�
= lim

t!t+j

u(i) (t) ; i = 0; 1; 2; for j = 1; :::;m; tj 2 (0; 1) such that

0 = t0 < t1 < ::: < tm < tm+1 = 1 and Iij : R3 ! R are continuous and
nondecreasing functions in all variables.
Di¤erent types of third order boundary value problems (separated, periodic,

multipoint, with delays, integro-di¤erential, functional,...) have been studied by
many authors and several methods, such as �xed point theory, topological and
coincidence degree, lower and upper solutions, cone theory,..., and can describe

41
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real phenomena in medicine, physics, agriculture, biology, economics,...(see, for
example, [2, 6, 10, 11, 28, 45, 45, 52, 57] and the references therein).
Impulsive problems are particularly well adapted to models where there have

sudden changes at some moments, and they have been the subject of growing
interest ( see, for instance, [5, 40, 42, 94, 109] ). These jump situations may
happen in many �elds, such as, population dynamics, control theory, chemistry,
... (see, for example, [9, 80, 91]).
To our best knowledge, it is the �rst time where third order periodic im-

pulsive problems are considered with the instantaneous changes, depending on
the unknown function and its �rst and second derivatives, given by generalized
functions. In this way, problem (4.1)-(4.3) covers cases where the jumps in each
moment depend not only on the value of the function on this instant, but also
on the velocity and the convexity of the solution in the referred moment.
A particular case of the above problem is applied to a mathematical model

concerning the thyroid-pituitary system. In short, the anterior lobe of the
pituitary gland produces the hormone thyrotropin under the in�uence of the
Thyrotropin Releasing Factor secreted by the hypothalamus. The thyrotropin,
in turn, causes the thyroid gland to produce a thyroid enzyme which when
activated produces the hormone thyroxine. This hormone has a negative feed-
back e¤ect on the secretion of thyrotropin from pituitary. For the �rst time in
the literature an impulsive problem, with generalized impulsive conditions, is
used in this type of reaction-di¤usion phenomena. This mathematical theory is
very useful in the study of causes and clinical treatment of periodic catatonic
schizophrenia.
The main tools rely on a perturbed and truncated auxiliary problem, on an

iterative technique, not necessarily monotone, as in [118], and lower and upper
solutions method. We point out that, the nonlinear part must verify only a
local monotone condition (see (4.11)) and no assumption on its periodicity or
asymptotic growth is needed.
The work is organized as it follows: in Section 4.2 we describe the class of

functions to be considered and an explicit expression for the solution of the
associated linear problem. Section 4.3 contains the main result: an existence
and localization theorem, that is, with some qualitative information on the
solution. In Section 4.4 we present an example to illustrate the potentialities of
the main theorem. Last section contains an application to the thyroid-pituitary
homeostatic mechanism with impulses, which can be seen as the moments of
administration of adequate drugs. As far as we know, it is the �rst time where
such model is considered with impulsive moments.

4.2 Preliminary results

This section contains some notations, de�nitions and auxiliary results, to be
used forward.
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For m 2 N; let 0 = t0 < t1 < ::: < tm < tm+1 = 1; D = ft1; :::; tmg and

u(t�j ) := lim
t!t�j

u(t):

De�nition 4.1 Denote by PC (J) the set of functions u : J ! R continuous
on J n D where u

�
t+j
�
and u

�
t�j
�
exist with u

�
t�j
�
= u (tj) ; for j = 1; 2; :::;m:

For u 2 PC (J), we de�ne the norm by

kuk = sup
t2J

ju (t)j :

Consider PCl (J) ; l = 1; 2; as the space of the real-valued functions u; such
that u(l) 2 PC (J) ; u(l)

�
t+j
�
and u(l)

�
t�j
�
exist with u(l)

�
t�j
�
= u(l) (tj) ; for

l = 0; 1; 2 and j = 1; 2; :::;m:
Therefore u 2 PC2 (J) can be written as

u (t) =

8>>><>>>:
u0 (t) if t 2 [0; t1] ;
u1 (t) if t 2 (t1; t2] ;
...

um (t) if t 2 (tm; 1] ;

(4.4)

where ui := uij(ti;ti+1] with ui 2 AC2(ti; ti+1] for i = 0; 1; :::;m:
Denote, for n 2 N;

PCnD (J) =

�
u 2 PCn (J) : u(j) 2 AC(ti; ti+1]; j = 0; 1; :::; n;

i = 0; 1; :::;m

�
and for each u 2 PCnD (J) we set the norm

kukD = kuk+ ku
0k+ � � �+

u(n)
Moreover for p 2 L1(J) we consider the usual norm

kpk1 :=
Z
J

jp(t)j dt:

Throughout this work the following hypothesis will be assumed :

(A1) f : [0; 1] � R3 ! R is a L1-Carathéodory function, that is, f (t; �; �; �) is a
continuous function for a. e. t 2 J ;
f (�; y0; y1; y2) is measurable for (y0; y1; y2) 2 R3; and for every M > 0
there is a real-valued function  M 2 L1 ([0; 1]) such that

jf (t; y0; y1; y2)j �  M (t) ; for a. e. t 2 [0; 1]

and for every (y0; y1; y2) 2 R3 with jyij �M , for i = 0; 1; 2;
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(A2) the real valued functions Iij ; for i = 0; 1; 2 and j = 1; :::;m are nonde-
creasing in all variables:

De�nition 4.2 A function u 2 PC2D (J) is a solution of (4.1)-(4.3) if it sat-
is�es (4.1) almost everywhere in J n D, the periodic conditions (4.2) and the
impulse conditions (4.3).

Next Lemma will give the unique solution for a linear Cauchy problem:

Lemma 4.3 Let p : [0; 1]! R such that p 2 L1 ([0; 1]). Then for each interval
(tk; tk+1]; j = 0; 1; :::;m; and aj ; bj ; cj 2 R; the initial value problem composed
by the equation

u000 (t) = p (t) ; for t 2 Jn ft1; :::; tmg (4.5)

and the conditions

u
�
t+j
�
= aj ; u0

�
t+j
�
= bj ; u00

�
t+j
�
= cj ; (4.6)

has a unique solution uj 2 C2(tj ; tj+1], given by

uj(t) = aj + bj (t� tj) + cj
(t� tj)2

2
+

tZ
tj

(t� r)2

2
p (r) dr; (4.7)

for t 2 (tj ; tj+1]:
Therefore, u 2 PC2D (J) ; given by (4.4), is the unique solution of

u000 (t) = p (t) ; for a.e. t 2 [0; 1]; (4.8)

verifying (4.6), for each j = 0; 1; :::;m:

Proof. The solution u(t) given by (4.7) can be obtained by iterate integrations
of (4.5).
Remark that t0 = 0 = t+0 and tm+1 = 1:
Strict lower and upper solutions are de�ned by the following inequalities:

De�nition 4.4 A function � 2 PC3D (J) is said to be a strict lower solution of
the problem (4.1)-(4.3) if:

(i) �000 (t) > f (t; � (t) ; �0 (t) ; �00 (t)), for a.e. t 2 (0; 1) :

(ii) � (0) � � (1) ; �0 (0) � �0 (1) ; �00 (0) � �00 (1) ;

(iii) �
�
t+j
�
� I0j (�(tj); �

0(tj); �
00(tj)) ;

�0
�
t+j
�
� I1j (� (tj) ; �

0 (tj) ; �
00 (tj)) ;

�00
�
t+j
�
� I2j (�(tj); �

0(tj); �
00(tj)) ; j = 1; :::;m:

A function � 2 PC3D (J) is a strict upper solution of problem (4.1)-(4.3) if
the reversed inequalities hold.
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4.3 Existence and localization result

The main theorem provides not only the existence of a solution, but also gives
some qualitative data about its behavior:

Theorem 4.5 Let �; � 2 PC3D(J) be, respectively, strict lower and upper solu-
tions of (4.1)-(4.3) such that

�00 (t) � �00 (t) on Jn D (4.9)

and
�(i) (0) � �(i) (0) ; i = 0; 1: (4.10)

Assume that

f (t; �(t); �0(t); y2) � f(t; y0; y1; y2) � f
�
t; �(t); �0(t); y2

�
; (4.11)

for �xed (t; y2) 2 J � R, �(i)(t) � yi � �(i)(t); for i = 0; 1:
If conditions (A1) and (A2) hold, then the problem (4.1)-(4.3) has a solution

u (t) 2 PC3D (J), such that

�(i) (t) � u(i) (t) � �(i) (t) ; on J; for i = 0; 1; 2:

Remark 4.6 From (4.10), we have �(i) (t) � �(i) (t) ; for i = 0; 1; and every
t 2 J:

Proof. Consider the following modi�ed problem composed by the equation

u000 (t) = f (t; �0 (t; u (t)) ; �1 (t; u
0 (t)) ; �2 (t; u

00 (t))) ; (4.12)

for t 2 (0; 1) and t 6= tj ; j = 1; :::;m; where the continuous functions �i : R2 !
R; for i = 0; 1; 2 are given by

�i (t; yi) =

8<:
�(i) (t) ; yi > �(i) (t)

yi ; �(i) (t) � yi � �(i) (t)
�(i) (t) ; yi < �(i) (t)

(4.13)

with the boundary conditions (4.2) and the impulse conditions (4.3).
To prove the solvability of problem (4.12),(4.2),(4.3) it is applied an iterative

technique, not necessarily monotone.
Let (un)n2N be the sequence in PC

3
D (J) de�ned as it follows

u0(t) = �(t); (4.14)

and for n = 1; 2; :::; un(t) is the solution of the problem composed by the
equation

u000n (t) = f
�
t; �0 (t; un�1 (t)) ; �1

�
t; u0n�1 (t)

�
; �2 (t; u

00
n (t))

�
; (4.15)
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for a.e. t 2 [0; 1] ; with the boundary conditions

un (0) = un�1 (1) ; u0n (0) = u0n�1 (1) ; u00n (0) = u00n�1 (1) ; (4.16)

and the impulsive conditions, for j = 1; :::;m;

un
�
t+j
�
= I0j (un�1 (tj) ; u

0
n(tj); u

00
n(tj)) ;

u0n
�
t+j
�
= I1j

�
�0(tj ; un�1 (tj)); u

0
n�1(tj); u

00
n(tj)

�
; (4.17)

u00n
�
t+j
�
= I2j

�
�0(tj ; un�1 (tj)) ; �1

�
tj ; u

0
n�1(tj)

�
; u00n�1(tj)

�
:

By Lemma 4.3, the sequence (un)n2N, is well de�ned, as for each n the
nonlinear part of (4.15) is L1�Carathéodory and bounded.
Remark that the initial value problem (4.15)-(4.17) will become the periodic

impulsive problem (4.1)-(4.3), if the two following claims hold:

� Every solution un (t) of the problem (4.15)-(4.17) veri�es

�(i) (t) � u(i)n (t) � �(i) (t) ; for i = 0; 1; 2;

for all n 2 N and every t 2 J; which implies that

�i

�
t; u(i)n (t)

�
= u(i)n (t) ; for i = 0; 1; 2; n 2 N and every t 2 J;

and, consequently, (4.15) become

u000n (t) = f
�
t; un�1 (t) ; u

0
n�1 (t) ; u

00
n (t)

�
; for a.e. t 2 [0; 1] :

� There is a subsequence of (un)n2N ; denoted by simplicity as (un) ; uni-
formly convergent to u 2 PC2D; solution of problem (4.1)-(4.3).

