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Explorando Trace Elemental Análise de restos humanos do local medieval de San Pablo 

usando ICP-MS 

 Resumo 

A abordagem analítica do uso de Trace Elements (TEs) pode ser usada não só para entender o ambiente vivo e 

a dieta, mas até a diagênese pós mortem de qualquer resíduo humano usando a variabilidade nas composições 

elementares de dentes e ossos. Oito indivíduos foram amostrados do convento de San Pablo em Burgos usando 

seus dois tipos de tecido ósseo (ossos cortical e trabecular) do fêmur e esmalte dentário para cada caso. Três 

dessas amostras pertenciam à nave da igreja (século 16th -19th) enquanto o resto era encontrado no pátio do 

claustro pertencente ao século XIV-XVI. Essas amostras foram processadas na Espectrometria de Massa 

Plasmática Acoplada Induzamente (ICP-MS) para analisar as concentrações de Ca e P, bem como os TEs não 

essenciais e bio-essenciais, a fim de poder estabelecer a integridade das amostras e para descobrir quais TEs 

podem ser úteis para fazer inferências sobre a dieta antiga e a absorção diagenética e em que medida. Os dados 

de TE foram tratados usando diferentes ferramentas estatísticas e testes para encontrar possíveis diferenças de 

gênero ou mesmo diferenças intra-locais na dieta e também foram corroborados com informações coletadas a 

partir da análise de microwear. Verificou-se que a dieta dos indivíduos era de tipo misto com componentes 

vegetais e de carne, enquanto a presença de alimentos marinhos não pôde ser confirmada. Isto foi de acordo com 

os resultados de microwear para algumas das amostras. Usando as razões de Ba e Sr por Ca, verificou-se que os 

ossos corticais deram os resultados mais confiáveis para inferências sobre dieta, excluindo o uso de níveis de 

Mn e Fe que foram altamente afetados pela absorção diagenetica nos tecidos ósseos. Além disso, as amostras 

enterradas na nave da igreja podem estar consumindo mais proteínas de carne do que as enterradas no claustro, 

o que pode indicar uma diferença em seu status social ou uma mudança na dieta ao longo do tempo. Como 

esperado, para a maioria dos elementos, como Pb, Mn, Fe, Cu, os tecidos trabeculares foram os mais afetados 

pela absorção diagenetica, ademais, na em sua maioria superfície interna do eixo do fêmur. 

 

Palavras-chave: Trace Elements, ICP-MS, San Pablo, palaeodiet, diagénese, microwear, estatísticas 

Abstract 

The analytical approach of using Trace Elements (TEs) can be used not only to understand the living 

environement and diet but even post-mortem diagenesis of any human remains using the variability in the 

elemental compositions of both teeth and bones. Eight individuals were sampled from the convent of San Pablo 

in Burgos using their two types of bone tissues (cortical and trabecular bones) from the femur and tooth enamel 

for each case. Three of these samples belonged to the church nave (16th -19th C) while the rest were found from 

the cloister courtyard belonging to 14th -16th Century. These samples were processed in solution mode 

Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to analyse concentrations of Ca and P as well as both 

non-essential and bio-essential TEs in order to be able to establish the integrity of the samples and to find out 

which TEs can be helpful in making inferences on ancient diet and diagenetic uptake and to which extent. The 

TE data was treated using different statistical tools and tests to find possible gender differences or even intra-

site differences in the diet and was also corroborated with information gathered from microwear analysis. It was 

found that the diet of the individuals was of a mixed type with both vegetal and meat components while presence 

of marine food could not be confirmed. This was in accordance with the microwear results for some of the 

samples. Using the Ba and Sr ratios to Ca, it was found that cortical bones gave the most reliable results for 

inferences on diet excluding the use of Mn and Fe levels which were both highly affected by diagenetic uptake 

in the bone tissues. Additionally, the samples buried in church nave might be consuming more meat proteins 

than those buried in the cloister which might indicate a difference in their social status or a change in the diet 

through time. As expected, for most of the elements such as Pb, Mn, Fe, Cu, trabecular tissues were the most 

affected by diagenetic uptake moreover mosly at the inner surface of the femur shaft.  

 

Keywords: Trace Elements, ICP-MS, San Pablo, palaeodiet, diagenesis, microwear, statistics 
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Introduction 

The convent of San Pablo de Burgos was one of the first and most important monasteries that the 

Dominicans founded in Castile, Spain. Many artists took part throughout its construction across 

the centuries, who made the cathedral famous and some of them later even asked to be buried in 

one of the chapels of the church. It was located in the city of Burgos founded by Santo Domingo 

of Guzman in the year 1218 (Conde et al., 1982) according to tradition but most of the historians 

place its foundation in the year 1224 (Serrano, 1997). It is unanimously agreed upon that the 

Dominican friars were already established in Burgos between 1219 and 1222. 

 

The historic city of Burgos was the capital of Crown of Castile at one point of time and could be 

considered as one of the most important centres of medieval Spain. In that time, the convent was 

an important landmark of the urban Burgales landscape. The history of the convent is in a way 

entwined with the history of this city. If its history, very close to that of the city, was substancial 

in historical times until the 18th century, its ruin in the 19th century was also absolute. The oldest 

site of the convent was located outside the city which was later shifted to its last location. Today, 

after having gone through turbulent times such as Spanish War of Independence and Spanish 

confiscation in the nineteenth century, the convent ceases to exist not only physically but also 

from the citizens’ memory who do not even remember the existence of the convent. The 

monastery undoubtedly has a lot of archaeological, historical and artistic information about the 

thriving middle ages of Burgos city and the surrounding areas which have been continuously 

inhabited since more than 800,000 years ago. The life of the San Pablo convent had always been 

in close relation with the life of the city and needs to be studied and thus recued from oblivion in 

order to return it to the popular culture and memory of the city. 

 

Being one of the most influential religious institutions in Burgos city during the 13th to 18th 

centuries, the convent was preferred by the contemporary inhabitants as the burial place 

regardless of their economic or social status. Unsurprisingly, numerous burials were recorded in 

the site during the excavation in 2002-2003. The convent was developed into a prison, barracks 

and even hospital during the second half of 19th century. By 1870, the ministry of war ordered 
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the still standing ruins of the convent and the church to be demolished for building barracks. 

Consequently, the convent completely disappeared and the barracks continued to be used for one 

more century until they were destructed in 1973. By 2010, the museum of Human Evolution was 

developed on the same site but not before a thorough archaeological investigation during 2001-

2004.  

 

The historical, archaeological and anthropological studies on the remains from San Pablo have 

already provided a lot of information about the medieval communities and their lifestyle in the 

contemporary times. Nonetheless, there have not been any previous archaeometric investigations 

into the remains from San Pablo whose history could be recorded better by understanding various 

aspects of the lost site. The main research goals of this study are to explore the diet of some of 

the individuals buried in the cloister courtyard and the church nave of the convent in order to find 

differences based on genders, socio-economic status or chronological period of these burials 

using trace elemental analysis and statistical tools such as t-tests, regression analysis, ANOVA, 

cluster analysis and a few others. Apart from this, it is also a focus of this study to be able to 

make preliminary explorations into developing a methodology to notice diagenetic changes in 

different TEs using different skeletal elements from the same specimen which might be helpful 

in cases like this where the original archaeological context and the soil from the site is not 

available for further examinations. It will be interesting to note which TEs and which skeletal 

tissues (tooth enamel, cortical bone or trabecular bone) provide more reliable data for inferences 

on diet and diagenetic uptake. 
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2 

Historical and Archaeological Context 

Burgos is located in the Castile and Leon province of Spain which has been the most important 

region and even an important centre of Spain in the past. The city is surrounded by Miocene 

formations consisting of limestones along with marls while the actual city was fed by seven rivers 

in the past. Thus, it is situated on river terraces most important of which is the Arlanzon River. 

These are therefore quaternary fluvial sediments made up of gravel, sand and clay. The monastery 

most probably was situated on terraces created by Arlanzon, Urbel, Ubierna and Vena rivers 

(Figure 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Geological map of Burgos along with the legend (info.igme.es) 
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The convent of San Pablo was the point of reference in the urban Burgales landscape and was a 

Dominican establishment. Although it was difficult to know exactly where the primary location 

was and also the exact date of its foundation. The excavations have established the location of its 

last standing claustro at the coordinates of 42.339073°, -3.697135° (Figure 2).  

 

 

 

 

 

 

 

 

Figure 2: The view of the San Pablo monastery from Isidro Gill (Casillas & Alvarez, 2005) 

We knew in 1218, that when the Santo Domingo of Guzman visited Spain on the 22 of December 

of 1216, honorio 3rd approved the order of preachers in Burgos (Casillas, 2003). It has also been 

determined that the first Dominicans settled in the city of Burgos around the 1220. They settled in 

the extramural of the city in the famed neighborhood of La Vega, close to the churches of Saint 

Cosme and Saint Damian in the south of the city (Casillas, 2003). Right from its foundation, the 

convent reveled in the patronage of the kings of Castile until the rule of Catholic Monarchs.  

The Bull of Vitute Conspicuos established the Dominican friars as independent from the diocesan 

friars and tried to eliminate the ambiguities regarding the burials in the temples and monasteries, 

giving full rights to the Dominican friars to decide about the burials. Nevertheless, the cathedral 

of Burgos held a long argument with them refusing the burials of clergy and nobility members 

inside the convent of San Pablo (Casillas, 2002). The clash started when they denied the burial of 

Juan Tomé in the convent (Casillas, 2003). 

This resulted in a lawsuit filed by the Dominican friars at Rome drawing until 1302 when at last 

the convent and the Burgos cathedral made a settlement in which the Dominicans were to move 
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from their convent to a new building which is the site of the Museum of Human Evolution in 

Burgos today (Casillas, 2002). By the beginning of the 14th Century, the Dominicans had moved 

to their new monastery and it took them about 15 months to transfer their possessions and the 

bodies buried in the old building to the new convent (Serna, 1945). The real estate and monetary 

assets of many convents in this area including San Pablo increased after the 1470s due to the 

joining of many new individuals in the convents which led to their expansion and increase in the 

influence (Ocampo, 2009). The main benefactors who helped the building of this convent were the 

kings Don Alfonso el Sabio and Don Sancho the IV, his son, who gave a place to build the new 

convent. 

 

The fields that the community had occupied were close to 27000 sq metres. In the street of San 

Pablo there were different buildings that, after the confiscation of 1835, were sold like separate 

buildings. The convent that bordered these fields, had a series of properties attached to it like an 

orchard or an estate of recreation that was in La Quinta. And it also had a separate entrance called 

the noble door that was in a flank of the façade of the church and a second door for the service at 

the back adjoining with the San Lukas street (Figure 3) (Casillas, 2003). 

 

 

 

 

 

 

 

 

 

Figure 3: Engraving of the city of Burgos, of century XIX, with the view of the convent from the east, by Guesden 

(Casillas & Alvarez, 2005) 
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The 13th century is the period in which the order acquired its moment of expansion. This was an 

order that soon earned the appreciation of the city, thanks to its preaching and cultural advice. 

They were preferred in matters of devotions and especially in matters related to death, and were 

solicited as business advisors and contractors, as witnesses and as testamentary agents. At the end 

of the 12th century, and at the beginning of the following, it was the time period when the mendicant 

orders in Castile had a privileged position and when there were marked relations between the order 

and the Castilian oligarchies. This is reflected by the beginning of sponsorship of the chaplaincies, 

where they began to be buried (Casillas, 2003). 

The 14th century is marked by the entrance of the Black Death in Spain (1346) which struck Castile 

hard. As a result of this, the power of the convents began to wane and the relaxation of the clergy 

was encouraged. With the intention of recovering the gaps in the order and the past and the plague, 

they began to deliver habits with great ease during this relaxation time which is known as the 

"claustra" (Casillas, 2003). Even with these internal weaknesses, the patronage and the burying of 

the dead continued to increase. 

The convent maintained the continuum, but with little real support. So it could carry out some 

constructive activities among which the most innovative is the one that highlights the patronage 

of D. Leonor Henriquez, the granddaughter of Alfonso XI, who had a bulky sepulchre built in the 

center known as the tomb of the "beata" (Casillas, 2003). The 15th century was a good time for the 

convent under Bishop D. Pablo de Santa Maria, of Jewish origin, who had converted at maturity 

and was the bishop of Cartagena. He took possession to govern the diocese of Burgos in 1425. 

His works were outstanding and promoted the improvement of the customs and important works 

in the diocese. He showed his distinguished patronage to the convent of St. Paul by choosing the 

Great Chapel for his burial as well as for those of his most notorious descendants. Among the 

works he performed as patrons were the finishing of the main chapel, covering of the vaults of the 

church, widening of the chapel of the chapter and other works in the cloister. This is the time when 

the convent acquired the form that it maintained, with small modifications, until its disappearance. 

The convent was not finished until September 31, 1430, having begun work 130 years earlier and 

marking the arrival date of the Dominicans around 1220 (Casillas, 2003). 

The period between the end of the 15th century and the first half of the 16th century was the best 

time for the convent, which became an important study center for the formation of members of the 
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Order and for the education of the most notable people in Burgos. On the subject of death, the 

Dominicans were the favorites after the Franciscans and the convent was for many Burgaleses, the 

place chosen for their eternal rest. So the 16th century is marked by the greatest burial movement 

in the convent (Casillas, 2003). 

The best time during the century was when the mercantile bourgeoisie appeared. A bourgeoisie 

whose development contributed to the best time of the city, which affirmed and consolidated its 

influence in the kingdom and materialized the creation of private chapels within the convent of 

San Pablo. As far as construction was concerned, by the end of the previous century the four wings 

of the cloister had already been closed, and other offices such as the library, dormitories, refectory, 

nursing, hostelry and novitiate were expanded. 

By the second half of the 16th century the plague returned to the city. This was the main cause of 

Burgos's loss of demographic, economic and court power resulting in the fall of the Convent of 

San Pablo, which sent its best men to the convents of Valladolid or Salamanca. The decadence is 

also accused in terms of patronage having declined to its lowest intellectual level. The works that 

were carried out at this moment were no longer inside the convent edifice but in the premises of 

the convent with too much repetition and with an apparent lack of necessity, for example, 

structures like the prestiberio, the bookshop, the stairs or the room of "De Profundis" were 

modified several times in the same century (Casillas, 2003). 

In the second half of the seventeenth century the last works of importance in the convent were 

carried out. Different chapels and facade of the building were modified, building a sumptuous 

belfry under the orders of Friar Jose de Torres, in addition to the rebuilding of the cloisters and of 

their ornamentation with pictures (Casillas, 2003). 

But without a doubt, the booming years for the convent of San Pablo ended in 1807 when the 

Napoleonic troops arrived in Burgos, at which time the city had to establish barracks, schools, and 

private houses and evidently also used the convents for these military purposes. The troops 

occupied the entire ground floor, except for the inn and the kitchen, an occupation that lasted until 

1808 when, after the Battle of Gamonal having defeated the army from Extremadura, the troops 

entered the city under the consent of General Lasalle, setting it on fire and plundering it for days 

(Casillas, 2003). The building suffered by ruination, the church was dismantled and was without 

altars.  
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During the period of military occupation the convent was destined to diverse uses, like lodging of 

troops, jail for the prisoners, military hospital and even warehouse. Several friars were executed 

and the rest of them left the convent. Their property was plundered and destroyed, some were 

saved, transferring them to numerous parish churches, such as San Lesmes, San Gil or the 

Cathedral, as well as to several towns in the province. 

After the departure of the weak troops of the city, some of the friars returned to the convent in 

1813, the Friar Tomas de la Iglesia being the head. They rehabilitated the rooms and according to 

the chronicles of that time, it was remarkable how quickly the convent returned to its day to day 

functioning (Casillas, 2003). 

In 1827, thanks to the Friar Manuel Martínez, the works took great impulse but the joy lasted for 

a very short time, since in December of 1835 the friars were expelled from their monastic 

dependencies. After the expulsion, the objects of worship and the estates began to be sold. On the 

other hand, the buildings, the church and the convent were occupied by the army, for the lodging 

of troops, hospital or ammunition store. Thus it deteriorated, until the army itself decided to destroy 

it in order to build the barracks that were inaugurated on June 19, 1883 and remained standing 

until 1975 (Casillas, 2003). Few monasteries achieved such a restoration and a few have known 

such a disastrous end after the exclaustration of 1835. The engravings from the ruins kept in the 

City Hall show us that it was a sumptuous building and the church especially was an architectural 

marvel. 

2.1 Structure and architectural insights 

It can be mentioned that there is no proper Dominican architecture. In the beginning, the order of 

the Dominicans felt a great disinterest in building their edifices. But things changed from the XIII 

century when the order of the mendicants proposed a new typology that had a great acceptance in 

Spain, a same aesthetic taste that the Franciscans as well as the Dominicans shared. This type of 

buildings were raised close to the local tradition, seeking to maintain the functionality. Buildings 

of that time were being gradually modified to adapt to the fashion of the moment. 

In the first attempt, the friars looked for a space where they could officiate the Eucharist, and later 

extended the wish to have a great choir, which influenced the design and a polygonal form was 

developed. This was united with a body formed by one or three naves and generally a roof of wood. 
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The ornamentation at first was very scarce but to cover the pedagogical needs the Cistercian 

rigidity was abandoned and they began to open up to the religious arts. Until the end of the 14th 

century it was not possible to even mention the entrance of images in the Dominican temples, 

although in Burgos in the second half of the 14th century, the cloister was decorated pictorially 

(Casillas, 2003). 

An artistic austerity existed in the primary years which has nothing to do with what happened in 

the future. The changes in altarpieces, great artistic works and numerous paintings covering the 

walls of the monastic stays account for the works from great artists of the time. 

The construction stages for the convent can be divided into three specific periods (Casillas, 2003). 

a) A first period that covered the 14th century and reached the beginning of the 15th century, where 

the basic plan was built. 

b) A second phase, in the first half of the 16th century, in which the convent was widened and 

decorated in the plateresque style. 

c) A third Baroque period, which was going to be maintained until the beginning of the 19th 

century. 

The large church was attached to the convent on the north side with a structural plan of a Latin 

cross and nave, besides having a greater chapel. The convent of the two floors was organized 

around a large cloister, the lower part with a more public character and the upper part dedicated to 

the needs of the community. Each wing of the cloister was also dedicated to a function, the north 

wing being for the passage, the east wing was the noble zone with the chapter room, the wing of 

medidodia was destined to the life of the community and the west wing was dedicated to the study 

(Casillas & Alvarez, 2005). The materials used were those being used commonly in the city of 

Burgos such as Hontoria’s stone (a pure limestone), brick, wood, plaster and stucco.  

2.2 The archaeological background 

The first action carried out on the remains of the convent of San Pablo (Burgos) was carried out in 

2001 (February-April), under the orders of the archaeologist Jose Luis Ibarra, by the company 

Wyngaerde. This intervention had the objective to verify the existence of material remains of the 
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Dominican convent, to be able to define in detail the construction phases of the convent. In addition 

to the archaeologists mentioned, the team included researchers José Miguel Carretero Díaz, 

researcher Rolf M. Quamm, and paleontologist Yahya Bensaid who conducted a study on the 

animals consumed in the monastery, to provide data on daily life and diet of the friars (Casillas & 

Alvarez, 2005). 

