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Highlights
Models transferred to novel conditions
could provide predictions in data-poor
scenarios, contributing to more
informed management decisions.

The determinants of ecological pre-
dictability are, however, still insuffi-
ciently understood.

Predictions from transferred ecological
models are affected by species’ traits,
sampling biases, biotic interactions,
nonstationarity, and the degree of
environmental dissimilarity between
reference and target systems.

We synthesize six technical and six
fundamental challenges that, if
resolved, will catalyze practical and
conceptual advances in model
transfers.

We propose that the most immediate
obstacle to improving understanding
lies in the absence of a widely applic-
able set of metrics for assessing trans-
ferability, and that encouraging the
development of models grounded in
well-established mechanisms offers
the most immediate way of improving
transferability.
Predictive models are central to many scientific disciplines and vital for informing
management in a rapidly changing world. However, limited understanding of the
accuracy and precision of models transferred to novel conditions (their ‘trans-
ferability’) undermines confidence in their predictions. Here, 50 experts identified
priority knowledge gaps which, if filled, will most improve model transfers. These
are summarized into six technical and six fundamental challenges, which underlie
the combined need to intensify research on the determinants of ecological
predictability, including species traits and data quality, and develop best prac-
tices for transferring models. Of high importance is the identification of a widely
applicable set of transferability metrics, with appropriate tools to quantify the
sources and impacts of prediction uncertainty under novel conditions.

Predicting the Unknown
Predictions facilitate the formulation of quantitative, testable hypotheses that can be refined and
validated empirically [1]. Predictive models have thus become ubiquitous in numerous scientific
disciplines, including ecology [2], where they provide means for mapping species distributions,
explaining population trends, or quantifying the risks of biological invasions and disease outbreaks
(e.g., [3,4]). The practical value of predictive models in supporting policy and decision making has
therefore grown rapidly (Box 1) [5]. With that has come an increasing desire to predict (see
Glossary) the state of ecological features (e.g., species, habitats) and our likely impacts upon them
[5], prompting a shift from explanatory models to anticipatory predictions [2]. However, in
many situations, severe data deficiencies preclude the development of specific models, and the
collection of new data can be prohibitively costly or simply impossible [6]. It is in this context that
interest in transferable models (i.e., those that can be legitimately projected beyond the spatial and
temporal bounds of their underlying data [7]) has grown.

Transferred models must balance the tradeoff between estimation and prediction bias and
variance (homogenization versus nontransferability, sensu [8]). Ultimately, models that can
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Box 1. Why Transfer Models in the First Place?

Ecological models are extensively and increasingly used in support of environmental policy and decision making [77].
The process of transferring models typically stems from the need to support resource management in the face of
pervasive data deficiencies, limited research funding, and accelerating global change [5]. Spatial transfers have been
used to guide the design of protected areas, search for species on the brink of extinction, inform species relocations or
reintroductions, outline hotspots of invasive pests, design field sampling campaigns, and assist the regulation of human
activities (e.g., [78,79]). For instance, cetacean density models developed off the east coast of the United States were
recently extrapolated throughout the western North Atlantic high seas to assist the management of potentially harmful
sonar exercises performed by the military [80]. Similarly, projections of Asian tiger mosquito (Aedes albopictus)
distribution models onto all continents helped identify areas at greatest risk of invasion, with important implications
for human health [81]. Temporal transfers have largely been applied to forecast species’ responses to climate warming,
retrospectively describe pristine population states, characterize evolutionary patterns of speciation, quantify the
repercussions of land use changes, or estimate future ecosystem dynamics (e.g., [68,72,82]). Despite being difficult
to quantify, the societal and economic gains from transferring models can be substantial, and are most readily illustrated
by the mitigation of costs associated with invasive species [83]. For instance, the establishment of the zebra mussel
(Dreissena polymorpha) in the Great Lakes region of North America has led to $20–100 million in annual mitigation
expenditure, with additional, unquantified nonmarket costs ensuing from the loss of biodiversity and ecosystem services
[5]. Transferred models accurately predicted the establishment of the zebra mussel 5 years before it was actually
discovered in the region, however model predictions were not used to take preventative action, illustrating that
developing a transferable model is only the start of the road to informing decision makers (see Outstanding Questions).
Ultimately, the widespread need to make proactive management decisions in data-poor situations drives the need to
improve our understanding of model transferability. This goal fundamentally requires better transferability metrics and
estimates of prediction uncertainty, which can assist in selecting the most consistent and effective management options
while avoiding unanticipated outcomes [84].
simultaneously achieve high accuracy and precision, even when predicting into novel contexts,
will provide maximum utility for decision making [9]. To date, however, tests of transferability
across taxa and geographic locations have failed to demonstrate consistent patterns (Figure 1),
and a general approach to developing transferable models remains elusive (but see [6,10]).
Here, we outline challenges that, if addressed, will improve the harmonization, uptake, and
application of model transfers in ecology. We argue that moving the field of model of transfer-
ability forward requires a two-pronged approach focused on: (i) investing in fundamental
research aimed at enhancing predictability, and (ii) establishing technical standards for assess-
ing transferability.

