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Summary

1. Ecological monitoring programmes are designed to detect and measure changes in biodi-

versity and ecosystems. In the case of biological invasions, they can contribute to anticipating

risks and adaptively managing invaders. However, monitoring is often expensive because

large amounts of data might be needed to draw inferences. Thus, careful planning is required

to ensure that monitoring goals are realistically achieved.

2. Species distribution models (SDMs) can provide estimates of suitable areas to invasion.

Predictions from these models can be applied as inputs in optimization strategies seeking to

identify the optimal extent of the networks of areas required for monitoring risk of invasion

under current and future environmental conditions. A hierarchical framework is proposed

herein that combines SDMs, scenario analysis and cost analyses to improve invasion assess-

ments at regional and local scales. We illustrate the framework with Acacia dealbata Link.

(Silver-wattle) in northern Portugal. The framework is general and applicable to any species.

3. We defined two types of monitoring networks focusing either on the regional-scale man-

agement of an invasion, or management focus within and around protected areas. For each

one of these two schemes, we designed a hierarchical framework of spatial prioritization using

different information layers (e.g. SDMs, habitat connectivity, protected areas). We compared

the performance of each monitoring scheme against 100 randomly generated models.

4. In our case study, we found that protected areas will be increasingly exposed to invasion

by A. dealbata due to climate change. Moreover, connectivity between suitable areas for

A. dealbata is predicted to increase. Monitoring networks that we identify were more effective

in detecting new invasions and less costly to management than randomly generated models.

The most cost-efficient monitoring schemes require 18% less effort than the average networks

across all of the 100 tested options.
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5. Synthesis and applications. The proposed framework achieves cost-effective monitoring

networks, enabling the interactive exploration of different solutions and the combination of

quantitative information on network performance with orientations that are rarely incorpo-

rated in a decision support system. The framework brings invasion monitoring closer to

European legislation and management needs while ensuring adaptability under rapid climate

and environmental change.

Key-words: Acacia dealbata, climate change, connectivity, monitoring networks, northern

Portugal, optimization, risk management, scale dependence, species distribution models,

surveillance effort

Introduction

Alien plant invasions can threaten biodiversity (Py�sek et al.

2008; Pejchar & Mooney 2009) and impose severe impacts

on social and economic dimensions of human well-being

(Simberloff et al. 2013; Shackleton et al. 2014). The global-

ization of trade has accelerated the establishment and

expansion of numerous invasive species (Meyerson &

Mooney 2007; Rejm�anek & Richardson 2013; Humair

et al. 2015), including woody plant species that rank among

the most problematic invasive species world-wide (Py�sek

et al. 2008; Richardson & Rejm�anek 2011). Invasive woody

plant species have great potential to transform landscapes,

potentially leading to losses in revenue from production

ecosystems and losses in the production of ecosystem goods

and services (Garc�ıa-Llorente et al. 2011).

It is widely recognized that eradication and containment

of Invasive woody plant species is both difficult and costly.

Therefore invasive woody plant species prevention, early

detection, and containment (Meyerson & Mooney 2007)

should be based on time- and cost-effective actions (Chor-

nesky et al. 2005; Genovesi & Monaco 2013). This includes

cost-effective monitoring of the expansion and impacts of

invasive woody plant species (Pejchar & Mooney 2009;

Simberloff et al. 2013) even though explicit legal regula-

tions or obligations for monitoring or reporting on alien

plants are almost non-existent (Chornesky et al. 2005).

Ecological monitoring programmes aim to assess changes

in biodiversity and ecosystem properties. For example, they

can be implemented to anticipate invasions and identify

areas with a high risk of invasion, thus enabling the adap-

tive management of ecosystems (Nichols & Williams 2006).

In times of great changes in both land use and climate,

monitoring schemes can be useful to anticipate and assess

ongoing shifts in environmental and social–ecological sys-
tems (Vicente et al. 2013a), and evaluating the effectiveness

of policy and funding instruments targeting invasive woody

plant species (Rannow et al. 2014).

Monitoring programmes can be set up at different spa-

tial scales (e.g. Cacho & Hester 2011; Epanchin-Niell et al.

2014). In Europe, the Natura 2000 network of protected

areas represents an opportunity for testing and implement-

ing adaptive management of invasive woody plant species

at regional scales since many LIFE EU funded projects

have been undertaken in those areas (EEA 2012). More-

over, the new European Union (EU) regulation for preven-

tion and management of invasive alien species has entered

into force on the 1st of January 2015 representing a mile-

stone in the conservation of European biodiversity (Euro-

pean Parliament and Council of the European Union

2014). The core of the EU invasive alien species regulation

is the list of invasive alien species of ‘European Union con-

cern’. The list contains 37 species, and monitoring net-

works will have to be set up for these species by mid-2017.

Member states are expected to ensure coordination and

cooperation of invasive species management by establish-

ing a European monitoring system that is implemented

and harmonized across countries. Cost-effective monitor-

ing programmes should allow the early identification of

changes in invasive woody plant species’ distributions.

Simultaneously, they should allow costs to be minimized

while ensuring that the monitoring goals are realistically

achieved (Hui et al. 2011; Vicente et al. 2013b).

