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It is obtained an existence and location result for the fourth-order boundary value prob-
lem of Sturm-Liouville type u(iv)(t) = f (t,u(t),u′(t),u′′(t),u′′′(t)) for t ∈ [0,1]; u(0) =
u(1) = A; k1u′′′(0)− k2u′′(0) = 0; k3u′′′(1) + k4u′′(1) = 0, where f : [0,1]× R4 → R is
a continuous function and A,ki ∈ R, for 1≤ i≤ 4, are such that k1,k3 > 0, k2,k4 ≥ 0. We
assume that f verifies a one-sided Nagumo-type growth condition which allows an asym-
metric unbounded behavior on the nonlinearity. The arguments make use of an a priori
estimate on the third derivative of a class of solutions, the lower and upper solutions
method and degree theory.
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1. Introduction

In this paper it is considered the fourth-order fully nonlinear differential equation

u(iv)(t)= f
(
t,u(t),u′(t),u′′(t),u′′′(t)

)
for t ∈ I = [0,1], (1.1)

with the Sturm-Liouville boundary conditions

u(0)= u(1)= A,

k1u
′′′(0)− k2u

′′(0)= 0, k3u
′′′(1) + k4u

′′(1)= 0,
(1.2)

where A,k1,k2,k3,k4 ∈ R are such that k1,k3 > 0, k2,k4 ≥ 0, and f : [a,b]× R4 → R is a
continuous function verifying one-sided Nagumo-type growth assumption.

This problem generalizes the classical beam equation and models the study of the
bending of an elastic beam simply supported [8, 9, 11].

As far as we know it is the first time, in fourth-order problems, that the nonlinearity f
is assumed to satisfy a growth condition from above but no restriction from below. This
asymmetric type of unboundedness is allowed since f verifies one-sided Nagumo-type
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condition, that is, there exists a positive continuous function ϕ such that

f
(
t,x0,x1,x2,x3

)≤ ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (1.3)

on some given subset E ⊂ I ×R4, and
∫ +∞

0 (s/ϕ(s))ds= +∞.
Some boundedness of Nagumo-type plays a key role in these results because, as it is

known for second-order boundary value problems, the existence of well-ordered lower
and upper solutions, by itself, is not sufficient to ensure the existence of solutions (see
[10, 15]).

When a one-sided Nagumo-type condition is assumed, the situation becomes more
delicate since this condition does not provide a priori estimates for the third-order de-
rivative of all solutions of (1.1) which is usually the key point for studying this sort of
problem, as it can be seen in [2, 3, 13, 14].

However, it is still possible to establish a priori bounds for classes Sη of solutions of
(1.1) (see Lemma 2.2). More precisely, if we define for η ≥ 0

Sη =
{
u solution of (1.1) : u′′′(0)≤ η, u′′′(1)≥−η}, (1.4)

we prove that there is r > 0 such that if u∈ Sη, then it satisfies ‖u′′′‖∞ < r.
The existence and location of a solution for problem (1.1)-(1.2) (see Theorem 3.1) are

established by using the method of lower and upper solutions to obtain a priori estima-
tions on a class of solution and some derivatives, which allow us to define an open set
where the topological degree is well defined [12].

This kind of arguments was suggested by [1] for second-order boundary value prob-
lems and by [4–7] for higher-order separated boundary value problems.

2. Preliminaries

In this section we will introduce the main concepts that we will use throughout this paper.
Given y,z ∈ C(I) such that y ≤ z in I , we denote

[y,z] := {x ∈ C(I) : y(t)≤ x(t)≤ z(t), ∀t ∈ I}. (2.1)

In order to obtain an a priori bound for the third-order derivative u′′′(t) of a class of
solutions of problem (1.1)-(1.2), we will introduce the concept of one-sided Nagumo-
type growth condition.