Defining the Challenges
We first identified challenges using a modified Delphi technique [11] (see the supplementary
information online), and then divided them into those that reflected conceptual obstacles
(‘fundamental challenges’), and those related to best practices (‘technical challenges’).
Acknowledging significant overlap and linkages between these challenges (Figure 2), we
explore each separately below. Attempts to understand and enhance transferability face many
of the same hurdles as ecological modeling generally (e.g., data quality, stochasticity), and
adhering to best practice recommendations (e.g., [12,13]) is thus imperative. We do not focus
on these well-established standards, but concentrate on the additional challenges posed by
transferring models. Whilst spatial transferability studies retain prominence in the literature (and
thus in this manuscript), this is not an indication of relative importance, but rather a reflection of
the inherent difficulties in evaluating models transferred through time. Our review of published
studies is not exhaustive, and the online supplementary information provides additional
literature relevant to each challenge.

Fundamental Challenges
Is Model Transferability Trait- or Taxon-Specific?
Knowing whether models are more transferable for some taxonomic groups would be useful to
increase confidence in predictions and prioritize resources for model development (Box 1).
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Evidence indicates discrepancies in model performance among taxa with divergent life-history
traits, and populations with different age structures and sex ratios (e.g., [14]). Meta-analyses
demonstrate that body size and trophic position are strong indicators of ecological predict-
ability [15], with some studies also indicating greater hurdles in building transferable models for
wide-ranging organisms with broad environmental niches than for narrow-ranging specialists
[16]. For example, model transfers for butterflies were less accurate in species with long flight
seasons [17]. By contrast, models of vascular plants with higher dispersal ability exhibited
better transferability than those built for endemics with limited dispersal capacity [18]. Devel-
oping transferable models for species with greater behavioral or adaptive plasticity might also
be more difficult, regardless of spatial range size [8]. Subsetting movement and observational
data by behavioral state (e.g., foraging versus breeding) or group composition (e.g., presence
of mother–young pairs) prior to model calibration might improve model performance and
transferability.