We propose integrating species distribution models

(SDMs), scenario analysis and estimates of surveillance

effort hierarchically, to improve assessment of woody

plant species invasions at regional and local scales. Specif-

ically, the framework seeks to identify the network of

areas that should be focus of monitoring efforts such that

the geographical coverage of the areas and their surveil-

lance costs are minimized, while maximizing inference

ability of species’ invasions. We illustrate the framework

using Acacia dealbata Link. (Silver-wattle; Fabaceae) in

the North of Portugal. The species is considered one of

the top 100 most invasive species in Europe (http://

www.europe-aliens.org/speciesTheWorst.do) and especially

problematic in south-western Europe (Lorenzo, Gonz�alez

& Reigosa 2010). Over the last decades, the species has

expanded throughout Portugal and the projections under

future climate and land-use change scenarios indicate fur-

ther expansions (Vicente et al. 2011, 2013b). The imple-

mentation of the proposed framework aims at identifying

the current and future areas where the species is predicted

to occur and to prioritize the areas where monitoring net-

works will be most effective in capturing the state and

trends of the species. The framework is developed using a
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multifactorial hierarchical decision scheme, based on

inputs from SDMs and prioritization of conservation

areas, thereby allowing a better integration of the needs

of invasion monitoring, policy and management, as well

as ensuring cost-effectiveness and adaptability in the face

of rapid environmental change.

Materials and methods

ENVIRONMENTAL PREDICTORS AND PREDICTOR

CLASSIF ICATION

Based on a literature review and expert knowledge, we selected

45 environmental predictors potentially determining the ecology

and distribution of the target species (Table S1, Supporting Infor-

mation). To handle multicollinearity, Spearman’s rho correlation

tests between variables and generalized variance inflation factors

(VIF) were used. For cases in which pairwise correlation coeffi-

cients were < 0�7 (Broenniman & Guisan 2008) and VIF < 5

(Gallien et al. 2012), we considered the predictors expected to

more directly determine the ecological distribution of the species

(Hulme 2006). This approach yielded a final set of 24 environmen-

tal predictors. These predictors were classified into eight categories:

(i) climate, (ii) dispersal corridors, (iii) geology, (iv) landscape com-

position, (v) landscape structure, (vi) fire regimes, (vii) phenology

metrics and (viii) productivity metrics (Table 1). The climatic pre-

dictors were obtained from WORLDCLIM (Hijmans et al. 2005;

http://worldclim.org/download). The baseline climate data was

based on interpolations of observed data from 1950–2000. Future

climates were based on projections from one global climate model

(GCM) and two socio-economic scenarios: HadCM3 A1B (temper-

ature rise between 1�4 and 6�4 °C) and B2 (temperature rise

between 1�4 and 3�8 °C). The A1B scenario assumes economic

growth in a homogenous world (globalization), while the B2 sce-

nario assumes a more sustainable view in a heterogeneous world

(regionalization; Nakicenovic & Swart, 2000).

The predictors related to ecosystem phenology and primary

productivity were computed from Normalized Difference Vegeta-

tion Index (NDVI; O’Donnell et al. 2012) time series, derived

from the MODIS satellite sensor. The phenological indices were

extracted from time-series envelope fitted using double-logistic

functions in TIMESAT software (as described in Pauchard & Shea

2006; Appendix S2). All other predictors were obtained from the-

matic environmental maps (Table S1).

Based on the spatial autocorrelation structure of each predic-

tor, we classified them into two groups: those varying locally and

those varying regionally. Two indices of spatial autocorrelation

(Moran’s I and Geary C; Seipel et al. 2012) were used with

increasing neighbourhood distances (Vicente et al. 2014), and the

SPDEP R package (https://cran.r-project.org/web/packages/spdep/).

Then, to express the likelihood of each predictor belongs to each

class (local vs. regional), a classification based on fuzzy clustering

(with function FANNY from R software CLUSTER package; https://

cran.r-project.org/web/packages/cluster) was performed. With this

process, each one of the 24 predictors was consistently classified

(Table S2) as having local or regional patterns of variation (Vice-

nte et al. 2011, 2014; Table 1).

ANALYTICAL FRAMEWORK

Step 1 – Conservation value in protected areas map

In a first step, areas of high conservation value were mapped

based on the two conservation areas networks in the region: the

Table 1. Predictors used for model calibration with description, corresponding type of environmental factor and spatial scale of varia-

tion/influence

Predictors Description Environmental factor Classification (scale)

MTCM Minimum temperature coldest month Climate Regional

TAR Temperature annual range

PWM Precipitation wettest month

PS Precipitation seasonality

DensRiN Density local hydrographic network Dispersal corridors Local

DensRoN Density local road network

pCambi Percentage cambisols Geology

pGran Percentage granites

pAnnC Percentage cover annual crops Landscape composition

pBlFor Percentage cover broad-leaf forests

pCoFor Percentage cover artificial stands

pMixFor Percentage cover mix forests

pPioMo Percentage cover pioneer mosaics

pUrb Percentage cover urban areas

MPAR Mean perimeter–area ratio Landscape structure

MSI Mean shape index

NumFir Number fires Fire regimes

SOS Time of the start of growing season (GS) Phenological metrics

MOS Time of the mid of GS

EOS Time of the end of GS

LOS Length of GS

INT Normalized Difference Vegetation Index

(NDVI) integral during GS

Productivity metrics

AMP Amplitude of NDVI values during GS

MAX Maximum NDVI during GS
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European Natura 2000 Network and the National Protected Areas

Network. Conservation status (the level of protection for nature

conservation purposes) was used as a proxy of conservation

value. Each map was classified into four classes, from 1 (no con-

servation status) to 4 (highest conservation status). For the

nationally protected areas available in the region (one national

park and three natural parks), conservation status was extracted

from the corresponding management plans by the National

Agency for Nature Conservation and Forestry (ranging from 1 –

no protection to 4 – maximum protection). For the Natura 2000

network, we used the following scores: 1 – no protection, 2 – spe-

cial protection area (SPA; EU Birds Directive), 3 – special area

of conservation (SAC; EU Habitats Directive) and 4 – simultane-

ously SPA and SAC. For each cell, the conservation status was

computed from the percentage of the cell occupied by each class

(weighted mean) (e.g. Alagador et al. 2011). Finally, the two

maps were combined to obtain a conservation value area map.