Definition 2.1. Given a subset E ⊂ I × R4, a function f : I × R4 → R is said to satisfy a
one-sided Nagumo-type condition in E if there exists, for some a > 0, ϕ∈ C(R+

0 ,[a,+∞))
such that

f
(
t,x0,x1,x2,x3

)≤ ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (2.2)

with
∫ +∞

0

s

ϕ(s)
ds= +∞. (2.3)

This asymmetric growth condition will be an important tool in the proof of next lemma.
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Lemma 2.2. Consider, for i= 0,1,2, the functions γi,Γi ∈ C(I ,R) such that γi(t)≤ Γi(t), for
all t ∈ I , and define the set

E = {(t,x0,x1,x2,x3
)∈ I ×R4 : γi(t)≤ xi ≤ Γi(t), i= 0,1,2

}
. (2.4)

Let ϕ : R+
0 → [a,+∞), for some a > 0, be a continuous function such that

∫ +∞

η

s

ϕ(s)
ds >max

t∈I
Γ2(t)−min

t∈I
γ1(t), (2.5)

where η ≥ 0 is given by η =max{Γ2(0)− γ2(1),Γ2(1)− γ2(0)}.
Then there is r > 0 (depending only on ϕ, γ2, and Γ2), such that, for every continuous

function f : I ×R4→ R satisfying one-sided Nagumo-type condition and every solution u(t)
of (1.1) verifying

u′′′(0)≤ η, u′′′(1)≥−η, (2.6)

u(i)(t)∈ [γi,Γi
]

for i= 0,1,2, ∀t ∈ I , (2.7)

satisfies

‖u′′′‖∞ < r. (2.8)

Proof. The proof follows the arguments used in [7] and the technique suggested in [13]
for fourth-order boundary value problems. �

This lemma still holds if condition (2.2) is replaced by

f
(
t,x0,x1,x2,x3

)≥−ϕ(∣∣x3
∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E, (2.9)

and (2.7) by u′′′(0)≥−η, u′′′(1)≤ η.
Lower and upper solutions for problem (1.1)-(1.2) must be defined as a pair of func-

tions, in the following way.

Definition 2.3. Consider A,ki ∈ R, for 1 ≤ i ≤ 4, such that k1,k3 > 0 and k2,k4 ≥ 0. The
functions α,β ∈ C4(I) satisfying

α(t)≤ β(t), α′(t)≥ β′(t), α′′(t)≤ β′′(t), ∀t ∈ I , (2.10)

define a pair of lower and upper solutions of problem (1.1)-(1.2) if the following condi-
tions are verified:

(i) α(iv)(t)≥ f (t,α(t),α′(t),α′′(t),α′′′(t)),

α(1)≤ A, k1α
′′′(0)− k2α

′′(0)≥ 0, k3α
′′′(1) + k4α

′′(1)≤ 0; (2.11)

(ii) β(iv)(t)≤ f (t,β(t),β′(t),β′′(t),β′′′(t)),

β(1)≥A, k1β
′′′(0)− k2β

′′(0)≤ 0, k3β
′′′(1) + k4β

′′(1)≥ 0; (2.12)

(iii) α′(1)−β′(1)≥max{β(0)−β(1),α(1)−α(0)}.
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Remark 2.4. (a) Condition (iii) is optimal and cannot be removed, as it will be proved
forward (see counterexample).

(b) If the maximum refereed in (iii) is nonnegative, that is,

α′(1)−β′(1)≥max
{
β(0)−β(1),α(1)−α(0),0

}
, (2.13)

then assumption (2.10) can be replaced by α′′(t)≤ β′′(t) in I , since the other inequalities
can be deduced by integration.

3. Existence and location results

The main result of this work is the following existence and location theorem.