Which Response Variables Make Models More or Less Transferable?
The superior information content inherent to abundance data should facilitate greater trans-
ferability than models of occurrence built from presence–absence or presence-only data, so
that models of abundance might better project the ecological impacts of global change [19].
While this has been shown for some birds [19], fitting abundance models remains difficult for
most taxa [20], not least because counting individuals is more challenging than recording
presence–absence (despite issues caused by imperfect detectability). Accordingly, interest has
grown in comparing the predictions obtained from occurrence and abundance models, and
testing the reliability of the former as a surrogate for the latter [21]. In general, stronger
correlations between abundance and occurrence are expected for rare organisms. However,
the strength of this relationship can be nonlinear, species-specific, and conditional on spatial
behavior, social organization, life-history strategies, population density, resource availability,
and biotic interactions [22]. Most studies have also applied model transfers to single species.
Community- and ecosystem-level models that fit shared environmental responses for multiple
species simultaneously could achieve higher transferability [23], but this potential has been
inconsistently demonstrated. Integrated models that unite presence-only and presence–
absence data [24], and those that combine occupancy probabilities (e.g., derived from regional
monitoring) with density-given-occupancy (e.g., derived from telemetry), offer further promise
[25]. The former provide more accurate predictions than models based on a single data type,
whereas the latter can account for suitable but unoccupied habitats.

To What Extent Does Data Quality Influence Model Transferability?
More accurate and/or precise data should result in better transfers on theoretical grounds, with
evidence showing that the accuracy of species records can be more important for transfer-
ability than their spatial extent [26]. Data of unverifiable quality (e.g., anecdotal reports of easily
misidentified species) should therefore be avoided, even if available over broader geographical
areas. Model transfers can be further hampered by imperfect detectability, spatial and temporal
biases in data collection, insufficient sample sizes, the omission of known drivers, or the use of
proxy variables [27]. Additionally, species’ characteristics such as range size can impact
positional accuracy, leading to erroneous predictions if analyses are conducted at scales
corresponding with those of the original locational errors [28]. The magnitude of these effects is
ultimately unclear, and data quality therefore represents a substantial source of uncertainty [29].
Simulation studies based on virtual species with known reference information represent a
critical resource in tackling this knowledge gap.
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How Can Sampling Be Optimized to Maximize Model Transferability?
Samples encompassing the full range of environmental conditions and their possible combi-
nations should avoid incomplete niche characterization and improve transferability (Box 2).
However, data are often collected opportunistically and pooled during analysis, such that
model building ought to account for uneven sampling in environmental space (e.g., by
including random effects, or through explicit balancing methods that capture the intensity
and distribution of sampling effort [30]). Importantly, data resolution influences model fit,
prediction, and by extension, transferability. For example, poorly resolved predictors might
not capture important aspects of a species’ ecology, and relate only indirectly to observed
patterns of occurrence and biogeography [31,32]. Where possible, the scale(s) over which the
processes of interest operate should therefore drive predictor choice, with sensitivity tests
advisable [31]. As habitat availability, and thus perceived preference, also often link to scale
[33], models will be sensitive to the extent of the study region, especially for fragmented
habitats and steep environmental gradients [8]. As such, combining geographically and
environmentally distinct regions ought to increase model transferability [34]. Temporal repli-
cation in sampling can also help by capturing natural variability and stochastic processes, as
well as alleviating imperfect detectability and false negative rates. When resources are limited,
sampling should ideally focus on designs that address existing data limitations and maximize
information gain.

How Does Model Complexity Influence Model Transferability?
Excessively complex models risk overfitting training data and can erroneously attribute
patterns to sampling or environmental noise [35], leading to predictions that are biased or
too specific to the reference system to be transferable [36]. Greater transferability is thus
generally expected in parsimonious models with smooth univariate response curves and few
predictors [37]. However, while simple models have been shown to lead to better transfer-
ability, they can also yield misleading predictions when transferred to new contexts, implying
that simplicity is not always beneficial [38,39]. Ultimately, simple and complex models serve
different purposes [40], and in some instances, a preference for accurate and precise
predictions over ecological interpretability might be justifiable, making complex models more
appropriate [41]. Complex models are also not necessarily more arduous to interpret, and can
be valuable for discovering hidden, unexpected patterns [40]. Additionally, they could be
useful in exploring nonlinear and dynamic associations of species with indirect predictors
across landscapes, seasons, or years [40], to help better accommodate nonstationarity.
That said, as complexity grows, so do potential predictor combinations and the likelihood of
mismatch between reference and target conditions, which can result in incorrect interpolation
and extrapolation [42]. Species’ life-history traits, physiology, or behavior can also influence
complexity, such that choosing an optimally complex model requires identifying the most
sensible predictors and datasets relative to a given study objective. Novel indices of com-
plexity that emphasize the structural properties of the input data might help [43], as could
standardized metrics of predictive performance.