Prior to the archaeological intervention, a survey was carried out, in which it was possible to verify 

the existence of walls, ceramic remains and human remains, as well as a pavement sample, which 

could be recovered and is currently represented in one of the buildings that make up the complex 

of the human evolution museum. 

 

After the pre-excavation survey, the archaeological action was allowed, which was carried out 

delimiting the enclosure in different zones.The first one was called zone B, located geographically 

in the northwest area of the plot with dimensions of approximately 8,100 m². The surveys on the 

other zone (Zone C) are about 16,500 m², and were subdivided into two other zones (C1 and C2) 

(Casillas & Alvarez, 2005) (Figure 4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Map of the 2002-2003 archaeological excavation which shows the total area (22,000 m2) (Memoirs of 

archaeological intervention 2002-2003) 
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The archaeological work was decided to be started in the area of the cloister, which presented 

better results and remains than the remaining of the church, which was estimated beforehand 

thanks to the pre-excavation survey. These burials were documented through "Burial Files" in 

which the layout of the skeleton, the burial form, the treasure accompanying it and the stratigraphic 

relationships were recorded (Casillas & Alvarez, 2005). 

In the church the plan of the convent was defined by obtaining the outline of the head chapel and 

of other chapels. In addition to this, possible exhumation of 242 burials was found in the nave and 

in the lateral chapels. The excavation was completed by another company "Aratikos Arqueólogos", 

which under the direction of Angel Palomino and Javier Abarquero, carried out the investigation 

between June and September 2004 (Casillas & Alvarez, 2005). 

2.2.1 Evaluation of the results from the archaeological intervention (2002-2003) 

The studies carried out during the archaeological intervention (2002-2003) were decisive to know 

the constructive sequence of the old convent of San Pablo. Referring to the history of the convent 

it was possible to establish how the arrival of the Dominican friars to the city of Burgos had the 

date of 1220-1222, but it was not until 1302 when the construction of the convent began. However, 

burials are recorded prior to the commencement of the construction of the convent, since along 

with the individuals buried there are coins of Alfonso X (1252-1284) and Sancho IV (1284-1295) 

(Casillas & Alvarez, 2005). 

The construction of the church began in the early years of the 14th century and was completed 

thanks to the impulse of D. Pablo de Santa Maria in 1430. It was a Gothic church with three naves 

with several chapels located between the buttresses. This chronology has been confirmed by the 

archaeological intervention. After the church began the construction of the most essential units, 

among which the capitular room initially built with a short height, stands out. 

The cloister was realized in several phases being primarily of low height. In the year 1380 the 

documents report the news of the construction of a new cloister which was completed at the end 

of 14th century. The cloister was used as a place of burial. Since the end of the 13th century some 

of these burials were adapted to the wall, so it has been possible to confirm the existence of tomb 

altars (Casillas & Alvarez, 2005). 
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In the 16th century new works and reforms were carried out in the premises of the convent. The 

cloister was remodeled along with the chapter room in which a second mortar floor was found 

with eleven burial pits. The construction of thirty tombs of cooked bricks for the members of the 

monastic community between the 17th and 18th centuries in the chapter room is verified. 

An important work was produced in the church called the chapel of the eleven thousand virgins. It 

was demarcated as a funerary chapel in 1563 and given to the Maluenda family who built a crypt 

that was in use until the 18th century. In the 19th century this chapel was filled with children's 

burials, along with a large registry of architectural and decorative remains. 

In the 16th century, the naves were multiplied in the Church's edifice for the family and individual 

graves, where burials were performed in lime-filled coffins and successive reutilizations took place 

with the generation of ossuary until at least 1782 (Casillas & Alvarez, 2005). With the creation of 

municipal cemeteries in the 18th and 19th centuries, burials were discontinued inside the convent 

building.  

2.2.2 Burials and material remains found 

The burials found in the excavation season of 2002-2003 were located in three areas: the first is a 

necropolis in the courtyard of the cloister that dates from the Medieval period, a second area with 

graves in the Chapter Room where the monks would have been buried belonging to the monastery 

and a society of greater social class and a third burial zone located inside the church, more or less 

near the high altar according to social class (Figure 5). 

There have been found 428 burials and an indeterminate number of ossuaries (Figure 6). The 

intervention of 2004 numbered another hundred individuals and many more ossuaries which were 

in different chapels. 
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Figure 5: Map showing the location of burials (Memoir of archaeological intervention 2002-2003) 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: The burials and ossuaries found from the Convent of San Pablo (Casillas & Alvarez, 2005) 
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Cloister 

The burials of the cloister belong to the 14th to 16th centuries, and were found in earthen graves, 

making a set of 118 burials of which 54 correspond to children (Casillas & Alvarez, 2005). The 

adult individuals buried there, appear to be oriented according to the Christian ritual that has been 

practiced since the Middle Ages, according to which the head lies in the west and is facing east, 

so that in the resurrection they stand facing god. In addition to the burials there was a varied 

treasure, composed of coins and copper pins. The presence of pins indicates that the bodies were 

buried with a shroud. Coins along with burials, due to pagan reminiscences, could indicate two 

things. The first that they took something valuable to the other world and a second theory could 

refer to the payment of the boatman. Infantile individuals did not present the same discourse as 

adults, and this may be because they were not yet baptized and therefore were not Christian bodies 

(Casillas & Alvarez, 2005). 

Several levels of burials have been found, especially in the northwest area, in which up to three 

superimposed burial phases have appeared. In most of these cases of overlap, one of the layers 

corresponds to ossuary (Excavation Report, 2002-2003 (cited in Casillas & Alvarez, 2005)). The 

state of conservation of these skeletons is diverse, being the best conserved, adult skeletons and 

those located in lower levels. These burials are assigned to the stratigraphic unit (U.E) 1-250 

(Excavation Report, 2002-2003 (cited in Casillas & Alvarez, 2005)). 

A study of 16 individuals from this strata indicated that life in medieval times was appalling, the 

poverty of the diet is evident in the study of teeth and malnutrition is reflected in the growth pattern 

of children, well below the current one demonstrated through previous studies. The poorest 

population was buried in the courtyard of the cloister, leaving the church for noble characters 

(Casillas & Alvarez, 2005). Five of these remains will be examined in the study at hand. 

Church 

A second burial site is the church, where burials appear in both the central nave and the side chapels 

(located in the southern corridor and are total nine in number). The chronology of these burials is 

from the 16th to the 19th centuries. All the burials here were arranged from West to East. The state 

of conservation of these skeletal remains is not optimal, possibly due to a higher acidity of the 

substrate or due to the remodeling in the 19th century (Casillas & Alvarez, 2005) 
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In the 2002-2003 campaign, 224 west-east skeletons were documented (Casillas & Alvarez, 2005). 

There is an area of overlapping tombs at the feet of the church up to four levels. The side chapels 

on the other hand have a single level and a treasure rich in objects of personal adornment and coins, 

associated with burials. All the burials of the central nave belong to the U.E. 1-350, except for 

some examples of individual tomb presenting another U.E. (Excavation Report, 2002-2003 (cited 

in Casillas & Alvarez, 2005)). Three of the individuals buried in the central nave will be examined 

in this work. 

Chapter Room 

The capitular room is the third place of burial. It was part of the political-administrative space of 

the Dominican friars but it also had a sepulchral function. During the archaeological intervention 

carried out in the chapter hall, which was located to the right of the east part of the cloister, 26 

tombs were found with their corresponding architectural structures. They were formed by varied 

materials: brick, stone and various moldings. (Excavation Report, 2002-2003 (cited in Casillas & 

Alvarez, 2005)) 

These burials belong to successive historical periods of the 14th and 19th centuries. An early period 

refers to all the burials associated with the architectural structures of the tombs. A second phase, 

anterior in antiquity to the first, corresponds with a second burial. A third phase, with a superior 

antiquity with respect to the previous ones, corresponds with a level of ossuary and under this 

another level of ossuary of a superior antiquity was found (Excavation Report, 2002-2003 (cited 

in Casillas & Alvarez, 2005)). 

The intervention in the capitular room concluded with a total of 56 burials of which one belongs 

to a subadult individual and in most of them the head was located to the east which is the opposite 

to that in the cloister (Excavation Report, 2002-2003 (cited in Casillas & Alvarez, 2005)). The 

recovered materials are diverse such as bone buttons, remains of leather sandals, rosary beads, 

scapulas, coins, everything related to the rudimentary and the shroud of the friars. As a general 

conclusion, the excavation campaign (2002-2003) has managed to provide data on the construction 

of the old convent of San Pablo and confirms the historical data proposed with archaeological 

evidence. 
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3 

Scientific Background 

There is a vast variety in the culture and diversity among humans in both space and time. 

Archaeology helps to study all the various past cultures and with the advent of archaeometry it has 

become easier not just to understand the material remains of past humans but also their way of life, 

origin, mobility, health status, and diet and so on. Physical anthropology now is being assisted by 

the chemical and physicochemical analysis of the skeletal remains along with the conventional 

anatomic/anthropological study. This methodology can enhance our knowledge in various ways 

and can help to develop quite similar reconstructions about all the aforementioned questions and 

many more (Szostek et al., 2003).  

Trace element (TE) analysis is a versatile analytical approach for archaeometry which can be 

utilized to provide basis for the reconstruction of the food economy, living habits, environment, 

and dietary habits of the ancient populations throughout the history of humans (Boscher-Barre & 

Trocellier, 1993; Molleson et al., 1988; Reiche et al., 1999; Brenn et al., 1999; Elliott & Grime, 

1993).The processes of incorporation of trace elements in the bioapatite of the skeletal system are 

active right from the beginning of the life of the individual directly from its environment till after 

the death burial period, termed as diagenesis (Reynard & Balter, 2014).  

Hence not just post-mortem diagenesis but even living habits of any remains can be inferred from 

the variability in the elemental compositions of both teeth and bones (Seiler et al., 1994). Thus it 

might be concluded that archaeological investigations related to ancient populations and their 

living habits and environment can be carried on with the help of such elemental markers by 

profiling the elements in ancient human remains (Carvalho et al., 2000). 

3.1 Elements in the human body 

The elements present in the human body have been divided roughly into three (or two in some 

cases) categories namely: 

a) Major elements 

The six elements namely oxygen, carbon, hydrogen, nitrogen, calcium and phosphorus which 

make up around 99%age of the human body are considered as major elements.  
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b) Minor elements 

Potassium, sulfur, sodium, chlorine, and magnesium make up the most of the remaining 

composition of the body and are termed as minor elements. 

c) Trace Elements 

Elements such as iron, zinc, silicon, strontium, bromine, lead, copper, manganese, barium and 

many more make up less than 1%age of the body composition and are known as trace elements. 

Some of them are essential or have a favorable effect on the body, while some seem to be toxic or 

do not have any known function (https://sciencenotes.org/). 

Some authors have classified major and minor elements together as major elements and the rest as 

trace elements or minor elements (Underwood, 1959). 

3.2 The major elements 

Phosphorus and Calcium 

Phosphorus is an indispensable part of the apatite structure of both teeth and bones. The analysis 

of phosphorus present in the remains can be used as a measure of the extent of degradation and 

diagenesis acting on them. Ca/P ratio is usually measured for such inferences. Calcium makes up 

the largest percentage in bone and teeth mineral which is up to 38%age for bones and is more or 

less constant for all cases except when found in archaeological context with fully preserved 

collagen it can range between 26%age-38%age (Burton, 2008). Thus it is usually measured in 

order to assess the quality of the sample in most cases (Allmäe et al., 2012).  

3.3 The trace elements 

The TEs assimilated in the apatite of any living being can be broadly divided into two following 

categories. 

3.3.1 Essential elements 

Essential elements are those which are required by the human body for regulating various functions 

and thus play a very important role in our metabolism and other biochemical pathways. Their 

concentration has to be controlled in such a way as to fall exactly between the thresholds of toxicity 

and deficiency i.e. neither too much nor too less. Consequently, by measuring the concentration of 

such elements in the archaeological remains, it is possible to figure out any possible deficiencies 
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or toxicities in the past societies (Patterson et al., 1987; Rasmussen et al., 2008). Essential elements 

can help to determine the diet, metabolic activity and so on for the individual since they are 

important for the bodily functions in one or the other form (Reynard & Balter, 2014). They are 

also actively involved in the activities of the enzymes and proteins which are essential for bone 

growth (Yamaguchi et al., 1986).   

Three important examples of such bioessential elements are zinc, iron and copper. All of these 

three play a vital part in the metabolism in human body. Their concentration in the body is 

governed to be lie between the toxic and deficient levels since they are so crucial for many bodily 

functions. Zinc is a component of more than 300 metalloproteins which function as enzymes or 

have other important structural properties (Cousins, 1985). Iron is well known to be present in 

haemoglobin which is involved in the transfer of oxygen and transport of electrons within the 

body. Copper is highly associated with iron in metabolic processes and pathways and facilitates 

the transfer of electrons through biochemical reactions. Manganese is another essential element 

whose high concentration in the human remains can give evidence of high ratios of plant foodstuff 

in the diet of the individual but it is not always the case (Allmäe et al., 2012). 

3.3.2 Non-Essential elements 

Non-essential elements are termed so because they do not yet have any recognized function in the 

human body but due to their similar properties to bioessential elements, they tend to replicate the 

behaviour of such elements. These are the elements which get incorporated in the apatite replacing 

the essential element. Hence in general, they are not part of any metabolic pathways and their 

biological behaviour is understood better by calculating their ratio in reference to that of the 

bioessential element that they mimic (Reynard & Balter, 2014). Their analysis can be helpful to 

rebuild the trophic chains by comparing their concentration with that of the essential element. They 

usually due to their similar size and chemical properties to an essential element, passively become 

part of biochemical processes and pathways in the biological organisms. For example alkali earth 

elements like Ba, Sr, Mg and others which might get accumulated in large amounts during the 

lifetime of an organism while others like rare Earth elements (REE) such as Hf, Th, U which get 

stored in the remains post-mortem and can give information regarding the tracing of the diagenetic 

processes and even dating of the remains (Reynard & Balter, 2014). 
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Strontium and barium are two important non-essential TEs which are associated with Ca and their 

ratios with Ca have now been used for over sixty years (Comar et al., 1957; Wasserman et al., 

1957). The body undergoes the process of purification in which a healthy adult mammal reduces 

the ratio of Sr/Ca and Ba/Ca during the various metabolic pathways. This lowering of nonessential 

elements in the mammals leads to reduced ratios of Ba/Ca and Sr/Ca in tooth, body and bones as 

compared to that in the food when one moves up the trophic pyramid. Lead is another non-essential 

TE which, instead of being a vital part of nutrition for the body, is a rather harmful and toxic 

element for biological organisms. Lead is taken up by the body from the surroundings. The lungs 

or digestive tract facilitate the intake of lead in an individual (Bronner, 2008) which keeps getting 

built up in the bones throughout the life of the individual if and whenever the body is subjected to 

any source of lead pollution. 

Apart from these two categories, there might also be some non-toxic elements which might get 

absorbed in the gastro-intestinal tract if they are needed by the body. Hence the composition of 

such elements is developed as a result of the balance between their intake in the diet and their 

metabolic requirement. Enameloblasts and osteoblasts are two more very particular types of cells 

which govern the precipitation of apatite crystals and in turn have a huge effect on the 

concentration of trace elements (Reynard & Balter, 2014). 

From the point of view of palaeoecological and paleontological studies it is imperative to be able 

to differentiate the bio-essential elements from the non-essential elements since their behaviour 

and the processes are different in the body.  

3.4 The Structure of Bones and Teeth 

Teeth and bones are minerals consisting of a hydroxyapatite and protein matrix along with a 

calciumphosphate which is inorganic in nature. Interestingly enough, they both are helpful in 

monitoring the doses of various elements to which any human has been exposed to (Carvalho et 

al., 2004). Bones and teeth generally are composed of an inorganic matrix, an organic matrix and 

different cells. The creation of mineral tissues in both of them is being governed by these cells. 

Teeth and bones are both quite dynamic structures in their own but bones much more so than teeth. 

(McKee et al., 2005).  
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Bones and teeth are very similar in their compositions but with some vital differences owing to 

their distinct functions. The bones are composed of some amount of non-collagenous proteins, and 

collagen which is the main fibrous protein that makes up its organic matrix. It is the main protein 

that provides flexibility to tissues like tendons and ligaments but the actual rigidity required to bear 

greater loads comes from the inorganic mineral part which is present alongside the collagen matrix 

in the bones and teeth. Tooth dentin and cementum are also composed of collagen as the primary 

organic component but in the enamel there is no collagen present. The major mineral present in 

the enamel is similar to the hydroxyapatite mineral found in the inorganic matrix of bones. The 

nanocrystals present in bone apatite have a larger number of possibilities of substitution as a result 

of the various types of vacancies in the molar ratio of Ca/P which is not the case for the enamel 

apatite and thus is more approximate to the actual stoichiometric hydroxyapatite ratio of 1.67 

(Boskey, 2007). 

3.4.1 Teeth 

Teeth are also composed of different tissues just like bones and can be differentiated at organ level. 

Teeth comprise of inorganic, organic and water fractions. Their inorganic stage consists of the unit 

cell (Ca,X)₁₀(P,C)₆(O,OH)₂₆. The microcations do not generally construct complex ion species and 

prefer coordination with oxygen instead (Liu et al., 2014). These cations have a small ionic radius 

and high charge/radius ratio and can substitute each other. The X in this chemical formula signifies 

an assortment of potential replacements for Ca, such as Sr, Ba and Pb (McConnell, 1973). The 

exact chemical formula for enamel is (OH)₂Ca₆[(P₅.₈C₀.₂)O₂₄](Ca₃.₁Mg₀.₁C₀.₅) which estimates the 

Ca/P ratio at about 2.02 (Gruner et al., 1937).  

Tooth is basically made of four tissues namely enamel, dentine, cementum and dental pulp. The 

crown is made-up of these vital tissues and is covered in enamel at the top of the nape of the tooth 

which extends until the gumline. This enamel is very hard thanks to its almost completely mineral 

composition without the presence of any or very little protein. The crown of the tooth is visible 

once it get erupted (Liu et al., 2013). The dentin is the most important constituent of a tooth which 

is situated right under the enamel. This dentin then is separated from the surrounding jawbone by 

a composite material made of dentin and bone which is called cementum which along with the 

jawbone is connected with the tooth by a periodontal ligament surrounded by a membrane 

(Boskey, 2007).  
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The tooth is able to carry out its functions with the help of a regular supply of blood vessels and 

nerves into the pulp cavity inside the dentin. After mineralization, in early life, the enamel remains 

closed and will no more carry out notable physiological exchange of elements (Liu et al., 2013).  

Human beings generally have twenty deciduous teeth in the primary stage of their life and thirty-

two permanent teeth when they reach adult hood. Each type has its own time frame for 

calcification, growth and eruption (Table 1) (Hillson, 1996). Such differential growth of teeth in 

humans can therefore provide the possibility of combining multiple teeth of the same individual 

to create a composite time series using TEs. This combination allows the construction of longer 

continuous records of seasonal variations in paleo-environments or diets during the years in which 

the teeth mineralized (de Winter et al., 2016). Teeth are fundamentally classified into four groups 

viz. incisors, canines, premolars and molars. 

Teeth were reported in 1930s to contain a variety of minor or trace elements (Dreal, 1936; Lowater 

& Murray, 1937) and thus conserve great data through a life span varying with environmental 

exposures (Liu et al., 2014).  