Theorem 3.1. Assume that there exists a pair of lower and upper solutions of problem (1.1)-
(1.2), α(t) and β(t), respectively. Consider the set

E1 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 : α(t)≤ x0 ≤ β(t),

α′(t)≥ x1 ≥ β′(t), α′′(t)≤ x2 ≤ β′′(t)

}

, (3.1)

and let f : I ×R4→ R be a continuous function such that:
(a) f satisfies the one-sided Nagumo-type condition in E1;
(b) for (t,x2,x3)∈ I ×R2, α(t)≤ x0 ≤ β(t) and α′(t)≥ x1 ≥ β′(t)

f
(
t,α,α′,x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,β,β′,x2,x3

)
. (3.2)

Then problem (1.1)-(1.2) has at least one solution u(t)∈ C4(I) that satisfies

u∈ [α,β], u′ ∈ [β′,α′], u′′ ∈ [α′′,β′′], ∀t ∈ I. (3.3)

Proof. For λ∈ [0,1], consider the homotopic equation

u(iv)(t)= λ f (t,ξ0
(
t,u(t)

)
,ξ1
(
t,u′(t)

)
,ξ2
(
t,u′′(t)

)
,u′′′(t)

)
+u′′(t)− λξ2

(
t,u′′(t)

)
,

(3.4)

where ξi : I ×R→ R are the auxiliary continuous functions defined by

ξi
(
t,xi
)=max

{
α(i)(t),min

{
xi,β(i)(t)

}}
for i= 0,2,

ξ1
(
t,x1

)=max
{
β′(t),min

{
x1,α′(t)

}} (3.5)

with the boundary conditions

u(0)= u(1)= λA,

u′′′(0)= λ
(
k2

k1

)

u′′(0), u′′′(0)=−λ
(
k4

k3

)

u′′(1).
(3.6)
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Take r1 > 0 large enough such that, for every t ∈ I ,
−r1 < α

′′(t)≤ β′′(t) < r1,

f
(
t,α(t),α′(t),α′′(t),0

)− r1−α′′(t) < 0,
(3.7)

f
(
t,β(t),β′(t),β′′(t),0

)
+ r1−β′′(t) > 0. (3.8)

The proof is deduced from the following four steps.

Step 1. Every solution u(t) of problem (3.4)-(3.6) satisfies |u(i)(t)| < r1, for every t ∈ I
and i= 0,1,2, independently of λ∈ [0,1].

Assume, by contradiction, that the above estimate does not hold for i= 2. So, for λ∈
[0,1], there exist t ∈ I and a solution u of (3.4)-(3.6) such that |u′′(t)| ≥ r1. In the case
u′′(t)≥ r1 define

u′′
(
t0
)

:=max
t∈I

u′′(t)≥ r1. (3.9)

If t0 ∈ (0,1), then u′′′(t0)= 0 and u(iv)(t0)≤ 0. For λ∈ [0,1], by (3.2) and (3.8), the fol-
lowing contradiction is obtained:

0≥ u(iv)(t0
)

≥ λ f (t0,β
(
t0
)
,β′
(
t0
)
,β′′
(
t0
)
,0
)

+u′′
(
t0
)− λβ′′(t0

)

= λ[ f (t0,β
(
t0
)
,β′
(
t0),β′′

(
t0
)
,0
)

+ r1−β′′
(
t0
)]

+u′′
(
t0
)− λr1 > 0.

(3.10)

So t0 /∈ (0,1). If t0 = 0, for λ∈ [0,1], we obtain, by (3.6),

0≥ u′′′(0)= λ
(
k2

k1

)

u′′(0)≥ λ
(
k2

k1

)

r1 ≥ 0. (3.11)

Thus u′′′(0)= 0 and u(iv)(0)≤ 0. Replacing in the above computations t0 by 0, it can
be proved that t0 �= 0. For t0 = 1 the technique is similar and so u′′(t) < r1, for every t ∈ I .
The case u′′(t)≤−r1 follows analogous arguments and then |u′′(t)| < r1, for all t ∈ I .

