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Abstract: Some new sufficient conditions are established for the oscillation of fourth order
neutral differential equations with continuously distributed delay of the form

(
r (t) (N′′′x (t))α)′ +∫ b

a q (t, ϑ) xβ (δ (t, ϑ)) dϑ = 0, where t ≥ t0 and Nx (t) := x (t) + p (t) x (ϕ (t)). An example is
provided to show the importance of these results.
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1. Introduction

The theory of differential equations is an adequate mathematical apparatus for the simulation of
processes and phenomena observed in biotechnology, neural networks, physics etc, see [1]. One area
of active research in recent times is to study the sufficient criterion for oscillation of delay differential
equations, see [1–28].

In this work, we establish the asymptotic behavior of fourth-order neutral differential equation of
the form (

r (t)
(

N′′′x (t)
)α
)′

+
∫ b

a
q (t, ϑ) xβ (δ (t, ϑ)) dϑ = 0, (1)

where t ≥ t0 and Nx (t) := x (t) + p (t) x (ϕ (t)). In this paper, we assume that:

A1: α and β are a quotient of odd positive integers and β ≥ α;
A2: r, p ∈ C[t0, ∞), r (t) > 0, r′ (t) ≥ 0 and

∫ ∞ r−1/α (s)ds = ∞;
A3: q ∈ C ([t0, ∞)× (a, b) ,R) , q (t, ϑ) > 0, 0 ≤ p (t) < p0 < ∞ and q (t) is not identically zero for

large t;
A4: ϕ ∈ C1[t0, ∞), δ ∈ p ([t0, ∞)× (a, b) ,R) , ϕ′ (t) > 0, ϕ (t) ≤ t, limt→∞ ϕ (t) = limt→∞ δ (t, ϑ) =

∞ and δ (t, ϑ) has nondecreasing.

Definition 1. The function x ∈ C3[ty, ∞), ty ≥ t0, is called a solution of (1), if r (t) (N′′′x (t))α ∈
C1[ty, ∞), and x (t) satisfies (1) on [ty, ∞).

Axioms 2020, 9, 39; doi:10.3390/axioms9020039 www.mdpi.com/journal/axioms

http://www.mdpi.com/journal/axioms
http://www.mdpi.com
https://orcid.org/0000-0002-7251-9608
https://orcid.org/0000-0002-7485-2500
https://orcid.org/0000-0003-3850-1022
http://dx.doi.org/10.3390/axioms9020039
http://www.mdpi.com/journal/axioms
https://www.mdpi.com/2075-1680/9/2/39?type=check_update&version=2


Axioms 2020, 9, 39 2 of 11

Definition 2. A solution of (1) is called oscillatory if it has arbitrarily large zeros on [tx, ∞), and otherwise is
called to be nonoscillatory.

Definition 3. The Equation (1) is called oscillatory if every its solutions are oscillatory.

In the following, we discuss some important papers:
Chatzarakis et al. [9] proved the equation (1) where α = β, is oscillatory, if

∫ ∞

t0

(
v (s)− 2αr (s)

µαs2αρα (s)

(
ρ′ (s)
α + 1

)α+1
)

ds = ∞,

for some µ ∈ (0, 1) and

∫ ∞

t0

(
ϑ (s)

(∫ ∞

t
(Q (υ))

1
α r
−1
α (υ) dυ

)
−

θ′2+ (s)
4θ (s)

)
ds = ∞,

where v (t) := kρ (t) Q (t) (1− p (δ (t, a)))α (δ (t, a) \t)3αand ρ, θ ∈ C1 ([υ0, ∞) , (0, ∞)) .
Moaaz et al. in [19] extended the Riccati transformation to obtain new oscillatory criteria for (1) as

condition ∫ ∞

t0

[
θ (s) Q (s)− 1

λ4

(
θ′ (s)
θ (s)

)2
]

ds = ∞,

where λ ∈ (0, 1) and a function θ ∈ C1 ([υ0, ∞) , (0, ∞)) .
Authors in [24] studied oscillatory behavior of equation

