
Improving Constraint Solving on
Parallel Hybrid Systems

Pedro Roque
proque@di.uevora.pt
University of Évora / LISP

Portugal

Vasco Pedro
vp@di.uevora.pt

University of Évora / LISP
Portugal

Daniel Diaz
daniel.diaz@univ-paris1.fr

University Paris-1 / CRI
France

Salvador Abreu
spa@uevora.pt

University of Évora / LISP
Portugal

Abstract—Recently, we developed the Parallel Heterogeneous
Architecture Constraint Toolkit (PHACT), which is a multi-
threaded constraint solver capable of using all the available
devices which are compatible with OpenCL, in order to speed
up the constraint satisfaction process.

In this article, we introduce an evolution of PHACT which
includes the ability to execute FlatZinc and MiniZinc models, as
well as architectural improvements which boost the performance
in solving CSPs, especially when using GPUs.

Index Terms—Constraint satisfaction, Parallel execution, GPU,
Hybrid systems

I. INTRODUCTION

Constraint Programming has been successfully used to
model and find solutions for many real-world problems, such
as planning and scheduling [2], resources allocation [9] route
definition [4], Costas Arrays [8], among several others. When
thus formalized, models are called Constraint Satisfaction
Problems (CSPs.)

A CSP can be solved with different intents: finding a single
solution, finding all solutions, optimizing for the best solution
(in which case it is termed a Constraint Optimization Problem,
or COP), or just to count the solutions to a given problem in-
stance. The search for solutions for those problems has evolved
from being executed sequentially on a single CPU to being
executed through distributed solvers using multiple single-
threaded CPUs on networked environments [26]. Currently,
several solvers already exist which are capable of using multi-
threaded CPUs [6], [7], some of them even manage to do
so in distributed environments [21]. However, only a few are
capable of using multiple computational devices on the same
machine, for instance a CPU and massively parallel computing
platforms, such as GPUs, to achieve greater performance [1],
[5].

PHACT provides its own programming interface for mod-
eling CSPs, and it has been recently extended to be able to
load a model description from a MiniZinc or FlatZinc [19]
file. Once a CSP has been described, the solver can make
use of several different computing resources, ranging from a
single thread on a CPU, GPU or MIC, to thousands of threads
spread among several of those devices, in order to speed up
the solving process. To that end, two levels of load balancing
are considered: one between devices, and another between the
threads within each device.

To enable this sort of load balancing, the search space is
a-priori split into multiple disjoint sub-search spaces that are
grouped as sets and distributed among the devices. The number
of sub-search spaces that compose each set is dynamically
recomputed during the solving process, taking into account
the actual observed performance history for each device, when
handling previous sets. Within the computing devices, each
thread solves one sub-search space at a time until a solution,
the best solution or all solutions are found, or until the set has
been fully explored.

Work dealing with constraint satisfaction using techniques
for complete search is presented in Section II. Section III
describes the architecture and features of PHACT, and in
Section IV we present and discuss the results achieved when
using from a single CPU thread to multiple threads on
CPUs and GPUs to solve a set of CSPs. In Section IV,
the performance of PHACT in solving those CSPs is also
evaluated and compared to the competing general-purpose
solver Gecode [27]. In Section V we discuss the overall results
and reflect on perspectives for further developments.

II. RELATED WORK

Over the past couple of decades, several constraint solvers
have been developed, and techniques to improve their perfor-
mance have proliferated. Some of these are designed to make
use of parallel architectures, such as multicore CPUs, and
some are even capable of effectively running in distributed
environments, as the Parallel Complete Constraint Solver
(PaCCS) [15], [21]. PaCCS is a complete constraint solver
which uses work stealing techniques to distribute the work
among multi-threaded CPUs on a distributed environment.

PaCCS implements work stealing by splitting the search
space over multiple agents (workers) and by stealing a new
search space from their co-workers after finishing the last one.
Each worker is built as a search engine that interleaves rule-
based propagation and search.