These claims are proven in the following steps:

Step 1 - Every solution of problem (4.15)-(4.17) veri�es

�(i) (t) � u(i)n (t) � �(i) (t) ; for i = 0; 1; 2; (4.18)

for all n 2 N and every t 2 J:
Let un be a solution of the problem (4.15)-(4.17). The proof of inequalities

(4.18) will be done by mathematical induction. Let us begin to prove that
�00(t) � u00n(t) � �00(t), 8n 2 N , 8t 2J:
For n = 0; by (4.14), and i = 2;

�00 (t) = u000 (t) � �00 (t) ; for t 2 J;

and by, Remark 4.6,

�(i) (t) = u
(i)
0 (t) � �(i) (t) ; for i = 0; 1; and t 2 J: (4.19)
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Suppose that, for k = 1; :::; n� 1 and every t 2 J; we have

�00 (t) � u00k (t) � �00 (t) : (4.20)

For t = 0; by (4.16), (4.20) and De�nition 4.4, we get

u00n (0) = u00n�1 (1) � �00 (1) � �00 (0) :

If t = t+j ; j = 1; :::;m; from (4.17), (A2), (4.20) and De�nition 4.4, then

u00n
�
t+j
�
= I2j

�
�0(tj ; un�1 (tj)) ; �1

�
tj ; u

0
n�1(tj)

�
; u00n�1(tj)

�
� I2j (� (tj) ; �

0(tj); �
00(tj)) � �00

�
t+j
�
:

For t 2 ]tj ; tj+1] ; j = 1; 2; :::;m; suppose, by contradiction, that there exists
t� 2 ]tj ; tj+1] such that �00 (t�) > u00n (t

�) and de�ne

min
t2]tj ; tj+1]

u00n (t)� �00 (t) := u00n (t
�)� �00 (t�) < 0:

From (4.11), (4.15) and De�nition 4.4, we get the following contradiction

0 = u000n (t
�)� �000 (t�)

= f
�
t�; �0 (t

�; un�1 (t
�)) ; �1

�
t�; u0n�1 (t

�)
�
; �00 (t�)

�
� �000 (t�)

� f (t�; � (t�) ; �0 (t�) ; �00 (t�))� �000 (t�) < 0:

Then u00n (t) � �00 (t) ; for all n 2 N and every t 2 J: In the same way it can
be shown that u00n (t) � �00 (t) ; 8t 2 J; 8n 2 N; and so (4.18) is proved for i = 2:
Let us prove now, again by induction, that

�0 (t) � u0n (t) � �0 (t) ; 8t 2 J;8n 2 N: (4.21)

Assume that for k = 1; :::; n� 1 and every t 2 J ,

�0 (t) � u0k (t) � �0 (t) : (4.22)

Then for t 2 [0; t1], by integration of the inequality u00n (t) � �00 (t) in [0; t] we
have

u0n (t)� u0n (0) � �0 (t)� �0 (0) :
By (4.16) and (4.22),

u0n (t) � �0 (t)� �0 (0) + u0n�1 (1)
� �0 (t)� �0 (0) + �0 (1) � �0 (t) ;

and so, u0n (t) � �0 (t) ; for all t 2 [0; t1] :
If t = t+j ; j = 1; :::;m; by (4.17), (A2) and De�nition 4.4,

u0n
�
t+j
�
= I1j

�
�0(tj ; un�1 (tj)); u

0
n�1(tj); u

00
n(tj)

�
� I1j (� (tj) ; �

0(tj); �
00(tj)) � �0

�
t+j
�
:
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For t 2 ]tj ; tj+1] ; j = 1; 2; :::;m; from an integration of the same inequality
in ]tj ; t], and, by (4.17) and De�nition 4.4,

�0 (t) � u0n (t) + �
0 �t+j �� u0n �t+j �

= u0n (t) + �
0 �t+j �� I1j ��0(tj ; un�1 (tj)); u0n�1(tj); u00n(tj)�

� u0n (t) + I1j (� (tj) ; �
0(tj); �

00(tj))� I1j (� (tj) ; �0(tj); �00(tj))
= u0n (t) :

Therefore u0n (t) � �0 (t) ; for all n 2 N and every t 2 J:
Using similar arguments it can be proved that u0n (t) � �0 (t) and so (4.21)

is proved.
The remaining inequalities in (4.18) can be proved as above, by integration

of (4.21) in [0; t] ; for all cases of t; applying the correspondent hypothesis of
induction, conditions (4.16), (4.17), (A2); and De�nition 4.4.

Step 2 - There is a subsequence of (un)n2N ; denoted by simplicity as (un) ;
uniformly convergent to u 2 PC2D; solution of problem (4.1)-(4.3).

For i = 0; 1; 2; let Ci = max
n�(i) ;�(i)o. So there exists M > 0, with

M := C0 + C1 + C2 and for all n 2 N

kunkD �M: (4.23)

Let 
 be a compact subset of R3 given by


 =
�
(w0; w1; w2) 2 R3 : jwij � Ci; i = 0; 1; 2

	
:

As f is a L1-Carathéodory function in 
, then there exists a real-valued
function hM (t) 2 L1 (J), such that

jf (t; w0; w1; w2)j � hM (t) ; for every (w0; w1; w2) 2 
: (4.24)

By Step 1 and (4.23), (un; u0n; u
00
n) 2 
, for all n 2 N: From (4.15) and (4.24)

we obtain
ju000n (t)j � hM (t) ; for a.e. t 2 J;

hence u000n (t) 2 L1 (J) :
By integration in J we have that

u00n (t) = u00n (0) +

Z t

0

u000n (s) ds

+
X

0<tj�t

�
I2j
�
un�1(tj); u

0
n�1(tj); u

00
n�1(tj)

�
� u00n(t�j )

�
;

therefore u00n 2 AC (tj ; tj+1) and un 2 PC2D (J) :
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Moreover u00n(s) is equicontinuous in PCD(J): Indeed, assuming without loss
of generality, that t� � t�; then

ju00n (t�)� u00n (t�)j �
�����
Z t�

t�

u000n (s) ds

�����
+

������
X

t�<tj�t�

�
I2j
�
un�1(tj); u

0
n�1(tj); u

00
n�1(tj)

�
� u00n(t�j )

������� �! 0;

as t� ! t�: Therefore, by Ascoli-Arzèla Theorem, there exists a subsequence
of un, denoted by simplicity as un; which converges to u 2 PC2D (J) : Then
(u; u0; u00) 2 
:
Using the Lebesgue dominated convergence theorem and Step 1, for t 2

(tj ; tj+1) ; Z t

tj

f
�
s; un�1 (s) ; u

0
n�1 (s) ; u

00
n (s)

�
ds

is convergent to Z t

tj

f (s; u (s) ; u0 (s) ; u00 (s)) ds

as n!1:
So, for j = 0; 1; :::;m; as n!1;

u00jn (t) = u00n (tj) +

Z t

tj

f
�
s; un�1 (s) ; u

0
n�1 (s) ; u

00
n (s)

�
ds

is uniformly convergent to

u00j (t) = u00 (tj) +

Z t

tj

f (s; u (s) ; u0 (s) ; u00 (s)) ds:

As the function f is L1-Carathéodory function in (tj ; tj+1), then u00j (t) 2
AC (tj ; tj+1) : Therefore, for u de�ned as in (4.4), we have u 2 PC2D (J) and u
is a solution of equation (4.1).
To prove that u is a solution of the boundary value problem (4.1)-(4.3) we

note that (un) is uniformly convergent to u 2 PC2D (J) ; and so in each branch
ujn ! uj uniformly in C2(tj ; tj+1]; for j = 0; 1; :::;m : Therefore, for i = 0; 1; 2;
by (4.16),

u(i)(0) = lim
n!+1

u(i)n (0) = lim
n!+1

u
(i)
n�1(1) = u(i)(1):

Moreover, by the continuity of the impulsive functions Iij , for i = 0; 1; 2 and
j = 1; :::;m, Step 1, and (4.17),

u(i)
�
t+j
�
= lim

n!+1
Iij (un(tj); u

0
n(tj); u

00
n(tj)))

= lim
n!+1

Iij
�
un�1(tj); u

0
n�1(tj); u

00
n�1(tj)

�
)

= Iij (u(tj); u
0(tj); u

00(tj))):
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So, u veri�es (4.3), and problem (4.1)-(4.3) has a solution u (t) 2 PC2D (J), such
that

�(i) (t) � u(i) (t) � �(i) (t) ; for i = 0; 1; 2;

for t 2 J:

4.4 Example

Consider the third order fully di¤erential equation

u000 (t) = �eu(t) � (u0 (t))3 + 280 5
p
u00 (t); (4.25)

with the periodic boundary conditions (4.2) and the impulsive functions

u

�
1

2

+�
=

1

10
u

�
1

2

�
+

1

100

�
u0
�
1

2

�
+ u00

�
1

2

��
;

u0
�
1

2

+�
=

1

10

�
u

�
1

2

�
+ u0

�
1

2

�
+ u00

�
1

2

��
; (4.26)

u00
�
1

2

+�
=

1

5

�
u

�
1

2

�
+ u0

�
1

2

��
+
1

10
u00
�
1

2

�
:

This problem is a particular case of (4.1)-(4.3) with

f (t; y0; y1; y2) = �ey0 � (y1)3 + 280 5
p
y2;

for all t 2 [0; 1] n
�
1
2

	
; m = 1; t1 =

1
2 and the nondecreasing functions Ii1; i =

0; 1; 2; are given by

I01(a; b; c) =
1

10
a+

1

100
(b+ c) ; (4.27)

I11(a; b; c) =
1

10
(a+ b+ c) ;

I21(a; b; c) =
1

5
(a+ b) +

1

10
c:

The piecewise continuous �; � 2 PC2D (J) ; with D =
�
1
2

	
; de�ned as

� (t) =

�
10�10

�
�t2 � 2t� 2

�
; t 2

�
0; 12
�

10�10
�
�t2 � 1

4

�
; t 2

�
1
2 ; 1
�

and

� (t) =

�
t2 + 4t+ 3 ; t 2

�
0; 12
�

t2 + t
2 +

1
4 ; t 2

�
1
2 ; 1
� ;

are lower and upper solutions, respectively, for problem (4.25), (4.2), (4.26),
assuming

�0 (t) =

�
10�10 (�2t� 2) ; t 2

�
0; 12
�

�2� 10�10t ; t 2
�
1
2 ; 1
� ; �0 (t) =

�
2t+ 4 ; t 2

�
0; 12
�

2t+ 1
2 ; t 2

�
1
2 ; 1
� ;
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and �00 (t) = �2� 10�10; �00 (t) = 2; for t 2 [0; 1] :
As f satis�es assumption (A1) and (4.11), the jump functions (4.27) verify

(A2); then, by Theorem 4.5 there is a periodic solution u (t) 2 PC3D (J) of
problem (4.25), (4.2), (4.26), such that

10�10
�
�t2 � 2t� 2

�
� u (t) � t2 + 4t+ 3; t 2

�
0;
1

2

�
;

10�10
�
�t2 � 1

4

�
� u (t) � t2 +

t

2
+
1

4
; t 2

�
1

2
; 1

�
;

that is u (t) lies in this branchand, for u0 (t) ;

10�10 (�2t� 2) � u0 (t) � 2t+ 4; t 2
�
0;
1

2

�
;

�2� 10�10t � u0 (t) � 2t+ 1
2
; t 2

�
1

2
; 1

�
;

Remark that this solution can not be a trivial periodic one, as constants do
not verify (4.25).