Step 2 – species distribution modelling

Species distribution models are increasingly used to test the

importance of key environmental drivers of invasive woody plant

species distributions (e.g. Guisan & Thuiller 2005; Vicente et al.,

2010) and to predict areas of potential invasive woody plant spe-

cies distributions under current conditions and future environ-

mental change scenarios (e.g. Peterson et al. 2008; Vicente et al.

2011). Accordingly, SDMs are particularly useful to support

management decisions in preventing expansions of invasive

woody plant species (Ara�ujo & Peterson 2012; Vicente et al.

2013a,b). We applied the combined predictive modelling frame-

work developed by Vicente et al. (2011) to predict current and

future distributions of A. dealbata, using 277 presence–absence

records (163 presences and 114 true absences at 1 km2 resolution;

for more information see Appendix S1). Separate models were fit-

ted using either ‘regional’ or ‘local’ predictors at 1 km2 resolution

(for more details see Environmental Predictors and Predictor

Classification). The final model was obtained by spatially aggre-

gating the binary projections from the two partial models: The

combinations of predicted presence and absence (both for regio-

nal and local model outputs) were classified as one of four types:

suitable regional conditions and local habitat (A), only suitable

local habitat (B), only suitable regional conditions (C) and

unsuitable regional conditions and local habitat (D) (for more

details about model evaluation and presence–absence reclassifica-

tion, see Appendix S1). BIOMOD (Thuiller et al. 2009) was

applied to fit an ensemble of models (Ara�ujo & New 2007) using

the nine available modelling techniques in the R BIOMOD package

(for more information, see Appendix S1).

Combined predictions of species distributions were mapped

over the full geographical extent of the study area. To produce

projections of species distribution into the future, regional climate

variables obtained from climate change scenarios were used and

utilized with the same modelling procedures used. Local variables

(e.g. fire regime related, NDVI, phenology) were not available for

future scenarios due to the complex mechanisms, drivers and pre-

dictors behind these processes, therefore we considered them sta-

tic through time. Finally, expected changes in the distribution of

the target species due to climate change were determined in each

cell, based on differences between current and future species dis-

tributions: no change, colonization, extinction, deterioration or

improvement of conditions for the species (Vicente et al. 2011).

Step 3 – current and future potential invader impact on

conservation value areas map

To identify spatial conflicts between conservation value areas

and invasion, we overlaid predictions and projections derived

from combined SDMs with the conservation value map, which

allow a refined detection of present and future conflict areas (see

Fig. 1).

We created spatial projections of current and future impacts of

the distribution of the invasive species, A. dealbata over the con-

servation value in the study area. For this purpose, we used the

conservation value maps from Step 1 and species distribution pre-

dictions from Step 2 (Vicente et al. 2011, 2013b). The ranking of

conservation impacts was obtained from mean summing scores

considering the consistency of predicted species’ presences and

absences from different models (from Step 2, types A, B, C or D)

and their overlapping with areas of high conservation value (from

Step 1: high, medium, low, or no value). The process resulted in

six categories: (a) highest concern – where the species has suitable

regional conditions, local habitats are available (type A), and the

conservation value is high or medium; (b) probable impacts with

low conservation relevance – where the species has suitable regio-

nal conditions, local habitats are available (type A), but the value

of conservation areas is low; (c) possible but uncertain impacts

with conservation relevance – where the species has only suitable

regional conditions or local habitats available (types B or C), and

the value of conservation areas is high or medium; (d) possible

but uncertain impacts with low conservation relevance – where the

species has only suitable regional conditions or local habitats

available (types B or C), and the value of conservation areas is

low; (e) lowest concern – where the species is predicted to be

absent (type D); and (f) without impacts – the area has no con-

servation value even if the species is predicted to be present (types

A, B or C).

Step 4 – connectivity maps

The connectivity of predicted suitable areas for A. dealbata was

calculated using the connectivity index developed by Randin

et al. (2009), based on current and future climate species distribu-

tion projections derived in Step 2. We considered values of spe-

cies presence with: (i) suitability of one for the response type A;

(ii) suitability of 0�5 for response types B and C; and (iii) suitabil-

ity of zero for response type D. The connectivity index attains a

maximum value of 1 when all cells surrounding a focal suitable

cell belong to class A.

Step 5 – definition of monitoring objectives

Monitoring networks were identified through hierarchical assess-

ments in the previous steps coupled with area network selection.

Area network selection was performed using a nested design. At

any hierarchical stage sampling was done from a pool of areas

selected to be part of the network in the precedent stage. We

defined two types of networks based on different priorities: (i)

one that prioritizes monitoring of invasive species in currently

established in European Natura 2000 Network and the National

Protected Areas Network (protected area networks, PAN) and

(ii) one that prioritizes monitoring of invasive species at the

regional scale including the north of Portugal (Regional Net-

works, RN).
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1320 J. R. Vicente et al.



SELECTION OF THE MONITORING NETWORKS

The outputs from steps 1 to 5 in the analytical framework

(Fig. 1) were used as inputs for selection of cost-effective moni-

toring networks (objectives PAN and RN) based on a top-down

hierarchical decision process (Fig. 2). Selection criteria were

applied in a sequential manner leading, in each step, to a smaller

number of monitoring areas to which further selection criteria

were then applied (see also Ara�ujo, Williams & Turner 2002).