PaCCS was implemented for Unix, in the C programming
language with the objective of providing a back end to a higher
level language allowing for constraint modelling constructs
and the transparent usage of multithreading CPUs, possibly
in distributed environments. PaCCS uses POSIX threads for
an easier memory sharing and the MPI standard to distribute

mailto:proque@di.uevora.pt
mailto:vp@di.uevora.pt
mailto:daniel.diaz@univ-paris1.fr
mailto:spa@uevora.pt


the search space through the workers and for worker pool
coordination.

The workers are grouped in teams, each one corresponding
to a MPI process, and each worker in the team – including the
team controller – is a POSIX thread in that process. The team
controller is responsible for managing the communication
between the workers of that team and with the other teams
controllers.

PaCCS is able to run on multiprocessing systems constituted
by multiprocessors, networked computers or both.

Pedro [21] benchmarked the implementation of PaCCS by
solving n-Queens, Langford Numbers, Golomb Ruler and
Quadratic Assignment problems. The results obtained showed
that PaCCS is a very scalable parallel constraint solver which
achieved an almost linear performance gain for all the tested
problems (when computing all solutions).

Besides work stealing, which needs as much communication
and concurrency control between workers and/or masters as
the number of workers, some authors like Régin et al. [25],
split the search-space only at the beginning of the solving
process.

Their technique, called Embarrassingly Parallel Search
(EPS), consists in filling a queue of sub-search spaces that
were not detected as inconsistent by a solver during their gen-
eration, and distributing them among workers, for exploration.

These authors’ design includes a master worker, responsible
for generating these sub-search spaces, maintaining the queue,
and collecting results. The authors stated that the optimal
number of sub-search spaces that would lead to a best load-
balancing between the workers ranged from 30 to 100 per
worker. When the queue is full, each worker takes a sub-
search space for exploration. After depleting that sub-search
each worker takes another one from the queue, until no work
remains.

Régin et al. [25] tested their technique with the Gecode [27]
and the or-tools [11] solvers, using 20 problems modeled in
FlatZinc [20]. Each problem was split by their implementation
and each worker was a thread executing an instance of the
solver, which explores a sub-search space at a time.

These authors tested their implementation on a machine
with 40 cores, achieving a geometric mean speedup of 21.3
with or-tools and 13.8 with Gecode, when comparing with a
sequential run. When using the 40 cores, their implementation
with Gecode achieved a geometric mean speedup 1.8 times
greater than Gecode alone, which uses work stealing for load-
balancing.

Campeotto et al. [5] developed a complete CSP solver with
the Nvidia Compute Unified Device Architecture (CUDA) for
Nvidia GPUs. The implementation of constraint propagation
follows three main guidelines:

• The propagation and consistency check for each con-
straint is assigned to a block of threads;

• The domain of each variable is filtered by one thread;
• The constraints related with few variables are propagated

in the CPU, while the remaining constraints are filtered

by the GPU. This division bound is dynamic to keep the
load balanced between host (CPU) and device (GPU).

The data transfer between host and device is reduced to
a minimum due to the low bandwidth transfer rate. At each
propagation, the domains of the variables that are not labeled
yet and the events occurred during the current exploration
are copied to the GPU global memory. This data transfer is
made asynchronously and only after the CPU has finished
its sequential propagation do both the GPU and CPU get
synchronized.

The simplest propagators are invoked by a single block of
threads, and the more complex ones are invoked by more
than one block. For this purpose, the constraints are divided
between GPU and CPU, and the GPU part is also divided into
the ones that should be split between multiple block of threads
and the ones that should not.

Campeotto et al. [5] used the MiniZinc/FlatZinc constraint
modeling language for generating the solver input and im-
plemented the propagators for FlatZinc constraints and other
specific propagators.

These authors obtained speedups of up to 6.61, with prob-
lems like the Langford problem and some real-world problems
such as the modified Renault problem [16], when comparing
a sequential execution on a CPU with the hybrid CPU/GPU
version.

III. SOLVER ARCHITECTURE

PHACT is a complete propagation-based constraint solver,
capable of finding a solution for a CSP if one exists. It is
meant to be able to use all the (parallel) processing power of
the devices available on a system, such as CPUs, GPUs and
MICs, in order to speed up the solving process for constraint
satisfaction problems.