4.5 Application to the thyroid-pituitary home-
ostatic mechanism

The anterior lobe of pituitary gland produces the hormone thyrotropin under the
in�uence of the Thyrotropin Releasing Factor (TRF) secreted by the hypothala-
mus in the brain. Thyrotropin, when it reaches the thyroid gland, activates a
thyroid enzyme which, in turn, catalyzes the shedding of thyroxine from the
colloidal follicles of the thyroid gland into the blood stream. This hormone has
a negative feedback e¤ect on the secretion of thyrotropin from pituitary. This
mechanism can be depicted as in the following block diagram.
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Abnormal steady-state thyroxine levels in the bloodstream can cause system
malfunction leading to various types of physical and mental disorders. Physi-
cal disorders include di¤erent forms of hypo- and hyperthyroidism. A system
malfunction leading to a severe mental disorder is known as periodic catatonic
schizophrenia. In this disease, the symptoms vary with remarkably regular pe-
riodicity. This has been studied at length in [82].
The mathematical model to describe this negative feedback mechanism was

introduced in [62], and, more recently, studied in [13], is the following

dP

dt
=

8<: c� h� � gP ; if � � c
h

�gP ; if � > c
h ;

dE

dt
= mP � kE;

d�

dt
= aE � b�;

where P , E and � represent the concentrations of thyrotropin, activated enzyme
and thyroxine, respectively, b, g and k represent the loss constants of thyroxine,
thyrotropin and activated enzyme, respectively, a, h, m are constants express-
ing the sensitivities of the glands to stimulation or inhibition; c is the rate of
production of thyrotropin in the absence of thyroid inhibition. All constants are
assumed to be positive.
This model is very useful in the study of causes and clinical treatment of

periodic catatonic schizophrenia.
As it is suggested in [62], from the above equations it can be obtained

the third order di¤erential equation describing the variation of thyroid hor-
mone,thyroxine, with time

�3
d3�(t)

dt3
� �2

d2�(t)

dt2
+ �1

d�(t)

dt
+ �1�(t) + �2

�(t)

1 + n �(t)
+ �3 = 0; (4.28)

with �i; �i are positive constants, for i = 1; 2; 3:
As far as we know, this work studies for the �rst time, an impulsive pe-

riodic problem for this pituitary-thyroid mechanism model. Indeed together
with equation (4.28) and periodic conditions (4.2) we consider the impulsive
conditions

�
�
t+j
�
= �1�(tj) + �2�

0(tj) + �3�
00(tj);

�0
�
t+j
�
= �4�(tj) + �5�

0(tj) + �6�
00(tj);

�00
�
t+j
�
= �7�(tj) + �8�

0(tj) + �9�
00(tj);

(4.29)

for j = 1; :::;m; and �i > 0; i = 1; 2; :::; 9; meaning, in the model context, that
new quantity of thyroxine and the increment of thyroxine introduced in the
blood stream at moments tj ; are both directly proportional to the level of thy-
roxine already existent at the instant tj , �(tj); and to the previous increments,
�0(tj):
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It is clear that the equation (4.28) is a particular case of (4.1), with

f (t; y0; y1; y2) =
�2
�3
y2 �

�1
�3
y1 �

1

�3

�
�1�(t) + �2

�(t)

1 + n �(t)
+ �3

�
;

verifying (4.11), and the impulsive conditions (4.29) are an example of the gen-
eralized impulsive conditions (4.3),

I0j
�
�(tj); �

0(tj); �
00(tj)

�
:= �1�(tj) + �2�

0(tj) + �3�
00(tj);

I1j
�
�(tj); �

0(tj); �
00(tj)

�
:= �4�(tj) + �5�

0(tj) + �6�
00(tj);

I2j
�
�(tj); �

0(tj); �
00(tj)

�
:= �7�(tj) + �8�

0(tj) + �9�
00(tj);

with �i � 0; i = 1; 2; :::; 9:
The functions �; � 2 PC3D (J) given by

� (t) :=

8<:
1
4 ; x � 1

2

�0:025 ; x > 1
2

and

� (t) :=

8<: �x3 + 2x2 + 4x+ 6 ; x � 1
2

� 1
2x

3 + 2x2 + 3
2x� 1 ; x > 1

2 ;

are, respectively, lower and upper solutions of the problem (4.28), (4.2), (4.29),
according De�nition 4.4, verifying (4.9) and (4.10), for

�2
�3

=
3

2
;
�1
�3
=
1

10
;
�1
�3
=
1

10
;
�2
�3
= 1; �3 = 0;

�1 =
1

100
; �2 =

1

200
= �3; �4 =

1

10
= �5 = �6;

�7 =
1

5
; �8 =

1

100
; �9 =

1

10
:

Then, by Theorem 4.5, there is a solution �(t) of problem (4.28), (4.2), (4.29)
such that

�(i) (t) � �(i) (t) � �(i) (t) ; on [0; 1] ; for i = 0; 1; 2;

that is lying in the following strips:

Localization of function �(t)
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Localization of function �0(t)

Localization of �00(t):

From this localization result we may say that the nontrivial solution �(t) of
(4.28), (4.2), (4.29) is nondecreasing and a nonconcave function.



Chapter 5

Third-order generalized
discontinuous impulsive
problems on the half-line

This chapters deals with the boundary value problem composed by the third-
order di¤erential equation on the half real line

u000(t) = f (t; u(t); u0(t); u00(t)) ; t 2 [0;+1) (5.1)

where f : [0;+1)�R3 ! R is a L1� Carathéodory function, together with the
boundary conditions

u(0) = A; u0(0) = B; u00(+1) = C; (5.2)

with A;B;C 2 R, u00(+1) := lim
t!+1

u00(t); and the impulsive e¤ects given by

the generalized functions

�u(tk) = I0k (tk; u(tk); u
0(tk); u

00(tk))

�u0(tk) = I1k (tk; u(tk); u
0(tk); u

00(tk)) (5.3)

�u00(tk) = I2k (tk; u(tk); u
0(tk); u

00(tk))

with 0 = t0 < t1 < t2 < ::: < tk < :::; k 2 N; such that lim
k!+1

tk = +1; and
Iik : [0;+1)� R3 ! R Catathéodory sequences for i = 0; 1; 2 and k 2 N:
We point out that the technique presented in this work can be easily adapted

to nth order problems, with obvious changes, of the type

u(n)(t) = f
�
t; u(t); :::; u(n�1)(t)

�
; t 2 [0;+1); (5.4)

u(i)(0) = Ai; u(n�1)(+1) = B; Ai; B 2 R; i = 0; 1; :::; n� 2; (5.5)

�u(j)(tk) = Iik

�
tk; u(tk); :::; u

(n�1)(tk)
�
; j = 0; 1; :::; n� 1; k 2 N:(5.6)

55
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The option for order three here, is due to clearance reasons, to highlight the
method and not make the reading more di¢ cult with a heavy notation.
These higher-order boundary value problems with asymptotic conditions can

model some real phenomena as gas pressure in a semi-in�nite porous medium,
the draining or coating �uid-�ow problems and other evolution of physical
processes. Likewise, they are useful in more theoretical studies such as on non-
linear elliptic equations, to prove the existence of radially symmetric solutions,
or heteroclinic and homoclinic solutions of di¤erential equations or coupled sys-
tems of di¤erential and integral equations. As related works we mention, for
instance, [21, 22, 24, 25, 29, 33, 84, 93].
As the in�nite interval is noncompact, the discussion about su¢ cient con-

ditions for the solvability of boundary value problems on the half-line is more
delicate. In the literature the main methods to obtain existence results are the
extension of continuous solutions on �nite intervals via a diagonalization process,
lower and upper solutions and �xed point theorems in Banach weighted spaces
(see [14, 15, 38, 85] and their references).
Impulsive problems, that is, situations where a sudden variations happens,

had have an important development in last decades, mostly due to their applica-
bility to real life phenomena. See, for example, [9, 12, 29, 54, 58, 79, 81, 108, 112]
and the references therein.
In [116], the authors consider a problem similar to (5.4)-(5.6) where the

nonlinearity and all the impulsive functions must be sublinear and nondecreasing
in all space variables. It is proved the existence of positive solutions by cone
theory and Mönch �xed point theorem, together with a monotone iterative
technique.
Motivated by this work we study problem (5.1)-(5.3) under weaker condi-

tions, not only on the nonlinearity but also on the impulsive functions. Indeed,
being more speci�c:

� the nonlinearity f is a L1� Carathéodory function, meaning that could
be discontinuous on time and, eventually, superlinear near the origin or at
+1: Moreover, there is not a monotone assumption on f for higher order
derivative, while in the other variables there is only the restriction of a
local monotony in some strip.

� the impulsive functions Iik; with i = 0; 1; 2; are local monotone, that is,
the monotony is required only on a strip. Moreover, the sequence I2k has
a di¤erent monotony of [116] and no monotone assumption at all on the
highest order variable .

� the solutions may have negative values.

Our method relies on lower and upper solutions technique, which reveals to
be adequate to these impulsive boundary value problems, adding to the existence
of solution its localization and some qualitative data on its behavior as well. We
apply some truncation and perturbation techniques suggested, for example, in
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[2, 47, 48], together with equiconvergence on the +1 and on the impulsive
points, as it appears in [18].
The chapter is organized in the following way: Section 5.2 contains the

de�nition of the Banach spaces, the corresponding weighted norms, and other
auxiliary results as well. In Section 5.3 it is presented the main theorem: an
existence and localization result, where it is proved the existence of at least a
solution, and some bounds on the �rst and second derivatives. Last section, has
an application to a boundary layer �ow problem over a stretching sheet with
and without heat transfer.

5.1 De�nitions and auxiliary results

A key argument of our method is based on a weighted space with some asymp-
totic assumptions.
Consider the spaces

PC2[0;+1] =
�
u : u 2 C2([0;+1];R) for t 6= tk; u

(i)(tk) = u(i)(t�k ); u
(i)(t+k )

exists for k = 1; 2; :::;m; and i = 0; 1; 2

�
:

and

X =

�
x 2 PC2[0;+1) : lim

t!+1

x(i)(t)

wi(t)
exists; i = 0; 1; 2

�
with wi(t) = 1 + t2�i; and the norm kyk = max fkyk0 ; kyk1 ; kyk2g, where

kyk0 = sup
0�t<+1

�
jy(t)j
1 + t2

�
; kyk1 = sup

0�t<+1

�
jy0(t)j
1 + t

�
; kyk2 = sup

0�t<+1

�
jy00(t)j
2

�
:

Therefore (X; k:k) is a Banach space.
The nonlinearities will have the regularity of L1� Carathéodory function

de�ned as it follows:

De�nition 5.1 A function f : [0;+1) � R3 ! R is L1� Carathéodory if it
veri�es

i) for each (x; y; z) 2 R3, t 7! f(t; x; y; z) is measurable on [0;+1);

ii) for almost every t 2 [0;+1); (x; y; z) 7! f(t; x; y; z) is continuous in R3;

iii) for each � > 0, there exists a positive function  � 2 L1[0;+1) such that,
for max fkxk0 ; kyk1 ; kzk2g < �,

jf(t; x; y; z)j �  �(t); a:e: t 2 [0;+1):

The impulsive e¤ects are given in terms of sequences of functions as in next
de�nition:

De�nition 5.2 A sequence (wn)n2N is a Carathéodory sequence if



58 CHAPTER 5. THIRD-ORDER IMPULSIVE PROBLEMS

(i) for each (x; y; z) 2 R3; (x; y; z)! wn (x; y; z) is continuous for all n 2 N;

(ii) for each � > 0, there are nonnegative constants �n� � 0 with
P+1

n=1 �n� <
+1 such that for jxj < �(1 + t2); jyj < �(1 + t); jzj < 2�; for t 2 [0;+1[,
we have

jwn (x; y; z) j � �n�; for every n 2 N:

Next lemma gives the exact solution for the associated linear and homoge-
neous problem:

Lemma 5.3 If e 2 L1[0;+1), then the boundary value problem(
u000(t) = e(t); t 2 (0;+1);
u(0) = A; u0(0) = B; u00(+1) = C:

(5.7)

has a unique solution in X. Moreover, this solution can be expressed as

u(t) = A+Bt+
Ct2

2
(5.8)

+
X

k : t>tk

"
I0;k (tk; u(tk); u

0(tk); u
00(tk)) + I1;k (tk; u(tk); u

0(tk); u
00(tk)) (t� tk)

+I2k (tk; u(tk); u
0(tk); u

00(tk))
(t�tk)2

2

#

� t
2

2

+1X
k=1

I2k (tk; u(tk); u
0(tk); u

00(tk))�
Z +1

0

G(t; s) e(s)ds;

where G(t; s) is the Green function of the homogeneous problem associated to
(5.7), given by

G(t; s) =

�
1
2s
2 � st; 0 � s � t
� 1
2 t
2 t � s � +1: (5.9)

The proof follows from standard integrations and usual arguments and is
omitted.
The following theorem, to be used forward, gives a general criterion for

relative compactness:

Theorem 5.4 ([18]) Let M � C1 =

�
x 2 C[0;+1) : lim

t!+1
x(t) exists

�
.