 

Table 1: Development of permanent dentition (Simon & Stevenson, 1975). 

Designation Calcification begins Eruption 

Central incisor 3-4 months 7-8 years 

Lateral incisor 10-12 months 8-9 years 

Cuspid 4-5 months 11-12 years 

First bicuspid 18-21 months 10-11 years 

Second bicuspid 24-30 months 10-12 years 

First molar birth 6-7 years 

Second molar 30-36 months 12-13 years 

Third molar (wisdom) 7-9 months 17-22 years 
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3.4.2 Bones 

Bone is a major part of the skeletal system. It is a living, dynamic structure which provides a 

supportive and defensive foundation for the body. It provides a repository of calcium and 

phosphate and functions in metabolism also. Core of the bone consists of marrow, which serves as 

a repository of nutrients and creates several forms of blood cells. The artificial segment is made of 

crystals which build up hexagonal plates that are arranged in a regular way on and parallel to the 

axis of the collagen fibers. Bones are made up of customarily hydroxyapatite, but they also consist 

of carbonate, citrate and lesser amounts of sodium, magnesium, potassium, chloride, fluoride, and 

a number of other elements (Tandon et al., 1997).  

Bone tissue is divided into two sections: compact (cortical) bone and trabecular (spongy and 

porous, cancellous) bone based on the hardness, porosity and the content of soft tissue existent in 

them. Though not every bone can be determinedly categorized as compact or trabecular as some 

types are intermediate in porosity and challenging to classify. The compact bone is the rigid dense 

part enclosing the outer walls of all bones and is conjoint in the streak of the long bones. The 

trabecular bone is a pliable formation seen at the core of flat bones and at the edge of long bones. 

It is extremely filigree being soft and comprising mainly of bone marrow (Arnold et al., 1966).  

Bone is an exemplar of a biological specimen that presents many challenges to acquire a sample 

for chemical scrutiny. Thus, it’s not surprising that dependable chemical composition data, 

especially for minor and trace elements, are few.  

3.5 Trace Elements in Bones and Teeth  

The concentration of different elements in the apatite mineral is linked with various factors such 

as their intake from water, food, metabolic pathways, respiration, and exposure to the 

environmental factors and also formation of some definite tissues while the individual is in the 

period of in utero development (Dolphin et al., 2005). There are certain physiochemical (external) 

parameters such as pH, salinity, temperature, soil composition etc. that govern the uptake of trace 

elements. This systematic occurrence is predictable (Darrah, 2009). TEs differ from one person to 

another and therefore can also be used for forensic objectives (Perrone et al., 2014). The metabolic 

reactions in the body do not have a strong influence on elements such as Sr and Ba which are thus 

more useful to derive palaeodietary inferences because of their ability to be directly correlated to 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

23 
 

food habits of each individual. These elements are also incorporated in the body when they replace 

Ca in the hydroxyapatite crystal of the bone mineral and hence are also prone to diagenetic 

alterations as well (Pankowska et al., 2016). 

Bones are one of the most dynamic structures in the human body and one of the hardest as well. 

They are dynamic since they keep getting remodelled periodically all throughout the life of the 

individual. This turnover of bone or its continuous replacement is called remodelling in which 

cycles of simultaneous formation of new bone and resorption of existing bones keep occurring. 

This process does not stop even when the growth of an individual might stop and thus leads to 

storing of trace elements even in adult skeletons (Swanston et al., 2012). Owing to the equilibrium 

between these two processes of resorption and formation, every year all through the life of any 

individual, about 10%age new bones are being formed in case of mature bones. The turnover rates 

for both of them are quite distinct, i.e. 4.3%age of the total mass of the Ca exchanged per year 

belongs to the compact tissue while 32%age of it can be attributed to the spongy tissues. What 

makes them really useful in archaeology is the fact that the bone structure survives death and thus 

can be encountered in fossil (Abbott et al., 1996) as well as archaeological records (Mulhern & 

Van Gerven, 1997).  

Due to the process of turnover or remodelling of bones owing to cellular activities, there is a 

variation in the composition of bone depending on the environmental factors, health and the age 

of the tissues and the age of an individual. Even within the bone different localities within the 

trabeculae and osteons can have difference in their crystal size, chemical composition and in the 

mineral composition depending on the age of the tissues (Boskey, 2007).  

Teeth also exhibit this variability in constitution and structure among the different components. 

For the mature tooth enamel there is no process of removal and re-deposition, in short there is no 

remodelling procedure for enamel (Boskey, 2007). Moreover, the organic part of its matrix is 

already eroded and additionally enamel is not made of a collagen matrix (Margolis et al., 2006). 

Thus the chemicals which can be used for repairing the damaged enamel by remineralization or 

some bacteria that release acids which can cause dental caries and cavities as a result of dissolution, 

are the only ways by which the composition of tooth enamel can be changed (Verdelis et al., 2007). 

There are many environmentally originated elements which get incorporated in the mineralised 

structures of the human body during its lifetime (Carvalho et al., 2000).  
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The amount of elements incorporated in the tooth enamel is much less than that in the bones 

(Eggins et al., 2003). This happens because hard tissues have different properties when it comes 

to absorption of minerals. While the enamel is being mineralized, entry of Ca is enhanced to the 

detriment of the Sr and Ba level and therefore they both are not present in enough quantities 

(Balter, 2004). Teeth can preserve ontogenetic data and are quite tough and impervious thanks to 

their highly crystalline structure. They are able to record the chronological development in the life 

of an individual in the form of element distribution at various degrees of mineralization. This 

variation in the distribution is caused by factors such as health, illness, stress and diet of an 

individual (Dolphin et al., 2005). 

The research has delved deeper into micro and macro-elements and their investigation in skeletal 

remains in the last thirty years. This newly developed area of research has opened up new avenues 

of studies in the field of anthropology which offers various possibilities of research as has already 

been said such as studying diet, pathology and diseases (Glen´-Haduch et al., 1997), the social 

status and also the physiology of the ancient communities (Schutkowski, 1994; Schutkowski et al., 

1999).  

3.6 Main factors for TE uptake in bone and teeth 

3.6.1 Diet 

The food habits of past societies have long been a subject of enquiry. In case of populations 

belonging to historical times, information about the food can easily be found from historical 

records and remains. This information can be also complemented with archaeozoological and 

archaeobotanical remains and human evidences found from archaeological contexts.  

Diet reconstructions have also been made possible by the analyses of chemical elements in the 

bones and teeth of past humans. Somewhere in the second half of the 20th century, the first attempt 

at trying to analyse the elements in human bones in order to understand and recreate the food habits 

of the ancient communities was undertaken by Gilbert (Gilbert, 1975) in 1975 and by Brown in 

1973 (Brown, 1973). They consequently have been considered the forerunners of such studies and 

led to a rigorous wave of such researches in the 1980s. Since then, there have been many studies 

upon the dietary habits of past societies. Usually the study of essential elements plays an important 
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part in diet reconstructions. For example the presence of elements such as zinc (Zn) or copper (Cu) 

usually points towards the ingestion of meat in the diet (Buikstra et al., 1989).  

Of late, trace element analysis has shifted its focus from palaeodiet reconstruction towards the 

understanding of diagenetic processes and their impact (King et al., 2011; Maurer et al., 2011) 

after settling on the fact that bone chemistry is quite complicated. The promise of a research field 

developed on the basis of the relation between trace elements in human apatite structures and 

particular trace element concentrations has now faded after the initial boost (Brown, 1974). 

Nevertheless, barium and strontium are still being used for diet reconstruction by scientists 

(Kamphaus, 2013). 

3.6.2 Diagenesis 

The composition of trace elements in teeth and bones is considered to be a good indicator of the 

level of the exposure of that individual to the elements present in the past environment and diet. 

But the complexities arise when these elements not only get incorporated in the body while alive 

but can also assimilate post-mortem from the archaeological burial environment of the remains 

(Swanston et al., 2012). Post-depositional chemical alteration or diagenesis in archaic human bone 

is the major problem in the use of trace element examination for dietary reconstruction. Due to its 

regular remodelling and recreation, bones are viewed as suitable dose monitors for some of the 

trace elements. But on the other hand, they are quite vulnerable also to diagenetic alterations even 

after the death of the individual owing to the inner channels in its porous structure and an open 

morphological structure. This post-mortem assimilation of trace elements differs from element to 

element. Elements like copper, iron, lead and manganese are very likely to get incorporated in the 

bones due to the surrounding enriched soil of the burial ground (Carvalho et al., 2004).  

Diagenesis has been discussed a lot in the present study as well as in various other literatures. The 

main obstacle in the interpretation of trace elemental data in archaeological remains, especially 

human remains, is that the elements of interest such as Fe, Cu, Mn, Zn, Sr, Ba and Pb and others 

are subjected to post mortem changes due to diagenetic processes during the burial period. They 

are related with the climate and geology of any site and can vary within the same site between 

different burials. Thus it is imperative to thoroughly assess each site independently of the other 

(Dudas et al., 2016). 
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The alteration due to diagenesis is not only in the form of change in the concentration of the trace 

elements but can also lead to the depleting or enriching of the levels of major elements such as 

phosphorus or calcium. This makes it vital to give due regard to the possible changes in the 

chemistry of human remains such as bones or teeth due to diagenesis before trying to make 

conclusions on the dietary reconstruction. Thus, the study of past food habits and bone chemistry 

requires a compulsory utilization of one or more of the several ways to assess the effects of 

diagenetic alteration in the remains. These methods include evaluation of Ca/P ratio, mutil-

elemental correlational studies, evaluation of soil contaminants such as yttrium and zirconium, soil 

analysis to record the moisture and pH, comparison between different tissues in the human 

remains, and others. To be able to get more dependable results for the palaeodiet reconstructions, 

such methods provide a better understanding of the concentrations of different trace elements. The 

measurement of diagenetic changes is an advancing field with new approaches promising to bring 

in better assessment of diagenetic changes and the original biogenic signal in the human tissues 

(Price et al., 1992). Such researches have increased in the last few decades which try to record 

methods of monitoring and measuring diagenetic contamination in archaeological samples in order 

to neutralize their effects on teeth and bones (Nelson et al., 1986; Sillen, 1986; Price et al., 1992; 

Sillen & Sealy, 1995; Nielsen-Marsh & Hedges, 2000a, b; Hoppe et al., 2003). Sometimes the 

removal of diagenetic effect becomes inevitable but still the situation can be assessed and 

improved by using suitable cleaning and sampling procedures. 

Bones are the tissues that keep remodelling and regenerating throughout the life while teeth enamel 

is very static in nature once it has formed early in the life (Boskey, 2007). As has already been 

mentioned, the enamel is more resistant to diagenesis than bone tissues (Reynard & Balter, 2014). 

Contamination of bone in the ground embraces both physical and chemical forms. The airy shape 

of bone tissue is sensitive to infiltration by foreign materials. Calcium, for example, can be initiated 

through the precipitation of calcium carbonate in ground water. Hyphae (an algal growth), rootlets 

and fragments of charcoal are also perceived inside the bone structure as physical contaminants. 

Lambert et al. (1989) have advocated the use of mechanical abrasion to extract the outer surface 

of bone prior to examination as mentioned earlier. This preparation critically reduces the intensities 

of Zn, Cd, K. Al, Fe and Mn in bone but does not alter Na, Ca, Mg, Sr and Ba (Price et al., 1992).  
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Many researchers now suggest the use of dense cortical bone in contrast to more porous trabecular 

tissue to lower the effects of such physical contamination (e.g. Price et al., 1989). Trace element 

examination of archaeological bone has fundamentally disclosed three key groups into which 

elements fall: 

a) Elements possibly introduced due to noteworthy diagenetic activity such as Fe, Al, Mn, Zn, Cu 

and Mg. 

b) Elements which incline to leach out of bone with time such as Na and Mg. 

c) Elements in bone primarily as biogenic signals such as Ca, Ba and Sr. 

When possible, the test for a correlation between concentrations of different elements is a powerful 

tool for assessing the extent of diagenesis of a given element in a set of fossil samples. This is 

routinely done for C and N in bone collagen to assess the level of preservation of the bone and 

should be the case for Fe, Cu, Ba, Pb, Sr and other TEs (Jaouen et al., 2012; Pietruszka & Reznik, 

2008) due to its simplicity.  

All these above mentioned chemical elements and the correlations between them are being 

continuously explored in order to gain a deeper cognition of the dietary habits, modes of nutrition, 

palaeoenvironmental conditions and the changes occurring in them through space and time. 

Theoretically, this observation has become a rule to base research on elemental concentration in 

osseous remains and its relation with the socio-economic standing of the individual in ancient 

populations (Szostek et al., 2003).  

3.7 Trace Element Detection and Quantification using ICP-MS 

There are a number of techniques in the literature (Bolann et al., 2007; Zwanziger, 1989)  which 

have been used in the quantitative and qualitative assessment of trace elements in human remains 

such as Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) (Yoo et al., 2002; 

Kniewald et al., 1994),  Atomic Absorption Spectroscopy (AAS) (Martinez Garcia et al., 2005; 

Ericson et al., 1991), X-Ray Fluorescence (XRF) (Carvalho et al., 2004), but most of these are not 

able to identify and quantify multiple elements simultaneously using only a very small amount of 

samples in a large range of variable concentrations. This is when Inductively Coupled Plasma-
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mass spectrometry (ICP-MS) comes in handy as it is capable of such kinds of analyses (Helliwell 

et al., 1996; Grattan et al., 2002).  

ICP-MS is a widespread and routine analytical technique that has been used for determination of 

trace elements since the 1980s. It delivers quick quantitative analysis and allows to find out more 

than 70 elements with good accuracy. Other techniques such as AAS, ICP-OES, NAA have been 

replaced by ICP-MS since the first instance of its commercialization in 1983 because as has been 

already mentioned it offers a swift multielemental trace element analysis in a wide range of 

concentrations with very small amount of samples. Except elements such as hydrogen, oxygen, 

carbon, nitrogen, chlorine, fluorine, argon, helium, neon, and others, it can detect almost all other 

important elements with the detection limits sometimes even up to parts per trillion (ppt). The 

technique is quite fast with its output of the results of analysis with each sample not taking more 

than 4-5 minutes depending on the number of elements or their isotopes required to be analysed.  

As a result, it is understandable that this sustained application of ICP-MS has given a boost to the 

examination of trace elements of biological origins (Tandon et al., 1998). In case of ICP-MS it is 

imperative to firstly optimize the instrument properly before starting the measurements since it 

makes sure that the measurements will be more precise and accurate (Yang, 2009).  It has already 

been applied successfully for TE analysis in bones and teeth in many studies (Allmae et al., 2012; 

Szostek et al., 2009; Dolphin et al., 2013; Liu et al., 2013; Lohne & Agelarakis, 2014). Nonetheless 

there are some constraints to the use of ICP-MS due to the non-availability of matrix matched 

standard reference materials in case of tooth enamel as well as the long time period and elaborate 

procedures required for the preparation of samples. Additionally, ICP-MS only gives bulk 

composition of the analytes but spatial resolution and in depth layerwise analysis cannot be 

performed using ICP-MS but is possible if it is coupled to a laser ablation system (LA ICP-MS).  
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4 

Objectives 

In the present study, the characterization of the bones and teeth samples from the burials in the 

middle age monastery of San Pablo in Burgos has been explored to understand the living food 

habits and post mortem diagenesis in some of the remains using TE analysis. The macro and micro-

elements present in the archaeological teeth and bones in this research have been studied using 

ICP-MS to find the possible contribution of these elements for getting insights into the historical 

samples.  

Some of the individuals included in this study have previously been subjected to microwear 

analysis for diet reconstruction. Therefore, the microwear analysis results can provide an 

additional and complementary verification for the results obtained from TE analysis about the diet 

of these individuals. Hence, the microwear results have been included in this work to make 

comparisons with the results obtained. 

The reliability of studies based on the examination of a single tissue type has always been 

questioned by researchers (Pankowska et al., 2016). The objective of the current investigation is 

to explore whether the concentration of trace elements in human bones and tooth enamel can reveal 

environmental conditions, dietary habits and assimilation of some elements from the surrounding 

soil. The intention of this study thus is twofold. First, inferences on food habits which aim at both 

the overall nutritional pattern and intra-populational dietary variations based on gender, status or 

chronology, which becomes clearer with the help of cluster analysis. Secondly, a comparison 

between the two different kinds of tissues in human bones along with tooth enamel with a view 

towards susceptibility to diagenetic changes. 

It is aimed to explore a new methodology to be able to quantify or at least recognize diagenetic 

alterations in the elemental levels. Not only the quantification but first and foremost to realize 

which TE levels are the most susceptible to diagenetic modifications and to which extent. This 

might be done by comparing TE levels between different types of tissues i.e. cortical bones, 

trabecular bones and tooth enamel in this case, and identifying significant differences in the 

concentrations. The difference between the concentrations of TEs in bone (spongy and compact) 

and dental tissue (enamel) may follow three possible factors: 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

30 
 

a) Element proportion in trabecular and cortical bone, and enamel may rebound the specific 

responses of each tissue to sampling. 

b) Levels may vary due to the heterogeneity of each element inside of living tissue caused by an 

individual’s development, specific way of metabolism, tissue mineral incorporation, disagreement 

in the elements’ absorption or age-dependent changes (Dolphin et al., 2005) and diseases (Alvira 

et al., 2011; Gemmel et al., 2002; Malara et al., 2006).  

c) Each tissue is temporary influenced by diverse post-mortem diagenetic alterations. Bone tissues 

break up more quickly than enamel, which is known to be less sensitive to diagenesis (Copeland 

et al., 2008). However, enamel is not entirely resistant to diagenetic action over longer time scales 

– similar to that of fossilised remains in paleo-anthropological contexts (Sponheimer & Lee-Thorp, 

2006).  

The objectives of the current study can thus be summarised as follows: 

a) To get acquainted with the sample preparation procedures and elemental analysis regarding 

archaeological human remains and ICP-MS; 

b) To make inferences on the diet of some individuals buried in San Pablo Convent using TE 

analysis and to compare them with previous literature as well as with microwear analysis; 

c) To explore the establishment of a methodology for recognizing diagenetic uptake using different 

kinds of skeletal elements- teeth enamel, cortical and trabecular bones from the same samples; 

d) To find possible relations in diagenetic and metabolic pathways between different TEs; 

e) To explore the development of a cost-effective methodology for making in-depth research into 

palaeodiet and diagenesis using human remains from sites where archaeological context cannot be 

revisited. 

In this thorough study we represent our pilot research concerning the differences in trace elemental 

responses of different kinds of skeletal tissues (bones and enamel) to various external factors most 

specifically diagenesis. Contrast was expected among dental tissue and bone tissues. If this is not 

the case, then the difference relate to factors that are not related to diet or geography. Discussions 

have been build up using literature review in order to bring out the reasons behind such differences. 
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5 

Materials and methods 

The bone and teeth samples belonging to five individuals from the burials found in the cloister 

courtyard (UE-250) and three individuals buried in the church nave (UE-350) excavated from San 

Pablo monastery were selected to be analysed in this work. All of these individuals were fully 

grown adults whose exact age is not known. All the specimens studied here belong to the 

archaeological collection of the Medieval Monastery of San Pablo, located in the city of Burgos 

(Spain) and housed in the LEH of the University of Burgos. In addition to this, detailed 

anthropological information about the samples is still unpublished at the time of writing and thus 

not available to be included in the study at hand. The details are given in the table (Table 2) and 

the pictures of the samples can be seen in appendix I.  