The solver is composed of a master process which collects
information about the devices that are available on the system,
such as the number of cores and the type of device (CPU, GPU
or MIC), and calculates the number of sub-search spaces that
will be created to distribute among those devices. For each
device, there will be a thread (communicator) responsible for
handling all communication with that device. Inside each de-
vice there will be a range of threads (search engines) that will
perform labeling, constraint propagation and backtracking, on
one sub-search space at a time. The number of search engines
that will be created inside each device depends on the number
of cores and type of that device, and may vary from 8 on a
hyperthreaded quad-core CPU to over 50,000 on a GPU.

PHACT may be used to count all solutions to a given CSP,
to find just one solution or to find the best one, according to
some criterion (for optimization problems).

A. Framework

PHACT provides its own programming interface for imple-
menting CSPs, through a set of methods to create variables
and constraints, and the ability to define the search goal,
that is, whether the objective is optimization, counting all the
solutions or finding the first solution. The solver is also capable



of loading MiniZinc and FlatZinc models, thereby providing
direct compatibility with several community developed CSP
models, which rely on this constraint modeling language.
MiniZinc is a high level constraint modeling language, that
gets compiled into FlatZinc, which is readable by many
constraint solvers [19].

The FlatZinc interpreter uses Flex and Bison [14] and is still
undergoing development, but is already capable of recognizing
a useful subset of the FlatZinc specification [3]. In order to
load MiniZinc models, we resort to the “mzn2fzn” tool [20]
that compiles the MiniZinc model to FlatZinc, which is then
loaded to PHACT through its own FlatZinc interpreter.

The FlatZinc interpreter and PHACT are implemented in the
C programming language, but the search engines that run on
the actual computing devices, as well as the communication
and control of those devices are implemented in OpenCL [18].
OpenCL enables PHACT to execute on several types of device,
from different vendors and may even be executed on different
operating systems, including Linux and Microsoft Windows.

B. Search space splitting and work distribution

In order to distribute the work among the devices, PHACT
splits the search space into multiple sub-search spaces. Search-
space splitting is done by the master process by partitioning
the domains over one or more of the variables of the problem,
so that the resulting sub-search spaces form a partition of
the entire search space. The number and the size of the sub-
search spaces thus created depend on the number of work-
items which will be used and, in our experimentation, may go
up to a few millions.

Example 1 shows the result of splitting the search space of
a CSP with three variables, V 1, V 2 and V 3, all with domain
{1, 2}, into 4 sub-search spaces, SS1, SS2, SS3 and SS4.

Example 1: Creation of 4 sub-search spaces
SS1 = {V 1 = {1}, V 2 = {1}, V 3 = {1, 2}}
SS2 = {V 1 = {1}, V 2 = {2}, V 3 = {1, 2}}
SS3 = {V 1 = {2}, V 2 = {1}, V 3 = {1, 2}}
SS4 = {V 1 = {2}, V 2 = {2}, V 3 = {1, 2}}

As any given device will have multiple search engines
running in parallel, the computed partition is organized into
blocks of contiguous sub-search spaces that will be handled
by each device, one at a time. The number of sub-search
spaces that will make up each block will vary along the
solving process and depends on the relative performance of
each device in exploring the previous blocks.

The communicator threads running on the host launch the
execution of the search engines on the devices, compute the
size of the blocks of sub-search spaces to hand over to the
respective device, and coordinate the progress of the solving
process as each device finishes exploring its assigned block.
The coordination of the devices consists in: assessing the
state of the search, distributing more blocks to the devices,
signaling to all the devices that they should stop (when a
solution has been found and only one is wanted), or updating
the current bound (in optimization problems). In the end, the

master process collects the results from all the communicator
threads and outputs it.

Figure 1 shows a diagram exemplifying the main compo-
nents of PHACT and their interactions when solving a CSP.
Note that, in this example, only four blocks of threads get
explored, which would mean that those blocks constituted the
full search space (when counting all the solutions). In reality,
the number of blocks that are dynamically created along the
solving process may go up to a hundred, depending on the
number of devices that are used and their performance in
solving the current CSP.