Then M is relatively compact if the following conditions hold:

1. all functions from M are uniformly bounded;

2. all functions fromM are equicontinuous on any compact interval of [0;+1);

3. all functions from M are equiconvergent at in�nity, that is, for any given
� > 0, there exists a t� such that jx(t)� x(+1)j < �, for all t > t� and
x 2M .
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5.2 Main Result

In this section we prove the existence of at least one solution for the problem
(5.1)-(5.3), applying lower and upper solutions method and, moreover, some
data on its behavior and variation are given.
First we de�ne lower and upper functions for the impulsive problems:

De�nition 5.5 Given A;B;C 2 R; a function � 2 X is a lower solution of
problem (5.1)-(5.3) if8>>>>>>>><>>>>>>>>:

�000(t) � f (t; �(t); �0(t); �00(t)) ; t 2 [0;+1);
�(0) � A;
�0(0) � B;
�00(+1) � C;
��(tk) � I0k (tk; �(tk); �

0(tk); �
00(tk))

��0(tk) > I1k (tk; �(tk); �
0(tk); �

00(tk))
��00(tk) > I2k (tk; �(tk); �

0(tk); �
00(tk)) ;

with k 2 N.
A function � 2 X is an upper solution if it veri�es the reversed inequalities.

Forward, the following assumption will play a key role:

(A) There is � > 0 such that

� � max

8>>>>>>>>><>>>>>>>>>:

k�k0 ; k�k0 ; k�0k1 ;
�0

1
; k�00k2 ;

�00
2
;

jAj+ jBj+jCj
2 +

P+1
k=1 �0k� +

P+1
k=1 �1k� +

P+1
k=1 �2k�

+M0

�
�
2 +

R +1
0

 �(s)ds
�
;

jBj+ jCj+
P+1

k=1 �1k� + 2
P+1

k=1 �2k�

+M1

�
�
2 +

R +1
0

 �(s)ds
�
;

jCj
2 +

P+1
k=1 �2k� +

1
2

R +1
0

 �(s)ds+
�
4

9>>>>>>>>>=>>>>>>>>>;
;

where, for Iik : [0;+1) � R3 ! R Catathéodory sequences, i = 0; 1; 2;
k 2 N;

jIik (tk; y0; y1; y2)j �
+1X
k=1

�ik� < +1;

when

jy0j < �(1 + t2); jy1j < �(1 + t); jy2j < 2�; for t 2 [0;+1[;

M0 := sup
t2[0;+1[

jG(t; s)j
1 + t2

;M1 := sup
t2[0;+1[

��@G
@t (t; s)

��
1 + t

;

for s 2 [0;+1[; and

jf(t; x; y; z)j �  �(t); a:e: t 2 [0;+1);

when max fkxk0 ; kyk1 ; kzk2g < �.
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The existence and localization result is given by next theorem:

Theorem 5.6 Consider A;B;C 2 R. Assume that there are � and � lower
and upper solutions of problem (5.1)-(5.3) such that

�00(t) � �00(t); 8t 2 [0;+1): (5.10)

Let f : [0;+1]� R4 ! R be a L1 � Carath�eodory function with

f (t; �(t); �0(t); y2) � f (t; y0; y1; y2) � f
�
t; �(t); �0(t); y2

�
(5.11)

for t 2 [0;+1]; �(t) � y0 � �(t); �0(t) � y1 � �0(t); and y2 2 R.
Assume that Iik : [0;+1)�R3 ! R are Catathéodory sequences, for i = 0; 1; 2;
k 2 N; such that

I0k (tk; �(tk); �
0(tk); �

00(tk)) � I0k (tk; y0; y1; y2) � I0k
�
tk; �(tk); �

0(tk); �
00(tk)

�
;

(5.12)
for �(i)(tk) � yi � �(i)(tk); i = 0; 1; 2;

I1k (tk; �(tk); �
0(tk); �

00(tk)) � I1k (tk; y0; y1; y2)) � I1k
�
tk; �(tk); �

0(tk); �
00(tk)

�
;

(5.13)
for �(i)(tk) � yi � �(i)(tk); i = 0; 1; 2;

I2k
�
tk; �(tk); �

0(tk); y2
�
� I2k (tk; y0; y1; y2)) � I2k (tk; �(tk); �

0(tk); y2) ;
(5.14)

for �(i)(tk) � yi � �(i)(tk); i = 0; 1; y2 2 R:
If there is � > 0 such that assumption (A) holds, then there is at least u(t) 2 X
solution of (5.1)-(5.3) such that

�(i)(t) � u(i)(t) � �(i)(t); 8t 2 [0;+1]; i = 0; 1; 2:

Proof. Let �; � 2 X be, respectively, lower and upper solutions of (5.1)-(5.3)
verifying (5.10).
Notice that the relations �(t) � �(t) and �0(t) � �0(t); 8t 2 [0;+1[, are

obtained by integration from (5.10) and the boundary conditions (5.2).
Consider the modi�ed and perturbed problem composed by the di¤erential

equation

u000(t) = f (t; �0 (t; u(t)) ; �1 (t; u
0(t)) ; �2 (t; u

00(t))) (5.15)

+
1

1 + t2
u00(t)� �2 (t; u00(t))

1 + ju00(t)� �2 (t; u00(t))j
;

for t 2 [0;+1); where the functions �j : [0;+1)� R! R; j = 0; 1; 2 are given
by

�j(t; u
(j)(t)) =

8><>:
�(j)(t) ; u(j)(t) > �(j)(t)

u(j)(t) ; �(j)(t) � u(j)(t) � �(j)(t)

�(j)(t) ; u(j)(t) < �(j)(t);
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the boundary conditions (5.2), and the truncated impulsive e¤ects

�u(j)(tk) = Ij;k (tk; �0 (tk; u(tk)); �1(tk; u
0(tk)); �2 (tk; u

00(tk))) ; j = 0; 1; 2:
(5.16)

For clearance we divide the proof into claims.

CLAIM 1: Problem (5.15),(5.2), (5.16) has at least one solution.

De�ne the operator T : X ! X given by

T u(t) = A+Bt+
Ct2

2

+
X

k : t>tk

"
I0;k (tk; u(tk); u

0(tk); u
00(tk)) + I1;k (tk; u(tk); u

0(tk); u
00(tk)) (t� tk)

+I2k (tk; u(tk); u
0(tk); u

00(tk))
(t�tk)2

2

#

� t
2

2

+1X
k=1

I2k (tk; u(tk); u
0(tk); u

00(tk))�
Z +1

0

G(t; s) F (u(s)) ds;

with G(t; s) given by (5.9), and

F (u(s)) := f (s; �0 (s; u(s)) ; �1 (s; u
0(s)) ; �2(s; u

00(s)))+
1

1 + t2
u00(s)� �2 (t; u00(s))

1 + ju00(s)� �2 (s; u00(s))j
:

By Lemma 5.3, the �xed points of T are solutions of problem (5.15), (5.2) and
(5.16). So it is enough to prove that T has a �xed point.
For an easy reading, forward we denote

Ii;k := Ii;k (tk; u(tk); u
0(tk); u

00(tk)) ; for i = 0; 1; 2:

(1) T : X ! X is well de�ned.

Take
� > max

�
k�k0 ; k�k0 ; k�

0k1 ;
�0

1
; k�00k2 ;

�00
2

	
: (5.17)

As f is a L1�Carathéodory function, by De�nition 5.1, for u 2 X with
kuk < �;Z +1

0

jF (u(s))j ds �
Z +1

0

�
 �(s) +

1

1 + t2

�
ds �

Z +1

0

 �(s)ds+
�

2
< +1;

and then F (u(s)) 2 L1([0;+1[).
By Lebesgue Dominated Theorem and De�nition 5.2,

lim
t!+1

jT u(t)j
1 + t2

� jCj
2
+
+1X
k=1

jI2kj �
jCj
2
+
+1X
k=1

�2k� < +1:

Analogously,

lim
t!+1

jT u0(t)j
1 + t

� jCj+ 2
+1X
k=1

jI2kj � jCj+ 2
+1X
k=1

�2k� < +1;
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and

lim
t!+1

j(T u)00(t)j
2

� 1

2

 
jCj+ 2

+1X
k=1

�2k� +

Z +1

0

 �(s)ds

!
< +1:

Therefore T u 2 X.

(2) T is continuous.

For any convergent sequence un ! u in X, there exists r1 > 0 such that
kunk < r1, we have

kT un � T uk = max fkT un � T uk0 ; k(T un)
0 � (T u)0k1 ; k(T un)

00 � (T u)00k2 ; g

�
Z +1

0

max fM0;M1g jF (un(s))� F (u(s))j ds

�
Z +1

0

jF (un(s))� F (u(s))j ds �! 0 ; n! +1:

(3) T is compact.
Let D � X be any bounded subset. Therefore there is R > 0 such that

kuk < R; 8u 2 D.
Then

kT uk0 = sup
t2[0;+1[

jT u(t)j
1 + t2

� jAj+ jBj+ jCj
2

+

+1X
k=1

jI0kj

+

+1X
k=1

jI1kj+
+1X
k=1

jI2kj+
Z +1

0

sup
t2[0;+1[

jG(t; s)j
1 + t2

 R(s)ds

� jAj+ jBj+ jCj
2

+

+1X
k=1

�0kR +

+1X
k=1

�1kR +

+1X
k=1

�2kR +M0

�
�

2
+

Z +1

0

 R(s)ds

�
< +1;

kT uk1 = sup
t2[0;+1[

j (T u(t))0 j
1 + t

� jBj+ jCj+ sup
t2[0;+1[

1

1 + t

X
k : t>tk

jI1kj+ sup
t2[0;+1[

X
k : t>tk

jI2kj
t� tk
1 + t

+ sup
t2[0;+1[

t

1 + t

+1X
k=1

jI2kj+
Z +1

0

M1 jF (u(s))j ds

� jBj+ jCj+
+1X
k=1

�1kR + 2
+1X
k=1

�2kR +M1

�
�

2
+

Z +1

0

 p(s)ds

�
< +1
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and

kT uk2 = sup
t2[0;+1[

j (T u(t))00 j
2

� jCj
2
+
+1X
k=1

�2kR +
1

2

Z +1

0

 R(s)ds+
�

4

< +1

So T is uniformly bounded. Moreover, T is equicontinuous on each interval
]tk; tk+1]; as for t1; t2 2]tk; tk+1], with t1 < t2; without loss of generality, we
have when t1 ! t2;����T u(t1)1 + t21