Table 2: Details of the samples analysed in this study. 

5.1 Bone sampling 

Classification of any specified type of bone as an idiosyncratic sample for the whole skeleton 

emerges to be far from being sufficient. For the interest of gaining an ample insight into the 

dispersion of various trace elements in different types of bones, it is essential to carry out controlled 

inspection on different types of bones (cortical and trabecular segments from the same sources) 

from the same skeleton under well determined sampling conditions (Tandon et al., 1998).  

San Pablo 

cataloge number 

Number for the present Study Gender 

02.25/1-250/7579 SP-7579 Female 

02.25/1-250/7575 SP-7575 Female 

02.25/1-250/7533b SP-7533b Female 

02.25/1-250/7581 SP-7581 Male 

02.25/1-350/7535 SP-7535 Male 

02.25/1-350/7525 SP-7525 Female 

02.25/1-350/7544 SP-7544 Male 

02.25/1-250/7568 SP-7568 Male 
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For minimizing impact to the skeleton, sampling intact bone should be avoided if fragmentary 

bone is available while selecting a bone for study. This was taken into consideration while taking 

the samples and already fractured and fragmented areas were used for collection of both spongy 

and compact bone tissues. Bone samples have to be extracted carefully because different bone 

tissues and their different parts may not be alike in their elemental composition (Smrčka, 2005; 

Pollard et al., 2007). Although the amount of enamel and bone needed for TE analysis is quite 

small (less than 1 g for traditional bulk sampling methods), there are ways of minimizing one’s 

impact on archaeological materials when selecting prototype for sampling. It should be kept in 

mind that collecting samples for TE analysis contain the permanent subtraction of enamel and bone 

from archaeological specimens and samples which are entirely expended during digestion and 

ICP-MS.  

5.2 Bone Sample preparation 

Calcium and carbonate are among the most abundant ions in soil solutions which may desecrate 

bone as calcium carbonate or exchange ionically with existing hydroxyapatite to produce a 

carbonate apatite (Price et al., 1992). 

The preliminary efforts to reduce or eliminate contaminants involved the expulsion of the 

outermost cortex and the inside surface of the bone by physical abrasion (Lambert et al., 1989). 

This abrasive cleaning significantly lessens the amounts of K, Fe, Al and Mn, which are abundant 

in soil oxides and clays but are markedly very low (< 200ppm) in fresh bone (Driessens & 

Verbeeck, 1990). Studies (e.g. Henderson et al., 1983; Williams & Marlow, 1987; Williams, 1988; 

Williams & Potts, 1988) of the amounts and pattern of TEs that are common in groundwater but 

are absconded in biological bone (e.g. Y, U, Th and rare earths) indicated that bones are not just 

infected superficially, however, but can be pervasively influenced by absorption and cation 

exchange. Abrasive cleaning extracts much of the most intensely affected portions of the bone, 

along with adhering soil minerals, but it does not fully extract contamination that might have more 

prevalently infiltrated the bone. In summary, mechanical attrition of the surface of the bone is a 

key step in the successful control of diagenesis, but may not be sufficient. Given the well-preserved 

state of bones and visibly non-existent concretion and physical minerals attached to the bone, the 

mechanical cleaning was restricted to only the removal of 2-3mm external layer of the bone.  
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Due to the nature of the present study which also aims at establishing diagenetic differences in the 

concentrations of TEs through the comparison of their contents in teeth enamel, spongy and 

compact bone tissues, bone specimen were not subjected to any rigorous chemical cleaning. The 

only pretreatment given to the bones before drilling out the powder was the mechanical abrasion 

of the exterior surfaces for already mentioned reasons. It has even been recommended to take the 

samples from cortical bone as this type of bone is less sensitive to diagenetic transformation than 

trabecular bone. The nature of the present study nonetheless demands the extraction of bone 

samples from both kinds of tissues for later comparative results on diagenesis. 

For acquiring the specimens of spongy and compact bones, femurs were selected as the sample 

collection part of the skeleton for each individual. Femurs can serve as a reservoir for TE data of 

until ten years before the death of an individual and were uniformly available for all the samples 

along with suitable fractured and damaged surfaces. Such surfaces were utilized to extract the 

samples so as to minimize damage to the integrity of the archaeological remains as far as possible. 

The compact bone was collected from the femur shaft in all the cases. For spongy bone collection, 

the most convenient and damaged areas were selected (Table 3).  

Collection of bones for TE analysis was accomplished using a Dremel Multipro drill, generally 

ensemble with an inverted cone tip to extract bone powder or a diamond disk saw to extract bone. 

Prior to extracting the sample, the sample area was cautiously worn out to extract surface 

contamination chunks. It has been advocated that minimum 50 mg to 1 g of bone should be 

collected as some preparation protocols for bone are quite stern and can result in a partial loss of 

sample (Hoppe et al., 2003). Both the trabecular and cortical bones were drilled with the same 

tools. The drill bits were cleaned with distilled water and dried after every sample extraction in 

order to minimize any contamination within the samples. The sample powder for bones was 

weighed after extraction on digital balance with 0.01 g precision (Table 3). 

5.3 Tooth Sampling 

Most initial dental element data were acquired by fusing various kinds of teeth or pooling samples. 

Nowadays we know there are many idiosyncrasies in elemental composition for various tooth 

types. Brown et al. have suggested the use of a single tooth type (Brown et al., 2002).  
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Table 3: Details of bone samples collected. 

Sample 

number 

Amount of 

cortical 

(compact) 

bone (g) 

Amount of 

trabecular 

(spongy) bone 

(g) 

Area of extraction for trabecular bone 

SP-7579 1.83 1.80 From inside the fovea 

SP-7575 2.51 1.66 From the inner surface of the shaft 

SP-7533b 2.29 1.40 Inside surface of shaft and from inside of the 

upper head 

SP-7581 1.48 1.59 Inner surface of shaft and epicondyle 

SP-7535 2.26 1.81 From inside the epicondyle 

SP-7525 1.90 1.62 From inside the epicondyle 

SP-7544 2.52 1.51 From the upper end of the femur 

SP-7568 2.93 1.55 From inner surface of damaged shaft and 

epicondyle 

 

For archaeological sampling of tooth enamel in case of dental remains it has been suggested to try 

to examine teeth that are no longer embedded in the alveolar bone if possible, as this cuts down 

the chances of damage to the surrounding alveolus and bones of the skull. Additionally, it was 

attempted to avoid removing enamel or bone specimens from those teeth or parts of the skeleton 

that shows pathological lesions, cultural modifications, or other diagnostic markers as these 

amenities can possibly be used to reassemble aspects of health, diet, growth, and socio-cultural 

practices midst ancient populations (for e.g., Larsen, 1997; Katzenberg & Saunders, 2008). 

For the current studies, mostly second premolars have been used wherever possible to try to 

homogenize the tooth type as far as possible. This decision of using second premolar was based 

on its availability in most of the archaeological samples for destructive analysis. For two of the 

individuals, 1st molar and 2nd Molar were used since the premolars were not available for analysis 

(Table 4). 
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Table 4: Details of tooth enamel samples collected. 

5.4 Tooth sample preparation 

As discussed earlier, tooth enamel is largely impregnable to diagenetic degeneration while 

archaeological bone is highly sensitive to post-mortem modification. As a result, pre-treatment 

protocols for tooth enamel are comparatively forthright and less deep than that necessary for 

archaeological bone specimens. While various groundwork procedures exist for archaeological 

tooth enamel, the common accord of washing overnight with weak (1.0 N) acetic acid to extract 

most of the diagenetic carbonates in enamel (Sillen, 1986; Hoppe et al., 2003) was undertaken. 

Given the very small amount of enamel expected to be recovered, the teeth were washed before 

being powdered. It has been already warned that specimens can lose up to 70%age of their weight 

resting on the definite arrangement protocol followed (Hoppe et al., 2003). Thus, the whole teeth 

samples were subjected to acetic acid baths. The teeth was then cleaned by rinsing with distilled 

water. Specimens were left overnight to dry. Subsequently the teeth were weighed using a digital 

scale with a precision of 0.01g.  

The enamel surface of the tooth for sampling was cut down using a Dremel tool and flat disc cutter 

to extract surface enamel. Dentin was manually separated from enamel whenever required. Enamel 

specimens were then broken down and consequently ground into a finer powder using a sterilized 

mortar and pestle. It was intended to collect approximately 5–20 mg of tooth enamel as has been 

Sample number Type of tooth sampled Weight of 

the tooth (g) 

Amount of tooth 

enamel acquired (g) 

SP-7579 M2 (with dental caries) 2.28 0.38 

SP-7575 M1 (with dental caries) 1.87 0.31 

SP-7533b P2 0.84 0.19 

SP-7581 P2 1.09 0.18 

SP-7535 P1 (with dental caries) 0.58 0.24 

SP-7525 P2 0.60 0.16 

SP-7544 P2 0.74 0.08 

SP-7568 P2 0.76 0.13 
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suggested in literature (Slovak & Paytan, 2012), although only a small amount of enamel is needed 

for actual examination. This is because some material may be lost during sample preparation. The 

enamel powder obtained was later weighed on the scale again (Table 4). 

Finally, it should be of utmost importance to frame up hypotheses as multiple elemental and 

isotopic signatures can be recovered from a single dental or bony element and plan the sampling 

strategy so as to maximize the kinds of chemical facts that can be recovered from the samples 

while minimizing damage to the skeleton (Slovak & Paytan, 2012). 

5.5 Sample preparation for ICP-MS 

Approximately 0.5 g of bone sample powder for both compact and spongy bones and around half 

of the quantity of enamel powder obtained, which was usually not more than a few miligrams 

(Table 4), were digested in 8 mL concentrated trace metal grade Nitric acid (HNO₃ 65%age 

Suprapur, Art. 1.00441, Merck KGaA, Germany) and 2 mL of Hydrochloric acid (HCl 30%age 

Suprapur, Art. No. 1.00318, Merck KGaA, Germany) in closed Teflon-TFM pressure vessels. 

These were left to digest according to a preinstalled digestion programme (Table 5) in an 

accelerated microwave digestion apparatus (ETHOS SEL, Microwave solvent Extraction 

Labstation, Milestone microwave laboratory system). The digested samples were then taken out 

after cooling down to the room temperature and diluted with 14mL of MilliQ water (H₂O). This 

base sample solution was stored in clean polypropylene vials. The weights were recorded 

independently at each step with a digital scale of precision of 1 mg. Duplicates were prepared for 

each of the samples to make more precise measurements. Preparation blanks were made for each 

set of eight samples throughout the complete preparation procedure with the same volumes of 

reagents. Blanks are useful to monitor possible contamination due to sample preparation 

procedures. A total of ten blanks were prepared for 48 samples. 

5.6 Semiquantitative and quantitative analysis using ICP-MS 

The semiquantitative mode in ICP-MS is used when the composition of the analytes is not known 

or only limited information is available. It was used for a preliminary screening of the composition 

of the samples in order to be helpful in the later quantitative analysis. The samples were diluted to 

approximately 3 times of the base solution using 2%age HNO₃ at first in order to perform a semi-
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quantitative analysis for the desired materials. The total dissolved solids (TDS) in the solution for 

analysis by ICP-MS has to be kept less than 0.1%age and the final concentration of acid has to be 

less than 5%age in the solution. This semiquantitative analysis without the use of any Certified 

Reference Materials (CRM) is done to find out what elements are present in the samples and to 

what level of concentrations. Taking this as the basis, further dilutions were prepared for the 

quantitative analysis in order to detect the elements according to their concentrations in the sample 

so as to keep the concentration of the desired element in the samples less than 200 ppb to fit the 

range of the calibration curve. A general overview of the different elements and their concentration 

was gathered out of which ³¹P, ⁴⁴Ca, ⁵⁵Mn, ⁵⁴Fe, ⁶³Cu, ⁶⁶Zn, ⁸⁸Sr, ¹³⁸Ba and ²⁰⁸Pb were selected for 

further quantification. The digested samples were later processed through a series of dilutions from 

the base solution for analysis of different groups of elements with different concentrations in 

different samples. Accordingly, the results were normalized using the respective dilution factors. 

 

Table 5: Digestion program used for the samples. 

Temperature Time (minutes) 

T(amb)-80⁰ C 4  

80⁰ C - 120⁰ C 4 

120⁰ - 180⁰ C 5 

180⁰ C 30 

Ventilation 60 

  

Calibration standards were prepared from serial dilutions of multi-elemental standard solution by 

Merck KGaA (1000 mg/L, 23 elements in 6.5%age HNO₃) traceable to various NIST Standard 

Reference Materials (SRMs) respective to each element with certified values for Ca, Fe, Mn, Cu, 

Zn, Sr, Ba and Pb. For phosphorus, Merck phosphorus ICP standard 1000 ppm solution was used 

with certified value (Table 6). The calibration standard solution concentrations ranged from 0 to 

160 ppb (0, 2, 5, 10, 20, 40, 80, 160 ppb) to fall within the linear range for the instrument, using 

approximately 1%age  ultrapure HNO₃. One calibration blank and at least five calibration 

standards were used to establish each analytical curve. Quality control standards (QC) were made 
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in the same acid matrix as the calibration standards at concentration near the midpoint of the linear 

range for each element analyzed. 

Table 6: The NIST SRMs and Recovery percentages for all the elements analysed. 

Element NIST SRM No. Recovery (%age) 

P  SRM 3139 a 98.8±8.5 

Ca SRM 3109a 102.3±15.9 

Ba SRM 3104a 94.8±4.2 

Sr SRM 3153a 89.6±6.9 

Zn SRM 3168a 91.8±7.7 

Cu SRM 3114 93.3±6.5 

Fe SRM 3126a 90.5±4.1 

Mn SRM 3132 91.3±6.1 

Pb SRM 3128 93.4±1.8 

 

The analysis was run at no gas mode available with the ICP-MS (Agilent 7500 ce, Octopole 

Reaction system) using an autosampler (CETAC Technologies, ASX-500, Model No. 510) until 

predetermined acceptance criteria (recovery percentage of 70-130%age, precision of 

RSD<10%age and linearity of R² ≥0.99) were no longer met. Prior to analysis, internal standard 

(ISTD) using ⁹Be, ⁸⁹Y, ¹⁵⁹Tb, ²³²Th were added on-line at the time of analysis. A minimum of three 

replicate scans were recorded for calibration standards, all QC and samples. The average result of 

all the multiple scans were used. The calibration curve was fitted using linear regression. The final 

concentrations have been taken as the average from both the sample and the duplicate of the 

sample. 

A tuning solution containing 1 ppb of Co, Li, Y, Ce and Ti was scanned prior to calibration and 

sample analyses to demonstrate instrument precision, stability and identification of ICP-MS. Rinse 

blank solution consisting of 1-2%age HNO3 v/v was flushed through the system after every sample 

and standard analysed. The detection limit for P, Ca, Sr, Fe, Mn, Zn, Pb, Ba and Cu was 

respectively 0.15, 0.16, 0.007, 0.056, 0.0027, 0.075, 0.0047, 0.003 and 0.007 ppb.  

5.7 Comparison with previous literature 

The obtained levels of the elements in question have been compared with previous studies 

including different methods of elemental analysis with samples belonging to different communities 
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and time periods in order to extract any possible inferences on the food habits. Ba/Sr, Zn/Ca, Ba/Ca 

and Sr/Ca ratios have also been compared with literature values.  

5.8 Statistical analysis 

A number of statistical tools have been utilized to process the data obtained from ICP-MS and 

make observations on the various aspects related to the diet of the individuals and the in-vivo or 

diagenetic uptake of elements in the samples. The statistical work was done using NCSS 11 Data 

Analysis software and Data Analysis Toolpak in Microsoft Excel 2013. 

5.8.1 Regression analysis 

Regression analysis was used to explore significant correlations between all the elements in all the 

three kinds of tissues. Significant correlations (p ≤ 0.05, confidence level ≥ 95%age) have been 

reported and discussed in detail. The relationships have been explored in order to find out any 

correlation among different elements in case of metabolic/diagenetic pathways or other 

antagonistic/synergistic relationships. Regression analysis has also been used to correlate log 

Ba/Ca and log Sr/Ca values for all the three kinds of tissues not only to make inferences on diet 

but also to find the proficiency of skeletal tissue examination in the reconstruction of past diets. 

The differences between bones and dental tissue need to be understood to find out the best one for 

palaeodiet analysis (Pankowska et al., 2016).  Distinction among dental and bone tissues is 

anticipated. The properties of each tissue type coupled with a lack of solid standard reference 

materials, can cause the different answer of TE signals and misunderstanding of the data. Thus, in 

order to find the most effective skeletal element for diet inferences based on Ba, Sr and Ca levels, 

regression analysis can be used.  

5.8.2 Two-tailed t-test assuming unequal variances 

In order to find statistically significant differences among TE levels between genders as well as 

between the two different stratigraphic units (from different chronologies and possibly different 

socio-economic status as well), two-tailed t-tests were performed with the null hypothesis being 

that the means are equal among each pair of gender and statigraphic units. The test was performed 

for each element in case of all the three types of tissues. The confidence level was taken at 95%age.  
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5.8.3 Scatter plots 

Scatter plots have been produced to compare concentrations for each TE among all the three 

distinct skeletal tissues and possible reasons have been discussed. It helps to distinguish between 

variability in the elemental levels according to the parent tissue. 

5.8.4 One way Analysis of Variance (ANOVA) and Tukey’s Honestly Significant Difference 

(HSD) 

Quantitative tests for diagenesis have already been suggested which include measurement of 

dense, long bones to relatively more airy ribs from the same individuals. In the same kind of bone 

tissue, there is little variation in composition among different bones of the same individual. Since 

diagenesis can partially affect porous and dense bones, distinct composition between cortical and 

trabecular bone tissues for an individual suggest post depositional alteration (Grupe, 1988; 

Lambert et al., 1985).  

The novel approach of using trabecular and cortical tissues from the same bone in every individual 

is being tried for the first time in this study. Femur has been used as the source for both trabecular 

and cortical bone tissues along with tooth enamel. ANOVA was performed for all the TEs to find 

out any significant differences among their levels with the null hypothesis being that the means 

for all the three tissues in case of each element are the same at a confidence level of 95%age. 

ANOVA has then been taken a step further by using Tukey’s HSD in order to try to quantify the 

significant differences with confidence levels taken at both 95%age and 99%age. 

5.8.5 K-means cluster Analysis 

The levels for TEs considered as good dietary indicators were used to cluster the individuals into 

possibly distinct dietary preferences using K-means cluster analysis. Sometimes classifying data 

into clusters may provide more information about the results. 

5.9 Microwear analysis for diet reconstruction 

Dental microwear analysis is based on the relationship between patterns of dental microwear and 

the kind of food consumed by the organism and has been found useful through many studies 

(Perez-Perez et al., 1994; García-Gonzalez et al., 2015, Perez-Perez et al., 2003). There are two 
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kinds of surfaces namely occlusal and buccal which can be studied for these patterns. While 

occlusal surfaces have pits and scratches due to abrasion and tooth-tooth wear and are useful to 

distinguish between hard and soft diets, buccal microwear is usually only affected by abrasion and 

is capable of providing dietary information regarding meat and vegetal composition. With occlusal 

surface it is difficult to assess meat consumption as well as long term food habits due to its faster 

turnover rate than buccal surface.  