C. Load balancing

An essential aspect to consider when parallelizing some task
is the even distribution of work between the parallel com-
ponents. Creating sub-search spaces with balanced domains,
when possible, is still no guarantee that the amount of work
actually involved in exploring each of them is even remotely
similar. To compound the issue, we are dealing with devices
with differing characteristics and varying speeds, making it
even harder to statically determine an optimal, or even just
good, work distribution.

Achieving effective load balancing between devices with
such different architectures as CPUs and GPUs is a complex
task [13]. When trying to implement dynamic load balancing,
two important OpenCL (version 1.2) limitations arise: namely
when a device is executing a kernel it is not possible for it
to communicate with other devices [10], and the execution
of a kernel cannot be paused or stopped. Hence, techniques
such as work stealing [7], [22], which requires communication
between threads, will not work with kernels that run indepen-
dently on different devices and load balancing between them
must be done on the host side.

To better manage the distribution of work, the host could
limit the amount of work it sends to the devices each time,
by reducing the number of sub-search spaces in each block.
This would cause the devices to synchronize more frequently
with the host and allow for a finer control over the behavior
of the solver. When working with GPUs, though, the number
and the size of data transfers between the devices and the host
should be as small as possible, because these are very time
consuming operations. So, a balance must be struck between
the workload of the devices and the amount of communication
needed.

PHACT implements a dynamic load balancing technique
which tailors the size of the blocks of sub-search spaces to
match the performance of each device solving the current
problem, in relative terms, when compared to the performance
of the other devices. This feature is extensively described
in [24].

IV. RESULTS AND DISCUSSION

In [24] we described PHACT architecture, its load balancing
techniques and compared its performance against Gecode (and
PaCCS [21]) on solving some CSPs. Those CSPs were loaded
to Gecode through FlatZinc models, but at the time, PHACT



Figure 1. PHACT architecture

did not have a FlatZinc/MiniZinc interpreter, so the same CSPs
were implemented for PHACT using its own C interface.

From that comparisons till now, a FlatZinc/MiniZinc inter-
preter was implemented for PHACT, which allows PHACT to
load many existent CSPs modelled in MiniZinc/FlatZinc, and
to ensure that Gecode and PHACT are solving the same CSP
model.

We evaluated PHACT on a set of benchmarks which entails:

• Finding the first solution for the All Interval problem.
• Optimizing the Golomb Ruler problem.
• Finding all solutions for the following benchmarks:

Costas Arrays, Langford Numbers and the Quasigroup
problems.

The All Interval and the Langford Numbers problems were
retrieved from CSPLib [12] and the remaining CSPs were
taken from the MiniZinc Benchmarks suite [17]. All the CSPs
were loaded from FlatZinc files.

Those tests were executed on a machine with 128 GB of
RAM, hosting 4 AMD Opteron 6376 CPUs with 16 cores each
– totaling 64 cores – and two AMD Tahiti GPUs, each one
with 32 Streaming Multiprocessors (SMs). Those two GPUs
are combined in an AMD Radeon HD 7990, but are managed
separately by OpenCL.

PHACT performance was also compared with that of
Gecode 5.1.0. We also experimented with Choco version 4.0.4
[23], but the results were non-conclusive, in the time we had



Table I
ELAPSED TIMES AND SPEEDUPS OF PHACT AND GECODE WHEN SOLVING 5 CSPS WITH DIFFERENT NUMBERS OF THREADS

Solver Threads

All Interval 17
(First)

Costas Array 13
(Count)

Golomb Ruler 11
(Optimization)

Langford Numbers
13 (Count)

Quasigroup 7, 9
(Count)

Elapsed
time (s)

Speedup
vs. 1

thread

Elapsed
time (s)

Speedup
vs. 1

thread

Elapsed
time (s)

Speedup
vs. 1

thread

Elapsed
time (s)

Speedup
vs. 1

thread

Elapsed
time (s)

Speedup
vs. 1

thread

PHACT

1 1320.60 166.37 410.76 448.00 193.65
2 868.50 1.52 112.99 1.47 271.65 1.51 278.09 1.61 117.82 1.64
4 502.18 2.63 60.71 2.74 138.31 2.97 148.99 3.01 62.66 3.09
8 352.55 3.75 35.08 4.74 80.10 5.13 84.69 5.29 36.34 5.33

