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Abstract: In this paper, we consider the second order discontinuous differential equation in the
real line, (a (t, u) φ (u′))′ = f (t, u, u′) , a.e.t ∈ R, u(−∞) = ν−, u(+∞) = ν+, with φ an increasing
homeomorphism such that φ(0) = 0 and φ(R) = R, a ∈ C(R2,R) with a(t, x) > 0 for (t, x) ∈ R2,
f : R3 → R a L1-Carathéodory function and ν−, ν+ ∈ R such that ν− < ν+. The existence and
localization of heteroclinic connections is obtained assuming a Nagumo-type condition on the real line
and without asymptotic conditions on the nonlinearities φ and f . To the best of our knowledge, this
result is even new when φ(y) = y, that is for equation(a (t, u(t)) u′(t))′ = f (t, u(t), u′(t)) , a.e.t ∈ R.
Moreover, these results can be applied to classical and singular φ-Laplacian equations and to the
mean curvature operator.

Keywords: φ-Laplacian operator; mean curvature operator; heteroclinic solutions; problems in the
real line; lower and upper solutions; Nagumo condition on the real line; fixed point theory
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1. Introduction

In this paper, we study the second order non-autonomous half-linear equation on the whole
real line, (

a (t, u) φ
(
u′
))′

= f
(
t, u, u′

)
, a.e.t ∈ R, (1)

with φ an increasing homeomorphism, φ(0) = 0 and φ(R) = R, a ∈ C(R2,R) such that a(t, x) > 0 for
(t, x) ∈ R2, and f : R3 → R a L1-Carathéodory function, together with the asymptotic conditions:

u(−∞) = ν−, u(+∞) = ν+, (2)

with ν+, ν− ∈ R such that ν− < ν+. Moreover, an application to singular φ-Laplacian equations will
be shown.

This problem (1) and (2) was studied in [1,2] . This last paper contained several results and criteria.
For example, Theorem 2.1 in [2] guarantees the existence of heteroclinic solutions under, in short,
the following main assumptions:

• φ grows at most linearly at infinity;
• f (t, ν−, 0) ≤ 0 ≤ f (t, ν+, 0) for a.e.t ∈ R;
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• there exist constants L, H > 0, a continuous function θ : R+ → R+ and a function λ ∈ Lp([−L, L]),
with 1 ≤ p ≤ ∞, such that:

| f (t, x, y)| ≤ λ(t) θ (a(t, x) |y|) , for a.e. |t| ≤ L, every x ∈
[
ν−, ν+

]
,

|y| > H,
+∞∫ s1− 1

q

θ(s)
ds = +∞;

• for every C > 0, there exist functions ηC ∈ L1(R), ΛC ∈ L1
loc([0,+∞)), null in [0, L] and positive

in [L,+∞), and NC(t) ∈ L1(R) such that:

f (t, x, y) ≤ −ΛC(t)φ (|y|) ,

f (−t, x, y) ≥ ΛC(t)φ (|y|) , for a.e. t ≥ L, every x ∈
[
ν−, ν+

]
,

|y| ≤ NC(t),

| f (t, x, y)| ≤ ηC(t) if x ∈
[
ν−, ν+

]
, |y| ≤ NC(t), for a.e.t ∈ R.

Motivated by these works, we prove, in this paper, the existence of heteroclinic solutions for (1)
assuming a Nagumo-type condition on the real line and without asymptotic assumptions on the
nonlinearities φ and f . The method follows arguments suggested in [3–5], applying the technique
of [3] to a more general function a, with an adequate functional problem and to classical and singular
φ-Laplacian equations. The most common application for φ is the so-called p-Laplacian, i.e., φ(y) =
|y|p−2 p, p > 1, and even in this particular case, verifying (4), the new assumption on φ.Moreover,
this type of equation includes, for example, the mean curvature operator. On the other hand, to the
best of our knowledge, the main result is even new when φ(y) = y, that is for equation:(

a (t, u) u′
)′

= f
(
t, u, u′

)
, a.e.t ∈ R.