It depends on the objective of the research to use either both the surfaces or any one desired. For 

this study buccal microwear data has been looked into which was available for only three samples 

but can provide information about the dietary habits of the individuals over a relatively longer 

period of time.  The number as well as the length of striations is studied for buccal microwear 

patterns which is affected by the abrasive particles in the food and factors such as chewing force. 

Meat eating habits can be identified by recognizing longer and frequent vertical scratches whereas 

vegetarian diet produces more and longer horizontal scratches (García-Gonzalez et al., 2015).  

The indices of the relative frequency of the horizontal and vertical scratches are compared in order 

to sort the samples into four dietary groups: 1) agriculturalist group, which is categorized by an 

entirely vegetarian diet; 2) hunter-gatherers from tropical environments, displaying a diet with a 

more intake of vegetal components than meat; 3) carnivorous hunter-gatherer and pastoralists, 

whose diet is primarily centered on meat and 4) hunter-gatherers from arid environments, who 

have a mixed diet. The three indices calculated i.e. the number of vertical and horizontal scratches 

divided by the total number of striations (NV/NT and NH/NT) and the number of horizontal 

striations divided by the vertical ones (NH/NV) are then used to plot and classify the samples into 

diet groups. (Perez-Perez et al., 1994, 1999; Lalueza et al., 1996). 

The microwear features can also be entered into discriminant functions (DF) which display a good 

capability to discriminate between the aforementioned four basic diet groups. The DF scores that 

combine a number of variables are used to classify the samples. Angular and linear measurements 

are taken for all the microwear features on the buccal surface using digitized micrographs and 

Adobe Photoshop software (García-Gonzalez et al., 2015). The final plots obtained have been 

inferred and compared with the data obtained from TE analysis in the current study.  
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6 

Results and discussion 

6.1 State of preservation and other observations 

Calcium and phosphorus are generally measured in order to evaluate the quality of the samples in 

terms of the preservation. A total of four male and four female adults constituted the samples 

(Table 2). The average percentage of Ca in the samples of cortical bones came out to be around 

30.3± 2.5 %age with a greater variability in case of women rather than in males (variance = 9.5*10⁸ 

for females and 1.44*10⁸ for males). Thus there are gender differences in the contents of Ca in the 

samples but these are not statistically significant. The calcium content ranged between 25.5 %age 

– 32.4%age. The least percentage of calcium was found in the female individual 7525 out of all 

the archaeological samples. In case of trabecular bones the average calcium percentage was 

calculated to be 25 ± 4%age. The calcium percentage for enamel was calculated to be around 31.3 

± 2.76%age. The mean of phosphorus percentage for enamel, trabecular and cortical tissues is 

respectively 15.8±0.86, 11±2.13 and 13.7±0.82 %age. 

The higher variability in Ca content among women might be explained by a higher variability in 

the level of diagenesis (Price, 1989).  Women’s physiological state also defines the calcium content 

in the bones of that particular individual. It is already known that the level of calcium in the bones 

of a woman might decrease during events of breast feeding, pregnancy or at the end of the fertile 

period of the woman’s life (Allmäe et al., 2012). Unfortunately, the exact age of the samples is not 

known.  

In order to describe the preservation state of the samples, the calculation of Ca/P ratio is important 

as it can indicate the state of the mineral matrix in the bone and teeth and its integrity. The average 

of the Ca/P ratio is 2·21 ± 0.11 for compact bones and 2.28 ± 0.13 for trabecular bones which 

agrees with the data that has been given in the published literature, (2·12 = El-Kammar, Hancock 

& Allen, 1989; 2·15 = Gawlik et al., 1982; Sillen, 1989; 2·16 = Katzenberg, 1984; 2.21 = 

Schutkowski & Hermann, 1999). The bones can thus be accepted to be in a good state of 

preservation. The Ca/P value for enamel came out to be 1.98 ± 0.18. Teeth enamel crystals have 

been reported to have a Ca/P ratio from 2.08-2.15 by different authors (Nylen et al., 1963; Cuisinier 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

43 
 

et al., 1992; Patel & Brown, 1975). Table 7 gives the summary of Ca and P measurements. The 

values for each sample can be found in table 23, table 24 and table 25 in Appendix II. 

 

Table 7: Summary of Ca and P measurements for all the three kinds of tissues. 

 
Tooth enamel Cortical 

bone 

Trabecular bone 

Ca%age 31.29±2.75 30.28±2.5 25.07±4 

P%age 15.79±0.86 13.70±0.82 11.04±2.13 

Ca/P 1.98±0.18 2·21±0.11  2.28 ± 0.13  

6.2 Comparison with previous literature values 

The results for all the elements in the tooth enamel and cortical and trabecular bones have been 

compared with data from already published literature. The techniques, chronology and sample 

preparation differ from one research to another and therefore there is a great variability in the 

elemental data published.  

Table 8: Comparison of concentrations (ppm) found in current study with previous studies for tooth enamel. 

Element  Mean 

from 

present 

study 

Carvalh

o 2007 

(Middle 

ages, 

South 

coast 

Portugal

) 

Carvalho 

et al., 2001 

(contempor

ary, Azores 

islands) 

Carvalh

o, 2004 

(Neolithi

c, 

Portugal

) 

Liu et al., 

2013 

(contemporar

y, Taiwan) 

Soares et 

al., 2008 

(contempor

ary) 

Mn 5.9±4.8 30 ± 11 3.2 ± 2.1 37 ± 20  1.5±1.3 

Fe 29.3±11.2  100 ± 80 11 ± 5 100 ± 40   

Cu 0.9±2.2 9 ± 5 2.1 ± 1.6 6 ± 2   

Zn 100.9±71.2 236 ± 60 150 ± 100 120 ± 50  202.6±124.

1 

Sr 363.9±177.

3 

350 ± 

150 

175 ± 35 120 ± 55 107.6±37.3 285.8±181.

7 

Ba 10.1±3.3 120 ± 70 
  

1.9±1.0  

Pb 0.3±0.2 40 ± 20 2.1 ± 1.3 0.5 ± 0.2 0.8±0.5  
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The two observations common for the teeth enamel (Table 8; Table 9, Appendix II) and the bones 

(Table 10) are the lower levels of Pb and Cu when compared with the values published in the 

literature from the contemporary experiments. Strontium levels in the tooth enamel have been 

found higher than those found in contemporary fishermen by Pinheiro et al. (1999) (Figure 7 a) 

and those found in the Middle Age remains from the South coast of Portugal by Carvalho (2007) 

(Table 8). However, they are lower, if compared with the Sr levels found by Carvalho (2000) in 

the chalcolithic remains from the sea coast site of Sesimbra, Portugal (Figure 7 a). For the rest of 

the elements namely Mn, Fe, Zn, Ba there is a great variability within the expected ranges of 

concentration from the information found in the literature.  

In case of compact bone, the Sr concentration was found to be lower than those found by Carvalho 

(2000) from the sea coast of Sesimbra. The rest of the elemental levels were also comparable 

except low levels of lead (Table 10). Zinc levels were found to be comparable to the literature 

values except they were much lower than those found by Annegarn et al. (1981) in their study in 

contemporary South Africa (Figure 7 a). 

 

Table 10: Comparison of literature values of various elements with the current study for compact bones (ppm). 

Element  Median  Range Carvalho et al., 

2000 (chalcolithic, 

Sesimbra sea 

coast) (Median) 

Janes et al. 

(cited in 

Carvalho et 

al., 2000) 

(Median) 

Carvalho et al., 

1998 

(contemporary) 

(Mean) 

Mn 4.46 1-14 37 4.6 ≤4 

Fe 32.61 14.3-441.6 227 95.6 153±265 

Cu 8.88 2.7-17 4.7 6.6 4.9±0.6 

Zn 116.73 96-195 82 147.1 172±26 

Sr 1220.49 757-2091 1352 
 

147±55 

Ba 85.38 33-553 
   

Pb 0.47 0.14-0.90 8.8 
 

25±17 
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a 

 

b 

Figure 7 (a, b): Comparison of literature values of various elements with the current study for tooth enamel (ppm) 
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In case of the concentration of lead (Pb) in the bones, there is not a great variability in the results 

(Table 23; Table 25 Appendix II; Table 26 Appendix II). Usually, in the towns and cities of Middle 

Ages and early modern times, Pb is found in the samples due to the use of lead pipelines for the 

transport of water and also the use of kitchen utensils covered with lead glaze (Smrčka, 2005). The 

reason might be that the population under study in this research was not urban in nature and 

therefore were most probably not using lead pipelines or lead glazed cooking vessels. This low 

level Pb as compared to the previous literature (Figure 7 b) might altogether be the result of post-

mortem uptake which cannot be excluded from the consideration since Pb ions have been found 

to pollute archaeological materials (Zapata et al., 2006). Even after such considerations, the value 

of Pb is quite low which indicates that the living conditions in that period were relatively free from 

Pb. Even in case of teeth, lead varies between 0.10 - 0.43 ppm. 

6.3 Regression analysis 

Statistically significant correlations between different TEs are reported in detail in this section. 

Based on the kind of tissue displaying the correlation, the metabolic or diagenetic relationships 

can be speculated for different pairs of elements. Apart from these, two types of relationships occur 

among the TEs, namely antagonistic and synergistic. Antagonism exists at two levels, absorptive 

and metabolic. At the absorptive level it occurs when the excess of one element can inhibit the 

absorption of another element in the intestines (Watts, 1990). For example excess intake of Zn is 

known to reduce Cu absorption (Davies, 2013). At the metabolic level, antagonism occurs when 

the excess of one element starts to interfere with the metabolic functions of another element or 

simply displaces it. Examples are Zn and Cu, Mg and P (Davies, 2013). Synergism exists among 

elements usually on a metabolic level. For example, Fe and Cu are synergistic because Cu is 

required in sufficient amounts for the utilization of Fe (Prasad, 2013). Many such antagonistic and 

synergistic relationships are present in the human body. 

6.3.1 Correlations between elemental concentrations 

Calcium displays a very strong correlation with phosphorus for spongy bones which indicates a 

strongly synergistic relationship (Figure 8 a). The synergistic relationship between calcium and 

phosphorus has already been mentioned by previous researchers (Watts, 1990). It also displays a 
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significant positive correlation with phosphorus levels in compact bones as expected (Figure 8 b). 

In case of tooth enamel, however, no significant correlation was found (Figure 9). 

 

 

 

 

 

 

                                             a                                                                                               b 

Figure 8 (a, b): Correlation between Ca and P concentrations (ppm) in spongy bones and compact bones 

 

 

Figure 9: No correlation between Ca and P concentrations (ppm) in tooth enamel 

 

Ca also showed inverse correlation with Cu, Ba and Fe in spongy bones (Figure 10 a, b; Figure 11 

a). P also displays similar relationships with the above mentioned elements since it is strongly 

correlated with Ca in the trabecular bones (Figure 11 b; Figure 12 a, b). Additionally, P also shows 

inverse relation with Mn which was not statistically significant in case of Ca and Mn (Figure 13). 

These correlations can be explained as antagonistic but it is interesting to note that these are only 

displayed in trabecular bones and not in cortical bones or tooth enamel. 
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Figure 10 (a, b): Inverse correlation of Ca with Cu and Ba in trabecular bones 
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Figure 11 (a, b): Inverse correlation of Ca and P with Fe in trabecular bones 
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Figure 12 (a, b): Inverse correlation of P with Cu and Ba in trabecular bones 

y = -619.99x + 320556

R² = 0.7002

p = 0.009

0

100000

200000

300000

400000

0 50 100 150 200 250

C
a 

(p
p

m
)

Ba (ppm)

Spongy bones
y = -2156.6x + 294310

R² = 0.6751

p = 0.01

0

100000

200000

300000

400000

0 10 20 30 40 50

C
a 

(p
p

m
)

Cu (ppm)

Spongy bones

y = -1266.4x + 135973

R² = 0.8115

p < 0.00

0

50000

100000

150000

200000

0 10 20 30 40 50

P
 (

p
p

m
)

Cu (ppm)

Spongy bones

y = -10.585x + 281564

R² = 0.5437

p = 0.037

0

100000

200000

300000

400000

0 2000 4000 6000 8000

C
a 

(p
p

m
)

Fe (ppm)

Spongy bones

y = -6.3562x + 128897

R² = 0.6835

p = 0.01

0

50000

100000

150000

200000

0 2000 4000 6000 8000

P
 (

p
p

m
)

Fe (ppm)

Spongy bones

y = -349.31x + 149722

R² = 0.7749

p < 0.00

0

50000

100000

150000

200000

0 50 100 150 200 250

P
 (

p
p

m
)

Ba (ppm)

Spongy bones



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

49 
 

 

 

 

 

 

 

Figure 13: Inverse correlation of phosphorus levels with manganese 

Iron levels in case of spongy bones and compact bones had a positive correlation with the Mn 

content (Figure 14 a, b). The regression coefficient is quite strong proposing an almost linear 

relation between Fe and Mn in spongy bones. Therefore strong association of Fe and Mn in this 

case as a diagenetic marker is suggested. The correlation can be explained due to the diagenetic 

uptake of Mn through the soil during burial due to association of Mn with Fe to form Fe-Mn oxy-

hydroxides. This is not the first instance where Mn ions have been found to contaminate bones 

(Zapata et al., 2006). 

This relation vanishes in case of teeth enamel as was expected. The regression coefficient is not 

strong enough to show any linear correlation between Fe and Mn for the tooth enamel (Figure 15). 

Thus in case of bones, the levels of Mn seem to be associated with the chemical processes of 

diagenesis which occurred post mortem. Therefore, the Mn content in enamel appears more 

reliable. The Mn concentration in the enamel varies from 1.7 to approx. 17 ppm.  
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Figure 14 (a, b): Correlation of iron with manganese in trabecular and compact bones 
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Figure 15: Iron does not display any correlation with manganese in tooth enamel 

The levels of Mn have strong correlation with Cu, Ba and Pb in spongy bones which might point 

towards diagenetic uptake through a similar pathway for these elements (Figure 16 a, b; Figure 17 

a) or to synergistic relationships. It has already been established that Mn in the trabecular bones is 

greatly affected by diagenetic alteration. Quite possibly complex compounds of these elements 

might exist which are taken up by the bone during burial. Ba also shows a very strong correlation 

with Cu in trabecular bones, further strengthening the case of Ba uptake from the soil post mortem 

since Cu in trabecular bones is speculated to be associated with diagenesis (Figure 17 b).  
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Figure 16 (a, b): Mn correlation with Cu and Pb in trabecular bones  

This might point towards Cu and Ba following similar pathways into the spongy bones as far as 

diagenetic uptake is concerned. This may even be in the form of compounds with divalent ions of 
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Figure 17 (a, b): Ba correlation with Cu and Mn in trabecular bones 

In case of cortical bones, barium shows a significant correlation with strontium (Figure 18 b). This 

might point towards metabolic or synergistic relationships between these elements. 
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Figure 18 (a, b): Ba shows a positive relation with Cu and Sr in the compact bone tissues 

The Cu level in the spongy bones averages to around 20ppm with some samples having really high 

ppms of Cu which might be due to diagenetic uptake of Cu during burial in the highly porous 

spongy bones of the individuals. Cu displays strong correlation with Fe in case of spongy bone 

tissues (Figure 19 a).  

Cu-Fe complex compounds are generally found naturally in geological settings and could easily 

be a part of the uptake mechanism of trace elements by bones from surrounding soil. Iron is known 

to form colloidal phases that can entrain massive quantities of copper and zinc and can be 

transported by groundwater (Jaouen et al., 2012).  
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Figure 19 (a, b): Cu correlation with Fe in trabecular bones and tooth enamel 

In case of tooth enamel, Cu shows a positive correlation with Fe (Figure 19 b). Brian Kirkham 

(2013) in his study found the strongest relationship between iron and copper in human teeth which 

is an indicator of how Fe and Cu in their divalent form have similar progression making their way 

in the enamel of tooth. Their chemical similarity makes sure that they share many of the metabolic 

reactions in the human body (Kirkham, 2013).  

Lead displays a strongly positive relation with Mn (Figure 16 b) as well as Fe (Figure 20 a). It 

might steer to the conclusion that lead follows similar pathways during diagenetic uptake as Mn 

and Fe and the three are closely associated with each other in this process. Zinc also displayed 

significant correlation with strontium in trabecular bones which might be synergistic in nature 

(Figure 20 b). 
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Figure 20 (a, b): Pb correlation with Fe and Zn correlation with Sr in trabecular bones 
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Barium and strontium are usually utilized in comparison with calcium in order to make inferences 

on palaeodiet. In this case, the three different tissue types provide a large variability in the levels 

of Ba and Sr (Table 26, Appendix II) which makes it imperative to find out the most representative 

of these tissues when making inferences. More sensible interpretations hence include the 

comparison between different kinds of tissues to understand their effectiveness in palaeodiet 

reconstruction which is also attempted in this study by analyzing both bone tissues and tooth 

enamel. The correlation between Ba/Ca and Sr/Ca ratios for different tissues has been already 

attempted by researchers (Pankowska et al., 2016). With the growth in the understanding of 

diagenesis, tooth enamel are increasingly becoming the preferred material for the studies into 

palaeoenvironment and ancient dietary habits in which case it becomes imperative to perform 

experimental analysis work to relate Sr/Ca and Ba/Ca ratios in enamel and bones (Peek & 

Clementz, 2012; Austin et al., 2013).  

This study takes it further by including trabecular bone tissues in the correlation. The ratios need 

to be correlated since they both indicate similar processes in each individual (Pankowska et al., 

2016). The correlation was examined using regression analysis and was found to be significant in 

case of compact (Figure 21) and spongy bones (Figure 22) but in case of teeth enamel the 

correlation was not statistically significant (Figure 23). The correlation becomes weaker from 

compact to spongy bones. 

The enamel diverges greatly from the spongy and compact bones ratios for both Ba/Ca and Sr/Ca 

ratio. The lowest points in the case of teeth enamel are the teeth from individual 7579 and 7575 

(Figure 23) in whose case the 2nd molar and 1st molar respectively, were sampled while the rest of 

the individuals have been sampled with their premolars (Table 4). Therefore these low values of 

both the ratios in both these individuals in expected. More so for the first molar which has the 

lowest values of all since their mineralization starts from the birth approx. three years before the 

mineralization of the second molars (Table 1). The permanent second premolars start forming two 

years after the birth of the individual. Therefore the first molar could be influenced by lactating 

which brings it to a higher trophic level than the rest (Austin et al., 2013).  
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Figure 21: Correlation between log Sr/Ca (ppm/mg/g) and log Ba/Ca (ppm/mg/g) for cortical bones 

 

 

 

 

 

 

 

Figure 22: Correlation between log Sr/Ca (ppm/mg/g) and log Ba/Ca (ppm/mg/g) for trabecular bones 

 

 

 

 

 

 

 

 

Figure 23: Correlation between log Sr/Ca (ppm/mg/g) and log Ba/Ca (ppm/mg/g) for tooth enamel 
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As has already been mentioned, the intake of TEs in the bioapatite mineral and its incorporation 

by the tissue varies from person to person and from tissue to tissue. While the enamel is in the 

process of mineralization, the absorption of Ca ascends compromising that of Ba and Sr which 

have much lower values in teeth than in bones (Balter, 2004). Therefore TE intake is much lower 

in the teeth enamel even when the organism is alive (Eggins et al., 2003).  