Are There Spatial and Temporal Limits to Extrapolation in Model Transfers?
While prediction error is expected to increase with ‘distance’ (e.g., km, days) from reference
conditions [1], model transferability appears little related to geographic (and temporal)
separation between reference systems and target systems (Figure 1). Instead, environmen-
tal dissimilarity is what matters most for successful transfers, for which spatio-temporal
distances might only occasionally be good surrogates. The minimum level of similarity
required to support transferable models, however, remains unknown. Some authors caution
against seeking inference beyond one-tenth of the sampled covariate range, yet this rule of
Trends in Ecology & Evolution, October 2018, Vol. 33, No. 10 793
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Glossary
Anticipatory predictions:
predictions arising from extrapolating
the state of a system (ecological or
otherwise) either into the future
(forecasts), under uncertainty around
model parameters (projections), or
within systems likely to be impacted
by human action (scenarios).
Biotic interactions: interactions
between organisms, such as
predation, competition, facilitation,
parasitism, and symbiosis.
Correlative model: model fitted to
data and relating species occurrence
or abundance at known times and
locations to sets of environmental
(biotic and abiotic) factors. The aim
of a correlative model is to describe
the conditions proscribing a species’
range, thereby generating a
quantitative estimate of its
geographical distribution.
Cross-validation: process of
partitioning a dataset into
complementary subsets, developing
the model on one (i.e., training set)
and validating it on the other(s) (i.e.,
the validation set). Cross-validation is
most commonly used to estimate
predictive performance; a single final
model is often fitted to the full
dataset.
Explanatory predictions: testable
expectations about individual
systems, outcomes, or properties,
derived from scientific theory. The
aim of explanatory predictions is to
construct and/or corroborate
hypotheses, and establish
explanations for the mechanisms
underpinning the functioning of
natural systems.
Extrapolation: process of making
predictions to covariate values that
are outside the range, correlation
structure, or value combinations of
those in the training data. Can be
spatial, temporal, environmental, or
any combinations thereof.
Fundamental niche: full set of
conditions and resources an
organism is capable of exploiting to
maintain populations in the absence
of biotic interactions, dispersal
limitations, habitat degradation, or
immigration subsidy.
Mechanistic model: model
representing causal processes
underlying relationships between
components of the studied system.
Usually developed based on a
thumb [44] does not translate into practical and comprehensible guidelines for model end-
users (e.g., spatial planners, resource managers). Another solution could lie in the ‘forecast
horizon’, which defines the point beyond which sufficiently useful predictions can no longer be
made in any given dimension (e.g., space, time, phylogeny, environment) [45]. Calculating this
horizon requires choosing a measure of prediction quality (i.e., a function of accuracy and
precision), and a proficiency threshold for ‘acceptable’ predictions [45]. Both choices can be
framed in decision theory and informed through stakeholder participation, making the
forecast horizon a flexible and policy-relevant instrument for assessing and communicating
ecological predictability.

Technical Challenges
How Can Non-analog Conditions Be Accounted for When Transferring Models?
Transferring models into non-analogous environments brings numerous and well-documented
perils [46], but the predictive performance of models transferred into novel conditions is rarely
tested explicitly [47]. Different techniques to account for non-analog conditions will likely be
required depending on the degree of environmental dissimilarity (i.e., novel conditions just
beyond those observed versus those that are extremely dissimilar). Several tools are available
to visualize regions whose characteristics depart from the initial covariate range (e.g., [42,48]),
and these can help assess the potential impacts of non-analog conditions on predictive
performance. However, these tools cannot predict species’ responses to novel conditions,
which can be particularly unexpected if environmental change imposes selection pressures that
disrupt biotic interactions and cause communities to evolve [49]. Further development of these
tools for future transfers, and their application in examining of the outcomes of historical
transfers, will improve our understanding on how non-analog conditions can be accounted
for when transferring models.

