SOLVABILITY FOR A THIRD ORDER DISCONTINUOUS FULLY EQUATION WITH NONLINEAR FUNCTIONAL BOUNDARY CONDITIONS

A. CABADA, F. MINHÓS, AND A. I. SANTOS

Abstract. We prove an existence and location result for the third order functional nonlinear boundary value problem

$$
\begin{aligned}
u^{\prime \prime \prime}(t) & =f\left(t, u, u^{\prime}(t), u^{\prime \prime}(t)\right), \text { for } t \in[a, b] \\
0 & =L_{0}\left(u, u^{\prime}, u\left(t_{0}\right)\right) \\
0 & =L_{1}\left(u, u^{\prime}, u^{\prime}(a), u^{\prime \prime}(a)\right) \\
0 & =L_{2}\left(u, u^{\prime}, u^{\prime}(b), u^{\prime \prime}(b)\right)
\end{aligned}
$$

with $t_{0} \in[a, b]$ given, $f: I \times C(I) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a L^{1} - Carathéodory function allowing some discontinuities on t and L_{0}, L_{1}, L_{2} are continuous functions depending functionally on u and u^{\prime}.

The arguments make use of an a priori estimate on $u^{\prime \prime}$, lower and upper solutions method and degree theory.

Applications to a multipoint problem and to a beam equation will be presented.

1. Introduction

In this paper it is studied the third order nonlinear functional equation

$$
\begin{equation*}
u^{\prime \prime \prime}(t)=f\left(t, u, u^{\prime}(t), u^{\prime \prime}(t)\right), \text { for } t \in I \tag{1.1}
\end{equation*}
$$

where $I=[a, b], f: I \times C(I) \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a L^{1} - Carathéodory function together with the nonlinear functional boundary conditions

$$
\begin{align*}
L_{0}\left(u, u^{\prime}, u\left(t_{0}\right)\right) & =0 \\
L_{1}\left(u, u^{\prime}, u^{\prime}(a), u^{\prime \prime}(a)\right) & =0 \tag{1.2}\\
L_{2}\left(u, u^{\prime}, u^{\prime}(b), u^{\prime \prime}(b)\right) & =0,
\end{align*}
$$

where $t_{0} \in I$ is given and L_{0}, L_{1}, L_{2} are continuous functions satisfying some monotonicity assumptions to be defined in Section 2.

We remark that functional dependence on the solution is allowed in f, moreover functions L_{0}, L_{1} and L_{2} depend functionally on the solution of the equation and on the first derivative. Such dependence allows us to consider, amongst others, integro - differential equations, delay equations or equations with maxima coupled with Sturm - Liouville or multipoint boundary value conditions under the same formulation.

This type of fully third order differential equation has been studied by several authors, considering nonlinear boundary conditions (see [5, 7, 14]) or two functional

[^0]
[^0]: 2000 Mathematics Subject Classification. 34B15.
 Key words and phrases. Third order functional problems, Nagumo-type condition, lower and upper solutions, degree theory.