� T u(t2)
1 + t22

���� �
�����Bt1 + C

2 t
2
1

1 + t21
�
Bt2 +

C
2 t
2
2

1 + t22

�����
+

�������
P

k : t1>tk

h
I0k + I1k(t1 � tk) + I2k (t1�tk)

2

2

i
�

P
k : t2>tk

h
I0k + I1k(t2 � tk) + I2k (t2�tk)

2

2

i
�������

+
1

2

��t21 � t22�� +1X
k=1

jI2kj+
+1Z
0

����G(t1; s)1 + t21
� G(t2; s)

1 + t22

���� ( R(s) + 1) ds
�! 0;

���� (T u)0 (t1)1 + t1
� (T u)

0
(t2)

1 + t2

���� �
���� Ct11 + t1

� Ct2
1 + t2

����+
+

����� X
k : t1>tk

[I1k + I2k (t1 � tk)]�
X

k : t2>tk

[I1k + I2k (t2 � tk)]
�����

+ jt1 � t2j
+1X
k=1

jI2kj

+

+1Z
0

����� @G@t (t1; s)1 + t21
�

@G
@t (t2; s)

1 + t22

����� ( R(s) + 1) ds
�! 0;

The function @2G
@t2 (t; s) is not continuous for s = t but the jump is controlled

by 1: Then���� (T u)00 (t1)2
� (T u)

00
(t2)

2

���� � 1

2

X
k : t1<tk<t2

jI2kj+

������
+1Z
t1

F (u(s)) ds�
+1Z
t2

F (u(s)) ds

������
� 1

2

X
k : t1<tk<t2

jI2kj+
t2Z
t1

( R(s) + 1) ds

�! 0 as t1 ! t2:
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To prove that T D is equiconvergent at in�nity we apply, as t! +1;

����T u(t)1 + t2
� lim
t!+1

T u(t)
1 + t2

���� �
����A+Bt1 + t2

+
Ct2

2 + 2t2
� C

2

����+
+

1

1 + t2

������
P

k : t>tk

h
I0k + I1k(t1 � tk) + I2k (t1�tk)

2

2

i
� 1
2

P+1
k=1 I2k

������
+

�����12 t2

1 + t2

+1X
k=1

jI2kj �
1

2

+1X
k=1

jI2kj
�����

+

Z +1

0

����G(t; s)1 + t2
+
1

2

���� ( R(s) + 1) ds
�! 0;

���� (T u)0 (t)1 + t
� lim
t!+1

(T u)0 (t)
1 + t

���� �
����B + Ct1 + t

� C
����

+
1

1 + t

����� X
k : t>tk

[I1k + I2k (t1 � tk)]�
+1X
k=1

I2k

�����
+

����� t

1 + t

+1X
k=1

jI2kj �
+1X
k=1

jI2kj
�����

+

Z +1

0

����� @G@t (t; s)1 + t
+ 1

����� ( R(s) + 1) ds
�! 0;

and

���� (T u)00 (t)2
lim

t!+1

(T u)00 (t)
2

���� � 1

2

����� X
k : t>tk

I2k �
+1X
k=1

I2k

�����
+

Z +1

0

����@2G@t2 (t; s) + 1
���� ( R(s) + 1) ds

�! 0; as t! +1 :

Finally, to prove that T D is equiconvergent at the impulsive moments we apply,
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as t! t+i ; for i 2 N;�����T u(t)1 + t2
� lim
t!t+i

T u(t)
1 + t2

����� �
�����Bt+ C

2 t
2

1 + t2
�
Bti +

C
2 t
2
i

1 + t2i

�����+
+

�������
1

1+t2

P
k : t>tk

�
I0k + I1k(t� tk) + I2k (t�tk)

2

2

�
� 1
1+t2i

P
k : t+i >tk

�
I0k + I1k(t

+
i � tk) + I2k

(t+i �tk)
2

2

� �������
+

�����
�
� t2

1 + t2
+

t2i
1 + t2i

� +1X
k=1

I2k

�����
+

Z +1

0

����G(t; s)1 + t2
� G(t+i ; s)

1 + t2i

���� ( R(s) + 1)) ds
�! 0;

uniformly on u 2 D; as t �! t+i ;����� (T u)0 (t)1 + t
� lim
t!t+i

(T u)0 (t)
1 + t

����� �
���� Ct1 + t

� Cti
1 + ti

����
+

������ 1

1 + t

X
k : t>tk

[I1k + I2k (t� tk)]�
1

1 + ti

X
t+i >tk

[I1k + I2k (ti � tk)]

������
+

�����
�
� t

1 + t
+

ti
1 + ti

� +1X
k=1

I2k

�����
+

Z +1

0

����� @@tG(t; s)1 + t2
�

@
@tG(t

+
i ; s)

1 + t2i

����� ( R(s) + 1)) ds
�! 0; as t �! t+i ;

and����� (T u)00 (t)2
� lim
t!t+i

(T u)00 (t)
2

����� �
������12

X
k : t>tk

I2k �
1

2

X
k : t+i >tk

I2k

������
+
1

2

����Z +1

t

F (u(s)) ds�
Z +1

ti

F (u(s)) ds

����
� 1

2

������
X

k : t>tk

I2k �
X

k : t+i >tk

I2k

������+ 12
����Z t

ti

( R(s) + 1)ds

����
�! 0;

uniformly on u 2 D; as t �! t+i :
So, by Theorem 5.4, T D is relatively compact.
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To apply Schauder�s Fixed Point Theorem, it must be veri�ed that T : D !
D:

CLAIM 2: For some nonempty, closed, bounded and convex subset D � X,
T D � D:

In Step (3) of the previous Claim 1, take R > 0 such that

R � max

8>>>>>><>>>>>>:

�; jAj+ jBj+jCj
2 +

P+1
k=1 �0kR +

P+1
k=1 �1kR +

P+1
k=1 �2kR

+M0

�
�
2 +

R +1
0

 R(s)ds
�
;

jBj+ jCj+
P+1

k=1 �1kR + 2
P+1

k=1 �2kR

+M1

�
�
2 +

R +1
0

 R(s)ds
�
;

jCj
2 +

P+1
k=1 �2kR +

1
2

R +1
0

 R(s)ds+
�
4

9>>>>>>=>>>>>>;
;

with � given by (5.17).
From the calculus in Claim 1, for every u 2 D such that kuk < R; we have

T D � D:
As T is completely continuous then by Schauder�s Fixed Point Theorem, T

has at least one �xed point u 2 X.
From Lemma 5.3, (5.15) and (5.16), this �xed point will be a solution of the

initial problem (5.1)-(5.3) if

�(i(t) � u(i)(t) � �(i)(t); i = 0; 1; 2; 8t 2 [0;+1[:

CLAIM 3: Every solution of problem (5.15), (5.16), (5.2), veri�es

�(i(t) � u(i)(t) � �(i)(t); i = 0; 1; 2; 8t 2 [0;+1[:

Let u be a solution of problem (5.15), (2), (5.16).
Suppose by contradiction that there is

u00(t) < �00(t);

and de�ne
inf

t2[0;+1[
u00(t)� �00(t) := u00(t�)� �00(t�) < 0

Remark that t� 6= +1, as by (5.2) and De�nition 5.5, u00(+1)��00(+1) � 0:
If t� = 0; the following contradiction holds, by (5.11) and De�nition 5.5:

0 � u000(0)� �000(0) =

= f (0; �0(0; u(0)); �1(0; u
0(0)); �2(0; u

00(0))) +
u00(0)� �00(0)

1 + ju00(0)� �00(0)j � �
000(0)

< f (0; �0(0; u(0)); �1(0; u
0(0)); �2(0; u

00(0)))� �000(0)
� f (0; �(0); �0(0); �00(0))� �000(0) � 0:
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Therefore t� 6= 0:
Consider now that t� is between two consecutive impulses. That is, there is

a p 2 N such that t� 2]tp; tp+1[.
Then

u000(t�) = �000(t�); u
00(t�)� �00(t�) < 0

and we have, by (5.11) and De�nition 5.5, the contradiction

0 = u000(t�)� �000(t�)

= f (t�; �0 (t�; u(t�)) ; �1(t�; u
0(t�)); u

00(t�)) +
1

1 + t2�

u00(t�)� �2(t�; u(t�))
ju00(t�)� �2(t�; u(t�))j+ 1

� �000(t�)

� f(t�; �(t�); �
0(t�); �

00(t�)) +
1

1 + t2�

u00(t�)� �00(t�)
ju00(t�)� �00(t�)j+ 1

� �000(t�)

< f(t�; �(t�); �
0(t�); �

00(t�))� �00(t�) � 0:

Assume now that the in�mum is attained in the impulsive moment. So, we have
two cases: t� = t�q = t�q or t� = t+q : Firstly, consider that there is q 2 N where

min
t2[0;+1[

(u00(t)� �00(t)) := u00(tq)� �00(tq) < 0: (5.18)

Then this contradiction holds

0 � �(u00 � �00)(tq)
= I2;q (tq; �0(tq; u(tq)); �1(tq; u

0(tq)); �2(tq; u
00(tq)))���00(tq)

= I2;q (tq; �0(tq; u(tq)); �1(tq; u
0(tq)); �

00(tq))���00(tq)
� I2;q (tq; �(tq); �

0((tq); �
00(tq))���00(tq) < 0:

In the second case, assume that

inf
t2[0;+1[

u00(t)� �00(t) := u00(t+� )� �00(t+� ) < 0:

Consider " > 0 small enough such that

(u00 � �00)(t) < 0; u000(t+)� �000(t+) � 0; for t 2]tq; tq + "[:

So, for t 2]tq; tq + "[, it can be obtained a contradiction following the same
arguments as for t� 2]tp; tp+1[.
Therefore

�00(t) � u00(t); for t 2 [0;+1[:
By a similar technique it can be proved that u00(t) � �00(t), for t 2 (0;+1[, and
then

�00(t) � u00(t) � �00(t); for t 2 [0;+1[: (5.19)

Integrating the �rst inequality of (5.19) for t 2 [0; t1], by (5.2) and De�nition
(5.5),

�0(t) � u0(t) + �0(0)� u0(0) � u0(t): (5.20)
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By integration in ]t1;+1[; (5.14), (5.20) and De�nition (5.5), we have for t 2
]t1;+1[

�0(t) � u0(t) + �0(t+1 )� u0(t+1 )
= u0(t) + �0(t+1 )� I11 (t1; �0(t1; u(t1)); �1(t1; u0(t1)); �2(t1; u00(t1)))� u0(t1)
� u0(t) + I11 (t1; �(t1); �

0(t1); �
00(t1)) + �

0(t1)

� I11 (t1; �0(t1; u(t1)); u0(t1); u00(t1))� u0(t1)
� u0(t) + I11 (t1; �(t1); �

0(t1); �
00(t1))� I11 (t1; �0(t1; u(t1)); u0(t1); u00(t1))

� u0(t):

Analogously, one can show that

u0(t) � �0(t); 8t 2 [0;+1[

and, then,
�0(t) � u0(t) � �0(t); for t 2 [0;+1[: (5.21)

Integrating the �rst inequality of (5.21) on [0; t1], we have

�(t) � u(t)� u(0) + �(0) � u(t)

and on ]t1;+1[, by (5.12) and De�nition (5.5),

�(t) � u(t) + �(t+1 )� u(t+1 )
� u(t) + I01 (t1; �(t1); �

0(t1); �
00(t1)) + �(t1)

� I01 (t1; �0(t1; u(t1)); �1(t1; u0(t1)); �2(t1; u00(t1)))� u(t1)
� u(t) + I01 (t1; �(t1); �

0(t1); �
00(t1))� I01 (t1; u(t1); u0(t1); u00(t1))

� u(t)

So, �(t) � u0(t);8t 2 [0;+1[, and the remaining inequality u(t) � �(t);8t 2
[0;+1[, can be proved using the same technique.