How Can Nonstationarity and Interactions Be Incorporated in Model Transfers?
Successful transfers rely on the inherent premise that species–environment relationships are
stationary at the calibration site and remain so beyond it. However, species’ responses to the
environment are rarely static, and can vary nonlinearly with resource availability, species
ontogeny, and population density [50]. Species–environment relationships are therefore con-
text-specific, and habitat occupation ultimately depends on relative habitat availability [33].
Moreover, anthropogenic activities can strongly influence species’ distribution and abundance
patterns, and are themselves variable [51]. Disentangling their effects from environmentally
driven covariance is difficult, especially when histories of human exposure are unknown, or the
magnitude of impacts unobservable. Recent studies have also reconciled transferability with
strong evidence for the role of biotic interactions in shaping species’ ranges at large spatial
scales [52], offering a blueprint for determining when biotic information can support predictions
under unobserved conditions. Methods that incorporate functional responses have now
progressed to combine data from different regions and use nonstationary model coefficients,
enabling enhanced transferability [8,53]. We expect further improvements in knowledge will be
made by encouraging the development of models grounded in well-described mechanisms
(Box 3).

Do Specific Modeling Approaches Result in Better Transferability?
Studies have benchmarked the predictive capacity and transferability of existing algorithms
under a range of parameterization scenarios, with mixed results (e.g., [54,55]). Random forests
and boosted regression trees, two data-driven approaches that are relatively immune to
overfitting and can handle predictor interactions, can demonstrate high performance in
unsampled areas (e.g., [56]). MaxEnt, another machine learning method, has been ranked
794 Trends in Ecology & Evolution, October 2018, Vol. 33, No. 10



combination of expert and empirical
knowledge of the dominant range-
limiting processes that underlie
survival and reproduction of the focal
species (e.g., physiology, population
dynamics, and competitive
interactions). In mechanistic models,
parameters have a clear biological or
ecological interpretation that is
defined a priori, such that they can
be measured independently of the
input data. Synonym: process-based
model.
Non-analog conditions: conditions
differing from those currently
experienced by a species, including
those that do not presently exist.
Term often used to describe future
climates, but also communities that
are compositionally unlike any other
found today.
Nonstationarity: state of a system
in which relationships between
variables and by extension, model
parameters, do not remain constant
through space and time. Antonym:
stationarity.
Predict: anticipate an unknown
quantity or variable before it is
observed.
Realized niche: portion of the
fundamental niche that a species
actually occupies, because of
constraining effects such as
biological interactions or dispersal
limitations.
Reference system: system in which
a model is calibrated before transfer.
Target system: system to which a
model is transferred.
Transferability: capacity of a model
to produce accurate and precise
predictions for a new set of
predictors that differ from those on
which the model was trained. For
instance, spatially distinct for
projections to new areas, or
temporally distinct for projections to
past or future times. Synonyms:
cross-applicability, generalizability,
generality, transference.
the most transferable in some studies (e.g., [57]). Generalized linear and additive models have
also been identified as robust choices for extrapolation (e.g., [37]), despite potential for
generating unrealistic predictions outside the training scope. However, different approaches
to model tuning and data treatment contribute to heterogeneity in performance [58], making the
suitability of any given technique largely case-specific. A ‘silver bullet’ algorithm that is best
under all circumstances is therefore highly unlikely, and other factors, such as species’
characteristics, can sometimes matter more than model choice [59]. Model averaging can
avoid overreliance on a single technique by providing a weighted average of competing model
predictions [60], and techniques that enable model coefficients to fluctuate in response to
changes in habitat and resource availability [53] should improve transferability [8]. In recent
years, dynamic models capable of tracking the temporal aspects of a species’ behavior and
distribution, and joint species distribution models designed to simultaneously account for the
co-occurrence of multiple species, have also gained traction. Although still in early stages of
development, preliminary findings indicate potential for improved predictive performance [61].
Mechanistic models that harness prior biological knowledge within a given system (Box 3)
could also enhance transferability, yet remain mostly undertested [62,63].