The criteria used for network delineation were as follows:

FS | Suitability – Predictions of species presence and absence

based on regional- and local-scale environmental suitability:

The goal was to promote a balanced representation of the

four suitability types (A, B, C and D; Fig. 1 – Step 1). We

used a multivariate Wallenius’ non-central hypergemotric

sampling process (Appendix S4) to resample a near-uniform

FS class distribution from a pool of areas with severe bias on

FS class representation.

FI | Impacts – Interactions of environmental suitability and

protection/conservation value: From the impact map gener-

ated between the A. dealbata potential current and future dis-

tributions and conservation value areas, we defined the

probability of a given cell to enter in a solution, such that the

impact areas of types a, b, c, d, e and f have 0�50, 0�20, 0�15,
0�10, 0�04 and 0�01 probability of being selected, respectively

(Fig. 1 – Step 2);

Fig. 1. Framework for identification of

optimal monitoring networks. Step 1:

mapping areas of high conservation value;

Step 2: Modelling distribution of Acacia

dealbata, for current and future scenarios

using a combined modelling approach

resulting in four predicted responses: (A)

suitable regional conditions and local

habitat, (B) only suitable local habitat, (C)

only suitable regional conditions and (D)

unsuitable regional conditions and local

habitat. Step 3: Depending on local con-

servation values and species responses, a

potential invader impact map is developed

matching Step 1 and Step 2. Step 4:

Assessment of connectivity of suitable

environments for A. dealbata both in cur-

rent and future times; Step 5: A hierarchi-

cal scheme to target monitoring networks

for A. dealbata (FS – Predictions of spe-

cies occurrence based on regional

and local-scale environmental suitability;

FI – Impacts of environmental suitability

over protection/conservation value of

areas, FD – Predicted changes in suitabil-

ity conditions from current to future time

2050, FC – Regional-scale environmental

suitability defined in terms of connectivity,

FCcva – Regional-scale connectivity in

protected areas).
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FD | Dynamics – Predicted changes in suitability conditions

from current to future time (2050): For the selection process,

the highly dynamic areas (those converted to suitability type

A or type D from 2000 to 2050) were prioritized. Within the

pool of candidate areas (conversions from B, C, or D to A;

and A, B, or C to D) for selection the ones defined as

dynamic are selected first, and if more areas are needed for

selection, the remaining areas are uniformly chosen among

the non-dynamic areas;

FC | Connectivity – Regional-scale environmental suitability

defined in terms of connectivity: The connectivity index (vary-

ing between zero and one) was directly used to set the cell

selection probabilities. The higher the connectivity, the higher

the probability of a given cell being selected (Fig. 1 – Step 3);

FCcva | Connectivity – Regional-scale connectivity in pro-

tected areas: It uses the same principle of factor FC but was

applied only for areas classified as having conservation value.

If the number of cells to select was higher than the number of

protected areas available, then the remaining cells were

uniformly selected from the unprotected area set (Fig. 1 –

Step 3).

Depending on the network type, these criteria were allocated to

different hierarchical levels of the decision protocol (Fig. 2). For

the regional networks (RN), the top-down hierarchical protocol

was settled using factors FI, FD, FCcva, FS and FC, in this order,

with regional-scale factors entering at the lowest levels. For the

PAN, we ranked factors as FS, FC, FD, FI and FCcva, the objec-

tives focusing on protected areas entering at the lowest levels.

To define the number of monitoring areas selected in each hier-

archical step we used two alternative procedures: i) constrained

nestedness, whereby the network size at each hierarchical stage

was n1 = 5 9 n5, n2 = 4 9 n5, n3 = 3 9 n5 and n4 = 2 9 n5,

and ii) a relaxed nestedness, using n1 = 10 9 n5; n2 = 5 9 n5;

n3 = 3 9 n5; and n4 = 2 9 n5, whereby n1 is the number of

monitoring areas selected after the first decision step, n2 after the

second, etc. The targeted number of monitoring areas (n5) was

alternatively 50, 100, 500 or 1000 (n5). The constrained nested-

ness gives higher weight to the lowest decision level (level V) (R

codes in Appendix S5). We identified networks for two periods of

time: baseline (2000) and future (2050) conditions.

Finally, we ran the selection algorithm 100 times for each com-

bination of network type, size, nestedness condition and time

context. A cost was assigned to each replica using the survey

effort index developed by Guerra et al. (2013). We also generated

100 random networks of the same network size (n5) to define

benchmarks to which the generated networks were compared (a

procedure with long tradition in conservation planning; e.g.

Rebelo & Siegfried 1992; Ara�ujo et al. 2011). Indeed, although

optimization is, by definition, a process to attain best perfor-

mances then null models, because our framework is not mathe-

matically driven and entails some stochasticity, it turns out to be

relevant testing our results against random generated networks.

NETWORK COMPARISON

For each combination of network type, size, nestedness condition

and temporal context, we obtained 100 solutions. Since the resulting

frequency distribution of solution sets did not follow a Gaussian dis-

tribution, we applied Kruskal–Wallis tests to assess significant differ-

ences between network types (regional network vs. random network,

PAN vs. random network, and regional network vs. PAN) regarding

each one of the five analysed factors. In particular, we assessed the

distribution of classes in FS through the Shannon entropy index:

H = –∑i2(A,B,C,D) pi�ln(pi), where pi represents the fraction of cells of

class i in the solution. We described how uniform were distributions

of environmental suitability classes within solutions by comparing

them with the theoretical maximum entropy value (H/Hmax, where

Hmax = �4 9 0�25 9 ln(0�25) = 1�386).
Given that the spatial arrangement of a monitoring network

affects financial costs, we also assessed the cost to survey each

solution, using a monitoring effort map developed by Guerra

et al. (2013) (see Appendix S3 for a detailed description).