N(n)
x (t) + q (t) x (δ (t)) = 0, (2)

where n is even, they proved it oscillatory by using the Riccati transformation if either

lim inf
t→∞

∫ t

ϕ(t)
Q (s)ds >

(n− 1)!
e

, (3)

or

lim sup
t→∞

∫ t

ϕ(t)
Q (s)ds > (n− 1)!,

where Q (t) := ϕn−1 (t) (1− p (ϕ (t))) q (t) .
Xing et al. [22] proved that the even-order differential equation(

r (t)
(

N(n−1)
x (t)

)α)′
+ q (t) xβ (δ (t)) = 0,

is oscillatory, if (
δ−1 (t)

)′
≥ δ0 > 0, ϕ′ (t) ≥ ϕ0 > 0, ϕ−1 (δ (t)) < t

and

lim inf
t→∞

∫ t

ϕ−1(δ(t))

q̂ (s)
r (s)

(
sn−1

)α
ds >

(
1
δ0
+

pα
0

δ0 ϕ0

)
e ((n− 1)!)−α , (4)

where q̂ (t) := min
{

q
(
δ−1 (t)

)
, q
(
δ−1 (ϕ (t))

)}
and n is even.

To prove this, we apply the previous results to the equation

(x (t) + px (ϕt))(n) + bx (δt) = 0, t ≥ 1, (5)

where n = 4, p = 7/8, ϕ = 1/e, δ = 1/e2 and b = q0/υ4, we find:
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1. By applying condition (3) in (5), we find

q0 > 3561.9.

2. By applying condition (4) in (5), we get

q0 > 3008.5.

Hence, [22] improved the results in [24].
Thus, the motivation in studying this paper is complement results in [9] and improve

results [22,24].
By using the Riccati transformations, we establish a new oscillation criterion for a class of

fourth-order neutral differential equations (1). An example is provided to illustrate the main results.

2. Some Auxiliary Lemmas

We shall employ the following lemmas

Lemma 1 ([3]). Let x ∈ Cn ([t0, ∞) , (0, ∞)) . Assume that x(n) (t) is of fixed sign and not identically zero on
[t0, ∞) and there exists a t1 ≥ t0 such that x(n−1) (t) x(n) (t) ≤ 0 for all t ≥ t1. If limt→∞ x (t) 6= 0, then for
every µ ∈ (0, 1) there exists tµ ≥ t1 such that

x (t) ≥ µ

(n− 1)!
tn−1

∣∣∣x(n−1) (t)
∣∣∣ for t ≥ tµ.

Lemma 2 ([16]). Let the function x satisfies x(i) (t) > 0, i = 0, 1, ..., n, and x(n+1) (t) < 0, then

x (t)
tn/n!

≥ x′ (t)
tn−1/ (n− 1)!

.

Lemma 3 ([4]). Assume that x, v ≥ 0 and α ≥ 1 is a positive real number. Then

(x + v)α ≤ 2α−1 (xα + vα)

and
(x + v)β ≤ xβ + vβ, for β ≤ 1.

Lemma 4 ([9]). Assume that x is an eventually positive solution of (1). Then, there exist two possible cases:

(S1) N(κ)
x (t) > 0 for κ = 0, 1, 2, 3;

(S2) Nx (t) > 0, N′x (t) > 0, N′′x (t) < 0 and N′′′x (t) > 0,

for t ≥ t1, where t1 ≥ t0 is sufficiently large.
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Notation 1. We consider the following notations:

p1 (t) =
1

p (ϕ−1 (t))

(
1−

(
ϕ−1 (ϕ−1 (t)

))3

(ϕ−1 (t))3 p (ϕ−1 (ϕ−1 (t)))

)
,

p2 (t) =
1

p (ϕ−1 (t))

(
1−

(
ϕ−1 (ϕ−1 (t)

))
(ϕ−1 (t)) p (ϕ−1 (ϕ−1 (t)))

)

Ψ (t) = Mβ−α
1 θ (t)

∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) dϑ

R̃ (t) =
∫ b

a

(
µ
(

ϕ−1 (η (t, ϑ))
)3

6

)β

q (t, ϑ) pβ
1 (η (t, ϑ)) r−β/α

(
ϕ−1 (η (t, ϑ))

)
dϑ

R (t) =
∫ ∞

t

(
1

r ($)

∫ ∞

$

(∫ b

a
q (s, ϑ)

(
ϕ−1 (σ (s, ϑ))

s

)β

dϑ

)
ds

)1/α

d$,

and

Φ (t) := pβ/α
2 θ1 (t) M(β−α)/α

2

∫ ∞

t

(
1

r ($)

∫ ∞

$

(∫ b

a
q (s, ϑ)

(
ϕ−1 (δ (s, ϑ))

s

)β

dϑ

)
ds

)1/α

d$.