How Should Uncertainty Be Quantified, Propagated, and Communicated When
Transferring a Model?
Uncertainty arises from many sources [64], including: sampling methodology, species
vagrancy, data quality, environmental stochasticity, initial conditions, species identification,
model specification, predictor choice, algorithm selection, and parameter estimation
[7,45,57]. Improving predictability, and thus decision making (Box 1) [65], requires under-
standing the origins, propagation pathways, and ramifications of uncertainty, including its
spatial and temporal patterns [64]. Model uncertainty is grounded in model assumptions,
which underpin the choice of model algorithm, structure, and parameterization [65]. Uncer-
tainty also varies spatially across a species’ predicted habitat [66], spreads through the
multiple phases of model development (e.g., in hierarchical, multistage models), and has
multiplicative effects, such that its magnitude remains generally underappreciated [64]. These
are significant challenges, which possibly explain the scarcity of attempts to account jointly for
multiple types of variation (but see [29,66]). For this reason, clear protocols for measuring,
accounting for, and reporting on uncertainty remain largely lacking. The latter often relates to
the model’s intended purpose, such that quantifying parameter uncertainty might be a priority
when seeking inference about a given predictor, but prediction uncertainty will gain impor-
tance when the primary objective is model transfer. Model averaging can help, though it is
important to choose a model averaging method that adequately preserves the uncertainty of
the combined prediction [64]. Recent advances in hierarchical modeling allow error estimates
to propagate through various submodels within one ‘integrated statistical pipeline’, and could
offer a solution in some cases.