For each combination of network type and size, we assessed

differences in the five factors (FS, FD, FC, FCcva and FI)

between the two nestedness conditions and the two time periods.

Because these data sets do not satisfy Gaussian assumptions we

used nonparametric Mann–Whitney–Wilcoxon tests.

We ranked each monitoring network based on the five analysed

factors. This assessment was done separately for the regional and

Fig. 2. A five level (I–V) hierarchical

framework for the identification of regio-

nal and protected area (PA) monitoring

networks with n5 = 100 cells, using an

array of relevant factors. Cell number at

each level, ni:i2{1,2,3,4}, depends on nest-

edness condition (dark bars for the con-

strained condition and grey bars for the

relaxed condition).
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PAN s. We used the concept of Pareto dominance (Clark 1990), in

which a solution is said to dominate another if it is not inferior to

the second in all the objectives and if it is better in at least one them

(Fig. S1). The set of non-dominated solutions has a dominance

degree of one. To obtain the remaining dominance degrees, the

non-dominated sets were deleted and the analysis was repeated until

all the solutions were assigned to a dominance degree. We used the

NDS function in the EMOA package (https://cran.r-project.org/web/

packages/emoa/index.html) in R software to give the ranking order

of each network solution based on Pareto dominance.

We used univariate zero-truncated Poisson models to assess

significant differences in Pareto dominance between network

types, time periods and nestedness conditions. Analyses were per-

formed for each network size class and for all size classes as a

whole, using the VGLM function from the VGAMR package (https://

cran.r-project.org/web/packages/VGAM/index.html). We assumed

a Gaussian distribution of the intercept estimators and therefore

z-values were transformed into P-values for assessments of statis-

tical significance.

Results

PREDICTED DISTRIBUTION, IMPACTS AND DYNAMICS

UNDER CLIMATE CHANGE

The areas with suitable regional and local conditions for

A. dealbata (response class A), and the areas with suitable

regional conditions alone (C), were predicted to increase in

the future. Conversely, the areas predicted to have local suit-

able habitats alone (B) and the areas with unsuitable regional

and local conditions (D) were predicted to decrease

(Table S3). All spatial combinations expressing impacts

(types a–d) betweenA. dealbata and conservation value areas

were also forecasted to increase by 2050, whereas the areas

classified as of lowest concern (E) were predicted to decrease

(Table S4). Spatially, the higher impacts will potentially take

place in the western part of the study area, particularly along

the western limits of protected areas, where the high protec-

tion value coincides with suitable conditions for the invasive

species (Fig. 1). Acacia dealbata was forecasted to expand

significantly in both protected and non-protected areas.

Current connectivity among populations was higher in

the whole study area than inside the protected areas, but

the latter is predicted to slightly increase by 2050.

MONITORING NETWORKS FOR ACACIA DEALBATA

The monitoring networks identified through the proposed

hierarchical approach significantly differed, for each of

the factors analysed, from equal-sized random networks

(Table 2). Although costs were not used as a factor guid-

ing the hierarchical framework, the costs obtained among

the targeted networks were substantially lower (P < 0�001)
than the costs from random networks. Importantly, the

optimization performance of our framework was posi-

tively validated as the factors related to the lowest levels

in the hierarchical procedure (protected area connectivity

in PAN; regional connectivity in RN) presented the

largest differences to the random networks.

Geographically, the averaged centroid for PAN

occurred at higher latitudes and eastern longitudes than

the average centroid resulting from random networks

(P < 0�001); for RN the opposite pattern was generated,

with network centroids at lower latitudes and longitudes

than random networks (P < 0�001) (Fig. 3).
Broadly, the factors that most differentiated network

types were regional connectivity, FC, and entropy (i.e. the

balanced representation of suitability classes, FS), with

higher values for RN. Comparing network costs, PAN

depended on generally higher survey efforts than RN and,

as expected, protected area connectivity, FCcva, was

higher for PAN. RN targeted areas with higher predicted

impacts of invasion than PAN, although the impacts (FI)

entered into higher levels in the hierarchical decision pro-

cess, and therefore, it was settled a more distal goal to

drive the RN design. This result is derived from the (sig-

nificantly positive) correlation between FI and the lowest

factor (i.e. the more relevant one in defining the network

purpose) entering RN selection, FC (Table S5).

PERFORMANCE OF MONITORING NETWORKS

Nestedness conditions also determined network perfor-

mance for the factors included in the analysis (Table S6).

Within PAN and RN, constrained nestedness resulted in

more uniform distributions of environmental classes (i.e.

higher entropy), western-most centroids and lower regional

connectivity than relaxed nestedness. In RN, differences

were less marked and inconsistencies occurred among solu-

tions of different size. In general, constrained nestedness

resulted in networks covering stronger impacts in protected

areas and more extensive regional connectivity, as well as in

lower protected area connectivity and eastern-most network

centroids than those generated from relaxed nestedness.