3. Main Results

In this part, we will discuss some oscillation criteria for Equation (1).

Lemma 5. Assume that x is an eventually positive solution of (1) and(
ϕ−1

(
ϕ−1 (t)

))3
<
(

ϕ−1 (t)
)3

p
(

ϕ−1
(

ϕ−1 (t)
))

. (6)

Then

x (t) ≥ 1
p (ϕ−1 (t))

(
Nx

(
ϕ−1 (t)

)
− 1

p (ϕ−1 (ϕ−1 (t)))
Nx

(
ϕ−1

(
ϕ−1 (t)

)))
. (7)

Proof. Let x be an eventually positive solution of (1) on [t0, ∞). From the definition of z (t), we see
that

p (t) x (ϕ (t)) = Nx (t)− x (t) ,

and so
p
(

ϕ−1 (t)
)

x (t) = Nx

(
ϕ−1 (t)

)
− x

(
ϕ−1 (t)

)
.

Repeating the same process, we obtain

x (t) =
1

p (ϕ−1 (t))

(
Nx

(
ϕ−1 (t)

)
−
(

Nx
(

ϕ−1 (ϕ−1 (t)
))

p (ϕ−1 (ϕ−1 (t)))
−

x
(

ϕ−1 (ϕ−1 (t)
))

p (ϕ−1 (ϕ−1 (t)))

))
,

which yields

x (t) ≥
Nx
(

ϕ−1 (t)
)

p (ϕ−1 (t))
− 1

p (ϕ−1 (t))
Nx
(

ϕ−1 (ϕ−1 (t)
))

p (ϕ−1 (ϕ−1 (t)))
.

Thus, (7) holds. This completes the proof.
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Theorem 1. Let δ (t) ≤ ϕ (t) and (6) holds. If there exist positive functions θ, θ1 ∈ C1 ([t0, ∞) ,R) such that

∫ ∞

t0

Ψ (s)− 2α

(α + 1)α+1
r
(

ϕ−1 (δ (s, a))
)
(θ′ (s))α+1(

µ1θ (s) (ϕ−1 (δ (s, a)))′ (δ (s, a))′ (ϕ−1 (δ (s, a)))2
)α

ds = ∞ (8)

and ∫ ∞

t0

(
Φ (s)−

(
θ′1 (s)

)2

4θ1 (s)

)
ds = ∞, (9)

for some µ1 ∈ (0, 1) and every M1, M2 > 0, then (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we can assume
that x is eventually positive. It follows from Lemma 4 that there exist two possible cases (S1) and (S2).

Let (S1) holds. From Lemma 2, we obtain Nx (t) ≥ 1
3 tN′x (t) and hence the function t−3Nx (t) is

nonincreasing, which with the fact that ϕ−1 (t) ≤ ϕ−1 (ϕ−1 (t)
)

gives(
ϕ−1 (t)

)3
Nx

(
ϕ−1

(
ϕ−1 (t)

))
≤
(

ϕ−1
(

ϕ−1 (t)
))3

Nx

(
ϕ−1 (t)

)
. (10)

From (7) and (10), we get that

x (t) ≥
Nx
(

ϕ−1 (t)
)

p (ϕ−1 (t))

(
1−

(
ϕ−1 (ϕ−1 (t)

))n−1

(ϕ−1 (t))n−1 p (ϕ−1 (ϕ−1 (t)))

)
≥ p1 (t) Nx

(
ϕ−1 (t)

)
. (11)

From (1) and (11), we obtain(
r (t)

(
N′′′x (t)

)α
)′

+
∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) Nβ
x

(
ϕ−1 (δ (t, ϑ))

)
dϑ ≤ 0. (12)

Since δ (t, ξ) is nondecreasing with respect tos, we get δ (t, ϑ) ≥ δ (t, a) for ξ ∈ (a, b) and so

(
r (t)

(
N′′′x (t)

)α
)′

+ Nβ
x

(
ϕ−1 (δ (t, a))

) ∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) dϑ ≤ 0.