How Can We Best Transfer Models through Time and Evaluate Them in Temporally
Dynamic Systems?
All ecological systems exhibit temporal variability, whether predictable (e.g., tides), systematic
(e.g., gradual climate warming), or random (e.g., cyclones). Constructing models using the full
span (diurnal, seasonal, phenological, and annual) of conditions under which they will likely be
applied can address this variation, although distinguishing erroneous predictions from tempo-
rally stochastic events in model validations remains a challenge. Time series of environmental
variation could help diagnose anomalous conditions falling outside the baseline characteristics
of reference and target systems. Studies suggest that some models can project more reliably
over centuries [67] than shorter [68] or longer [69] time scales. A fundamental issue for
Trends in Ecology & Evolution, October 2018, Vol. 33, No. 10 795
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Figure 1. Snapshot of Some Predictive Model Transfers Published in the Ecological Literature. It is commonly
assumed that transferability degrades away from the area of calibration. However, geographic separation is often a poor
predictor of environmental similarity, such that even models transferred over short distances can yield erroneous
predictions if conditions between reference and target sites substantially differ. This paradox is reflected in the contrasting
performance of models projected over a range of distances. Here, we showcase studies selected to capture a broad range
of taxa (e.g., birds, mammals, plants), ecosystems (terrestrial, freshwater, marine), locations (e.g., Australia, North
America, Eurasia), and transfer distances (tens to thousands of km). Colors indicate whether transfers were considered
successful (green, unbroken lines; 1–9) or not (dark red, dashed lines; 16–20), as reported by the authors and irrespective
of the statistical methods chosen to build the models or the metrics used to evaluate them. Dual colors indicate scenarios in
which the quality of transfers varied as a function of modeling algorithms (10–11), space (12), or species (13–15). Line
thickness is proportional to the number of modeled species. Reference and target systems are shown as filled and open
circles, respectively. Note that, for clarity, not all individual model transfers are portrayed for each study. Photographs
depict model organisms and include: (1) Eurasian badger, Meles meles; (2) smooth crotalaria, Crotalaria pallida; (3)
Norwegian lobster, Nephrops norvegicus; (4) garlic mustard, Alliaria petiolata; (5) invasive seaweed, Caulerpa cylindracea;
(6) bluestripe snapper, Lutjanus kasmira; (7) spiny water flea, Bythotrephes longimanus; (8) Bengal florican, Houbaropsis
bengalensis; (9) northern pike, Esox lucius; (10) marbled murrelet, Brachyramphus marmoratus; (11) yellow-billed cuckoo,
Coccyzus americanus; (12) blue whale, Balaenoptera musculus; (13) bronze dung beetle, Onitis alexis; (14) daisy fleabane,
Erigeron annuus; (15) rainbow darter, Etheostoma caeruleum; (16) koala, Phascolarctos cinereus; (17) Asian tiger
mosquito, Aedes albopictus; (18) grey petrel, Procellaria cinerea; (19) black-backed woodpecker, Picoides arcticus;
and (20) common toad, Bufo bufo. References and additional details are given in the supplementary material online.
forecasting is that temporal transfers are often impossible to validate because future events are
unknown. One solution is to evaluate predictions of past events (i.e., hindcasting) based on
independent historical (e.g., harvest and museum records) or paleoecological datasets,
although spatio-temporal, collector’s, and taphonomic biases will complicate model calibration
and validation [70]. However, for many species of management interest, such records remain
unavailable or undermined by issues of spatial or temporal bias, mismatching resolutions
between past and present data, and error propagation [71]. Sampling the response variable
across its range of habitat variability offers an alternative. This strategy embodies the principle of
‘space-for-time substitution’, which assumes that spatial heterogeneity across multiple
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Figure 2. Outstanding Challenges in the Transferability of Ecological Models, and their Relevance to the Modeling Workflow (Adapted from Figure 7
in Robinson et al. [12]). Challenges were identified by a consortium of 50 experts. Each directly influences, or is influenced by, one or more stages in the model
construction process, from the collection and preparation of data, to the choice of model algorithms and their calibration, validation, and application. Linkages are not
intended to be comprehensive, but rather to capture the integral role that transferability plays as an element of ecological modeling practice. Ultimately, fundamental and
technical challenges are interrelated in complex ways, such that addressing one may be necessary for, and/or have knock-on effects on, our ability to address any
others. The best way to improve our understanding of challenges around model transferability and enhance predictive performance is to use predictions as tools for
learning, hence the modeling workflow is a loop representing the ongoing process of learning by doing. AUC, Area under the curve of the receiver operating
characteristic; CLIMEX, a mechanistic model of species responses to climate change; FATE-HD, a dynamic landscape vegetation model that simulates interactions
between plant species, whilst accounting for external drivers such as disturbance regimes and environmental variations; GAM, generalized additive model; GLM,
generalized linear model.
contemporaneous sites at different positions along an environmental gradient can approximate
temporal variability [72]. Such would be the case, for example, for areas subject to temperature
regimes similar to those anticipated in the future, noting it will not be appropriate for species
occupying small ranges or those not well-represented in the fossil record.

How Should Transferability Be Assessed?
Assessments of transferability demand appropriate diagnostics of prediction accuracy and
precision [73], yet there is still little consensus on which metrics are most appropriate [6,74]. All
else being equal, true validation is possible only with independent data, which are often
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Box 2. Ecological Niches in Model Transfers

