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Abstract Engineering-level accuracy of discretiza-

tion methods for frictional contact originates from

precise representation of discontinuous frictional and

normal interaction laws and precise discrete contact

techniques. In terms of discontinuous behavior in the

quasi-static case, two themes are of concern: the

normal interaction (i.e. impact) and the jumps in

tangential directions arising from high frictional

values. In terms of normal behavior, we use a

smoothed complementarity relation. For the tangential

behavior, we propose a simple and effective algo-

rithm, which is based a stick predictor followed by

corrections to the tangential velocity. This allows

problems with impact and stick-slip behavior to be

solved with an implicit code based on Newton–

Raphson iterations. Three worked examples are shown

with comparisons with published results. An extension

to node-to-face form in 3D is also presented.

Keywords Frictional contact � Finite strain � Stick

predictor � Smoothing

1 Introduction

The precise representation of mechanical contact

between surfaces, modeled via unilateral constraints,

is still one of the most challenging tasks in computa-

tional mechanics. Several difficulties are present

within the context of implicit solvers:

1. Non-smoothness of contact forces due to the cone-

complementarity conditions, discussed by Kanno

et al. (2006). Artificial smoothing of the condi-

tions will result in absence of stick-slip oscilla-

tions (which are observed experimentally) even

for high values of the coefficient of friction.

2. Non-smoothness of contact forces due to the facet-

like geometry characteristic of finite element

discretizations, addressed by Puso and Laursen

(2004b).

3. When ad-hoc algorithms are used, energy errors

and spurious noise appear (Khenous et al. 2008).
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We are here concerned with item 1.) and propose

simple solutions for these difficulties. Historically,

experimental observations by Amontons (1699) pro-

duced the dry frictional laws. This theory was

concluded by Coulomb (1821) who postulated the

independence of kinetic friction force with respect to

the relative velocity. This preliminary theory was

essentially discrete (for discrete case, the review by

Stewart proves the presence of paradoxes Stewart

2001) and the continuum case was completed much

later by Kikuchi and Oden (1988). Contributions to

discrete friction were performed by Martins et al.

(1995), De Saxcé and Feng (1998) and Wriggers and

Haraldsson (2003). We are here concerned with

smoothing algorithms that converge to the original

non-smooth conditions and with the development of

stable algorithms to ensure that the jumping phenom-

ena in time are properly represented. From a compu-

tational perspective, variations of the augmented

Lagrangian method have been explored, with first-

order updating (see Simo and Laursen 1992) and

second order updating (see Alart and Curnier 1992).

The dealing of friction with the augmented Lagrangian

method involves the operator split technique (cf.

Wriggers 2002), see also Laursen 2002; Wriggers

2002. Refaat and Meguid developed an effective

algorithm based on the sequential solution of two

special cases (Refaat and Meguid 1995), which was

found to be convergent for Hertz-type contact with

friction. Another aspect, not addressed here, is the one

of discretization (see Wriggers 2002 for a compre-

hensive treatment), which has recent developments,

cf. (Anitescu et al. 2019).

As an alternative, smoothing of the complementar-

ity conditions in frictional contact was performed by

Areias et al. (2014). A related topic is the one of

friction models which can be viewed as regularization

(Pennestri et al. 2016).

We here do not regularize the frictional behavior,

but use a stick predictor followed by a slip behavior

that progressively approaches (and reaches) the orig-

inal Coulomb law. In terms of discretization, which we

briefly describe the 3D case where the node-to-face

approach is used. We use Acegen (Korelc 2002), in

combination with Mathematica software (Wolfram

Research Inc. 2007) to derive the closed-form

expressions.

2 Governing equations for a plane, rigid obstacle

The Signorini problem combined with classical

Coulomb friction is first considered with the plane

x3 = 0, e3 ¼ f0; 0; 1gT being the obstacle. This

assumption simplifies this description without limiting

further generalization, performed in the subsequent

section. We introduce the normal force as the product

of a scalar multiplier cn with the normal direction

e3 : f n ¼ cne3. Using a tangent subspace with basis

vectors e1, e2, (here e1 ¼ f1; 0; 0gT and e2 ¼
f0; 1; 0gT forming the canonical basis) then the

tangential force can be written as f t ¼ c1e1 þ c2e2

with c1 and c2 being the two force components. The

total contact force is a sum of both contributions:

f c ¼ f n þ f t. A unique coefficient of friction l is

adopted, for simplicity of treatment. A non-negative

variable b is introduced, relating the slip velocity _ut
with the friction force f t. Two functions are intro-

duced, one function U corresponding to the contact

signed distance and another W which can be inter-

preted as a frictional yield function (here W[ 0

indicates stick and W ¼ 0 slip):