The study of differential equations and boundary value problems on the half-line or in the
whole real line and the existence of homoclinic or heteroclinic solutions have received increasing
interest in the last few years, due to the applications to non-Newtonian fluids theory, the diffusion of
flows in porous media, and nonlinear elasticity (see, for instance, [6–16] and the references therein).
In particular, heteroclinic connections are related to processes in which the variable transits from an
unstable equilibrium to a stable one (see, for example, [17–24]); that is why heteroclinic solutions are
often called transitional solutions.

The paper is organized in this way: Section 2 contains some notations and auxiliary results.
In Section 3, we prove the existence of heteroclinic connections for a functional problem, which is used
to obtain an existence and location theorem for heteroclinic solutions for the initial problem. Section 4
contains an example, to show the applicability of the main theorem. The last section applies the above
theory to singular φ-Laplacian differential equations.

2. Notations and Auxiliary Results

Throughout this paper, we consider the set X := BC1(R) of the C1(R) bounded functions,
equipped with the norm ‖x‖X = max {‖x‖∞ , ‖x′‖∞}, where ‖y‖∞ := sup

t∈R
|y(t)|.

By standard procedures, it can be shown that (X, ‖.‖X) is a Banach space.
As a solution of the problem (1) and (2), we mean a function u ∈ X such that t 7→

(a (t, u(t)) φ (u′(t))) ∈W1,1(R) and satisfying (1) and (2).
The L1-Carathéodory functions will play a key role throughout the work:

Definition 1. A function f : R3 → R is L1-Carathéodory if it verifies:

(i) for each (x, y) ∈ R2, t 7→ f (t, x, y) is measurable on R;
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(ii) for almost every t ∈ R, (x, y) 7→ f (t, x, y) is continuous in R2;
(iii) for each ρ > 0, there exists a positive function ϕρ ∈ L1(R) such that, for

max

{
sup
t∈R
|x(t)| , sup

t∈R
|y(t)|

}
< ρ,

| f (t, x, y)| ≤ ϕρ(t), a.e. t ∈ R. (3)

The following hypothesis will be assumed:

(H1) φ is an increasing homeomorphism with φ(0) = 0 and φ(R) = R such that:∣∣∣φ−1(w)
∣∣∣ ≤ φ−1(|w|); (4)

(H2) a ∈ C(R2,R) is a continuous and positive function with a(t, x)→ +∞ as |t| → +∞.

To overcome the lack of compactness of the domain, we apply the following criterion, suggested
in [25]:

Lemma 1. A set M ⊂ X is compact if the following conditions hold:

1. M is uniformly bounded in X;
2. the functions belonging to M are equicontinuous on any compact interval of R;
3. the functions from M are equiconvergent at ±∞, that is, given ε > 0, there exists T(ε) > 0 such that:

| f (t)− f (±∞)| < ε and
∣∣ f ′(t)− f ′(±∞)

∣∣ < ε,

for all |t| > T(ε) and f ∈ M.

3. Existence Results

The first existence result for heteroclinic connections will be obtained for an auxiliary functional
problem without the usual asymptotic or growth assumptions on φ or on the nonlinearity f .

Consider two continuous operators A : X → C(R), x 7−→ Ax, with Ax > 0, ∀x ∈ X, and
F : X → L1(R), x 7−→ Fx, the functional problem composed of:(

Au(t) φ
(
u′(t)

))′
= Fu(t), a.e. t ∈ R, (5)

and the boundary conditions (2).
Define, for each bounded set Ω ⊂ X,

m(t) := min
x∈Ω

Ax (t) (6)

and for the above operators, assume that:

(F1) For each η > 0, there is ψη ∈ L1(R), with ψη(t) > 0, a.e. t ∈ R, such that |Fx(t)| ≤ ψη(t), a.e.
t ∈ R, whenever ‖x‖X < η.