Next, we define a function ω by

ω (t) := θ (t)
r (t) (N′′′x (t))α

Nα
x (ϕ−1 (δ (t, a)))

> 0.

Differentiating and using (12), we obtain

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) Nβ−α
x

(
ϕ−1 (δ (t, a))

) ∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) dϑ

−αθ (t)
r (t) (N′′′x (t))α (

ϕ−1 (δ (t, a))
)′
(δ (t, a))′ N′x

(
ϕ−1 (δ (t, a))

)
Nα+1

x (ϕ−1 (δ (t, a)))
. (13)

Recalling that r (t) (N′′′x (t))α is decreasing, we get

r
(

ϕ−1 (δ (t, a))
) (

N′′′x

(
ϕ−1 (δ (t, a))

))α
≥ r (t)

(
N′′′x (t)

)α .
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This yields (
N′′′x

(
ϕ−1 (δ (t, a))

))α
≥ r (t)

r (ϕ−1 (δ (t, a)))
(

N′′′x (t)
)α . (14)

It follows from Lemma 1 that

N′x
(

ϕ−1 (δ (t, a))
)
≥ µ1

2

(
ϕ−1 (δ (t, a))

)2
N′′′x

(
ϕ−1 (δ (t, a))

)
, (15)

for all µ1 ∈ (0, 1). Thus, by (13)–(15), we get

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) Nβ−α
x

(
ϕ−1 (δ (t, a))

) ∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) dϑ

−αθ (t)
µ1

2

(
r (t)

r (ϕ−1 (δ (t, a)))

)1/α r (t) (N′′′x (t))α+1 (
ϕ−1 (δ (t, a))

)′
(δ (t, a))′

(
ϕ−1 (δ (t, a))

)2

Nα+1
x (ϕ−1 (δ (t, a)))

Hence,

ω′ (t) ≤ θ′ (t)
θ (t)

ω (t)− θ (t) Nβ−α
x

(
ϕ−1 (δ (t, a))

) ∫ b

a
q (t, ϑ) pβ

1 (δ (t, ϑ)) dϑ

−α
µ1

2

(
r (t)

r (ϕ−1 (δ (t, a)))

)1/α
(

ϕ−1 (δ (t, a))
)′
(δ (t, a))′

(
ϕ−1 (δ (t, a))

)2

(rθ)1/α (t)
ω

α+1
α (t) .

Since N′x (t) > 0, there exist a t2 ≥ t1 and a constant M > 0 such that

Nx (t) > M, (16)

for all t ≥ t2. Using the inequality

Ux−Vx(β+1)/β ≤ ββ

(β + 1)β+1
Uβ+1

Vβ
, V > 0,

with

U =
θ′ (t)
θ (t)

, V = α
µ1

2

(
r (t)

r (ϕ−1 (δ (t, a)))

)1/α
(

ϕ−1 (δ (t, a))
)′
(δ (t, a))′

(
ϕ−1 (δ (t, a))

)2

(rθ)1/α (t)

and x = ω, we get

ω′ (t) ≤ −Ψ (t) +
2α

(α + 1)α+1
r
(

ϕ−1 (δ (t, a))
)
(θ′ (t))α+1(

µ1θ (t) (ϕ−1 (δ (t, a)))′ (δ (t, a))′ (ϕ−1 (δ (t, a)))2
)α .