U ¼ x3 ð1Þ

Wðcn; f tÞ ¼ lcn � f tk k ð2Þ

where x3 ¼ X3 þ u3 is the deformed coordinate of the

contact point. In this context, X3 is the undeformed

coordinate of the contact point and u3 is the displace-

ment of the same node. Combining the Signorini with

Coulomb’s frictional conditions we obtain:

cn � 0; U� 0; Ucn ¼ 0 ð3Þ

b� 0; W� 0; Wb ¼ 0 ð4Þ

_ut þ bf t ¼ 0 ð5Þ

The first three conditions (3) are the non-penetration

complementarity conditions. The second three condi-

tions (4) are the stick/slip friction conditions in terms

of the multiplier b. Finally Eq. (4) relates the tangen-

tial velocity with the friction force. This condition can

also be written as:

fc1; c2g ¼ argmin

W cn;ef t

� �

� 0

ef t � _ut
h i

ð6Þ
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where ef t is the unknown force satisfying

W cn;ef t
� �

� 0 and minimizing ef t � _ut. Effective

attempts to solve (4, 5) with a classical, non-combi-

natorial finite element code are inhibited by condition

(5). Classically, Eqs. (3, 4) can be cast in a different

form:

U� cnh i � U ¼ 0 ð7Þ

W� bh i �W ¼ 0 ð8Þ

where the ramp function is trivially obtained from the

absolute value: �h i ¼ �þ �j j
2

. At this point, it is trivial

produce smoothed replacements of (7, 8) but relation

(5) cannot be simultaneously satisfied in stick and slip

conditions without rewriting of the system. Kanno

et al. (2006), eqs. (32–34) presents an analogous

result, with a second-order cone linear complemen-

tarity problem (SOCLCP) being solved by a smooth

solver.

However, a simple analysis reveals the dependence

of b on the solution:

• Considering W� b\0 ) W ¼ 0 implies that slip

occurs, and hence b could be determined by

b ¼ f t � _ut
_ut � _ut.

• On the other hand, we have W� b� 0 ) b ¼ 0

implies that b ¼ 0 ) _ut ¼ 0.

In both cases, we have a dependence of b on _ut which

is predicted since we have three unknown forces and

four extra degrees-of-freedom per contact node. Any

form of smoothed Newton iteration will be ill-

conditioned for this system. Since there are two

distinct behaviors, these are better satisfied in two

sequential parts. For a given time-step

It ¼ ½Ti; Ti þ Dt�, a partition into two sub-steps It ¼
Istick [ Icorr is performed. We have Istick ¼ ½Ti; Ti þ Dt

2
½

and Icorr ¼ ½Ti þ Dt
2
; Ti þ Dt½. We always start each

time step with a stick behavior, then use the stick

direction as a ‘‘null-velocity’’ direction. This term is

ramped-out to zero so that, at the end of Icorr, the

correct frictional force is obtained. The residual for

stick is then given by:

rstick ¼

�cs1
�cs2
�cn
_uH1
_uH2

x3 � cnh i � x3 ¼ 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð9Þ

where

_uHk ¼ H cnð Þ _uk ð10Þ

In (9), cs1 and cs2 are the stick components of the shear

force. Since, for this sub-step, sticking is assumed,

these are Lagrange multipliers.

In addition, for slipping, we have:

rslip ¼

�c1

�c2

�cn

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w2

x3 � cnh i � x3 ¼ 0

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

;

ð11Þ

with

_wk ¼ ð1 � nÞ _uk þ n
csk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cs1
� �2þ cs2

� �2
q ð12Þ

We note that, with this formulation (9–12), the only

non-smooth equation remaining is the normal com-

plementarity, x3 � cnh i � U ¼ 0 which is replaced by

a smooth version:

x3 � cnh ie�U ¼ 0

The function �h i is here called smoothed ramp. For

this smoothed ramp, we have the Chen-Mangasarian

replacement function (Chen and Mangasarian

1995, 1996):

�h ie ¼
� þ 1

a
log 1 þ exp �a�ð Þ½ �; �� 0

� þ 1

a
�a � þ log 1 þ expða�Þ½ �f g; �\0

8

>

<

>

:

with a ¼ log 2

e
ð13Þ

The use of this function entails a number of

advantages:
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• Removal of inequalities and replacement of non-

smooth equations from the system.

• Control of the convergence behavior by use of

parameter e.

However, two shortcomings are also present:

• A user-defined parameter is now present in the

system.

• Very small initial values of e can result in loss of

convergence in Newton iteration.