16 334.84 3.94 18.47 9.01 41.06 10.00 43.25 10.36 19.03 10.17
32 370.52 3.56 10.16 16.38 21.90 18.76 22.51 19.90 10.42 18.58
64 396.42 3.33 5.97 27.86 12.62 32.56 12.15 36.87 6.10 31.75

Gecode

1 3488.64 335.74 635.50 895.65 316.70
2 2092.38 1.67 180.33 1.86 336.47 1.89 465.41 1.92 169.86 1.86
4 1169.26 2.98 87.38 3.84 163.13 3.90 239.74 3.74 86.86 3.65
8 874.95 3.99 45.74 7.34 83.61 7.60 140.56 6.37 44.76 7.08

16 2051.83 1.70 26.64 12.60 47.04 13.51 140.42 6.38 27.21 11.64
32 2485.85 1.40 24.53 13.69 29.63 21.45 184.04 4.87 17.33 18.27
64 1533.84 2.27 31.46 10.67 23.49 27.05 216.48 4.14 12.50 25.34

available for this experimentation.

Table I displays the elapsed times and speedups when
solving one instance of each one of those five CSPs. The
elapsed times are the result of the geometric mean of five runs
of each instance of the problem, when using from 1 to 64 cores
of the CPU. The speedup is calculated when comparing the
time taken to solve the same problem sequentially (i.e. with
one thread).

In the table, one may observe that PHACT was capable of
achieving a speedup when increasing the available number of
cores for all the CSPs, except when finding the first solution
for the All Interval problem with more than 16 cores. As for

Gecode, only when solving the Quasigroup and the Golomb
Ruler problems was it capable of always achieving speedups
when doubling the previous number of cores, up to 64. When
solving the All Interval problem, after increasing the number
of cores above 8, it started to get slower. The same situation
occurs with the Costas Arrays benchmark, beyond 32 cores
and with the Langford Numbers test, it happens right after 16
cores.

The speedups presented in Table I are displayed in Figure 2
with an increasing number of threads used for solving each one
of the CSPs with the two solvers. We can observe that when
using 64 cores, most PHACT speedups were greater than the

Figure 2. Speedups achieved by PHACT and Gecode with up to 64 threads



Figure 3. Best speedups achieved by PHACT and Gecode when using more than one thread

Figure 4. Elapsed times by PHACT when using only an Intel I7-4870HQ CPU, or this CPU and one Nvidia Geforce 980M GTX GPU

other systems.
Figure 3 presents the best speedups achieved by PHACT

against Gecode, in which it becomes clear that PHACT
achieves better speedups with all the CSPs. Note that, as
the speedups shown in this chart are the best achieved by
each solver, the number of threads used for that result may
vary between solvers and CSPs, according to the speedups
presented in Table I.

PHACT was capable of achieving a top speedup of 36.87,
which was better than Gecode (27.05), supporting our claim
that hybrid systems may be effectively used to solve CSPs.
These results shows that, at least for this set of CSPs, the load
balancing techniques implemented by PHACT are achieving
better results than that of Gecode, which uses work stealing.

As mentioned in section III and described in [24], PHACT

is also capable of using GPUs, MICs and any other device
compatible with OpenCL in order to speed the solving process
up. The chart in Figure 4 shows the speedups achieved when
using only an Intel I7-4870HQ CPU (4 cores, 8 threads), or
this CPU and one Nvidia Geforce 980M GTX GPU (12 SMs).

We are yet improving the algorithm that does the load bal-
ancing between devices, especially for optimization problems,
where besides the size of the blocks of sub-search spaces, we
must also consider the better solutions that any device may
find. This is problematic, as we cannot pause or stop a device
that is exploring a block of sub-search spaces to inform it that
a better solution was already found, and that it may prune its
search with the new best cost.

This may lead to some uninformed devices trying to find



solutions that are already worse than the best one already
found, which will increase the total time taken to fully explore
the problem. That explains the worse result achieved with
PHACT when optimizing the Golomb Ruler with the CPU
and GPU when compared with the CPU only.