When comparing time periods, a more balanced repre-

sentation of suitability classes (i.e. higher entropy) was

obtained in the RN defined for current time than for 2050

networks (Table S7). For the remaining factors (including

survey cost), networks defined for 2050 reached signifi-

cantly higher values. PAN designed from current condi-

tions reached higher connectivity compared to 2050

networks. For the remaining factors, 2050 networks cov-

ered higher values than 2000 networks.

When analysing the network performance considering

their performance in respect to the five analysed factors

together (FI, FS, FC, FCcva and FD), RN of smallest size

tended to outperform similar-sized PAN (i.e. more networks

with low dominance degree, Fig. S2); the networks obtained

with the relaxed area selection protocol dominated the net-

works designed with the constrained area selection approach;

and small-sized (n5 = 50) networks for current time outran

networks designed for 2050 conditions (Table 3).

Finally, among the 100-solution sets, the networks with

the minimum costs save up to 18% of the average moni-

toring resources compared to the average of the other

solutions in the corresponding set (Tables S8 and S9).
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Higher savings occur for the smallest monitoring net-

works (n5 = 50 and n5 = 100: approximately 10% to

18%) when compared with the largest one (n5 = 500 and

n5 = 1000: approximately 4% to 5%) but in both cases,

minimum cost solutions were able to attain the average

representation of the remaining factors from the 100-solu-

tion sets (Tables S8 and S9). With the exception of the

connectivity factors (FC and FCcva) that were quantified

additively across the monitoring sites, for the remaining

factors (quantified as representation proportions within

the networks), there was no substantive differences with

network size variation (both for the minimum cost net-

works and for the mean values across network sets).

Discussion

EFFECTIVE MONITORING AND MANAGEMENT OF

INVASIONS UNDER GLOBAL CHANGE

Climate change and invasive alien species are widely rec-

ognized as pressing environmental and socio-economic

challenges. Despite mounting evidence that global change

drivers are strongly interconnected, climate change and

invasive species are still often treated as separate prob-

lems, and their interactions tend to be ignored (Pyke et al.

2008; Walther et al. 2009). In times with environmental

impacts of climate change and invasive species increasing

globally, failure to address their dynamic linkages will

likely exacerbate their negative impacts on several aspects

of the environment, the economy and society (MA 2005;

Petitpierre et al. 2016). Monitoring the responses of inva-

sive species to climate change becomes critical for the

design of effective biodiversity conservation strategies, but

monitoring is an expensive endeavour. As such, careful

planning of monitoring schemes and networks is of vital

importance if they are to be implemented within the con-

text of scarce conservation budgets (Amorim et al. 2014).

Invasive woody plant species have received much atten-

tion owing to their impacts on ecosystems and their ser-

vices (Garc�ıa-Llorente et al. 2011; Wilson et al. 2014).

The effective eradication of established populations is

often not economically viable (Simberloff et al. 2013),

with prevention being often the most cost-effective option

(Chornesky et al. 2005; Genovesi & Monaco 2013). How-

Table 2. Kruskal–Wallis results comparing network types for several factors

Size (n5)

50 100 500 1000

Factors K Dir. K Dir. K Dir. K Dir.

Protected area network (PAN) vs. Random network

Cost 0�270*** � 0�272*** � 0�318*** � 0�402*** �
Entropy 0�392*** � 0�435*** � 0�315*** � 0�375*** �
PA impact 0�935*** + 0�975*** + 0�998*** + 0�980*** +
Connectivity 0�625*** + 0�660*** + 0�755*** + 0�830*** +
PA connectivity 0�665*** + 0�785*** + 0�830*** + 0�800*** +
Centroid (long) 0�435*** � 0�53*** � 0�575*** � .600*** �
Centroid (lat) 0�238*** + 0�335*** + 0�122 NA 0�172* +
Range (long) 0�390*** � 0�378*** � 0�655*** + 0�735*** +
Range (lat) 0�090 NA 0�075 NA 0�835*** + 0�940*** +

Regional network vs. Random network

Cost 0�440*** � 0�477*** � 0�645*** � 0�690*** �
Entropy 0�742*** � 0�827*** � 0�765*** � 0�718*** �
PA impact 0�997*** + 1�000*** + 1�000*** + 0�970*** +
Connectivity 0�977*** + 1�000*** + 1�000*** + 1�000*** +
PA connectivity 0�562*** + 0�720*** + 0�762*** + 0�660*** +
Centroid (long) 0�782*** � 0�9375*** � 0�935*** � 0�978*** �
Centroid (lat) 0�338*** � 0�455*** � 0�6075*** � 0�465*** �
Range (long) 0�672*** � 0�7425*** � 0�255*** + 0�518*** +
Range (lat) 0�118 NA 0�085 NA 0�805*** + 0�930*** +

Regional network vs. PAN

Cost 0�200*** � 0�280*** � 0�438*** � 0�525*** �
Entropy 0�622*** � 0�658*** � 0�628*** � 0�650*** �
PA impact 0�395*** + 0�402*** + 0�408*** + 0�225*** +
Connectivity 0�675*** + 0�810*** + 0�898*** + 0�768*** +
PA connectivity 0�160*** � 0�185*** � 0�292*** � 0�338*** �
Centroid (long) 0�455*** � 0�538*** � 0�580*** � 0�558*** �
Centroid (lat) 0�415*** � 0�515*** � 0�615*** � 0�520*** �
Range (long) 0�342*** � 0�392*** � 0�448*** � 0�273*** �
Range (lat) 0�180*** � 0�138*** � 0�080 NA 0�100* NA

K: test value; Dir.: direction of the comparison (+, the first network has significantly higher values than the second; �, the first network

presents significantly lower values than the second); NA, not applicable.