5.3 Example

Problems of boundary layer �ow over a stretching sheet, with and without heat
transfer, are a topic that arouses growing interest in the literature (see, for
example [70, 83, 88, 90]). These works deal with a boundary value problem of
normal stagnation point �ow impinging on a stretching sheet, governed by the
parameter b which represents the ratio of the strain rate of the stagnation �ow
to that of the stretching sheet. The existent numerical studies on the basic �ow
shows that a solution exists for all values of b > 0.
In [59], it is studied the third order di¤erential equation

f 000 + f f 00 � (f 0)2 + b2 = 0; (5.22)
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together with the boundary conditions

f (0) = 0; f 0 (0) = 1; f 0 (1) = b: (5.23)

Motivated by this work, in this application, we prove the solvability of the
impulsive third order problem composed by a di¤erential equation similar to
(5.22),

u000(t) =

8>>>><>>>>:
� 0:01
1+t2

�
3
p
u(t)

p
ju00(t)j+ sgn(u0(t))

p
ju0(t)j � sgn(u00(t))b2

�
if 0 � t � 1;

� 0:01
1+t2

�
3
p
u(t)

p
ju00(t)j+ sgn(u0(t))

p
ju0(t)j+ 10sgn(u00(t))b2

�
if 0 � t � 1;

;

(5.24)
with b 2 Rn f0g ; where u(t) represents the �ow speed across a time t; together
with the asymptotic boundary conditions

u(0) = A; u0(0) = B; u00(+1) = 0; (5.25)

for A;B 2 R; and the impulsive e¤ects with the form

�u(tk) =
1

(tk)
3

�
�01

3
p
u(tk) + �02 (u

0(tk)) + �03
3
p
u00(tk)

�
�u0(tk) =

1

(tk)
3

�
�11 (u(tk)) + �12

3
p
u0(tk)

�
(5.26)

�u00(tk) =
1

(tk)
3

�
�21

3
p
u(tk) + �22 (u

0(tk)) + �23 (u
00(tk)) + sgn(u

00(tk)) � 5tk
�
;

where �ij 2 R, for i = 0; 1; 2 and j = 1; 2; 3; and k 2 N:
Remark that:

1. The null function is not a solution of (5.24).

2. In (5.24), from a theoretical point of view, the parameter b could be non-
positive.

3. For functions u 2 X, the condition u00(+1) = 0 implies that u0(+1) is
�nite:

4. Neither (5.24) nor (5.26) are covered by Theorem 3.1 of [116], as they are
not sublinear and have di¤erent monotonies.

5. The problem (5.24)-(5.26) is a particular case of the initial problem (5.1)-
(5.3), with C = 0;

f (t; y0; y1; y2) =

8>>>><>>>>:
� 0:01
1+t2

�
3
p
y0
p
jy2j+ sgn(y1)

p
jy1j � sgn(y2)b2

�
if 0 � t � 1;

� 0:01
1+t2

�
3
p
y0
p
jy2j+ sgn(y1)

p
jy1j+ 10 sgn(y2)b2

�
if t > 1;

;

(5.27)



70 CHAPTER 5. THIRD-ORDER IMPULSIVE PROBLEMS

I0;1(tk; w0; w1; w2) =
1

(tk)
3 (�01

3
p
w0 + �02 (w1) + �03 3

p
w2) ;

I1;1(tk; w0; w1; w2) =
1

(tk)
3 (�11 (w0) + �12

3
p
w1) ;

I2;1(tk; w0; w1; w2) =
1

(tk)
3 (�21

3
p
w0 + �22 (w1) + �23 (w2) + sgn(w2) � 5tk) :

As a numeric example, let us consider b = �1; A = B = 0; tk = k; k 2 N;
and adequate values for the parameters.
In this case, the impulsive conditions are given by

�u (k) =
1

k3

�
0:001k 3

p
u(k) + 0:001k (u0 (k)) + 0:001k 3

p
u00 (k)

�
�u0 (k) =

1

k3

�
0:1k (u (k)) + 0:1k 3

p
u0 (k)

�
(5.28)

�u00 (k) =
1

k3

�
�0:1k 3

p
u (k)� 0:1k (u0 (k)) + 0:1k (u00 (k)) + sgn(u00 (k)) � 5k

�
;

and the piecewise functions �; � 2 X de�ned as

�(t) =

(
1:5t3 � 5t2 if 0 � t � 1
�0:1

�
1
2t + 16t

�
� 3k if t 2]k; k + 1]; k � 1;

�(t) =

(
�1:5t3 + 5t2 if t � 1
0:1
�
1
2t + 16t

�
+ 3k if t 2]k; k + 1]; k � 1;

are, respectively, lower and upper solutions of problem (5.24), (5.25), (5.28),
according to De�nition 5.5, verifying (5.10).
Moreover, the nonlinear part given by (5.27) veri�es (5.11), the impulsive

functions Ii;1 : R4 7! R; i = 0; 1; 2;

I0;1 (k;w0; w1; w2) =
1

k3
�
0:001k 3

p
w0 + 0:001

kw1 + 0:001
k 3
p
w2
�

I1;1 (k;w0; w1; w2) =
1

k3
�
0:1kw0 + 0:1

k 3
p
w1
�

I2;1 (k;w0; w1; w2) =
1

k3
�
�0:1k 3

p
w0 � 0:1kw1 + 0:1kw2 + sgn(w2) � 5k

�
satisfy (5.12), (5.13) and (5.14), and assumption (A) holds for � � 24:245.
Then, by Theorem 5.6, there exists a solution u 2 X of problem (5.24),

(5.25), (5.28), in the strip

�(t) � u(t) � �(t); for t 2]0;+1);
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that is

From the localization part of Theorem 5.6 we can also have some data on
the �rst and second derivatives:

�0(t) � u0(t) � �0(t); �00(t) � u00(t) � �00(t); for t 2]0;+1);

that is





Chapter 6

Functional coupled systems
with generalized impulsive
conditions and application
to a SIRS-type model

6.1 Introduction

The study of impulsive boundary value problems is richer than the related dif-
ferential equations theory without impulses, and has strategic importance in
multiple current scienti�c �elds, from sociology and medical sciences to general-
ized industry production, or in any other real-world phenomena where sudden
variations occur.
The classic impulsive theory can be seen in [19, 92]. In the last two decades,

a vast literature on impulsive di¤erential problems has been produced, such as,
[1, 7, 12, 26, 29, 36, 51, 53, 54, 63, 66, 67, 75, 99, 100], only to mention a few.
Functional problems composed by di¤erential equations and conditions with

global dependence on the unknown variable, generalize the usual boundary value
problems, and can include equations and/or conditions with deviating argu-
ments, delays or advances, nonlinear or nonlocal, increasing in this way the range
of applications. The readers interested in results in this direction, on bounded
or unbounded domains, may look for in [4, 24, 37, 39, 43, 44, 46, 49, 68, 95] and
the references therein.
Recently, coupled systems have been studied by many authors, not only

from a theoretical point of view but also due to the huge applications in many
sciences and �elds, with several methods and approaches. We recommend to
the interested readers, for instance, [8, 17, 20, 31, 32, 41, 50, 61, 64, 101].
Motivated by the results contained in some of the above references, in this

73
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work, we consider the �rst-order coupled impulsive system of equations8<: y01(t) = g1(t; y1(t); y2(t); y3(t))
y02(t) = g2(t; y1(t); y2(t); y3(t))
y03(t) = g3(t; y1(t); y2(t); y3(t))

(6.1)

a:e: t 2 [a; b] n ftjg ; where tj are �xed points; j = 1; 2; :::; n; gi : [a; b]�R3 ! R
are L1-Carathéodory functions, for i = 1; 2; 3; with the functional boundary
conditions

B1 (y1; y2; y3) = 0;
B2 (y1; y2; y3) = 0;
B3 (y1; y2; y3) = 0;

(6.2)

where Bi : C[a; b] ! R, i = 1; 2; 3; are continuous functions, and verifying the
generalized impulsive conditions8><>:

�y1(tj) = H1j(tj ; y1(tj); y2(tj); y3(tj))

�y2(tj) = H2j(tj ; y1(tj); y2(tj); y3(tj))

�y3(tj) = H3j(tj ; y1(tj); y2(tj); y3(tj)),

(6.3)

where Hij : [a; b]�R3 ! R are continuous functions for i = 1; 2; 3; j = 1; 2; :::; n;
with �yi(tj) = yi(t

+
j ) � yi(t

�
j ); and tj �xed points such that a := t0 < t1 <

t2 < � � � < tn < tn+1 := b :
As far as we know, it is the �rst time where those three features are taken to-

gether to have a coupled impulsive system with functional boundary conditions
and generalized impulsive e¤ects, which one including, eventually, impulses on
the three unknown functions. We underline two novelties of this chapter:

1. Condition (6.2) generalizes the classical boundary assumptions, allowing
two-point or multipoint conditions, nonlocal and/or integro-di¤erential
ones or global arguments, as maxima or minima, among others. In this
way new types of problems and applications could be considered, enabling
greater and wider information on the problems studied.

2. The main theorem is applied to a SIRS model where, to the best of our
knowledge, for the �rst time it includes impulsive e¤ects combined with
global, local, and asymptotic behavior of the unknown functions.

Our method is based on lower and upper solutions technique together with
the �xed point theory. In short, the main result is obtained studying a perturbed
and truncated system, with modi�ed boundary and impulsive conditions, and
applying the Schauder�s �xed point theorem to a completely continuous vectorial
operator. Moreover, the work contains a method to overcome the nonlinearities
monotony through a combination with adequate changes in the de�nition of
lower and upper solutions.
The work is structured in the following way: Section 6.2 contains the func-

tional framework, de�nitions, and other known properties. The main result is in
Section 6.3, where the proof is divided into steps, for the reader�s convenience.
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In Section 6.4 it is shown a method where the de�nition of coupled lower and
upper functions can be used to obtain di¤erent versions of the main theorem,
with di¤erent monotone characteristics on the nonlinearities. The last section
contains an application to a vital dynamic SIRS-type model, representing the
dynamic epidemiological evolution of Susceptible (S), Infected (I), Recovered
(R), and newly infected individuals in a population on a normalized period,
subject to impulsive e¤ects and global restrictions.

6.2 De�nitions and auxiliary results

De�ne yi(t
�
k ) := lim

t!t�k

yi(t); for i = 1; 2; 3; consider the set

PC ([a; b]) =

8<:
y : y 2 C([a; b] ;R3) continuous for t 6= tj ;

y(tj) = y(t+j )� y(t
�
j );

y(t+j ) exists for j = 1; 2; :::; n

9=; ;

and the space X3 := (PC ([a; b]))
3 equipped with the norm

k(y1; y2;y3)kX3 = max fky1k ; ky2k ; ky3kg ;

where
kyk := sup

t2[a;b]
jy(t)j :

It is clear that (X3; k:kX3) is a Banach space.
The triple (y1; y2; y3) is a solution of problem (6.1)-(6.3) if (y1; y2; y3) 2 X3

and veri�es conditions (6.1), (6.2) and (6.3).