Given the lack of correlation in case of tooth enamel due to non-homogenous nature of the tooth 

types or other factors such as individual absorption, time of calcification, individual metabolism 

and others, the Ba and Sr levels in tooth enamel were not preferred for making inferences on diet. 

Levels from cortical bone tissues have been used for all the TEs to discuss food habits except for 

iron and manganese, which have shown significant diagenetic uptake even in the cortical bones as 

already mentioned. 

In summary, the regression analysis helped to select cortical bones for making inferences about 

diet. Tooth enamel was found to have more reliable results for Fe and Mn but not so for Sr and Ba. 

Elemental levels from all the three kinds of tissues were used to compare results to explore 

diagenetic uptake from the soil.  

6.4 T-test for gender differences and differences between the burial areas 

T-tests were performed for each element for both the tooth enamel as well as cortical and trabecular 

bones at a confidence level of 95%age to find possible gender differences or differences between 

the individuals buried in the two different areas of the church nave and the cloister courtyard.  

6.4.1 Gender differences 

Strontium was the only element that showed statistically significant differences in its concentration 

in tooth enamel among males and females (Table 11, Appendix III). The reasons for significant 

difference between the genders for Sr concentration in tooth enamel might be related to the 

individuals’ metabolism or non-biogenic reasons. Li et al. (2013) has also found Sr variations 

based on gender in his work where females had more strontium levels than men which is not the 

case here. The Sr levels however also vary according to age as well as dental caries. Additionally, 

while Li has worked on contemporary Chinese men and women’s teeth, in the current study of 

archaeological samples, diagenesis complicates the situation. The non-homogeneity of the tooth 
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type is another factor that affects Sr level differences. The amount of Sr was more in women’s 

bones than men but the difference is not significant in terms of statistics. 

In case of cortical bone tissues, no significant gender differences were found. Ba content vary 

greatly from 33 to 552 ppm among the cortical bone samples. The difference among the Ba average 

for women is approximately twice of that of men (Table 12).The difference among the two genders 

points to women consuming more plant food than men in their diet but are not statistically 

significant.  

The gender difference in the levels of Mn for men and women is not statistically significant but 

women have greater amount of Mn and variability in the Mn content in their spongy bones 

(variance females = 1.8*104, males = 1.3*104) tooth enamel (variance females = 43.9, males = 

7.28) both.   

There are more than a single hypothesis to explain this higher level of Mn in the compact bone 

tissues of women. The direct inference is that perhaps women were consuming more plants than 

men but on a deeper level of understanding this might also be caused due to the difference in the 

physiology of women. This second hypothesis explains that women more often than men suffer 

from the lack of iron in their body due to their physiological specificity. Every organism that lacks 

iron tends to store greater amounts of Mn in its body (Finley et al., 1994). One or both of these 

hypotheses might be contributing to the higher Mn in the body of women. Consequently, iron is 

found to be higher in men than in women in case of both enamel and cortical tissues but not 

statistically significant.  Here it’s also interesting to note that the female individual 7579 with the 

highest Mn content of 16.5ppm is also very low on the Cu and Zn contents and thus maybe pointing 

towards more plant food and less meat and fish in her diet or other synergistic relations.   

Cu and Zn levels indicate the fraction of meat and fish products in the diet of the people (Reynard 

& Balter, 2014). Cu does not display any significant differences among the women and men 

statistically. The range of Cu content in compact bones in both the genders is more or less similar 

and equal to the total average of about 9 ppm. Cu levels thus seem to produce complications in 

data interpretation since the levels do not show a great variability (Table 25, Appendix II).  
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On the other hand, the content of Zn in the women’s compact bones is more than that in males. In 

the women’s bones, the level of Zn is higher but the difference is statistically non-significant. The 

content of Zn ranges from 103 to 169 ppm in case of females in contrast to 100-137 ppm for males.  

Alternatively, the female individual 7525 with the highest Zn levels in her tissues also has the 

lowest concentration of Sr which could indicate that she was consuming relatively less plant food 

and more meat than the rest of them. Therefore it could be a result of personal choice or her 

individual metabolism for these elements. 

This can even be argued based on the fact that the Zn content in the bones of women increases 

with age while in the case of men’s bones it decreases with time (Benfer, 1995; Magee et al., 

1994). There is a large amount of variability in the Zn contents much more so in the case of females 

(Variance females = 1153.7, males = 314.2). This variability might be more understandable by 

further analysing the social status of these individuals. It may account to the different areas of 

origin of the community and its heterogeneity and how these differences are related with the 

different modes of nutrition.  

Therefore a lot of care has to be exercised when interpreting the levels of Zn in bones. Additionally, 

Zn content in the bones is largely related to the organic fraction of the bone rather than to the 

inorganic fraction as a result of which the loss of organic matter in the bones can lead to more 

difficulty in the interpretation of Zn (Pearsall, 1989).  

The gender differences do not display statistical differences among the levels of lead (Pb) in 

cortical bones which falls in the range between 0.14 to 0.90 ppms and is approximately at an 

average of 0.5 ppm for both men and women. This indicates that there was not a high level of Pb 

pollution in the San Pablo area.  

  

Table 12: Table showing mean (ppm) for each trace element for Females (F) and males (M) in tooth enamel and 

cortical bone. 

Element Mn Fe Zn Cu Sr Ba Pb 

Tissue 

type 

F M F M F M F M F M F M F M 

Enamel 7.0 4.4 48.0 61.1 99.5 112.4 0.5 1.5 233.0 484.3 9.3 10.4 0.2 0.3 

Compact 

bone 

6.6 4.7 93.1 117.6 137.1 119.1 9.3 9.0 1516.7 1346.0 202.2 123.7 0.5 0.5 
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6.4.2 Differences between church and cloister samples 

Tooth enamel has displayed significant difference in lead levels between the burials from the 

church and those from the cloister (Table 13, Appendix III). The samples from the church have 

significantly higher lead than those from the cloister. This could be related to the contamination 

from the burial place or a difference in lead uptake through the different time periods where the 

samples from the church are from a later time period than those in the cloister. The samples buried 

in the cloister courtyard have been conjectured by archaeologists to be of poorer sections of the 

society which might also indicate that in their rural living conditions they might not have access 

to lead glazed cooking vessels and lead pipelines which could be the case for higher lead levels in 

the samples from the church nave which most probably belonged to a higher class and might have 

lived in a more urban setting.  

Significant differences were found in the levels of Strontium and Sr/Zn ratio for the cloister and 

church burials in cortical bones. The samples from the cloister courtyard display a higher Sr and 

Sr/Zn ratio value that indicates a diet with more plant food and lesser meat as compared to those 

buried in the church. The samples buried in the church have been conjectured to be from higher 

strata of the society as compared with those buried in the cloister given the fact that money had to 

be paid to be buried inside the church. However, they also belong from different chronological 

periods which could also mean a change in diet through the centuries. Therefore, in order to 

confirm diet differences based on social stratification, samples need to be analysed from both the 

burial areas belonging to the same time period. Inversely, burials belonging to different time 

periods from the same burial enclosure could also be compared to understand changes in diet 

structure through time. 

Lead, copper, manganese and iron in trabecular bones have also shown significantly higher levels 

in case of samples from the cloister courtyard as opposed to samples from the church nave. This 

could be due to different burial/soil conditions in both the areas which possibly has contributed 

towards post mortem contamination. Other possible reasons for this difference have been discussed 

in later sections. The results are summarised in Table 14. 
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Table 14: Results for t-test between cloister courtyard and church nave samples from tooth enamel, cortical and 

trabecular bones. 

Tooth 

Enamel 
Pb (ppm) Ba (ppm) Sr (ppm) Zn (ppm) Cu (ppm) Mn (ppm) Fe (ppm) 

Church 

(mean) 

0.39 9.50 307.42 179.60 0.29 4.10 29.63 

Cloister 

(mean) 

0.19 10.06 389.36 70.80 1.22 6.64 27.74 

T-test 

Significance 

Yes No No No No No No 

Trabecular 

bones 

Pb (ppm) Ba (ppm) Sr (ppm) Zn (ppm) Cu (ppm) Mn (ppm) Fe (ppm) 

Church 

(mean) 

1.30 71.33 983.91 143.89 7.07 11.60 378.68 

Cloister 

(mean) 

83.85 137.50 1133.41 151.59 28.12 174.18 4439.53 

T-test 

Significance 

Yes No No No Yes Yes Yes 

Compact 

bones 

Pb (ppm) Ba (ppm) Sr (ppm) Zn (ppm) Cu (ppm) Mn (ppm) Fe (ppm) 

Church 

(mean) 

0.72 52.88 1004.38 142.22 5.36 3.22 91.97 

Cloister 

(mean) 

0.39 229.05 1687.57 119.64 11.42 7.10 113.40 

T-test 

Significance 

No No Yes No No No No 

 

6.5 Scatter plot 

The level of Pb increases from teeth enamel towards the highest in spongy bones. While in teeth 

the average concentration is 0.27 ppm, in the compact bones it increases to 0.51ppm and yet the 

variability in the samples is not very large. However in case of spongy bones, this variability 

increases with four samples displaying much higher level than the rest of the samples (Figure 24).  

This can be explained by the enrichment of lead into the spongy tissues which have been lying in 

the direct contact with the soil leading to this diagenetic uptake of Pb. Further probing had to be 

made into the area of collection of samples for the four mentioned individuals which might explain 

the much higher Pb content. The samples were collected from the spongy bone at the inner surface 

of the shaft of the femur which was in direct contact with the soil while in rest of the individuals, 

the sample was collected from the spongy bone inside the upper or lower end of the femur bone 

(Table 3).  
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These higher concentrations could also be a result of the difference in the burial conditions or the 

soil composition in the two distinct areas as discussed earlier, but the lower levels in sample 7579 

which also belongs to the cloister courtyard cannot be explained with this reasoning. Therefore, 

the area of extraction of the trabecular bone tissues seems to be the dominating factor for the 

exceedingly high level of lead in these four samples. 

 

 

 

Figure 24: Pb levels in different tissues in different samples 

The compact bones have not been affected much with the contamination due to Pb. In this case 

most probably the spongy bone was the first tissue to come in contact with the soil and the 

incorporation of the element starts from the outside towards the inside. It is well known that due 
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On the contrary, spongy bones are more susceptible to post mortem alternation due to a more open 

and porous morphology and the lead contents evidence to this fact.  

No matter however much the use of lead pipelines and lead glazed cooking vessels was in vogue 

in the period of these burials, it does not explain such high levels of lead in the bones without 

including the diagenetic contamination through the soil (Rebocho et al., 2006). Therefore it is safe 

to say that the Pb levels in trabecular bones are of post-mortem origin. 

The very same four spongy bone samples namely 7533b, 7568, 7575 and 7581 with highest Pb 

levels also are the ones with the highest Mn, Cu and Fe concentrations which reaches up to 

7525, 1.28

7533b, 121.17

7535, 1.47 7544, 1.15

7568, 118.51

7575, 106.77

7579, 1.02

7581, 71.77

0

20

40

60

80

100

120

140

C
o
n

c.
 i

n
 p

p
m

Pb

teeth compact spongy



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

61 
 

1.2%age in case of the sample with highest Fe level (Figure 25, Figure 26, Figure 27). This level 

falls steeply in case of cortical bones.  

 

Figure 25: Fe levels in different tissues in different samples 

 

The levels tend to fall down from spongy tissues to compact bones and further diminish in the case 

of tooth enamel. This can be understood as a case of diagenetic alteration and uptake of these 

elements through the burial environment.  

 

Figure 26: Mn levels in different tissues in different samples 
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Figure 27: Cu levels in different tissues in different samples 

In case of zinc, the levels in both kinds of bone tissues are more or less similar without any 

significant differences (Figure 28).  

 

 

Figure 28: Zn levels in different tissues in different samples 
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Figure 29: Sr levels in different tissues in different samples 

 

 

Figure 30: Ba levels in different tissues in different samples 
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concentrations for Pb, Fe, Cu and Mn, they most probably account for post mortem uptake which 

has not affected the compact bones and tooth enamel to such an extent. It is clear from this study 

that Pb, Mn, Fe and Cu present in the burial soil from this site are quite capable of penetrating in 

to the bone tissues more so into the spongy bone tissues and thus are quite enriched in the samples 

all throughout the spongy bones.  
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Lead can be both antemortem or post-mortem in terms of its source while zinc with its relatively 

steadier levels through all the tissues is most probably accumulation by the body while living but 

some uptake of zinc through the outer layer in contact with the soil has already been discussed by 

earlier authors (Carvalho, 2004). Zinc is closely regulated by the body as well. Zinc contamination 

is also very common in the laboratory preparations as well as it might be present in environmental 

dust, laboratory accessories, handling gloves and so on. All the necessary precautions such as using 

vinyl gloves and cleaning of all the pipettes and preparation vials and beakers with dilute acid and 

water were undertaken. The preparation blanks did not display any significant contamination 

during sample preparation in the laboratory. Nonetheless, Zn contamination cannot be completely 

ruled out. Even then, Zn does not appear to have been affected by diagenetic uptake to a great 

extent.  

Sr and Ba levels are more ambiguous in their origin. These two elements can be assimilated in 

vivo in the bioapatite structure of bones as well as some uptake from the soil cannot be excluded.  

6.6 One-way ANOVA and Tukey’s HSD 

In order to understand which TEs and tissues were the most influenced by diagenetic alteration, 

the elemental result for each TE was treated with a one-way ANOVA at 95%age confidence level, 

to make a preliminary examination for whether the difference in the concentration among enamel, 

spongy and compact bones was statistically significant or not (Table 15. Appendix III). The null 

hypothesis was framed to state that the difference between the mean concentrations for the tooth 

enamel and the two types of bone tissues is not significant. 

 

Table 17: Example of Tukey’s HSD result for strontium. 

 
Tukey's Honestly Significant Difference HSD 

   

  
critcal q (α, r, dfW) 

    

 
xi-xj critical q (0.05, 

3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant at 

0.05? 

teeth-

compact 

-1072.7 3.4275 77.18 -808.2 -1337.3 Yes 
 

teeth-spongy -718.7 3.4275 77.18 -454.2 -983.2 Yes 
 

compact-

spongy 

354.0 3.4275 77.18 618.6 89.5 Yes 
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All the TEs except Zn have shown statistically significant variations in the mean concentrations 

among the different tissues and the null hypothesis was rejected in their cases (Table 16, Appendix 

III). This data was then treated with Tukey’s HSD in order to find out which tissues had the highest 

variation between themselves for each element and by how much. The confidence interval was 

taken at 95%age and 99%age. If interpretation of results from Tukey’s HSD is attempted at 

95%age confidence level, taking the example of strontium (Table 17), it can be said that tooth 

enamel and compact bones do not display similar levels of strontium, and we’re 95%age confident 

that a batch of 8 samples of tooth enamel will display 808.19 ppm to 1337.28 ppm less strontium 

concentration than in compact bones. In a similar manner, it can be said with 95%age confidence 

that compact bones will display 618.57 ppm to 89.49 ppm more Sr than in spongy bones. All the 

Tukey’s HSD results are given in the table 18, appendix III and can be interpreted similarly. Most 

of the differences were significant at 99%age confidence level (Table 19). 

 

Table 19: Results for significant difference among elemental concentration between different tissues. 

 
Tukey's Honestly Significant Difference (HSD) results 

 
Pb Fe Mn Cu Sr Ba 

Teeth 0.26 55.20 5.69 1.02 358.63 9.85 

Compact 0.51 165.20 5.65 9.15 1431.37 162.98 

Spongy 52.89 4603.48 113.21 20.22 1077.34 112.69 

teeth-compact 
    

** ** 

teeth-spongy ** ** ** ** ** * 

compact-

spongy 

** ** ** ** ** 
 

 
*α=95%age **α=99%age 

    

 

Therefore this analysis helps to identify the elements most susceptible to diagenetic changes and 

mostly in case of trabecular bone, there is a much higher concentration of trace elements as 

compared to the enamel. Only Sr and Ba are the elements which seem to have significantly higher 

levels in compact bones compared to teeth enamel. The fact that Zn does not show significant 

deviations between the different tissues might lead to the conclusion that it is the least affected by 

diagenetic uptake in the concerned archaeological site or could be the result of a mixture of 

different biogenic and diagenetic factors as well as contamination.   
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6.7 Cluster analysis 

Cluster analysis was done to group the individuals according to the trace elemental concentration 

based on compact bone and enamel using elements found to be important for making dietary 

inferences viz. Ba, Sr, Zn and Mn. It was done to be able to place the samples in possibly distinct 

diet preference groups. Clusters were also made using Sr and Zn concentrations since they have 

been reported to be quite useful in classifying the individuals into herbivore, omnivore and 

carnivore diet preferences.  

The cluster reports based on tooth enamel and compact bones are given below (Table 20, Table 

21). Bivariate plots were also produced for the clusters between pairs of elements. Examples are 

displayed in the appendix IV. 

Table 20: Cluster analysis based on tooth enamel. 

 
K-Means Cluster Analysis 

Report 

 

Cluster Means 
 

Sample No Cluster 

Variables Cluster1 Cluster2  7533b 1 

Ba 11.1 6.1 7579 1 

Sr 391.8 259.3 7525 2 

Mn 6.7 2.5 7575 1 

Zn 72.9 204.9 7581 1 

   7535 1 

Count 6 2 7544 2 

   7568 1 

 

The cluster analysis based on tooth enamel and compact bones does not match with each other. In 

case of tooth enamel, the first cluster is very big with six samples and the rest two viz. 7525 and 

7544 are in the second cluster. The first cluster with higher values for Ba, Sr and Mn along with 

low values of Zn might be regarded as consuming relatively more plant food than the second 

cluster of two samples (Table 20). 

However in case of compact bone clustering, the clusters change completely with the second 

cluster of only two samples but not the same samples as in the previous one (Table 21). In this 

case, the second cluster with sample number 7575 and 7568, is inclined more towards higher 

values of Ba, Sr, Mn. Hence the samples 7575 and 7568 are samples which are in a similar cluster 
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with higher values of Ba, Sr, Mn and lower Zn in both the cases and could be considered positively 

to be consuming more vegetal components than the rest of the group while 7525 and 7544 are in 

clusters with lower values for Ba, Sr, Mn, and higher Zn for both cortical and enamel tissues who 

might had been consuming larger portion of meat components in their diet. 

Table 21: Cluster analysis based on compact bones. 

Cluster Means 
 

Sample 

no. 

Cluster 

Variables Cluster1 Cluster2 7533b 1 

Ba 80.4 410.6 7579 1 

Sr 1228.9 2038.8 7525 1 

Mn 5.5 6.1 7575 2 

Zn 126.9 107.0 7581 1 

   7535 1 

Count 6 2 7544 1 

   7568 2 

 

In case of trabecular bones, the values were found to be more susceptible to diagenetic changes 

and therefore have not been used for cluster analysis. In conclusion, the picture might be clearer 

with more samples from the same site for further study. Also in all the samples and the clusters, 

female and male elemental data conspicuously resemble each other, and therefore similar dietary 

intakes for both the genders can be hypothesized within the dietary groups. The gender differences 

might amplify though on the examination of more sample. 