This implies that

∫ t

t1

Ψ (s)− 2α

(α + 1)α+1
r
(

ϕ−1 (δ (t, a))
)
(θ′ (t))α+1(

µ1θ (t) (ϕ−1 (δ (t, a)))′ (δ (t, a))′ (ϕ−1 (δ (t, a)))2
)α

ds ≤ ω (t1) ,

which contradicts (8).
In the case where (S2) satisfies, by using Lemma 2, we find that

Nx (t) ≥ tN′x (t) (17)
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and hence
(
t−1Nx (t)

)′ ≤ 0. Therefore,

ϕ−1 (t) Nx

(
ϕ−1

(
ϕ−1 (t)

))
≤ ϕ−1

(
ϕ−1 (t)

)
Nx

(
ϕ−1 (t)

)
. (18)

From (7) and (18), we have

x (t) ≥ 1
p (ϕ−1 (t))

(
1−

(
ϕ−1 (ϕ−1 (t)

))
(ϕ−1 (t)) p (ϕ−1 (ϕ−1 (t)))

)
Nx

(
ϕ−1 (t)

)
= p2 (t) Nx

(
ϕ−1 (t)

)
,

which with (1) gives

(
r (t)

(
N′′′x (t)

)α
)′
≤ −

∫ b

a
q (t, ϑ) pβ

2 (δ (t, ϑ)) Nβ
x

(
ϕ−1 (δ (t, ϑ))

)
dϑ.

Integrating this inequality from t to $, we obtain

r ($)
(

N′′′x ($)
)α − r (t)

(
N′′′x (t)

)α ≤ −
∫ $

t

(∫ b

a
q (t, ϑ) pβ

2 (δ (t, ϑ)) Nβ
x

(
ϕ−1 (δ (t, ϑ))

)
dϑ

)
ds. (19)

From (17), we get that

Nx

(
ϕ−1 (δ (t, ϑ))

)
≥ ϕ−1 (δ (t, ϑ))

t
Nx (t) . (20)

Letting $→ ∞ in (19) and using (20), we obtain

r (t)
(

N′′′x (t)
)α ≥ pβ

2 (δ (t, a)) Nβ
x (t)

∫ ∞

t

(∫ b

a
q (s, ϑ)

(
ϕ−1 (δ (s, ϑ))

s

)β

dϑ

)
ds.

Integrating this inequality again from t to ∞, we get

N′′x (t) ≤ −pβ/α
2 Nβ/α

x (t)
∫ ∞

t

(
1

r ($)

∫ ∞

$

(∫ b

a
q (s, ϑ)

(
ϕ−1 (δ (s, ϑ))

s

)β

dϑ

)
ds

)1/α

d$, (21)

for all µ2 ∈ (0, 1).

Now, we define

w (t) = θ1 (t)
N′x (t)
Nx (t)

.

Then w (t) > 0 for t ≥ t1. By differentiating w and using (21), we find

w′ (t) =
θ′1 (t)
θ1 (t)

w (t) + θ1 (t)
N′′x (t)
Nx (t)

− θ1 (t)
(

N′x (t)
Nx (t)

)2

≤
θ′1 (t)
θ1 (t)

w (t)− 1
θ1 (t)

w2 (t)

−pβ/α
2 θ1 (t) Nβ/α−1

x (t)
∫ ∞

t

 1
r ($)

∫ ∞

$

∫ b

a
q (s, ϑ)

(
ϕ−1 (δ (s, ϑ))

s

)β

dϑ

ds

1/α

d$.

Thus, we obtain

w′ (t) ≤ −Φ (t) +
θ′1 (t)
θ1 (t)

w (t)− 1
θ1 (t)

w2 (t) ,
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and so

w′ (t) ≤ −Φ (t) +
(
θ′1 (t)

)2

4θ1 (t)
.

Then, we get ∫ t

t1

(
Φ (s)− (θ′ (t))2

4θ (t)

)
ds ≤ w (t1) ,

which contradicts (9). This completes the proof.

Theorem 2. Let (
ϕ−1 (ϕ−1 (t)

))n−1

(ϕ−1 (t))n−1 p (ϕ−1 (ϕ−1 (t)))
≤ 1. (22)

Suppose that there exist positive functions η, σ ∈ p1 ([t0, ∞) ,R) satisfying

η (t) ≤ δ (t) , η (t) < ϕ (t) , σ (t) ≤ δ (t) , σ (t) < ϕ (t) , σ′ (t) ≥ 0 and lim
t→∞

η (t) = lim
t→∞

σ (t) = ∞. (23)

If the equations
ψ′(t) + R̃ (t)ψβ/α

(
ϕ−1 (η (t, a))

)
= 0 (24)

and
φ′ (t) + pβ/α

2

(
ϕ−1 (σ (t, a))

)β/α
R (t) φβ/α

(
ϕ−1 (σ (t, a))

)
= 0 (25)

are oscillatory, then (1) is oscillatory.