(A1) Ax(t)→ +∞ as |t| → +∞ and:

+∞∫
−∞

φ−1

(
2
∫ +∞
−∞ ψη(r)dr

m(s)

)
ds < +∞. (7)
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Theorem 1. Assume that conditions (H1), (F1), and (A1) hold and there is R > 0 such that:

max


|ν−|+

∫ +∞
−∞ φ−1

(
2
∫ +∞
−∞ ψR(r)dr

m(s)

)
ds,

sup φ−1
(

2
∫ +∞
−∞ ψR(r)dr

m(t)

)
 < R. (8)

Then, there exists u ∈ X such that Au · (φ ◦ u′) ∈W1,1(R), verifying (5) and (2), given by:

u(t) = ν− +
∫ t

−∞
φ−1

(
τu +

∫ s
−∞ Fu (r) dr
Au(s)

)
ds. (9)

where τu is the unique solution of:

∫ +∞

−∞
φ−1

(
τu +

∫ s
−∞ Fu (r) dr
Au(s)

)
ds = ν+ − ν−. (10)

Moreover, for R > 0 such that ‖x‖X < R,

τu ∈ [w1, w2] , (11)

with:
w1 := −

∫ +∞

−∞
ΨR(r)dr, (12)

and:
w2 :=

∫ +∞

−∞
ΨR(r)dr. (13)

Proof. For every x ∈ X, define the operator T : X → X by

Tx(t) = ν− +
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

where τx ∈ R is the unique solution of:

∫ +∞

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds = ν+ − ν−.

To show that τx is the unique solution of (10), consider the strictly-increasing function in R:

G(y) :=
∫ +∞

−∞
φ−1

(
y +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds,

and remark that:

lim
y→−∞

G(y) =
∫ +∞

−∞
φ−1 (−∞) ds = −∞,

and:
lim

y→+∞
G(y) =

∫ +∞

−∞
φ−1 (+∞) ds = +∞. (14)

Moreover, for w1 given by (12) and w2 given by (13), G(w1) and G(w2) have opposite signs, as:

G(w1) =
∫ +∞

−∞
φ−1

(
w1 +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds ≤ 0 < ν+ − ν−,
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G(w2) =
∫ +∞

−∞
φ−1

(
w2 +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds ≥ 0.

As G is strictly increasing in R, by (14), there is k ≥ 0 such that w3 = w2 + k and G(w3) ≥ ν+− ν−.
Therefore, the equation G(y) = ν− − ν+ has a unique solution τx, and by Bolzano’s theorem, τx ∈
[w1, w2] , when ‖x‖X < R, for some R > 0.

It is clear that if T has a fixed point u, then u is a solution of the problem (5) and (2).
To prove the existence of such a fixed point, we consider several steps:

Step 1. T : X → X is well defined

By the positivity of A and the continuity of A and F, then Tx and:

T′x(t) = φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)

are continuous on R, that is Tx ∈ C1(R).
Moreover, by (H1), (F1), (A1), and (10), Tx and T′x are bounded. Therefore, Tx ∈ X.

Step 2. T is compact.

Let B ⊂ X be a bounded subset, x ∈ B, and ρ0 > 0 such that ‖x‖X < ρ0. Consider m(t) given
by (6) with Ω = B.

Claim: TB is uniformly bounded in X.

By (4), (11), and (A1), we have:

‖Tx‖∞ = sup
t∈R

∣∣∣∣∣ν− +
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤ sup

t∈R

(∣∣ν−∣∣+ ∫ t

−∞
φ−1

(∣∣∣∣∣τx +
∫ s
−∞ Fx (r) dr
Ax(s)

∣∣∣∣∣
)

ds

)

≤ sup
t∈R

(∣∣ν−∣∣+ ∫ t

−∞
φ−1

(
|τx|+

∫ s
−∞ |Fx (r)|

Ax(s)
dr

)
ds

)

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
|τx|+

∫ s
−∞ Ψρ0(r)dr
Ax(s)

)
ds

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds < +∞,

and:

∥∥T′x
∥∥

∞ = sup
t∈R

∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)∣∣∣∣∣ ≤ sup
t∈R

φ−1

(
|τx|+

∫ t
−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
|τx|+

∫ +∞
−∞ Ψρ0(r)dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr + k

m(t)

)
< +∞.

Therefore, TB is uniformly bounded in X.

Claim: TB is equicontinuous on X.