We note that with this replacement, contact equations

become smooth. Newton iteration is therefore possible

for a large enough e. For consistency of units, we

rewrite the system as:

restick ¼

�cs1
�cs2
�cn

rp _u
H

1 Dt

rp _u
H

2 Dt

rpx3 � cn
� �

e�rpx3 ¼ 0

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

9

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

;

ð14Þ

reslip ¼

�c1

�c2

�cn

c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w2

rpx3 � cn
� �

e�x3 ¼ 0

8
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>

>

>

>

>

>

>

>

>

>
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>

>

>

>
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>

>
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>

>

>

>

=

>

>
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>

>

>

>

;

ð15Þ

where rp is a constant to ensure units of force are

correct. We use ELc with E being the elasticity

modulus and Lc the characteristic length of the mesh.

Figure 1 shows the frictional cone with conditions.

Of course, this modification has the intended limit:

lim
e!0

�h ie ¼ �h i ð16Þ

with �h i being the unit ramp function. The graph of

�h ie is shown in Fig. 2 and the resulting normal

behavior is shown in Fig. 3.

3 Generalization for a 3D contact element

For contact discretization in 3D, we use the node-to-

face method (e.g. Zavarise and De Lorenzis 2009;

Wriggers and Haraldsson 2003). A single pass algo-

rithm is adopted. For detection, we use an incident

node averaged normal to chose a main target edge or

face, cf. Areias (2003) and Areias et al. (2004). This

averaged normal is only used for detection of the first

edge or face and not used for contact enforcement, see

also Areias et al. (2015). For the contact elements, we

Fig. 1 Frictional cone with relevant quantities

Fig. 2 Graph of �h ie
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allow more than one target edge or face to share an

incident node. Further details are provided in Areias

et al. (2015). The generalization of the previous

formulation for any geometry is performed by use of

the force power in local and global frames (see Fig. 4).

Implicit determination of kinematic quantities is

performed. We use f cl as the contact force in the local

frame (as in Sect. 2), f cg as the contact force in the

global frame. Conjugate to these are the velocity in the

local frame, _u and in the global frame, _ug. We also

introduce the generalized rates _pt and _pn conjugated to

Rt and Rn where

Rt ¼
c1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w1

c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

_w2
1 þ _w2

2

q

þ lcn _w2

8

>

<

>

:

9

>

=

>

;

ð17Þ

and

Rn ¼ rpx3 � cn
� �

e�x3 ð18Þ

We then write the following discrete form:

_W ¼
f cl ¼

f t

cn

	 


Rt

Rn

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

�
_u ¼

_ut

_u3

	 


_pt

_pn

8

>

>

>

<

>

>

>

:

9

>

>

>

=

>

>

>

;

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

localframe

¼
f cg

Rt

Rn

8

>

<

>

:

9

>

=

>

;

�
_ug

_pt

_pn

8

>

<

>

:

9

>

=

>

;

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

globalframe

ð19Þ

¼ Rn _pn þ Rt � _pt þ f cg _ug
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

globalframe;discreteform

ð20Þ

The global velocity _ug is defined using a global

common frame. The two local terms _ut and _u3 are

calculated from _ug as later described. In (19, 20), _pn
and _pt are velocity-like virtual quantities which are

defined in the tetrahedron element as a whole.

Introducing a capital K as the local node counter for

the contact element shown in Fig. 4, we have an

equivalence between the internal product of interpo-

lated quantities and the nodal values of these

quantities:

f cg � _ug ¼
X

4

K¼1

fKcg � _uKg ð21Þ

Using the classical contact interpolation for _ug, we

have (see also Fig. 4):

_ug ¼ _u1 � _uP ¼
X

4

K¼1

NK nPð Þ _uK ð22Þ

where NKðnPÞ are the shape functions of nodes

evaluated at nP, N1ðnPÞ ¼ 1. Parent-domain coordi-

nates nP correspond to the projection of the contact

node on the triangular face. Further details are given in

Areias et al. (2015). The power equivalence (19)

allows the definition of nodal forces fKcg as:

Fig. 3 Normal behavior as a function of e

Fig. 4 Tetrahedron contact element. PðnPÞ is the projection of

the incident node on the target face
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fKcg ¼ NK nPð Þ o _u

o _ug

� T

f cl ð23Þ

using (19) and the transformation matrix o _u
o _ug

, which is

determined from the explicit relation between _u ¼

_ut
_g

	 


and _ug. Using a normal n to the triangular face

represented in Fig. 4 it is obvious, from Fig. 4, that

_u3 ¼ n � _ug ð24Þ

_ut ¼
e1 � _ug
e2 � _ug

	 


ð25Þ

where e1 and e2 are defined from the triangle edges.