By (3.4), there exists ξ ∈ (0,1) such that u′(ξ)= 0. Then, integrating on [ξ, t] first and
then on [0, t], we obtain

∣
∣u′(t)

∣
∣=

∣
∣
∣
∣

∫ t

ξ
u′′(s)ds

∣
∣
∣
∣ < r1

∣
∣t− ξ∣∣≤ r1,

∣
∣u(t)

∣
∣=

∣
∣
∣
∣

∫ t

0
u′(s)ds

∣
∣
∣
∣ < r1t ≤ r1. (3.12)

Step 2. There is r2 > 0 such that, for every solution u(t) of problem (3.4)-(3.6), |u′′′(t)| <
r2 in I , independently of λ∈ [0,1].

Consider the set

Er1 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 :−r1 ≤ xi ≤ r1, i= 0,1,2
}

, (3.13)

and, for λ∈ [0,1], the function Fλ : Er1 → R is given by

Fλ
(
t,x0,x1,x2,x3

)= λ f (t,ξ0
(
t,x0

)
,ξ1
(
t,x1

)
,ξ2
(
t,x2

)
,x3
)

+ x2− λξ2
(
t,x2

)
. (3.14)
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As

Fλ
(
t,x0,x1,x2,x3

)≤ λϕ(∣∣x3
∣
∣
)

+ r1− λα′′(t)≤ ϕ
(∣
∣x3
∣
∣
)

+ 2r1, (3.15)

then Fλ satisfies one-sided Nagumo-type condition in Er1 with ϕ replaced by ϕ := 2r1 +
ϕ(t), independently of λ∈ [0,1]. By (3.6) and Step 1, we have

u′′′(0)= λ
(
k2

k1

)

u′′(0)≤ λ
(
k2

k1

)

r1 ≤
(
k2

k1

)

r1 ≤ ρ,

u′′′(1)=−λ
(
k4

k3

)

u′′(1)≥−λ
(
k4

k3

)

r1 ≥−
(
k4

k3

)

r1 ≥−ρ.
(3.16)

So, applying Lemma 2.2 with γi(t)≡−r1, Γi(t)≡ r1, for i= 0,1,2, and

ρ :=max
{(

k2

k1

)

r1,
(
k4

k3

)

r1

}

, (3.17)

there is r2 > 0 such that |u′′′(t)| < r2, for all t ∈ I . As r1 and ϕ do not depend on λ, then r2

is independent of λ.

Step 3. For λ= 1, problem (3.4)-(3.6) has at least a solution u1(t).

Define the operators � : C4(I)⊂ C3(I)→ C(I)×R4 by

�u= (u(iv)−u′′(t),u(0),u(1),u′′(0),u′′(1)
)

(3.18)

and, for λ∈ [0,1], �λ : C3(I)→ C(I)×R4 by

�λu=
(

λ f
(
t,ξ0

(
t,u(t)

)
,ξ1
(
t,u′(t)

)
,ξ2
(
t,u′′(t)

)
,u′′′(t)

)

− λξ2
(
t,u′′(t)

)
,λA,λA,λ

(
k2

k1

)

u′′(0),−λ
(
k4

k3

)

u′′(1)
)

.
(3.19)

As � has a compact inverse, we can define the completely continuous operator �λ :
(C3(I),R)→ (C3(I),R) by

�λ(u)=�−1�λ(u). (3.20)

For r2 given by Step 2, consider the set

Ω=
{
x ∈ C3(I) :

∥
∥x(i)

∥
∥∞ < r1, i= 0,1,2,

∥
∥x′′′

∥
∥∞ < r2

}
. (3.21)

By Steps 1 and 2, for every u solution of (3.4)–(3.6), u /∈ ∂Ω and so the degree d(I −
�λ,Ω,0) is well defined, for every λ∈ [0,1]. By the invariance under homotopy,

d
(
I −�0,Ω,0

)= d(I −�1,Ω,0
)
. (3.22)

Since the equation x =�0(x), equivalent to the problem

u(iv)(t)−u′′(t)= 0,

u(0)= u(1)= u′′′(0)= u′′′(1)= 0,
(3.23)
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has only the trivial solution, then d(I −�0,Ω,0) = ±1. Therefore, by degree theory, the
equation x =�1(x) has at least one solution. That is, the problem

u(iv)(t)= f
(
t,ξ0(t,u),ξ1(t,u′),ξ2(t,u′′),u′′′(t)

)
+u′′(t)− ξ2(t,u′′) (3.24)

with the boundary condition (1.2) has at least one solution u1(t) in Ω.