For M > 0, consider t1, t2 ∈ [−M, M], and without loss of generality, t1 < t2.
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Then, by (4), (11) and (A1),

|Tx(t1)− Tx(t2)| =

∣∣∣∣∣
∫ t1

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

−
∫ t2

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t2

t1

φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ t2

t1

φ−1

(
|τx|+

∫ s
−∞ |Fx (r)| dr
Ax(s)

)
ds

≤
∫ t2

t1

φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds

−→ 0, uniformly as t1 → t2,

and:

∣∣T′x(t1)− T′x(t2)
∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t1
−∞ Fx (r) dr
Ax(t1)

)

− φ−1

(
τx +

∫ t2
−∞ Fx (r) dr
Ax(t2)

)∣∣∣∣∣
−→ 0, uniformly as t1 → t2.

Therefore, TB is equicontinuous on X.

Claim: TB is equiconvergent at ±∞.

Let u ∈ B. As in the claims above:∣∣∣∣Tx(t)− lim
t→−∞

(Tx(t))
∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ t

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ0(r)dr

m(s)

)
ds

−→ 0, as t→ −∞,

and: ∣∣∣∣Tx(t)− lim
t→+∞

(Tx(t))
∣∣∣∣ =

∣∣∣∣∣
∫ t

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

−
∫ +∞

−∞
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ +∞

t
φ−1

(
τx +

∫ s
−∞ Fx (r) dr
Ax(s)

)
ds

∣∣∣∣∣
≤

∫ +∞

t
φ−1

(
2
∫ +∞
−∞ Ψη(r)dr

m(s)

)
ds

−→ 0, as t→ +∞.
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Moreover, by (A1),

∣∣∣∣T′x(t)− lim
t→−∞

T′x(t)
∣∣∣∣ =

∣∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)
− φ−1

 τx

lim
t→−∞

Ax(t)

∣∣∣∣∣∣
≤

∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Ψρ0(r)dr
Ax(t)

)∣∣∣∣∣
−→ 0, as t→ −∞,

and: ∣∣∣∣T′x(t)− lim
t→+∞

T′x(t)
∣∣∣∣ =

∣∣∣∣∣φ−1

(
τx +

∫ t
−∞ Fx (r) dr
Ax(t)

)

− φ−1

τx +
∫ +∞
−∞ Fx (r) dr

lim
t→−∞

Ax(t)

∣∣∣∣∣∣
−→ 0, as t→ +∞.

Therefore, TB is equiconvergent at ±∞, and by Lemma 1, T is compact.

Step 3. Let D ⊂ X be a closed and bounded set. Then, TD ⊂ D .

Consider D ⊂ X defined as:

D = {x ∈ X : ‖x‖X ≤ ρ1} ,

with ρ1 such that:

ρ1 := max

{
|ν−|+

∫ +∞

−∞
φ−1

(
K

m∗(s)

)
ds, sup

t∈R
φ−1

(
K

m∗(t)

)}
,

with:
K := 2

∫ +∞

−∞
Ψρ1(r)dr

and:
m∗(t) := min

x∈B
Ax (t) .

Let x ∈ D. Following similar arguments as in the previous claims, with m(t) given by (6) and
Ω = D,

‖Tx‖∞ = sup
t∈R
|Tx(t)|

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
|τx|+

∫ s
−∞ Ψρ1(r)dr
Ax(s)

)
ds

≤
∣∣ν−∣∣+ ∫ +∞

−∞
φ−1

(
2
∫ +∞
−∞ Ψρ1(r)dr

m∗(s)

)
ds < ρ1,
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and:

∥∥T′x
∥∥

∞ = sup
t∈R

∣∣T′x(t)∣∣ ≤ sup
t∈R

φ−1

(
|τx|+

∫ t
−∞ |Fx (r)| dr
Ax(t)

)

≤ sup
t∈R

φ−1

(
2
∫ +∞
−∞ Ψρ1(r)dr

m∗(t)

)
< ρ1.

Therefore, TD ⊂ D. By Schauder’s fixed point theorem, Tx has a fixed point in X. That is, there is
a heteroclinic solution of the problem (5) and (2).

To make the relation between the functional problem and the initial one, we apply the lower and
upper solution method, according to the following definition:

Definition 2. A function α ∈ X is a lower solution of the problem (1) and (2) if t 7→ (a (t, α(t)) φ(α′(t))) ∈
W1,1(R), (

a (t, α)) φ(α′)
)′ ≥ f (t, α, α′), a.e. t ∈ R, (15)

and:
α(−∞) ≤ ν−, α(+∞) ≤ ν+. (16)

An upper solution β ∈ X of the problem (1) and (2) satisfies t 7→ (a (t, β(t)) φ(β′(t))) ∈W1,1(R) and
the reversed inequalities.