De�nition 6.1 A function w : [a; b]�R3 ! R, for i = 1; 2; 3 is L1� Carathéodory
if

i) for each (x; y; z) 2 R3, t 7! w(t; x; y; z) is measurable on [a; b];

ii) for a:e: t 2 [a; b]; (x; y; z) 7! w(t; x; y; z) is continuous on R3;

iii) for each � > 0, there exists a positive function  � 2 L1 ([a; b]) and for
(x; y; z) 2 R3 such that

max fjxj ; jyj ; jzjg < �; (6.4)

one has
jw(t; x; y; z)j �  �(t); a:e:x 2 [a; b]: (6.5)

In this work the de�nition of lower and upper solutions plays a key role in
our method.
Next de�nition will be used in the main theorem:
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De�nition 6.2 Consider the PC1-functions �i; �i : [a; b]! R; i = 1; 2; 3:
The triple (�1; �2; �3) 2 X3 is a lower solution of the problem (6.1)-(6.3) if

�0i(t) � gi (t; �1(t); �2(t); �3(t)) ; for i = 1; 2; 3; (6.6)

B1 (�1; �2; �3) � 0

B2 (�1; �2; �3) � 0

B3 (�1; �2; �3) � 0;

and, for j = 1; 2; :::; n;

��1(tj) � H1j(tj ; �1(tj); �2(tj); �3(tj))

��2(tj) � H2j(tj ; �1(tj); �2(tj); �3(tj))

��3(tj) � H3j(tj ; �1(tj); �2(tj); �3(tj)):

The triple (�1; �2; �3) 2 X3 is an upper solution of the problem (6.1)-(6.3) if
the reversed inequalities hold.

6.3 Main result

The main result will provide the existence of, at least, a solution for the problem
(6.1)-(6.3).

Theorem 6.3 Assume that there are � and � lower and upper solutions of
problem (6.1)-(6.3), according De�nition 6.2, such that

�i(t) � �i(t); 8t 2 [a; b]; for i = 1; 2; 3: (6.7)

Let gi : [a; b]�R3 ! R; i = 1; 2; 3 be L1�Carathéodory functions, not identically
null, on the set

f(t; yi) 2 [a; b]� R : �i(t) � yi � �i(t); i = 1; 2; 3g ;

and

g1 (t; y1; �2(t); �3(t)) � g1 (t; y1; y2; y3) � g1 (t; y1; �2(t); �3(t)) (6.8)

for t 2 [a; b] n ftjg ; j 2 f1; 2; : : : ; ng; y1 2 R; �i(t) � yi � �i(t); i = 2; 3;

g2 (t; �1(t); y2; �3(t)) � g2 (t; y1; y2; y3) � g2 (t; �1(t); y2; �3(t)) (6.9)

for t 2 [a; b] n ftjg ; j 2 f1; 2; : : : ; ng; y2 2 R; �i(t) � yi � �i(t); i = 1; 3;

g3 (t; �1(t); �2(t); y3) � g3 (t; y1; y2; y3) � g3 (t; �1(t); �2(t); y3) (6.10)

for t 2 [a; b] n ftjg ; j 2 f1; 2; : : : ; ng; y3 2 R; �i(t) � yi � �i(t); i = 1; 2; with

Bi (�1; �2; �3) � Bi (y1; y2; y3)) � Bi (�1; �2; �3) ; (6.11)
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for �i � yi � �i; i = 1; 2; 3:
Assume that Hij : [a; b]� R3 ! R satisfy

Hij (tj ; �1(tj); �2(tj); �3(tj)) � Hij (tj ; w1; w2; w3)) (6.12)

� Hij (tj ; �1(tj); �2(tj); �3(tj)) ;

for �i(tj) � wi � �i(tj); i = 1; 2; 3, j 2 f1; 2; : : : ; ng:
If there is � > 0 such that

max
i=1;2;3

24max fk�ik ; k�ikg+ nX
j=1

jHij (tj ; w1; w2; w3))j+
bZ
a

�
 i�(s) + 1

�
ds

35 < �;

then there exists at least a triple (y1; y2; y3) 2 X3; solution of (6.1)-(6.3), such
that

�i(t) � yi(t) � �i(t); 8t 2 [a; b]; for i = 1; 2; 3:

Proof. Let (�1; �2; �3) ; (�1; �2; �3) 2 X3 be, respectively, lower and upper
solutions of (6.1)-(6.3), as in De�nition 6.2, verifying (6.7).
Consider the continuous truncatures �i : [a; b]� R! R; i = 1; 2; 3; denoted,

for short, as �i (t) ; de�ned by

�i (t) := �i(t; yi(t)) =

8><>:
�i(t) ; yi(t) > �i(t)

yi(t) ; �i(t) � yi(t) � �i(t)

�i(t) ; yi(t) < �i(t);

(6.13)

and consider the modi�ed and perturbed problem composed by the di¤erential
system

y01(t) = g1 (t; �1 (t) ; �2 (t) ; �3 (t)) +
y1(t)� �1 (t)

1 + jy1(t)� �1 (t)j
;

y02(t) = g2 (t; �1 (t) ; �2 (t) ; �3 (t)) +
y2(t)� �2 (t)

1 + jy2(t)� �2 (t)j
; (6.14)

y03(t) = g3 (t; �1 (t) ; �2 (t) ; �3 (t)) +
y3(t)� �3 (t)

1 + jy3(t)� �3 (t)j
;

for t 2 [a; b] n ftjg ; j 2 f1; 2; : : : ; ng; together with the truncated boundary
conditions

yi(a) = �i(a; yi(a) +Bi (�
�
1(y1); �

�
2(y2); �

�
3(y3))); (6.15)

for i = 1; 2; 3; with

��i (w) =

8><>:
�i ; w > �i
w ;�i � w � �i
�i ; w < �i;

and the truncated impulsive conditions

�yi(tj) = Hij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj)) ; (6.16)



78 CHAPTER 6. IMPULSIVE CONDITIONS WITH A SIR-S MODEL

for j 2 f1; 2; : : : ; ng:
Claim 1: The problem (6.14), (6.15), (6.16) has at least a solution.

This claim will be proved by the �xed point theory, applied to the vectorial
operator

T : X3 �! X3

given by

T (y1; y2; y3) = (T1 (y1; y2; y3) ; T2 (y1; y2; y3) ; T3 (y1; y2; y3));

where, for i = 1; 2; 3;
Ti : X3 �! X

de�ned as

Ti (y1; y2; y3) (t) : = �i(a; yi(a) +Bi (�
�
1(y1); �

�
2(y2); �

�
3(y3)))

+
X

j : tj<t

Hij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))

+

tZ
a

gi (s; �1 (s) ; �2 (s) ; �3 (s)) +
yi(s)� �i (s)

1 + jyi(s)� �i (s)j
ds:

It is clear that the �xed points of T , that is, the set of the �xed points of
Ti, for i = 1; 2; 3, are solutions of the problem (6.14), (6.15), (6.16).
As gi are L1-Carathéodory functions, Hij and the truncatures �i; �

�
i are

continuous, therefore Ti are well de�ned and continuous. Therefore, T is well
de�ned and continuous.
Consider a bounded set D � X3: So there is k > 0 such that k(x; y; z)kX3 <

k; for (x; y; z) 2 D:
TiD is uniformly bounded, as, for i = 1; 2; 3;

kTi (y1; y2; y3)k = sup
t2[a;b]

jTi (y1; y2; y3) (t)j

� sup
t2[a;b]

j�i(a; yi(a) +Bi (��1(y1); ��2(y2); ��3(y3)))j

+
X

j : tj<t

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))j

+

tZ
a

����gi (s; �1 (s) ; �2 (s) ; �3 (s)) + yi(s)� �i (s)
1 + jyi(s)� �i (s)j

���� ds
� max

i=1;2;3

24max fk�ik ; k�ikg+ nX
j=1

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))j

35
+ max
i=1;2;3

bZ
a

�
 ik(s) + 1

�
ds <1;



6.3. MAIN RESULT 79

where  ik are the positive functions given by De�nition 6.1.
TiD is equicontinuous because, for i = 1; 2; 3; and t1; t2 2 [a; b] with t1 < t2

(without loss of generality),

jTi (y1; y2; y3) (t1)� Ti (y1; y2; y3) (t2)j

�
X

j : t1<tj<t2

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))j+
t2Z
t1

�
 ik(s) + 1

�
ds! 0;

as t1 ! t2:
TiD is equiconvergent on the impulsive moments, as�����Ti (y1; y2; y3) (t)� lim

t!t+j

Ti (y1; y2; y3) (t)
�����

�

�������
X

j : tj<t

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (t))j �
X

j : tj<t
+
j

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (t))j

�������
+

�������
tZ
a

�
 ik(s) + 1

�
ds�

t+jZ
a

�
 ik(s) + 1

�
ds

�������! 0;

when t! t+j : Therefore Ti and T are compact operators.
Consider now the closed, bounded and convex set 
 � X3; de�ned by


 = fw 2 X3 : kT wkX3 � Rg

with R > 0 such that

R > max
i=1;2;3

24max fk�ik ; k�ikg+ nX
j=1

jHij (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))j

35
+ max
i=1;2;3

bZ
a

�
 iR(s) + 1

�
ds:

By the above calculus, T 
 � 
, and from Schauder´s Fixed Point Theorem,
T has a �xed point y� = (y�1 ; y

�
2 ; y

�
3), which is solution of the problem (6.14),

(6.15), (6.16).

Claim 2: This function y� = (y�1 ; y
�
2 ; y

�
3) is a solution of problem (6.1)-(6.3),

too.

To prove this claim it is enough to show that, for every solution (y1; y2; y3) 2
X3 of problem (6.14), (6.15), (6.16), the following inequalities hold:

�i(t) � yi(t) � �i(t); for i = 1; 2; 3; and t 2 [a; b]; (6.17)
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�i(a) � yi(a) +Bi (�1(a; y
�
1(a)); �2(a; y

�
2(a)); �3(a; y

�
3(a))) � �i(a):

Let y := (y1; y2; y3) 2 X3 be a solution of the problem (6.14), (6.15), (6.16).
To prove the �rst inequality of (6.17), for i = 1; assume that there is t 2 [a; b]

such that �1(t)� y1(t) > 0; and de�ne

sup
t2[a;b]

(�1(t)� y1(t)) := �1(t�)� y1(t�) > 0: (6.18)

Remark that t� 6= a, as, by (6.15) and (6.13),

�1(a)� y1(a) = �1(a)� �1(a; yi(a) +B1 (��1(y1); ��2(y2); ��3(y3))) � 0:

If t� is between two consecutive impulses, that is, t 2]tp; tp+1], for �xed
p = 0; 1; :::; n; then �01(t�)� y01(t�) = 0, by (6.15), (6.8) and De�nition 6.2, this
contradiction is achieved

0 � �01(t�)� y01(t�)

= �01(t�)� g1 (t�; �1(t�); �2(t�); �3(t�))�
y1(t�)� �1(t�)

1 + jy1(t�)� �1(t�)j
< �01(t�)� g1 (t�; �1(t�); �2(t�); �3(t�))
� �01(t�)� g1 (t�; �1(t�); �2(t�); �3(t�)) � 0:

If t� is an impulsive moment, that is, there is j 2 f1; 2; :::; ng such that
t� = t+j ; then, by (6.16), (6.12) and De�nition 6.2 we have

0 � ��1 (tj)��y1 (tj)
= ��1 (tj)�H1j (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))

� ��1 (tj)�H1j (tj ; �1 (tj) ; �2 (tj) ; �3 (tj)) � 0:

Therefore
�y1 (tj)���1 (tj) = 0;

that is, there are no jumps at any point tj : Then, by (6.18),

0 � �01(t
�
j )� y01(t

�
j );

and the contradiction is obtained as in the previous case.
Therefore �1(t) � y1(t); for t 2 [a; b]: With the same arguments it can be

proved that y1(t) � �1(t); for t 2 [a; b]:
A similar technique can be applied for functions g2 and g3; applying condi-

tions (6.9) and/or (6.10), respectively.
Suppose now, by contradiction, that

�i(a) > yi(a) +Bi (�
�
1(y1); �

�
2(y2); �

�
3(y3)) : (6.19)

Then, by (6.15),

yi(a) = �i(a; yi(a) +Bi (�
�
1(y1); �

�
2(y2); �

�
3(y3))) = �i(a);
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which is in contradiction with (6.19), by (6.11) and De�nition 6.2,

0 = yi(a)� �i(a)
> Bi (�

�
1(y1); �

�
2(y2); �

�
3(y3))�Bi (�1; �2; �3) � 0;

for i = 1; 2; 3:
The remaining inequalities can be proved with similar arguments.