Cluster analysis using Sr and Zn was also made based on compact bone results since compact 

bones were found more reliable in case of Sr levels (Table 22). Theoretically, higher Sr content 

should be supported by lower Zn level. Therefore Sr and Zn can be related to define the trophic 

level of individuals and their inclination towards a more herbivore/carnivore diet. In this study, all 

the lowest Zn level and highest Sr samples belong to the cloister courtyard while the highest Zn 

and lowest Sr levels were found from the church nave samples while three of the samples fall at 

intermediate range. The individuals 7525 and 7544 in cluster 3 from the church site are thus 

conjectured to have higher proportion of meat proteins and lower plant food than those from the 

cluster 1. Cluster 2 falls between cluster 1 and cluster 3 as far as the Zn and Sr levels are concerned. 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

68 
 

All the individuals belonging to cluster 1 and 2 are from the cloister courtyard except 7535 (Figure 

30).  

Table 22: Cluster analysis based on Sr and Zn levels. 

Cluster Means using cortical bones 
   

Variables Cluster1 
 

Cluster2 
 

Cluster3 
 

Sr 1999.6 7533b 1202.3 7579 922.6 7525 

Zn 119.4 7575 103.7 7581 153.2 7544 

Count 3 7568 3 7535 2 
 

 

It is clear from all the above observations that correlational studies between different TEs can help 

to find similarities among elements and their association in case of biogenic or diagenetic 

pathways. They can even indicate synergistic or antagonistic relationships between elements 

which have not been discussed much even in previously published literature. Such studies have 

been undertaken in case of other mammals such as foxes and domestic dogs (Lanocha et al., 2012; 

Budis et al., 2013; Budis et al., 2015) using different kinds of bone tissues and cartilage but not in 

case of human remains from archaeological contexts.  

It is not correct to attribute all the correlations directly to biogenic or diagenetic relations. While 

correlations such as those of Fe with Mn, Cu and Pb in case of spongy bones can be attributed to 

diagenetic uptake there are many relationships which might be simply antagonistic or synergistic 

in nature. In the present work, the positive correlations of Zn with Sr in trabecular bones and of 

Ba with Sr and Cu in cortical bones can be considered as synergistic. Copper displayed a very 

strong synergistic association with barium in trabecular bones. 

On the other hand, antagonistic relations were found in case of P with Cu, Ba, Mn and Fe as well 

as in case of Ca with Ba, Cu and Fe for trabecular bones. Positive correlations in case of trabecular 

bones including Mn, Cu, Fe and Pb might also be synergistic but are most probably due to 

association in diagenetic pathways. 

To summarize this section, many correlations have been found among the elements studied. 

Elemental levels did not display any significant differences among the genders but in case of the 

two different burial areas viz. the church and the cloister, significant differences were found in the 

Pb content of the enamel as well in the strontium and Sr/Zn ratios for the cortical bones. Pb, Mn, 
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Cu and Fe levels in trabecular bones were much higher than the rest only in the case of four 

individuals which most probably is the consequence of the area of extraction of the sample. Sr and 

Ba displayed much higher levels in cortical bones the reasons for which is not clear. Zn was the 

only TE that didn’t show any significant differences in the levels between all the tissues. The 

cluster analysis does not display any gender based groupings. Nevertheless, the samples from the 

church seem to belong to a higher meat consuming group as compared to those from the cloister. 

 

Figure 31: Clusters based on Sr and Zn levels (ppm) in cortical bones 

6.8 Discussions on diet and microwear results 

Strontium is considered to be gathered from plant food but it further complicates the situation 

given the fact that seawater and marine products are also highly rich in Sr (Leach et al., 2003). It 

can also be contributed due to the Sr content of the carbonate soil. The Sr concentration in the 

compact bone tissues ranged between 809 to 2074 ppm. This high concentration of Sr in the bones 
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can be due to either the Sr content of the soil or due to consumption of Sr rich food stuff by the 

individuals under study which is not clear with this analysis. Sr is used in the ancient diet research 

to find whether the community relies more on inland nutrition or on marine mode of nutrition 

(Connor & Slaughter, 1984).  In this case, the data of the present study needs to be compared with 

data from archaeological sites closer to the sea to be able to compare the Sr levels properly and 

make inferences on the mode of nutrition. This might help to understand whether the Sr levels are 

related more with plant foods or with marine type of nutrition.  

The results need to be supported by the study of Br levels which can make the picture clearer. 

Bromine is an element which is higher in diets rich in fish, molluscs, crustaceans etc. along with 

strontium. The presence or lack of marine food can be confirmed by analysing Br content in the 

future. 

The attempt at understanding the dietary differences among the population usually makes use of 

elements such as Sr and Ba which are well known indicators of food intake. The values of the log 

Ba/Sr in the bones usually is a good indicator of a mixed menu of the individuals. The lower the 

value, the higher is considered the percentage of the marine food in the diet (Allmäe et al., 2012) 

although it is not very helpful to distinguish between freshwater fishes or marine fishes (Burton & 

Price, 1990). In case of most of the individuals, these values are ranging between -1.58 to -1.00 

except in case of one male and one female, the value rises higher than usual in case of male 

individual 7568 who has a value of -0.87 which might still indicate a mix of meat proteins or 

marine food but in case of the female 7575 this value rises to -0.57 which shows that she has 

highest log Ba/Sr value in all the samples and probably consumed much more inland food than 

marine food like the rest of the individuals. Then again the values of log Ba/Sr cannot be directly 

compared with literature values because they might vary greatly among different sites with 

different vegetation and also cannot exactly distinguish between fresh water and marine produce.  

The use of logarithm of Ba/Sr has been suggested by some scientists in order to differentiate 

between terrestrial protein and food crops (inland nutritional mode) and coastal agriculture and 

marine proteins (marine nutritional mode) (Burton & Price, 1990). Values equal to or higher than 

-0.40 point to an inland mode of nutrition while those smaller than -1.40 denote a more marine 

type of nutrition for the ancient community (Allmäe et al., 2012). Only one of the value is smaller 
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than -1.40 for individual 7579 while all the rest fall between -0.40 to -1.40. It might be therefore, 

the result of personal metabolism/food preferences for this individual. 

If Burton & Price (1990) is taken as a reference (Figure 32), then the values of log Ba/Sr for the 

current study fall within the ranges of terrestrial and freshwater food components. Given that all 

the values fall between -0.57 to -1.58 (Figure 33), a terrestrial diet along with freshwater resources 

is speculated for the individuals under study. Nonetheless, log Ba/Sr values need to be evaluated 

for coastal communities in this area to be able to make any concrete conclusions. 

 

Figure 32: Mean log (Ba/Sr) values from published data for water and terrestrial samples (Burton & Price, 1990) 

 

 

Figure 33: Log Ba/Sr values for all the samples 
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Notably, the log Ba/Sr values are much more variable in case of women than in case of males with 

a range of 1.00 and a variance of 0.19 while in case of males the range is only 0.44 and the variance 

is about 0.04 but the differences are not statistically significant. It may point towards dissimilar 

origin of the women (the distance of living place from a marine food source or the accessibility to 

marine food) and also the differences in the composition of their food and dietary habits. A lower 

log Ba/Sr ratio thus can point towards a greater percentage of marine food (or freshwater resources) 

in their choice of menu. No significant differences were found also between the cloister and church 

samples. 

Interestingly the female 7575 with the highest value of log Ba/Sr also displays the highest level of 

copper of about 16.3 ppm which calls for attention. Higher the level of Cu, higher is the fraction 

of meat and fish in the person’s diet. In case of males also, the highest value of Cu i.e. 17.2 ppm 

is associated with the highest value of log Ba/Sr. On further analysis, it was found that Cu levels 

are strongly correlated with log Ba/Sr values (Figure 34). The exact explanation for this strong 

correlation is not clear. 

The concentrations of Ba and Sr can also be compared to that of Ca in order to make inferences 

about the trophic level of the diet of these individuals (Figure 35). Relatively high ratios of Ba and 

Sr with Ca or in other words high levels of Ba and Sr in the skeletal tissues signal towards a diet 

based on plants (Burton, 1996). 

 

Figure 34: Correlation between Cu and log Ba/Sr values 
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Inversely, if the diet is composed of more fraction of meat proteins and marine components, it will 

reduce the value of both the ratios and also the ratio of Ba to Sr which has already been discussed 

(Burton & Price, 1990). Strontium levels in the teeth and bones of the people who eat more meat 

is lesser than those who have a more herbivore diet.  

 

Figure 35: Trophic level differentiation based on log Ba/Ca (ppm/ppm) and log Sr/Ca (ppm/ppm) values (Peek & 

Clementz, 2012) 

Burton (2007), has found great dissimilarities in the Ba levels in bones from inland archaeological 

site and those from marine sites. This difference was not so large in case of Sr due to the solubility 

of Sr in the presence of sulphate ions rich conditions in the form of Strontium Sulphate. On the 

other hand Barium Sulphate or Barite (BaSO4) is quite insoluble and thus is expelled from the 

environment. This lowers the ratio of Ba/Ca in case of marine food habits (Burton, 2007). The 

distinction becomes more difficult since low Ba/Ca ratios are exhibited in both marine and 

carnivorous diets. On consumption of any food matter, the Sr/Ca and Ba/Ca ratios reduce further 

than that in the food source due to the preference of every animal or human to intake more Ca 

rather than Sr or Ba, which is the foremost constituent of the hydroxyapatite of bones and teeth. 

But this effect won’t be properly showcased in case of a menu with different kinds of food 

materials. At that point, the correspondence becomes more complex. It is properly showcase only 

if the food has one type of constituent such as only pure plant or pure meat based diets. For example 
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even ingestion of a food component with low Ca amount can reduce the ratios due to the favored 

absorption of Ca by the body. The log Ba/Ca and log Sr/Ca (ppm/ppm) values from compact bone 

(for reasons already mentioned) can be compared with literature values to understand better the 

food components of the diet of the individuals under study. Peek & Clementz (2012) have gathered 

log Ba/Ca and log Sr/Ca values for major food groups (Figure 36). 

 

 

 

 

 

 

 

 

 

Figure 36: Sr/Ca and Ba/Ca ratios for natural samples (Peek & Clementz, 2012) 

 

On comparing the values with those given in literature, all the samples fall between primary 

consumers and higher level consumers in the trophic level. All the samples from the church nave 

display lower values for both the ratios possibly at a higher trophic level than the rest of the samples 

(Figure 37).  

The levels can also be compared to those in major food groups given the fact that the levels of Sr 

and Ba are always lower in the consumer as compared to the source. For such calculations, the 

Sr/Ca and Ba/Ca ratio is also calculated for the diet sources and is compared with the values from 

the consumer. This relative decrease in the ratios of Ba and Sr in relation to Ca, between the 

consumer’s tissues and the diet, is quantified using observed ratios (OR) (Comar et al., 1957) also 

known as Trophic Transfer Factor (TTF) (DeForest et al., 2007). 
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Figure 37: log Ba/Ca (ppm/ppm) and log Sr/Ca (ppm/ppm) for the compact bones of the samples  

 

The use of Ba, Sr and Ca is not very straightforward to reconstruct diet. Apart from this, the amount 

of Ca intake by any organism depends on the type of edible material and its particular Ca 

metabolism (Reynard et al., 2011). There are plants that have high concentrations of Ca such as 

seeds, nuts etc. since it is required by the plants as well for their development. Then there are grains 

such as wheat and others that do not have high Ca content (Pharswan & Farswan, 2011). There 

even exist plants which contain more than ten times the Sr and Ca found in meat and clearly make 

a huge effect on these ratios (Burton & Price, 2002). At the end of the day, the straight correlation 

between these alkaline elements and the food habits is further disturbed by other factors such as 

individual variability of metabolism, diet with a mixture of different kinds of food, the 

environmental conditions of the locality, the heterogeneous nature of vegetal diets and most of all 

diagenetic pollution (Burton & Price, 2002).  

Thus, these ratios do not have a linear correspondence with plant/meat proportions in food and 

vary greatly among individuals as well (Burton, 2007). The concentrations of Ca, Sr and Ba varies 

from location to location and such geographic variations make it difficult to be able to compare 

food habit reconstructions among different sites (Burton et al., 2003). Some scientists have even 

used Ba/Sr ratios for mobility studies rather than the reconstruction of palaeodiets (Arnay et al., 

2009; Brügmann et al., 2012). 
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Even among plant food, the variability of ratio of Sr to Ca is very high between green leafy 

vegetables, corn, nuts and others. Hence instead of being able to directly point out the proportions 

of meat and vegetal components in the diet, these ratios point more towards the status of grazing 

and browsing in that time (Burton & Price, 2002). Even marine food or meat in cases might have 

Sr/Ca ratio comparable to a plant with low Ca content such as wheat (Ezzo et al., 1995). For 

different kinds of animals or humans, the same plants will leave different TE concentrations based 

on the difference in their absorption in the skeletal tissues of different organisms.  

Zn level has been known to display differences in the trophic level by the variability in its 

concentration in the bones of humans as well as animals (e.g., Rheingold et al., 1983; Schutkowski, 

1995; Grupe, 1998) which in turn are indicative of distinct dietary habits. Nonetheless Zn is still 

an enigma in many ways when it’s comes to the knowledge of metabolic reactions through the 

bones and therefore researchers are not of one opinion when it comes to the importance of 

differences in the Zn (and Cu) contents in the bones (Ezzo, 1994a, b.) As a result of the ambiguity 

in the data, the results from these elements are taken to be as preliminary results along with a 

struggle to establish their acceptability. Zinc levels can exist alongside variable Ca supply levels. 

Most part of food components which have already been discussed such as vegetal parts, except 

milk, is enriched in Zn. Compounds such as cellulose, hemicellulose and phytate impede the rate 

of absorption of Zn by the intestines which is also known as its bioavailability (Bender, 1993). 

These compounds are mostly found in plant food and put a restrain on the resorption of Zn.  

Thus a better bioavailability of zinc for an individual will automatically lead to higher zinc levels 

for them. Most probably Zn resorption in such individuals have been augmented with the 

complementary supply of meat proteins, milk products and legumes in the food. (Burton & Wright, 

1995). The concentration of Zn in an individual’s bones with an omnivore diet usually ranges 

between 50–826 ppm (Allmäe et al., 2012). 

Palaeodiet studies have also employed Zn/Ca relations to identify higher or lower protein intake. 

Zn/Ca reference values >0.5 equivalent to a diet rich in protein and <0.35 equivalent to a diet poor 

in protein were used from previous literature and have been compared for the current data (Gallello 

et al., 2015). While two of the individuals seem to be in the rich in protein diet group (7533b & 

7525), three samples i.e. namely 7579, 7575 and 7535 edge more towards the poor diet group. The 

rest of the samples fall in the intermediate levels (Figure 38). 
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Figure 38: Zn/Ca (ppm/mg/g) values for the compact bones of the samples  

 

Although it is common knowledge that plants are the main source of Mn content in the diet, the 

level of Mn in the plant is directly influenced by the content of Mn in the soil where they are 

grown. The results of Mn are in accordance among themselves theoretically because Mn is better 

absorbed by the body in the presence of animal protein in the diet and not only because of the 

presence of plant foods in the diet (Kies, 1987).  

Copper and iron have not been too helpful in understanding diet. This is probably also due to the 

dearth of literature data which could help to interpret the role of these elements in diet 

reconstruction. Furthermore, these two are closely regulated by the body and display antagonistic 

as well as synergistic relationships with each other in the body. 

There is a great variability in the concentration levels of all the TEs discussed here in case of 

different individuals and tissues. Making inferences on general menu of the community is more 

complicated rather than comparing the differences between different individuals’ diet based on 

their variable elemental intake and assimilation.  

The diet of the individuals from San Pablo, has been interpreted from the TE data to be a diet 

mixed of foodstuff and meat proteins or fish. But the consumption of marine products cannot be 
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proved or disproved. The ratio of vegetal and meat components in the food vary from person to 

person.  

6.8.1 Comparison with microwear analysis results 

The buccal microwear analysis results are additional information which is being gathered about 

the human remains from San Pablo by some scholars from the Universidade de Burgos. At the 

time of writing the thesis, only three individuals 7533b, 7544 and 7565 out of all the samples had 

been studied. They have been classified as carnivorous hunter gatherers with a mixed diet 

including both meat and vegetarian food with a fair meat component according to the results of 

microwear analysis (Figure 39, Figure 40). This diet even continues to the contemporary times as 

well in this area (Zuriñe Sanchez Puente, personal communication). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Plot of NH/NT index vs NV/NT index for four dietary groups and the three specimen. Black lines represent 

the 95%age equiprobability ellipses of each dietary group and crosses are the centroid of these ellipse (Zuriñe Sanchez 

Puente, personal communication) 
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Figure 40: Discriminant function analysis of four dietary groups based on microwear measurements taken on the 

buccal surface of the three specimen. Black lines represent the 95%age equiprobability ellipses of each dietary group 

and crosses are the centroid of each ellipse (Zuriñe Sanchez Puente, personal communication) 

 

The overall diet of the middle age community from San Pablo, in conclusion, can be reconstructed 

as a mixed diet of plant food and meat and fish with possible inclusion of seafood or marine 

products. What seems interesting is that women might have been consuming lesser meat 

components than their male counterparts, even though the difference between the sexes was not 

found to be significant. This gender difference further needs to be studied by analysing more 

samples from the same site(s). The same interpretation has been given about men consuming more 

meat than women during middle ages in Palencia by Perez-Perez et al. (1994) on his study using 

buccal microwear analysis on 99 samples from La Olmeda. Palencia is about 100kms away from 

Burgos region and the communities living in these sites in middle ages most probably had the same 

subsistence patterns and modes of nutrition.  

There is definitely a significant difference in the food preferences of the samples buried in the 

church nave and those buried in the cloister courtyard which seems to indicate a bigger percentage 

of meat proteins in the menu of the church samples. This might indicate a difference in status or 

even changes through time in diet preferences. 
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7 

Conclusion 

This study on TEs shows a great variability in the results which have been discussed in detail. By 

controlling the possibilities of contamination, cleaning, limiting the area of extraction and 

homogenizing the sample type, more reliable results can be gathered. Using regreassion analysis 

between different elements, many antagonistic and synergistic associations came to light. Some of 

these could be easily pinned onto diagenetic/metabolic associations while the rest are not fully 

understood. Correlation between the Ba/Ca and Sr/Ca ratios helped to test the reliability of results 

from all the three kinds of tissues, of which, cortical bones showed the strongest correlation. Thus, 

the cortical bone TE results were used to make inferences on the diet. 

The diet of the middle age community from the archaeological site of San Pablo monastery has 

been interpreted to be a mixed diet of plant food and meat components in their menu. Even to this 

date, the diet in this area is mixed which has higher meat components than vegetal components 

inclined towards a more carnivorous diet. It is no wonder that the middle age communities might 

be having a similar diet.  

The men might be having more access to meat than women but this fact needs to be further 

investigated by analysing more samples from this site. This result was in synch with that gathered 

from microwear analysis and other literature previously published. Differences between different 

age groups and information about weaning might also be gathered in future by examining 

specimen from different age groups. Most probably the results indicate individual food choices 

rather than a general dietary pattern of the community. 