To have some control on the first derivative, we apply a Nagumo-type condition:

Definition 3. A L1-Carathéodory function f : R3 → R satisfies a Nagumo-type growth condition relative to
α, β ∈ X, with α(t) ≤ β(t), ∀t ∈ R if there are positive and continuous functions ψ, θ : R→ R+ such that:

sup
t∈R

ψ(t) < +∞,
∫ +∞

0

∣∣φ−1 (s)
∣∣

θ (|φ−1 (s)|)
ds = +∞, (17)

and:
| f (t, x, y)| ≤ ψ(t) θ(|y|), for a.e. t ∈ R and α(t) ≤ x ≤ β(t). (18)

Lemma 2. Let f : R3 → R be a L1-Carathéodory function f : R3 → R satisfying a Nagumo-type growth
condition relative to α, β ∈ BC(R), with α(t) ≤ β(t), ∀t ∈ R. Then, there exists N > 0 (not depending on u)
such that for every solution u of (1) and (2) with:

α(t) ≤ u(t) ≤ β(t), for t ∈ R, (19)

we have:
‖u′‖∞ < N. (20)

Proof. Let u be a solution of (1) and (2) verifying (19). Take r > 0 such that:

r > max
{∣∣ν−∣∣ ,

∣∣ν+∣∣} . (21)

If |u′(t)| ≤ r, ∀t ∈ R, the proof would be complete by taking N > r.
Suppose there is t0 ∈ R such that |u′(t0)| > N.
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In the case u′(t0) > N, by (17), we can take N > r such that:

a(t,u))φ(N)∫
a(t,u))φ(r)

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds > M

(
sup
t∈R

β(t)− inf
t∈R

α(t)

)
(22)

with M := supt∈R ψ(t), which is finite by (17).
By (2), there are t1, t2 ∈ R such that t1 < t2, u′(t1) = N , u′(t2) = r, and r ≤ u′(t) ≤ N, ∀t ∈ [t1, t2].

Therefore, the following contradiction with (22) holds, by the change of variable a(t, u)φ(u′(t)) = s
and (17):

a(t,u)φ(N)∫
a(t,u)φ(r)

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds =

a(t,u)φ(u′(t1))∫
a(t,u)φ(u′(t2))

∣∣∣φ−1
(

s
a(s,u(s))

)∣∣∣
θ
(∣∣∣φ−1

(
s

a(s,u(s))

)∣∣∣)ds

=
∫ t1

t2

u′(s)
θ(u′(s))

(
φ
(
u′ (s)

))′ ds

= −
∫ t2

t1

f (s, u(s), u′(s))
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

| f (s, u(s), u′(s))|
θ(u′(s))

u′(s) ds

≤
∫ t2

t1

ψ(s) u′(s) ds ≤ M
∫ t2

t1

u′(s) ds

≤ M (u (t2)− u (t1))

≤ M

(
sup
t∈R

β(t)− inf
t∈R

α(t)

)
.

Therefore, u′(t) < N, ∀t ∈ R.
By similar arguments, it can be shown that u′(t) > −N,∀t ∈ R. Therefore, ‖u′‖∞ < N,∀t ∈ R.

The next lemma, in [26], provides a technical tool to use going forward:

Lemma 3. For v, w ∈ C(I) such that v(x) ≤ w(x), for every x ∈ I, define:

q(x, u) = max{v, min{u, w}}.

Then, for each u ∈ C1(I), the next two properties hold:

(a) d
dx q(x, u(x)) exists for a.e.x ∈ I.

(b) If u, um ∈ C1(I) and um → u in C1(I), then:

d
dx

q(x, um(x))→ d
dx

q(x, u(x)) for a.e. x ∈ I.