P < 0�001: ***, P < 0�05: *.
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ever, establishment of new invasive populations or species

cannot be discarded, and monitoring will facilitate early

detection thereby helping containing or even eradicating

new invasions as they arise.

However, selecting areas for the monitoring of invasive

woody plant species based on multiple considerations

involves several challenges. First, accurate predictions on

the spatial distribution of the invasive woody plant species

– both today and in the future – are critical. Over the last

few years, SDMs have been widely used to predict the

expansion of invasive alien species and their potential

impacts on biodiversity and ecosystem services (e.g. Klein-

bauer et al. 2010; Vicente et al. 2013a,b). Increasing atten-

tion has been devoted to the study of invasions across

spatial scales, to determine which processes drive inva-

sions at each relevant scale (Pauchard & Shea 2006; Seipel

et al. 2012). Recent methodological advances in SDMs

(e.g. Vicente et al. 2011, 2014) have contributed to more

informative spatial projections of species distributions.

Additionally, ensemble modelling provides more robust

species forecasts when compared to single-method SDMs

(Ara�ujo & New 2007), thereby reducing an important

variability in the models (e.g. Ara�ujo et al. 2005a; Garcia

et al. 2012). Similarly, frameworks that integrate predic-

tions of different downscaling approaches into a single

consensus map allow the use of SDMs in a spatial resolu-

tion more compatible with local conservation and man-

agement needs (e.g. Ara�ujo et al. 2005b; Fernandes et al.

2014).

Secondly, species’ dispersal abilities and habitat connec-

tivity are important to assess the vulnerability of habi-

tats to invasions. Spatially explicit analysis of habitat

connectivity greatly improves spatial predictions of inva-

sions (Minor et al. 2009). Surfaces with high connectivity

Table 3. Pareto dominance distributions of monitoring networks

obtained varying network type, nestedness conditions and time

periods using a zero-truncated Poisson model

Size Intercept Effect size P-value

Protected area vs. regional networks

50 0�195 �2�733 ***

100 �2�603 �0�756
500 �24�656 0�000
1000 �4�607 1�498
All �1�013 �2�212 ***

Constrained vs. relaxed nestedness

50 0�209 �0�958 ***

100 �0�143 �1�091 ***

500 �0�887 �2�624 ***

1000 �4�607 �16�531
All �0�418 �1�170 ***

2000 vs. 2050 networks

50 �0�539 0�639 ***

100 �20�138 19�842
500 �24�656 0�000
1000 �23�658 18�359
All �23�658 18�359

Intercept: intercept parameter in the Poisson model; Effect size:

effect of the second network compared to the first one; Empty

cells: non-significant P-values.

P < 0�001: ***.

Fig. 3. Maps of the 100 cells-sized solutions obtained with relaxed nestedness conditions. Maps represent the two types of networks

(regional and protected area networks) defined for two time periods. Top 5% maps represent the top 5% of cells that were selected at

least one time among the 100 runs. In top 5% maps, circles represent cell frequency selection: higher frequencies are highlighted with

darker grey colour. thr: minimum frequency among the top 5% set. n: number of top 5% cells. Minimum cost maps represent the

minimum cost solutions and their respective cost (cost).
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represent potential dispersal corridors, if suitable environ-

mental conditions remain available over time (e.g.

Proches� et al. 2005; Alagador et al. 2012). As shown in

our study, temporal dynamics of connectivity will influ-

ence species’ expansion dynamics as well as the success of

control measures.

Thirdly, it is important to consider where invasive spe-

cies might have the highest impacts. Within conservation

areas the establishment of an invasive species can affect

unique (often vulnerable) species, ecological communities

and processes. At the same time, within conservation

areas, management of invasive species is more likely than

elsewhere (Foxcroft et al. 2013). The establishment of

monitoring networks within the area of influence of con-

servation areas is thus likely to be of greater conservation

and social relevance.

Fourthly, to be successful over the long term, the bene-

fits of the information from any monitoring programme

must justify the costs. Financial limitations will always

restrict the scope of a monitoring programme. Hence, the

focus of a monitoring programme must be carefully

defined and prioritized, so that the most effective set of

indicators is used (Epanchin-Niell et al. 2014).

Finally, a key research question is whether or not cli-

mate change will be a zero-sum game for invasive species,

causing the emergence of new invasive species but also

reducing the impact of current invasions (Walther et al.

2009). To be sure, climate change must be taken into

account when designing long-term invasive woody plant

species monitoring networks.

THE ADDED VALUE OF THE NOVEL MODEL-BASED

FRAMEWORK

Our approach adds flexibility with regards to previous

studies (e.g. Cacho & Hester 2011; Franklin et al. 2011;

Hui et al. 2011; Amorim et al. 2014; Wilson et al. 2014).

For example, (i) it delivers a large set of optimized solu-

tions with similar cost-effectiveness thereby enabling deci-

sion makers to choose from different alternatives

depending on their management priorities; (ii) it provides

flexibility to include several different inputs and to imple-

ment alternative species distributions modelling techniques

(e.g. SDMs, coupled dynamic models, process-based mod-

els; e.g. Fordham et al. 2013), and (iii) it is general thus

being easily applicable to any species, region and associ-

ated invasion drivers. Furthermore, although studies have

used distinct off-the-shelf spatial conservation prioritiza-

tion software to identify effective monitoring networks

(e.g. Franklin et al. 2011; Amorim et al. 2014), ours is the

first to use a model-based and spatially explicit approach

for an invasive species, based on SDMs outputs under

current and future conditions, along with predictions of

surveillance costs and effectiveness, while considering

conservation investments already taking place and

regional-scale management goals. Finally, the frame-

work embraces multicriteria and multistakeholder goals

(e.g. Hui et al. 2011; Genovesi & Monaco 2013; Vicente

et al. 2013b) and is driven to minimize costs in designing

effective monitoring networks.