Step 4. The function u1(t) is a solution of problem (1.1)-(1.2).

We remark that this statement holds if u1(t) verifies (3.3). Assume, by contradiction,
that there is t ∈ I such that u′′1 (t) > β′′(t) and define

(
u1−β

)′′(
t1
)

:=max
t∈I

{(
u1−β

)′′
(t)
}
> 0. (3.25)

If t1 ∈ (0,1), then u′′′1 (t1)= β′′′(t1) and u(iv)
1 (t1)≤ β(iv)(t1). By (b) and (ii), the follow-

ing contradiction is achieved:

u(iv)
1

(
t1
)≥ f

(
t1,β

(
t1
)
,β′
(
t1
)
,β′′
(
t1
)
,β′′′

(
t1
))

+u′′1
(
t1
)−β′′(t1

)

> f
(
t1,β

(
t1
)
,β′
(
t1
)
,β′′
(
t1
)
,β′′′

(
t1
))≥ β(iv)(t1

)
.

(3.26)

If t1 = 0, then (u1−β)′′′(0)≤ 0 so, by (3.6) and Definition 2.1,

0≥ u′′′1 (0)−β′′′(0)=
[
k2u

′′
1 (0)− k1β′′′(0)

]

k1
≥
(
k2

k1

)
[
u′′1 (0)−β′′(0)

]≥ 0. (3.27)

Thus u′′′1 (0) = β′′′(0) and u(iv)
1 (0) ≤ β(iv)(0). Therefore, replacing in the above in-

equality t1 by 0 a contradiction is obtained. By similar arguments it can be proved that
t1 �= 1 and so u′′1 (t)≤ β′′(t), for every t ∈ I . Using an analogous technique, we prove that
α′′(t)≤ u′′1 (t), for all t ∈ I . So u′′1 ∈ [α′′,β′′]. Then, by integration and (iii), we have

β′(1)≤ α(0)−α(1) +α′(1)=
∫ 1

0

∫ 1

t
α′′(s)dsdt ≤

∫ 1

0

∫ 1

t
u′′1 (s)dsdt = u′1(1). (3.28)

As (β−u1)′(t) is nondecreasing, then β′(t)−u′1(t)≤ β′(1)−u′1(1)≤ 0, for every t ∈ I .
By the monotony of (β− u1)(t) and (ii), we have 0 ≤ β(1)− u1(1) ≤ β(t)− u1(t), for all
t ∈ I . The inequalities u′1(t) ≤ α′(t) and u1(t) ≥ α(t), for all t ∈ I , can be deduced in a
similar way. �

If f satisfies the reversed one-sided Nagumo-type condition (2.2), then Theorem 3.1
still holds.

Moreover, if in Definition 2.3 we consider the following new assumptions:

α(t)≤ β(t), α′(t)≤ β′(t), α′′(t)≤ β′′(t), ∀t ∈ I , (3.29)

the initial value inequalities α(0)≤A, β(0)≥ A, and
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(iii′) α′(0)−β′(0)≤min{β(0)−β(1),α(1)−α(0)},
then Theorem 3.1 remains true for

E2 =
{(
t,x0,x1,x2,x3

)∈ I ×R4 : α(t)≤ x0 ≤ β(t),
α′(t)≤ x1 ≤ β′(t), α′′(t)≤ x2 ≤ β′′(t)

}

, (3.30)

and f verifying

f
(
t,α(t),α′(t),x2,x3

)≥ f
(
t,x0,x1,x2,x3

)≥ f
(
t,β(t),β′(t),x2,x3

)
(3.31)

for (t,x2,x3)∈ I ×R2, α(t)≤ x0 ≤ β(t), α′(t)≤ x1 ≤ β′(t).