The main result will be given by the next theorem:

Theorem 2. Suppose that f : R3 → R is a L1-Carathéodory function verifying a Nagumo-type condition and
hypotheses (H1), (H2), and (8). If there are lower and upper solutions of the problem (1) and (2), α and β,
respectively, such that:

α(t) ≤ β(t), ∀t ∈ R,

then there is a function u ∈ X with t 7→ (a (t, u(t)) φ (u′(t))) ∈ W1,1(R), the solution of the problem (1)
and (2) and:

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.
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Proof. Define the truncation operator Q : W1,1(R)→ X ⊂W1,1(R) given by:

Q(x) := Qx(t) =


β(t), x(t) > β(t)
x(t), α(t) ≤ x(t) ≤ β(t)
α(t), x(t) < α(t).

Consider the modified equation:(
a(t, Qu)) φ

(
d
dt

Qu

))′
= f

(
t, Qu(t),

d
dt

Qu(t)
)

(23)

+
1

1 + t2
u(t)−Qu(t)

1 + |u(t)−Qu(t)|
,

for a.e. t ∈ R, which is well defined by Lemma 3.

Claim 1: Every solution u(t) of the problem (23) and (2) verifies:

α(t) ≤ u(t) ≤ β(t), ∀t ∈ R.

Let u be a solution of the problem (23) and (2), and suppose, by contradiction, that there is t0 such
that α(t0) > u(t0). Remark that, by (16), t0 6= ±∞ as u(±∞)− α(±∞) ≥ 0.

Define:
min
t∈R

(u(t)− α(t)) := u(t1)− α(t1) < 0.

Therefore, there is an interval ]t2, t1] such that u(t)− α(t) < 0, for a.e. t ∈]t2, t1], and by (15),
this contradiction is achieved:

(
a(t, α) φ(α′)

)′
=

(
a(t, Qu(t)) φ

(
d
dt

Qu(t)
))′

= f
(

t, Qu(t),
d
dt

Qu(t)
)
+

1
1 + t2

u(t)−Qu(t)
1 + |u(t)−Qu(t)|

< f (t, α(t), α′(t)) ≤
(
a(α(t)) φ(α′(t))

)′ .
Therefore, α(t) ≤ u(t), ∀t ∈ R. Following similar arguments, it can be proven that u(t) ≤ β(t),

∀t ∈ R.

Claim 2: The problem (23) and (2) has a solution.

Let A : X → C(R) and F : X → L1(R) be the operators given by Ax := a(t, Qx(t)) and:

Fx := f
(

t, Qx(t),
d
dt

Qx(t)
)
+

1
1 + t2

u(t)−Qx(t)
1 + |u(t)−Qx(t)|

.

As, for:
ρ := max

{
‖α‖∞ , ‖β‖∞ ,

∥∥α′
∥∥

∞ ,
∥∥β′
∥∥

∞ , N
}

,

with N given by (20),

|Fx| ≤
∣∣∣∣ f (t, Qx(t),

d
dt

Qx(t)
)∣∣∣∣+ 1

1 + t2
|u(t)−Qx(t)|

1 + |u(t)−Qx(t)|

≤
∣∣∣∣ f (t, Qx(t),

d
dt

Qx(t)
)∣∣∣∣ ≤ ϕρ(t),

then Fx verifies (F1). Moreover, from:

a(t, Qx(t)) ≥ min
t∈R
{a(t, α)), a(t, β)} ,
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we have that A satisfies (A1) with 0 < m(t) ≤min
t∈R
{a(t, α), a(t, β)} .

Therefore, by Schauder’s fixed point theorem, the problem (23) and (2) has a solution, which,
by Claim 1, is a solution of the problem (1) and (2).

4. Example

Consider the boundary value problem, defined on the whole real line, composed by the
differential equation:

[
(t2 + 1)3

(
(u)4 + 1

) (
u′
)3
]′

=
1

10000

[
(u(t))2 − 1

]
(u′(t))2

1 + t2 , a.e.t ∈ R, (24)

coupled with the boundary conditions:

u(−∞) = −1, u(+∞) = 1. (25)

Remark that the null function is not solution of the problem (24) and (25), which is a particular
case of (1) and (2), with:

φ(w) = w3,

a(t, x) = (t2 + 1)3
(

x4 + 1
)

,

f (t, x, y) =
1

10000

(
x2 − 1

)
y2

1 + t2 ,

ν− = −1, and ν+ = 1.