An important insight from our study is that in equal-

size monitoring networks, the coverage of the relevant

explaining factors, as well as investment costs, was sub-

stantially optimized in our model-based networks (both

PAN and RN), when compared with randomly generated

networks.

This is especially relevant because in order to have a

highly dissimilar set of network options to planners chose

from we opted to use a decision framework integrating

some stochasticity instead of a full mathematical opti-

mization process. By doing so, we needed to validate net-

work performance in regard to the distinct analysed

factors, with especial relevance to network cost, giving

that costs were not part of the area selection framework.

In particular, among optimized networks, the proximal

factors (protected area connectivity in PAN, and regional

connectivity in RN; see Table 2) were best represented.

Consequently, these results reinforce the relevance of well-

designed integrative approaches when selecting monitoring

sites. Indeed, the design of optimized monitoring pro-

grammes fostering cost-efficiency and effectiveness has

been advocated (Nichols & Williams 2006) and estab-

lished as a priority concern for managers. If a flexible

framework like the one proposed here is used, a pool of

alternative robust solutions can be explored interactively,

thus allowing quantitative information to be weighed

against qualitative judgements. This brings invasion moni-

toring closer to management needs while ensuring adapt-

ability under rapid climate and environmental change,

being of utmost relevance for preventing the impacts of

invasive woody plant species (Pejchar & Mooney 2009;

Simberloff et al. 2013). Planning the expenditure of scarce

resources by prioritizing areas according to the effective-

ness of monitoring networks can contribute not only to

the success of invasion control measures, but also to the

overall cost-efficiency of management and monitoring

actions.

LIMITATIONS AND FURTHER PROSPECTS

Accurate predictions of the spatial distribution of invasive

woody plant species can be critical for conservation and

management purposes (e.g. Foxcroft et al. 2013; Vicente

et al. 2013b; Fernandes et al. 2014). SDMs can be used to

obtain such spatial distributions, but their potential limi-

tations must be acknowledged (e.g. see for discussion Ara-

�ujo & Peterson 2012). Missing and biased species

distributions and environmental predictors data for mod-

elling have been major topics of discussion (e.g. Broenni-

man & Guisan 2008; Ara�ujo, Thuiller & Yoccoz 2009;

Vicente et al. 2011). Including the global distribution of

the invasive species in the models is crucial to assess spe-

cies’ potential distributions (e.g. Broenniman & Guisan

2008), thereby reducing the risk of truncating species
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response curves related to critical environmental variables

(e.g. Thuiller et al. 2004). This is particularly true when

models are used to predict future species distributions

under scenarios of climate change because of an increased

risk of extrapolating beyond the range of predictor values

used to calibrate the models (e.g. Pearson et al. 2002;

Garcia et al. 2014).

Matching global distributions of species, which are usu-

ally at coarse resolutions, with local predictors is often

difficult. Of particular concern is the lack of global cover-

age for some of the variables that are of local importance.

Nonetheless, including global information in local mod-

elling can be possible as long as all the predictors can be

projected to future conditions (e.g. Gallien et al. 2012;

Petitpierre et al. 2016). Although SDM methodologies

have been improved in recent years (e.g. Guisan & Thuil-

ler 2005; Ara�ujo & New 2007; Randin et al. 2009), the

limitations when modelling early stages of invasion or

range expansion into new environmental space not repre-

sented in the calibration data set are still not sufficiently

comprehended (e.g. Gallien et al. 2012). Nonetheless, our

framework constitutes a step forward in the development

of decision support systems, especially for new and high-

impact invaders, such as A. dealbata, as it allows different

monitoring solutions to be combined with information on

network performance and expert judgement. These are

characteristics of monitoring system demanded by Euro-

pean legislation, and they make monitoring particularly

suitable for supporting conservation and management

under rapid climate change.

CONCLUSIONS

The recent European legislation on the prevention and

management of invasive alien species urges member states

to ensure coordination and cooperation and encourages

the establishment of a European-wide surveillance system.

The framework that we proposed is a step towards such a

pan-European monitoring system. Specifically, we have

shown that:

1.Cost-effective monitoring programmes can assist the

optimization of resource allocation and contribute to eval-

uations of invasion risk that enable the anticipation and

success of invasive species control programmes.

2. For widespread problematic invasive plant species like

A. dealbata in the North of Portugal, detailed predictions

of current and future invasion probability highlight that

monitoring resources should be prioritized in order to effi-

ciently anticipate and mitigate the impacts of invasions in

conservation areas under current and future climate con-

ditions. With our framework, we identified networks that

are significantly less costly (P < 0�001) and more effective

in representing invasion factors than random, non-guided

sets of areas (P < 0�001). Among these, the minimum

cost networks were up to 18% less costly than the average

costs within the all set of equivalent networks.

3.Decision makers have the opportunity to select the

pool of sites that best suit their particular objectives and

means because the framework encompasses high flexibil-

ity.

4. By being reproducible, by addressing costs and benefits,

and by integrating factors operating at a range of scales,

the framework can be used as a tool to support the design

of a European surveillance system for invasive species.

Indeed, bringing invasion monitoring closer to manage-

ment needs while ensuring adaptability under rapid cli-

mate change should be pivotal principles in the

development of such a European system.
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