4. Example and counterexample

Next example shows the applicability and improvement given by Theorem 3.1, since the
nonlinearity considered does not satisfy the usual two-sided Nagumo condition.

Example 4.1. Consider the fully fourth-order differential equation

u(iv)(t)= 8− eu(t) +
[
u′(t)− 4

][
2−u′′(t)]2−∣∣u′′′(t)∣∣θ , t ∈ I , (4.1)

where θ > 2, with the boundary conditions of Sturm-Liouville type

u(0)= u(1)= 0, u′′′(0)− 2u′′(0)= 0, u′′′(1) +u′′(1)= 0. (4.2)

It is easy to see that the continuous functions α, β : I → R given by

α(t)=−t2 + 3t− 2, β(t)= t2− 3t+ 2 (4.3)

define a pair of lower and upper solutions for problem (4.1)-(4.2). On

E =
{(
t,x0,x1,x2,x3

)∈ I ×R4 :−t2 + 3t− 2≤ x0 ≤ t2− 3t+ 2,
3− 2t ≥ x1 ≥ 2t− 3, −2≤ x2 ≤ 2

}

, (4.4)

the continuous function f : E→ R given by

f
(
t,x0,x1,x2,x3

)= 8− ex0 +
(
x1− 4

)(
2− x2

)2−∣∣x3
∣
∣θ , (4.5)

verifies (3.2) and the one-sided Nagumo-type condition with ϕ(x3)≡ 8− e−2.

Therefore, by Theorem 3.1, there is at least a solution u(t) of problem (4.1)-(4.2) such
that, for every t ∈ I ,
−t2 + 3t− 2≤ u(t)≤ t2− 3t+ 2, 3− 2t ≥ u′(t)≥ 2t− 3, −2≤ u′′(t)≤ 2.

(4.6)

Notice that the nonlinearity f given by (4.5) does not verify the two-sided Nagumo-
type condition. In fact, assume, by contradiction, that there is a positive continuous func-
tion ϕ verifying (2.3) and such that

∣
∣ f
(
t,x0,x1,x2,x3

)∣
∣≤ ϕ(∣∣x3

∣
∣
)
, ∀(t,x0,x1,x2,x3

)∈ E. (4.7)
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In particular, − f (t,x0,x1,x2,x3) ≤ ϕ(|x3|), for every (t,x0,x1,x2,x3) ∈ E, and so, for t ∈
[0,1], x0 = 2, x1 = 2, x2 = 0, and x3 ∈ R, we have

− f (t,2,2,0,x3
)= e2 +

∣
∣x3
∣
∣θ ≤ ϕ(∣∣x3

∣
∣
)
. (4.8)

As
∫ +∞

0 (s/(e2 + sθ))ds, with θ > 2, is finite, then we have the following contradiction:

+∞ >
∫ +∞

0

s

e2 + sθ
ds≥

∫ +∞

0

s

ϕ(s)
ds= +∞. (4.9)

Counterexample 4.2. We will show that assumption (iii) in Definition 2.3 cannot be re-
moved. In fact, considering the fourth-order boundary value problem

u(iv)(t)=−2u′′′(t) + 3u′′(t),

u(0)= u(1)= 0,

u′′′(0)−u′′(0)= 0, u′′′(1) + 3u′′(1)= 0,

(4.10)

the functions α(t)=−(t− 1)(3t− 1)/3, β(t)= (1− t)(4− t)/3 are lower and upper solu-
tions of problem (4.10) but condition (iii) does not hold. As (4.10) has only the trivial
solution u(t)≡ 0, then condition (3.3) is not satisfied. In fact, 0 ≡ u(t) < α(t) < β(t), for
t ∈]1/3,1[, and 0≡ u′(t) > α′(t) > β′(t), for t ∈]2/3,1[.
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