Most certainly, the individuals buried in the church nave had a diet more rich in meat proteins than 

those buried in the cloister due to the significant differences found in the levels of Sr and Sr/Zn. 

Moreover, they have displayed higher Pb contamination in the enamel. These differences are worth 

looking into with analysis of more samples. The reasons for this might be chronological differences 

or differences pertaining to social class. To be able to pin point the reasons, it is necessary to 

analyse more samples belonging to different time periods from the same burial area or vice versa. 
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As far as diagenesis is concerned, Fe, Cu, Mn and Pb levels in trabecular bones indicate post 

mortem uptake of these elements especially through the inner surface of the femur shaft. The 

situation in case of Ba and Sr is not very clear given the high concentrations in compact bones 

rather than in spongy bones. Zn levels didn’t give any clear evidence of diagenetic uptake given 

the fact that there wasn’t significant differences in the levels through all the tissues.  

Despite all the extensive knowledge that can be gathered from the analysis of TEs, one can never 

be fully confident about the conclusions when it comes to the reconstruction of palaeodiet since 

the concentrations of TEs are modified due to the environmental and temporal factors. The unique 

and complicated biogenic and diagenetic properties of every tissue in every individual further 

obscures the research. Additionally, different plant species and different individuals have their 

own level of TE absorption even if they belong to the same archaeological setting. As a result, 

there are certain possibilities of making mistakes when it comes to the interpretation of the 

chemical composition of archaeological bones and tissues. The physical, chemical and biological 

factors cumulatively act on the human tissues and their chemical composition in vivo as well as 

post mortem. This is the reason why it is important to identify tissues from which biogenic 

information could be extracted efficiently and unfailingly.  

Until a working model has been achieved for the quantification of post-mortem alterations such as 

diagenesis or other taphonomic changes, nothing could be inferred with absolute surety. In recent 

years, thus, the focus of study has shifted from diet palaeodiet reconstruction towards the 

investigation into post mortem alterations as well as the construction of models to be able to 

quantify the extent of these changes. This study tries to study this aspect as well and the comparison 

between trabecular bones, cortical bones and tooth enamel provides quantification of diagenetic 

changes to some extent. Furthermore, the elements which are most affected by diagenetic uptake 

need to be singled out in order to establish their reliability. In the study at hand, zinc concentrations 

have been found to be the least affected by diagenetic uptake or might have been affected in all 

tissues to the same degree. Many other factors might be at work at the same time. Additionally, it 

is clear that each skeletal part has a different reaction to diagenesis even in the same area of burial.  

Even though the samples were thoroughly cleaned, the contamination of teeth due to soil 

constituents cannot be completely ruled out. The collection of sample was undertaken with great 

care so as to avoid contamination chances as much as possible and yet it is quite probable that the 
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content of Pb, Sr and Zn is much more in the samples than has been found out from the observation 

since they have a high chemical affinity to replace P and Ca in the crystal of hydroxyapatite 

(Stevens & Lowe, 1997; Bowen, 1979). The soil composition of the site is important to be reported 

as well in more detail to be able to quantify diagenesis better. This is not possible in the current 

case where the site is not available for such analysis in the present time. 

This is a new approach to use trabecular bones for the quantification of the extent of diagenesis. 

This can be further extended into the comparison between more tissues such as dentin and 

cementum from the teeth to dig deeper into diagenetic changes using the same methods as in the 

present work. It also records episodes of growth and development for every individuals’ life time 

as was seen in case of first molar from one sample. Enamel might be more resistant to diagenesis 

but surely is not immune to it.  

The grave goods and treatment of the funeral remains in that time are also a key element which 

can extend the exploration into the social structure, stratification and socio-economic status 

corroborated with the dietary habits of different groups. Regardless of the broad investigation 

using statistical tools, there are still unsolved questions about mineralization processes of teeth and 

bones, the pathways for intake of trace elements both biogenic and diagenetic and many 

antagonistic and synergistic relationships. The results from such studies therefore should 

essentially be corroborated with secondary evidences such as microwear studies used in this work 

which can complement the outcomes. This examination is only a preliminary approach into the 

human remains from San Pablo using archaeometry. Although, there haven’t been such 

explorations in this site, the present attempt surely gives a positive impression of the potential 

insight that could be gained from further probes. While a few of these queries may give the 

impression of being redundant, they set the stage for many impending investigations.  

7.1 Future directions 

While the results achieved might be considered satisfactory there were quite a few shortcomings 

regarding the overall investigation method and the scope. These deficiencies have been identified 

by the author and can be overcome in consecutive attempts at explorations. Additionally, no single 

work is all-encompassing and as such the study at hand also leaves possibility for advance inquiries 

on the remains from this vastly ignored site. 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

83 
 

Numerous prospects have arisen in concordance with TE analysis. Advances are being made every 

day to delve even deeper into interpreting the past environmental conditions and how humans 

adapted to their immediate surroundings. Histological analysis along with Scanning Electron 

Microscopy to pin point the concentrations of TEs in different regions inside teeth and bone tissues 

is the next step in this series of investigation. Thin sections of bones and teeth provide a useful 

support to TE analysis in order to specify the locations of high concentrations of the elements 

under study which can therefore be valuable to distinguish between biogenetic and diagenetic 

accumulation. It can also help to reconstruct the pathways of amassing of elemental concentrations 

in different kinds of tissues.  

Elemental signatures and even isotopic signatures are retrievable from archaeological remains such 

as biogenic apatite present in enamel and bone tissues (Koch et al., 1997, Hoppe et al., 2003). 

Isotopic studies nowadays, can differentiate between people and even fauna of local origin and 

non-local origin, provenance artefacts, migrants, building material, foodstuff, track the level of 

residential mobility patterns in the ancient society (palaeomobility) regarding both humans and 

animals, health and forensics, imperial strategies, reconstruction of palaeodiets, colonization, 

trade, exchange, cultural change, ecological shifts and can answer many other pressing questions. 

Strontium isotopes and lead isotopes have already found a lot of use in such studies and is proposed 

here as a future avenue for examining the remains from San Pablo monastery.  

This diet reconstruction can be complemented by stable isotope ratio studies using carbon, nitrogen 

and others to achieve a deeper level of comprehension. Recent studies have even utilized iron and 

copper isotopes to find sexual differences among the past population. 56Fe/54Fe and 65Cu/63Cu 

ratio is not widely documented yet in archaeological remains and has been found to preserve sex 

differences (Jaouen et al., 2012). Fe and Cu also give indication towards ancient diseases. With 

the specimen gender already established in case of San Pablo remains such a study could help to 

design a method of sex determination using Cu and Fe stable isotopes that can be used in case of 

sites from where enough material is not retrieved to be able to determine the sex by other methods 

such as DNA analysis or pelvic morphology. It needs to be tested for different kinds of tissues as 

well and has a great potential as a sexing tool. 

Later studies can be refined using more sophisticated equipment as well as more appropriate 

standards such as bone meal Standard Reference Material (SRM) 1486 in bone matrix developed 
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by National Institute for Standards and Technology (NIST, USA) which was unavailable for the 

present work. A new opportunity of research in the biological context is the use of new non-

conventional isotopes of heavy essential elements (Costas-Rodriguez et al., 2014) some of which 

have not yet been studied with a biological viewpoint. For example bioessential elements like 

Silicon (Si) might reserve a great potential for palaeoenvironmental and palaeobiological relevance 

(Schwarz & Milne, 1972) which exists in notable quantities in the human body (Iyengar, 1998). 

The quantification of REEs such as Y and Zr and radiological elements such as U, Th, Cs and 

others can also be undertaken in order to create models for diagenesis level detection and dating. 
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Appendix I 
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Figure 41: Occlusal and buccal views of a) SP 7533b, b) SP 7525 
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Figure 42: Occlusal and buccal views of a) SP 7544, b) SP 7568 
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Figure 43: Occlusal and buccal views of a) SP 7535 b) SP 7581 
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Figure 44: Occlusal and buccal views of a) SP 7575 b) SP 7579 
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Figure 45: Sample pictures for bones after sample extraction a) SP 7533b, b) SP 7525, c) SP 7568, d) SP 7535, e) SP 

7544, f) SP 7579, g) SP 7581, h) SP 7575 
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Figure 46: The femur bones after sample extraction from sample a) SP 7579, b) SP 7535, c) SP 7525, d) SP 7544, e) 

SP 7533b, f) SP 7581, g) SP 7568, h) SP 7575 
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Appendix II 

Table 9: Additional elemental comparison with previously published values for tooth enamel.  

Element  

Presen

t study 

(media

n) 

Range Chaudhri and 

Ainsworth, 

1981 

(contemporary, 

South 

Australia) 

Frank et al., 

1989 

(contemporary, 

France) 

Cleymaet 

et al., 1991 

(contempor

ary, 

Belgium) 

Carvalho et al., 

1998 

(contemporary) 

Mn 5.57 1.3-17 5-25 
   

Fe 26.67 10.8-45.4 15-100 
 

0-157 3.4-13 

Cu 0.76 0.00-8.7 10-30 
 

0-30 0-2.8 

Zn 98.73 4-256 50-150 20-450 9.9-806 124-332 

Sr 279.75 200-664 100-150 130-280 13-1400 54-140 

Ba 10.21 5.1-16.6 
    

Pb 0.24 0.1-0.45 
  

0-156 
 

All values in ppm. 

 

Table 23: Trace Elemental results (ppm) for tooth enamel samples. 

Sample P Ca Cu  Fe Mn Zn Pb Sr Ba Ca/P 

7525  180765.09 358116.13 0.22 30.29 2.39 159.55 0.29 238.79 6.33 1.98 

7533 b 149662.55 548190.06 0.41 32.32 2.61 112.56 0.23 283.21 11.40 3.66 

7535  159525.16 308380.63 0.76 42.93 7.30 106.39 0.44 403.71 16.25 1.93 

7544  151518.79 373728.52 <0.00 15.68 2.59 272.85 0.43 279.75 5.91 2.47 

7568  164162.96 304542.22 5.04 57.95 6.02 15.78 0.26 660.21 12.01 1.86 

7575  157648.70 332167.07 0.05 12.93 6.38 30.10 0.26 210.10 8.69 2.11 

7579  161905.28 310120.57 0.79 24.76 16.53 113.48 0.13 199.90 10.62 1.92 

7581  164085.03 317681.29 <0.00 10.74 1.66 82.06 0.10 593.40 7.58 1.94 

  

Table 24: Trace Elemental results (ppm) for trabecular bone samples. 

Sample P Ca Ba Mn Pb Cu Fe Sr Zn Ca/P 

SP 7525  127475.76 272215.12 62.82 5.60 1.28 5.98 267.09 1096.38 145.97 2.14 

SP 7533 b 102020.90 225342.45 141.79 158.27 121.17 28.91 5019.54 1399.66 179.17 2.21 

SP 7535  113845.81 259021.61 49.66 21.76 1.47 5.65 411.48 877.15 116.83 2.28 

SP 7544  125504.44 276125.96 101.53 7.44 1.16 9.59 457.48 978.20 168.88 2.20 

SP 7568  97802.03 244246.21 168.43 217.56 118.51 38.37 4566.05 1244.56 168.18 2.50 

SP 7575  98020.27 241348.60 133.27 286.10 106.77 30.60 7019.96 1067.48 139.55 2.46 

SP 7579  144025.02 313074.67 50.67 5.12 1.02 3.26 203.90 1044.13 144.48 2.17 

SP 7581  74171.93 174137.81 193.37 203.85 71.77 39.46 5388.18 911.22 126.57 2.35 

 



Exploring Trace Elemental Analysis of human remains from San Pablo Medieval site using ICP-MS 
 

102 
 

Table 25: Trace Elemental results (ppm) for compact bone samples. 

Sample    P Ca Ba Sr Mn Fe Cu Pb Zn Ca/P 

SP 7525  120995.74 254480.89 34.42 808.97 6.56 221.08 7.01 0.81 178.07 2.10 

SP 7533b  138526.05 301299.59 189.26 1921.27 9.32 89.20 11.02 0.88 151.94 2.18 

SP 7535  135749.35 321290.59 56.47 1168.00 1.91 32.14 6.32 0.80 103.96 2.37 

SP 7544  141407.63 312464.82 67.74 1036.17 1.20 22.70 2.76 0.54 144.62 2.21 

SP 7568  131788.46 299133.84 269.01 2003.85 2.74 26.19 17.05 0.23 116.16 2.27 

SP 7575  144490.96 323791.88 552.16 2073.78 9.41 33.73 16.03 0.14 108.31 2.24 

SP 7579  147382.56 314813.19 33.11 1262.89 1.05 28.37 3.03 0.29 110.02 2.14 

SP 7581  135489.26 295369.54 101.70 1176.08 12.98 389.50 9.99 0.39 111.79 2.18 

 

Table 26: Variance in the results for concentration of each element. 

Variance P Ca Ba Sr Mn Fe Cu Pb Zn 

Tooth 

enamel 

3.0*108 1.8*1010 1.1*10 3.1*104 2.3*10 4.1*102 4.9 1.3*10-2 5.1*103 

Compact 

bones 

6.8*107 6.2*108 2.9*104 2.3*105 2.0*10 1.7*104 2.7*10 7.9*10-2 9.1*102 

Spongy 

bones 

4.5*108 1.6*109 2.9*103 3.0*104 1.3*104 7.6*106 2.3*102 3.1*103 5.1*102 

 

Table 27: log Ba/Sr, log Ba/Ca, log Sr/Ca, Zn/Ca values for cortical bones. 

Samples Zn/Ca log (Ba/Sr) log (Sr/Ca) log (Sr/Ca)* log (Ba/Ca) log (Ba/Ca)* 

SP 7525 0.70 -1.37 -2.50 0.50 -3.87 -0.87 

SP 7533b 0.50 -1.01 -2.20 0.80 -3.20 -0.20 

SP 7535 0.32 -1.32 -2.44 0.56 -3.76 -0.76 

SP 7544 0.46 -1.18 -2.48 0.52 -3.66 -0.66 

SP 7568 0.39 -0.87 -2.17 0.83 -3.05 -0.05 

SP 7575 0.33 -0.57 -2.19 0.81 -2.77 0.23 

SP 7579 0.35 -1.58 -2.40 0.60 -3.98 -0.98 

SP 7581 0.38 -1.06 -2.40 0.60 -3.46 -0.46 

All ratios in (ppm/ppm)  

*ratios in (ppm/mg/g) 
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Appendix III 

Table 11: Table showing t-test results for Sr in teeth enamel in males and females. 

t-Test: Two-Sample Assuming Unequal 

Variances 

  

  Females Males 

Mean 233.002 484.267 

Variance 1391.604 30393.48 

Observations 4 4 

Hypothesized Mean Difference 0  

Df 6  

t Stat 2.818716  

t Critical two-tail 2.447 
 

Alpha 0.05 
 

 

Table 13: Table showing t-test results for Pb in teeth enamel among samples from church nave and cloister courtyard. 

t-Test: Two-Sample Assuming Unequal Variances 

  Church Cloister 

Mean 0.385714 0.194781 

Variance 0.00722 0.005326 

Observations 3 5 

Hypothesized Mean Difference 0 
 

df 6 
 

t Stat 3.240333 
 

P(T<=t) two-tail 0.031664 
 

t Critical two-tail 2.447   

 

Table 15: Example of ANOVA for Mn. F value > Fcritical which leads to the rejection of null hypothesis that all the 

means are equal. p < 0.05. 

Anova: Single Factor 
    

SUMMARY 
     

Groups Count Sum Average Variance 
  

Teeth 16 90.98 5.68 22.34 
  

compact   16 90.35 5.65 19.59 
  

spongy 16 1811.43 113.21 12602.59 
  

ANOVA 
      

Source of 

Variation 

SS df MS F P-

value 

F crit 
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Between 

Groups 

123376.6 2 61688.31 14.63598 1.27E-

05 

3.204317 

Within 

Groups 

189667.8 45 4214.84 
   

Total 313044.4 47         

 

Table 16: ANOVA for Zn showing the difference between the means is not significant. F<Fcritical, P>0.05. 

Anova: Single 

Factor 

      

SUMMARY 
      

Groups Count Sum  Average Variance 
  

Teeth 16 1694.87 105.93 5851.32 
  

compact   16 1951.25 121.95 810.04 
  

spongy 16 2271.86 141.99 484.89 
  

ANOVA 
      

Source of 

Variation 

SS df MS F P-value F crit 

Between Groups 10446.82 2 5223.41 2.192788 0.12339 3.204317 

Within Groups 107193.9 45 2382.08 
   

       

Total 117640.7 47         

 

Table 18: Tukey’s HSD results at confidence interval of 95%age. 

a) Iron 

 
Tukey's Honestly Significant Difference HSD 

  

  
critcal q (α, r, 

dfW) 

   

 
xi-xj critical q (0.05, 

3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant at 

0.05? 

teeth-

compact 

-76.06 3.4275 403.13 -1457.79 1305.66 
 

teeth-

spongy 

-

2887.4 

3.4275 403.13 -4269.13 -1505.68 Yes 

compact-

spongy 

-

2811.3

5 

3.4275 403.13 -4193.07 -1429.62 Yes 

 

b) Copper 

 
Tukey's Honestly Significant Difference HSD 
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critcal q (α, r, 

dfW) 

    

 
xi-xj critical q 

(0.05, 3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant 

at 0.05? 

teeth-compact -8.13 3.4275 2.36 0.030 -16.23 
 

teeth-spongy -19.20 3.4275 2.36 -11.10 -27.31 Yes 

compact-

spongy 

-11.07 3.4275 2.36 -2.97 -19.18 Yes 

 

c) Manganese 

 
Tukey's Honestly Significant Difference HSD 

   

  
critcal q (α, r, dfW) 

    

 
xi-xj critical q (0.05, 

3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant at 

0.05? 

teeth-

compact 

0.039 3.4275 16.23 55.67 -55.59 
  

teeth-

spongy 

-

107.53 

3.4275 16.23 -51.89 -163.16 Yes 
 

compact-

spongy 

-

107.57 

3.4275 16.23 -51.94 -163.20 Yes 
 

 

d) Barium 

 
Tukey's Honestly Significant Difference HSD 

   

  
critcal q (α, r, dfW) 

    

 
xi-xj critical q (0.05, 

3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant at 

0.05? 

teeth-

compact 

-

153.14 

3.4275 25.97 -64.11 -242.16 Yes 
 

teeth-

spongy 

-

102.84 

3.4275 25.97 -13.81 -191.87 Yes 
 

compact-

spongy 

50.29 3.4275 25.97 139.32 -38.73 
  

 

e) Lead 

 
Tukey's Honestly Significant Difference HSD 

   

  
critcal q (α, r, dfW) 

    

 
xi-xj critical q (0.05, 

3, 45) 

standardized 

error 

95%age conf Interval 

for μi-μj 

Significant at 

0.05? 

teeth-

compact 

-0.24 3.4275 7.99 27.13 -27.62 
  

teeth-

spongy 

-

52.63 

3.4275 7.99 -25.25 -80.00 Yes 
 

compact-

spongy 

-

52.38 

3.4275 7.99 -25.00 -79.76 Yes 
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Appendix IV 
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                                                                                b  

Figure 47: Bivariate plot between Ba (ppm) and Zn (ppm) for a) compact bone b) tooth enamel 