Proof. Let x be a non-oscillatory solution of (1) on [t0, ∞). Without loss of generality, we suppose that
x > 0. From Lemma 4, we find there exist two possible cases (S1) and (S2).

Assume that Case (S1) holds. From Theorem 1, we get that (12) holds. Since η (t) ≤ δ (t) and
z′ (t) > 0, we obtain

(
r (t)

(
N′′′x (t)

)α
)′
≤ −

∫ b

a
q (t, ϑ) pβ

1 (η (t, ϑ)) Nβ
x

(
ϕ−1 (η (t, ϑ))

)
dϑ. (26)

Now, by using Lemma 1, we have

Nx (t) ≥
µ

6
t3N′′′x (t) . (27)

for some µ ∈ (0, 1). It follows from (26) and (27) that, for all µ ∈ (0, 1) ,

(
r (t)

(
N′′′x (t)

)α
)′

+
∫ b

a

(
µ
(

ϕ−1 (η (t, ϑ))
)3

6

)β

q (t, ϑ) pβ
1 (η (t, ϑ))

(
N′′′x

(
ϕ−1 (η (t, ϑ))

))β
dϑ ≤ 0.

Thus, we choose
ψ (t) = r (t)

(
N′′′x (t)

)α .

So, we find that ψ is a positive solution of the inequality

ψ′(t) + R̃ (t)ψβ/α
(

ϕ−1 (η (t, a))
)
≤ 0.

Using (see ([15] Theorem 1)), we see (24) also has a positive solution, a contradiction.
Suppose that Case (S2) holds. From Theorem 1, we get that (21) holds. Since σ (t) ≤ δ (t) and

N′x (t) > 0, we have that
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N′′x (t) ≤ −pβ/α
2 Nβ/α

x

(
ϕ−1 (σ (t, a))

) ∫ ∞

t

 1
r ($)

∫ ∞

$

∫ b

a
q (s, ϑ)

(
ϕ−1 (σ (s, ϑ))

s

)β

dϑ

ds

1/α

d$, (28)

Using Lemma 2, we get that
Nx (t) ≥ tN′x (t) . (29)

From (18) and (29), we obtain

N′′x (t) ≤ −pβ/α
2

(
N′x
(

ϕ−1 (σ (t, a))
))β/α (

ϕ−1 (σ (t, a))
)β/α

R (t) .

Now, we choose φ (t) := N′x (t), thus, we find that φ is a positive solution of

φ′ (t) + pβ/α
2

(
ϕ−1 (σ (t, a))

)β/α
R (t) φβ/α

(
ϕ−1 (σ (t, a))

)
≤ 0. (30)

Using (see ([15] Theorem 1)), we see (25) also has a positive solution, a contradiction. The proof is
complete.

Example 1. Consider the differential equation([
x (t) +

1
2

x
(

t
3

)]′′′)′
+
∫ 1

0

( q0

t4

)
ϑx
(

t− ξ

2

)
dϑ = 0, (31)

where q0 > 0 is a constant. Let α = β = 1, r (t) = 1, p (t) = 1/2, ϕ (t) = t/3, ϕ−1 (t) = 3t, δ (t, a) =
t/2, q (t, ϑ) =

(
q0\t4) ϑ.

Thus, by using Theorem 1, then Equation (31) is oscillatory.

Remark 1. By applying our results in (5), we see that our results improve [22,24].

Remark 2. One can easily see that the results obtained in [24] cannot be applied to conditions in Theorem 1,
so our results are new.

4. Conclusions

In this work, our method is based on using the Riccati transformations to get some oscillation
criteria of (1). There are numerous results concerning the oscillation criteria of fourth order equations,
which include various forms of criteria as Hille/Nehari, Philos, etc. This allows us to obtain also
various criteria for the oscillation of (1). Further, we can try to get some oscillation criteria of (1) if
Nx (t) := x (t)− p (t) x (ϕ (t)) in the future work.
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