We note that _ut 6¼ I � n� n½ � _ug since we require a 2D

tangential velocity vector here. We then have

o _u

o _ug

� T

¼ e1j e2j n½ � ð26Þ

For each node in contact (incident node, as depicted in

Fig. 4) the target face is identified, and the elements

formed. Then the global force (23) is determined and

its Jacobian calculated. Forces and the corresponding

Jacobian are calculated for this geometry by

Mathematica (Wolfram Research Inc. 2007) with the

Acegen add-on Korelc (2002). Source code (Mathe-

matica and Fortran 2003) is available in Github Areias

(2018).

4 Examples

Examples are performed in SimPlas (Areias, SimPlas)

with the current 3D element being open-source

(Areias 2018).

4.1 Raous rectangle

This 2D problem due to Raous et al. (1988) and solved

by Kanno et al. (2006), is here reproduced with a 2D

variant of the proposed algorithm. It consists of an

elastic solid (E = 130 GPa and m ¼ 0:2) in plane

strain. The solid is discretized in 512 quadrilateral B

(cf. Simo et al. 1985) finite elements. Figure 5

presents the relevant data. In this figure, the deformed

mesh, as well as the contact forces at the contact

surface are shown. In Kanno et al. (2006) a sophisti-

cated SOCLCP problem formulation is proposed and

then solved by a smooth solver. Compared with the

present algorithm, there is a close agreement between

the results, as Fig. 6 shows. This Figure presents the

Fig. 5 Raous rectangle:

relevant data and magnified

deformation with the contact

forces contour plot
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normal and shear stresses (rn and rt, respectively) as

functions of the x-coordinate of the contact segment.

In terms of convergence of the convex-combination

parameter n, Fig. 7 presents the results. We note that

below n ¼ 1 � 10�7 a correct solution is obtained and

a sharp shear stress distribution corresponding to the

original Coulomb frictional problem (n ¼ 0) is

achieved. When compared with (Kanno et al. 2006),

the present algorithm is very straightforward and easy

to implement.

4.2 Sweeping test

A sweeping test is proposed here to include the

significant ingredients in terms of state transition:

1. Normal direction transition

2. Transition from stick to slip

3. Transition from slip to stick

4. Inversion of sense in slipping

Fig. 6 Raous rectangle:

comparison with the

formulation using cone-

complementarity by Kanno

et al. (2006)

Fig. 7 Raous rectangle:

convergence of tangential

stress with n
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(a)

(b)

Fig. 8 Sweeping test: relevant geometrical data and properties and sequence of configurations
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Relevant data for this problem is shown in Fig. 8a and

a sequence of four configurations is shown in Fig. 8b.

We test four values of the friction coefficient

l : l ¼ 0:2; 1; 2; 20. Since the normal force is highly

dependent on the friction coefficient, displacement

results are relatively independent on the friction

coefficient. We identify configurations where all

points are slipping (II and IV) in sticking and others

where all points are sticking (II), cf. Figure 9. This is

confirmed by the displacements of the monitored

node, see Fig. 10. Between t = 1 and t = 1.107

(consistent units), sticking occurs for all values of l.

Observing the reactions in Fig. 11, we can conclude

that the higher values of l induce a lower normal

force, as well as (slightly) higher tangential force.

Fig. 9 Sweeping test: configurations with slip and stick

Fig. 10 Sweeping test:

displacements of monitored

node (cf. Fig. 8a)
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4.3 Compressed concentric spheres

Puso and Laursen (2004a) presented a problem with

two concentric spheres and reported failure of the

node-to-face algorithm (even in the frictionless case).

In this problem, meshes are intentionally mismatched

to introduce discontinuities in the gap during sliding

motion. Figure 12 presents the relevant data for this

problem (we represent the two obstacles that are not

visible in the original paper). We solve this problem to

a higher value of the imposed displacement. Figure 13

shows the reaction results, compared with the values

presented by Puso and Laursen (2004a). We note that

for the highest value of friction coefficient (l ¼ 2:0)

some oscillations appear. The frictionless case also

exhibits some oscillations due to unrestricted face

sliding.

(a)

(b)

Fig. 11 Sweeping test:

reactions along directions

x (tangential direction) and

z (normal direction)
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Fig. 12 Compressed concentric spheres: relevant data and sequence of configurations
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5 Conclusions

We introduced a two-stage contact algorithm (stick

and slip stages) based on a mixed formulation where

three additional degrees-of-freedom corresponding to

the contact forces are considered. Since the normal

force (Kanno et al. 2006) is non-smooth, we regularize

it by means of replacement function depending on one

scalar parameter. This formulation and technique were

shown to be successful for demanding problems, with

high coefficients of friction being used, while retaining

the sharpness of the original problem. Three problems

were solved, including the concentric spheres includ-

ing friction, which shows the general applicability of

the approach.
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au frottement de leurs parties et à roideur des cordages.
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