6.4 Relation between monotonies and lower and
upper de�nitions

The monotone assumptions required on the nonlinearities and on the impulsive
functions, by conditions (6.8)-(6.10) and (6.12), although local, can seem too
restrictive. Indeed, these monotonies can be modi�ed since they are combined
with di¤erent de�nitions of coupled lower and upper solutions, following the
method described in this section.

De�nition 6.4 Consider the PC1-functions �i; �i : [a; b]! R; i = 1; 2; 3:
The triples (�1; �2; �3) ; (�1; �2; �3) 2 X3 are coupled lower and upper solutions
of the problem (6.1)-(6.3) if

�01(t) � g1 (t; �1(t); �2(t); �3(t)) ;

�0i(t) � gi (t; �1(t); �2(t); �3(t)) ; for i = 2; 3;

�01(t) � g1 (t; �1(t); �2(t); �3(t)) ;

�0i(t) � g1 (t; �1(t); �2(t); �3(t)) ; for i = 2; 3;

and, for j = 1; 2; :::; n;

��1(tj) � H1j(tj ; �1(tj); �2(tj); �3(tj)); (6.20)

��2(tj) � H2j(tj ; �1(tj); �2(tj); �3(tj));

��3(tj) � H3j(tj ; �1(tj); �2(tj); �3(tj));

��1(tj) � H1j(tj ; �1(tj); �2(tj); �3(tj));

��2(tj) � H2j(tj ; �1(tj); �2(tj); �3(tj));

��3(tj) � H3j(tj ; �1(tj); �2(tj); �3(tj)):

The inequalities for boundary conditions are similar to De�nition 6.2.

With this de�nition the assumption on the local monotony of function g1
and on the impulsive functions H1j and H3j ; can be replaced, as in the following
version of Theorem 6.3:
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Theorem 6.5 Assuming that all the assumptions of Theorem 6.3, with coupled
lower and upper solutions de�ned as in De�nition 6.4, and (6.8) replaced by

g1 (t; �1(t); �2(t); �3(t)) � g1 (t; y1; y2; y3) � g1 (t; �1; �2(t); �3(t))

for t 2 [a; b] n ftjg ; j 2 f1; 2; : : : ; ng; y1 2 R; �i(t) � yi � �i(t); i = 2; 3; and
(6.12) by

H1j (tj ; �1(tj); �2(tj); �3(tj)) � H1j (tj ; w1; w2; w3)) � H1j (tj ; �1(tj); �2(tj); �3(tj)) ;

H2j (tj ; �1(tj); �2(tj); �3(tj)) � H2j (tj ; w1; w2; w3)) � H2j (tj ; �1(tj); �2(tj); �3(tj)) ;

H3j (tj ; �1(tj); �2(tj); �3(tj)) � H3j (tj ; w1; w2; w3)) � H3j (tj ; �1(tj); �2(tj); �3(tj)) ;

for �i(tj) � wi � �i(tj); i = 1; 2; 3, j 2 f1; 2; : : : ; ng: Then there is at least
(y1; y2; y3) 2 X3 solution of (6.1)-(6.3) such that

�i(t) � yi(t) � �i(t); 8t 2 [a; b]; for i = 1; 2; 3:

Proof. The proof of Theorem 6.3 holds and it remains to prove the relation
that every solution (y1; y2; y3) 2 X3 of problem (6.14), (6.15), (6.16) veri�es

�1(t) � y1(t) � �1(t); for t 2 [a; b]:

Assume that there is t 2 [a; b] such that �i(t)� y�i (t) > 0 and de�ne

sup
t2[a;b]

(�i(t)� y�i (t)) := �i(t�)� y�i (t�) > 0:

Consider t� between two consecutive impulses, that is, t 2]tp; tp+1]. Then,
by (6.15), (6.8) and De�nition 6.2, this contradiction is achieved

0 � �01(t)� y0�1 (t)

= �01(t)� g1 (t; �1(t); �2(t); �3(t))�
y�1(t)� �1(t)

1 + jy�1(t)� �1(t)j
< �01(t)� g1 (t; �1(t); �2(t); �3(t))
� �01(t)� g1 (t; �1(t); �2(t); �3(t)) � 0:

In the impulsive points, case where t� = t+j ; by (6.20),

0 � ��1 (tj)��y1 (tj)
= ��1 (tj)�H1j (tj ; �1 (tj) ; �2 (tj) ; �3 (tj))

� ��1 (tj)�H1j (tj ; �1 (tj) ; �2 (tj) ; �3 (tj)) � 0:

Analogously, for �(�3 � y3) (tj) :
Following these arguments, we can obtain di¤erent versions of Theorem 6.3,

combining adequate de�nitions of coupled lower and upper solutions, as in De�-
nition 6.4, and alternative monotone assumptions on g2; g3; and on the impulsive
functions Hij :
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6.5 Application to a vital dynamic SIRS model

The study of epidemiological phenomena via compartmental models is currently
a special concern as it simpli�es the mathematical modeling of infectious dis-
eases. These types of models try to predict, for instance, how a disease spreads,
the duration of an epidemic, the variation of the number of infected people,
and other epidemiological parameters. So, they are important tools to help the
de�nition of rules for public health interventions and how they may a¤ect the
outcome of the epidemic.

The classic SIR model is a basic compartmental model where the population
is divided into three groups: susceptible (S), infected (I), and recovered (R).
People may change groups, but the SIR model assumes that the population gains
lifelong immunity to some disease upon recovery. This is true for some infectious
diseases, such as measles, mumps, or rubella, but it is not the case for some
airborne diseases, such as seasonal in�uenza, where the individual�s immunity
may wane over time. In this situation, the SIRS model is more adequate as it
allows that the recovered individuals can return to a susceptible state and be
infected again.

These compartmental models were introduced in the early 20th century, by
Kermack and McKendrick in 1927, ([98]), but since then many authors study
these topics, under di¤erent and varied features, objectives and techniques. As
examples, we mention only some recent works on the �eld: [65, 69, 86, 87, 102,
105, 111, 117].

Motivated by the works above, we apply our technique to a vital dynamic
SIRS system composed by the di¤erential equations8<: S0(t) = ��S(t)I(t) + �R(t)

I 0(t) = �S(t)I(t)� (�+ d) I(t)
R0(t) = �I(t)� �R(t);

(6.21)

for t in a normalized interval [0; 1] ; �; � representing the infection and recover
rates; � the rate of recovered individuals becoming susceptible again, and d the
death number by infection.

Our method allows to consider global and asymptotic data as a particular
case of functional boundary conditions:

inf
t2] 14 ;1]

S(t) = lim
t!( 14 )

+
S(t);

max
t2[0;1]

I(t) = I(1); (6.22)

sup
t2] 14 ;1]

R(t) = lim
t!( 14 )

+
R(t);

and generalized impulsive functions, with only one impulsive moment, for the
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sake of clarity,

�S

�
1

4

�
= �5�S

�
1

4

�
I

�
1

4

�
+ �R

�
1

4

�
I

�
1

4

�
�I

�
1

4

�
= 5�S

�
1

4

�
I

�
1

4

�
� kI(1

4
) (6.23)

�R

�
1

4

�
= ��R

�
1

4

�
I

�
1

4

�
+ kI(

1

4
).

It is clear that problem (6.21)-(6.23) is a particular case of problem (6.1)-
(6.3), with y1 = S; y2 = I; y3 = R; a = 0; b = 1; n = j = 1; t1 =

1
4 ;

g1(t; S(t); I(t); R(t)) = ��S(t)I(t) + �R(t)
g2(t; S(t); I(t); R(t)) = �S(t)I(t)� (�+ d) I(t)
g3(t; S(t); I(t); R(t)) = �I(t)� �R(t)

the functional boundary conditions

B1(S; I;R) = inf
t2] 14 ;1]

S(t)� lim
t!( 14 )

+
S(t) = 0

B2(S; I;R) = max
t2[0;1]

I(t)� I(1) = 0

B3(S; I;R) = sup
t2] 14 ;1]

R(t)� lim
t!( 14 )

+
R(t) = 0

and the impulsive e¤ects

�S( 14 ) = H11(S(
1
4 ); I(

1
4 ); R(

1
4 )) = �5�S

�
1
4

�
I( 14 ) + �R

�
1
4

�
I( 14 )

�I( 14 ) = H21(S(
1
4 ); I(

1
4 ); R(

1
4 )) = 5�S(

1
4 )I(

1
4 )� kI(

1
4 )

�R( 14 ) = H31(S(
1
4 ); I(

1
4 ); R(

1
4 )) = ��R

�
1
4

�
I( 14 ) + kI(

1
4 ):

As a numeric example we consider the rates �1 = 0:1; �1 = 0:44, �1 = 0:93;
d1 = 0:2 before the impulsive moment, that is for 0 � t � 1

4 ; and �2 = 0:0001;
�2 = 0:1, �2 = 0:162; d2 = 0; after the impulsive e¤ect, i.e., for

1
4 < t � 1:

For these values, the triple null functions (�1; �2; �3) = (0; 0; 0) and the
piecewise one (�1; �2; �3) given by

�1(t) =

�
112000t6 + 17120t5 + 4600t4 � 400t3 � 20t2 + 20t+ 110; 0 � t � 1

4 ;
�14500t6 + 20000t5 + 10000t4 + 14600t3 � 20t2 + 6t� 260; 14 < t � 1;

�2(t) =

�
112000t6 + 17120t5 + 4600t4 � 400t3 � 20t2 + 20t; 0 � t � 1

4 ;
�14500t6 + 20000t5 + 10000t4 + 14600t3 � 20t2 + 6t� 200; 14 < t � 1;

�3(t) =

�
112000t6 + 17120t5 + 4600t4 � 400t3 � 20t2 + 20t+ 1; 0 � t � 1

4 ;
�14500t6 + 20000t5 + 10000t4 + 14600t3 � 20t2 + 6t� 250; 14 < t � 1;

are, respectively, lower and upper solutions of problem (6.21)-(6.23), according
to De�nition 6.4.
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All the assumptions of Theorem 6.3 are ful�lled for 62:35 < � < 79:19; and,
therefore, there is a solution of problem (6.21)-(6.23), such that

0 � S(t) � �1(t);

0 � I(t) � �2(t);

0 � R(t) � �3(t); for t 2 [0; 1] :

Applying an adequate mathematical software, these inequalities can be il-
lustrated by the graph of the correspondent solution, given in the next �gure.
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