From the 5 CSPs that were solved, the Quasigroup was
the problem with the highest memory requirements, which
depleted the GPU RAM. This forced PHACT to limit the
number of threads that would run on the GPU, and that
limitation together with the depleted RAM decreased the
GPUs performance. The performance impact was such, that
the GPUs exploration work did not compensate the increased
workload that the CPU incurred for controlling and commu-
nicating with the GPU.

Nevertheless, for the All Interval, the Costas Array and
the Langford Numbers problems, the GPU was capable of
speeding up the solving process by .45, 1.28 and 1.78 times,
respectively. The geometric mean of the speedups for the five
CSPs was of 1.22, which shows that the GPUs can effectively
be used for speeding up the solving process.

V. CONCLUSION AND FUTURE WORK

In this paper we described PHACT, a constraint solver
capable of achieving competitive speedups in multi-threaded
CPUs when compared to state-of-the art solvers, such as
Gecode. We tested the two solvers on five different benchmark
CSPs, running on a machine with 64 regular cores, and
PHACT achieved the best speedups of the two when using
all cores, a result which holds across all the benchmarks.

Most significantly, PHACT is also capable of using other
devices to help in speeding up the solving process. We used
GPUs to help the (multiple) CPUs in solving the same CSPs,
which brought the hybrid solver to achieve a top speedup of
1.78, relative to the multicore implementation. This clearly
shows that GPUs can effectively be used to improve perfor-
mance in solving CSPs.

We plan to further explore the performance impact of using
a hybrid platform, as enabled by PHACT, by diversifying the
auxiliary computational devices: we plan to use Intel Xeon
Phi, AMD and nVidia GPUs, separately and in combination.
Another aspect which needs further work is the implementa-
tion of more base and global constraints, together with their
FlatZinc interface.

ACKNOWLEDGMENTS

This work was partly funded by Fundação para a Ciência e
Tecnologia (FCT) under grant UID/CEC/4668/2016 (LISP).
Some of the experimentation was carried out on the
khromeleque cluster of the University of Évora, which was
partly funded by grants ALENT-07-0262-FEDER-001872 and
ALENT-07-0262-FEDER-001876.

REFERENCES

[1] Arbelaez, A., Codognet, P.: A GPU implementation of parallel
constraint-based local search. In: 22nd Euromicro International Con-
ference on PDP 14. pp. 648–655. IEEE, Torino, Italy (February 2014)

[2] Barták, R., Salido, M.A.: Constraint satisfaction for planning and
scheduling problems. Constraints 16(3), 223–227 (July 2011)

[3] Becket, R.: Specification of flatzinc version 1.6. White paper
[4] Brailsford, S., Potts, C., Smith, B.: Constraint satisfaction problems:

Algorithms and applications. European Journal of Operational Research
119, 557–581 (1999)

[5] Campeotto, F., Palù, A.D., Dovier, A., Fioretto, F., Pontelli, E.: Ex-
ploring the use of GPUs in constraint solving. In: Flatt, M., Guo, H.F.
(eds.) PADL 2014. LNCS, vol. 8324, pp. 152–167. San Diego, CA, USA
(January 2014)

[6] Caniou, Y., Codognet, P., Diaz, D., Abreu, S.: Experiments in parallel
constraint-based local search. In: The 11th European Conference on
Evolutionary Computation and Metaheuristics in Combinatorial Opti-
mization (EvoCOP 2011). LNCS, vol. 6622, pp. 96–107. Springer (2011)

[7] Chu, G., Schulte, C., Stuckey, P.J.: Confidence-based work stealing in
parallel constraint programming. In: Gent, I.P. (ed.) CP 2009. LNCS,
vol. 5732, pp. 226–241. Springer, Lisbon, Portugal (September 2009)

[8] Diaz, D., Richoux, F., Codognet, P., Caniou, Y., Abreu, S.: Constraint-
based local search for the costas array problem. In: Hamadi, Y., Schoe-
nauer, M. (eds.) Learning and Intelligent Optimization: 6th International
Conference. LNCS, vol. 7219, pp. 378–383. Springer (2012)

[9] Filho, C., Rocha, D., Costa, M., Albuquerque, P.: Using constraint satis-
faction problem approach to solve human resource allocation problems
in cooperative health services. Expert Syst. Appl. 39(1), 385–394 (2012)