All hypotheses of Theorem 2 are satisfied. In fact:

• f is a L1-Carathéodory function with:

ϕρ(t) =
1

10000

(
ρ2 + 1

)
ρ2

1 + t2 ;

• φ(w) verifies (H1), and function a(t, x) satisfies (H2) ;
• the constant functions α(t) ≡ −1 and β(t) ≡ k, with k ∈]1,+∞[, are lower and upper solutions of

the problem (24) and (25), respectively.
• f (t, x, y) verifies (8) for ρ > 1.54 and satisfies a Nagumo-type condition for −1 ≤ x ≤ k with:

ψ(t) =
1

10000
k

1 + t2 and θ(y) = y2.

Therefore, by Theorem 2, there is a heteroclinic connection u between two equilibrium points −1
and one of the problem (24) and (25), such that:

−1 ≤ u(t) ≤ k, ∀t ∈ R, k ≥ 1.

5. Singular φ-Laplacian Equations

The previous theory can be easily adapted to singular φ-Laplacian equations, that is for equations:(
a (t, u) φ

(
u′
))′

= f
(
t, u, u′

)
, a.e.t ∈ R, (1s)

where φ verifies:
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(Hs) φ : (−b, b) → R, for some 0 < b < +∞, is an increasing homeomorphism with φ(0) = 0 and
φ(−b, b) = R such that: ∣∣∣φ−1(w)

∣∣∣ ≤ φ−1(|w|);

In this case, a heteroclinic solution of (1s), that is a solution for the problem (1s) and (2), is a
function u ∈ X such that u′(t) ∈ (−b, b), for t ∈ R, and t 7→ (a (t, u) φ (u′)) ∈W1,1(R), satisfying (1s)
and (2).

The theory for singular φ-Laplacian equations is analogous to Theorems 1 and 2, replacing the
assumption (H1) by (Hs).

As an example, we can consider the problem, for n ∈ N and k > 0,
((

1 + t2) (1 + (u)2n
)

u′√
1−(u′)2

)′
=

((u)2−1)(|u′ |+1)
1000(1+t2)

, a.e.t ∈ R,

u(−∞) = −1, u(+∞) = 1.

(26)

Clearly, Problem (26) is a particular case of (1) and (2), with:

φ(w) =
w√

1− w2
, for w ∈ (−1, 1),

which models mechanical oscillations under relativistic effects,

a(t, x) =
(

1 + t2
) (

1 + x2n
)

, (27)

f (t, x, y) =

(
x2 − 1

)
(|y|+ 1)

1000 (1 + t2)
, (28)

ν− = −1, and ν+ = 1.

Moreover, the nonlinearity f given by (28) is a L1-Carathéodory function with:

ϕρ(t) =
(
ρ2 + 1

)
(ρ + 1)

1000 (1 + t2)
.

The conditions of Theorem 2 are satisfied with (H1) replaced by (Hs), as:

• the function a(t, x), defined by (27), verifies (H2) ;
• the constant functions α(t) ≡ −1 and β(t) ≡ 1 are lower and upper solutions of

Problem (26), respectively.
• f (t, x, y) verifies (8) for ρ ∈ [1.09, 5.91] and satisfies a Nagumo-type condition for
−1 ≤ x ≤ 1 with:

ψ(t) =
1

1000
and θ(y) = |y|+ 1.

Therefore, there is a heteroclinic connection u between two equilibrium points −1 and one, for
the singular φ-Laplacian problem (26), such that:

−1 ≤ u(t) ≤ 1, ∀t ∈ R.

6. Conclusions

As can be seen in the Introduction, sufficient conditions for the existence of heteroclinic solutions
require strong assumptions on the nonlinearities. The goal of this paper is to weaken these conditions
on the nonlinearity f , replacing them by assumptions on the inverse of the homeomorphism φ,
following the ideas and methods suggested in [27,28].
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7. Discussion

The present result guarantees the existence of heteroclinic solutions for a broader set of
nonlinearities, without “asking too much” of the homeomorphism φ.

However, it is the author’s feeling that Condition (8) can be improved, applying other techniques
and method. These are, in my opinion, the next steps for the research in this direction.

Funding: This research received no external funding.

Conflicts of Interest: The author declares no conflict of interest.
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