[10] Gaster, B., Howes, L., Kaeli, D., Mistry, P., Schaa, D.: Heterogeneous
Computing with OpenCL. Morgan Kaufmann Publishers Inc., San
Francisco, USA (2011)

[11] Google Inc.: OR-Tools - google optimization tools. https://developers.
google.com/optimization/, [Online; accessed 5-February-2018]

[12] Jefferson, C., Miguel, I., Hnich, B., Walsh, T., Gent, I.P.: CSPLib: A
problem library for constraints. http://www.csplib.org (1999)

[13] Jenkins, J., Arkatkar, I., Owens, J., Choudhary, A., Samatova, N.:
Lessons learned from exploring the backtracking paradigm on the GPU.
In: Jeannot, E., Namyst, R., Roman, J. (eds.) Euro-Par 2011 Parallel
Processing, LNCS, vol. 6853, pp. 425–437. Springer Berlin Heidelberg
(2011)

[14] Levine, J., John, L.: Flex & Bison. O’Reilly Media, Inc., 1st edn. (2009)
[15] Machado, R., Pedro, V., Abreu, S.: On the scalability of constraint

programming on hierarchical multiprocessor systems. In: 2013 42nd
International Conference on Parallel Processing. pp. 530–535 (Oct 2013)

[16] Mairy, J.B., Deville, Y., Lecoutre, C.: CPAIOR 2014, pp. 235–250.
Springer International Publishing (2014)

[17] MIT: A suite of minizinc benchmarks. https://github.com/MiniZinc/
minizinc-benchmarks (2017), [Online; accessed 20-January-2018]

[18] Munshi, A., Gaster, B., Mattson, T.G., Fung, J., Ginsburg, D.: OpenCL
Programming Guide. Addison-Wesley Professional, 1st edn. (2011)

[19] Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: Towards a Standard CP Modelling Language. In: CP 2007.
pp. 529–543. Springer-Verlag, Berlin, Heidelberg (2007)

[20] Optimisation Research Group NICTA: MiniZinc and FlatZinc. http://
www.minizinc.org/, [Online; accessed 9-January-2018]

[21] Pedro, V.: Constraint Programming on Hierarchical Multiprocessor
Systems. Ph.D. thesis, Universidade de Évora (2012)

[22] Pedro, V., Abreu, S.: Distributed work stealing for constraint solving.
In: Vidal, G., Zhou, N.F. (eds.) CICLOPS-WLPE 2010. Edinburgh,
Scotland, U.K. (July 2010)

[23] Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC
- LS2N CNRS UMR 6241, COSLING S.A.S. (2017), http://www.
choco-solver.org

[24] Roque, P., Pedro, V., Abreu, S.: Constraint solving on hybrid systems. In:
Dietmar Seipel, Michael Hanus, S.A. (ed.) Declare 2017 – Conference
on Declarative Programming. Würzburg, Germany (September 2017)

[25] Régin, J.C., Rezgui, M., Malapert, A.: Embarrassingly parallel search.
In: Schulte, C. (ed.) CP 2013. NCS, vol. 8124, pp. 596–610. Springer
Berlin Heidelberg (2013)

[26] Schulte, C.: Parallel search made simple. In: Beldiceanu, N., Harvey,
W., Henz, M., Laburthe, F., Monfroy, E., Müller, T., Perron, L., Schulte,
C. (eds.) Proceedings of TRICS: CP 2000. Singapore (September 2000)

[27] Schulte, C., Duchier, D., Konvicka, F., Szokoli, G., Tack, G.: Generic
constraint development environment. http://www.gecode.org/, [Online;
accessed 6-January-2018]

https://developers.google.com/optimization/
https://developers.google.com/optimization/
http://www.csplib.org
https://github.com/MiniZinc/minizinc-benchmarks
https://github.com/MiniZinc/minizinc-benchmarks
http://www.minizinc.org/
http://www.minizinc.org/
http://www.choco-solver.org
http://www.choco-solver.org
http://www.gecode.org/

	I Introduction
	II Related work
	III Solver architecture
	III-A Framework
	III-B Search space splitting and work distribution
	III-C Load balancing

	IV Results and discussion
	V Conclusion and future work
	References