Transferability should be greater in models fitted to observations that document all dimensions of, and constraints
placed upon, the fundamental niche. However, most datasets fall short of meeting this requirement, because
organisms do not always occupy all suitable habitats (or conversely occupy unsuitable ones), either as a result of
dispersal barriers, gregarious behavior, anthropogenic disturbances, biotic exclusion (e.g., competition, parasitism), or
simply because those habitats do not currently exist [81]. These constraints apply not only to the fundamental niche but
also equally to the realized niche (i.e., subset of habitats and resources accessible to a given species), meaning that
the latter is often restricted in comparison with the former, and that even a perfect understanding of the fundamental
niche alone does not make for correct predictions [85]. In practice, failure to fully represent the fundamental niche might
lead to truncated response curves that yield unrealistic predictions [38,74], and models that disregard information on
absences (e.g., presence-only and environmental envelope models) have been criticized accordingly. While funda-
mental niches can be expected to stay constant over timescales relevant to management (i.e., daily to decadal), realized
niches will typically vary both spatially and temporally. This complicates model transfers, particularly when the realized
niche becomes a direct function of habitat selection behavior as it relates to resource availability or physiological
tolerance limits [53]. The selection of environmental predictors also impacts the degree to which both fundamental and
realized niches can be captured. Emphasis should thus be placed on more direct, functional predictors to foster
improved model transfers. Understanding the relationship between niche types can help determine when transfers are
more likely to succeed or fail (Box 3), and might be facilitated by jointly modeling target species with their competitors,
predators, or facilitators [41]; by coupling distribution and population dynamics models; or by incorporating complex
eco-evolutionary factors into model formulations [49] (but likely at the expense of higher data requirements [86]). While
mechanistic models (Box 3) are well suited to delimiting species’ fundamental niches [87], to date their application
remains limited to a few, well-studied taxa for which physiological parameters are documented in detail [4].

Box 3. Correlative Versus Mechanistic Models

Correlative and mechanistic modeling are two contrasting modeling philosophies that respectively emphasize patterns
versus processes [2,87]. Correlative models draw statistical linkages between response variables (e.g., species
occurrence) and features of the environment (i.e., biotic and abiotic predictors), but have been criticized for failing to
explicitly capture the underlying processes (e.g., dispersal ability) that affect said response variable [41]. By contrast,
mechanistic or process-based models are built around explicit descriptions of biological mechanisms and parameters
that have a clear a priori interpretation. If formulated appropriately (e.g., experiment-based parameterizations of species’
responses to environmental conditions [62,88]), some mechanistic models can be expected to achieve greater realism,
with potential for higher transferability [88]. However, mechanistic models suffer from the same issues of nonstationarity
as correlative models, and are thus not immune to potentially inaccurate extrapolation (Box 2). The limited availability of
experimental data also remains a major constraint, and it is thus uncertain if mechanistic models can live up to their
promise of providing more accurate forecasts of species’ range shifts under climate change [62,89]. Indeed, a few
studies have found mechanistic and correlative models to perform equally well [63,90]. Mechanistic model implementa-
tion also comes at the cost of increased data and computational requirements, limiting their wider use. Although a useful
methodological dichotomy, the distinction between correlative and mechanistic models is usually blurred in practice [91]
because models within each class rely to some degree on parameterization against observed data, and most ecological
mechanisms are actually empirical, rather than theoretical. This need not be detrimental, as it allows a progressive
transition from the phenomenological extreme of regression models towards the process-based extreme of mechan-
istic models. In reality, the approach undertaken will often be dictated by the study context (e.g., availability of prior
knowledge). In recent years, arguments have been made for blending correlative and mechanistic approaches, by using
mechanistic knowledge as a benchmark for validating correlative models [92], by using mechanistic variables as direct
inputs to correlative models [89], or by combining the respective predictions of each model class [93]. Irrespective of the
approach chosen, explicitly considering the underlying mechanisms that affect the response is important, and
developing a thorough rationale for selecting environmental predictors is crucial to ensure that they are functionally,
ecologically, and physiologically meaningful and therefore support transferability [73,94].
unavailable (e.g., a region not yet invaded by a pest) or insufficient (e.g., small sample size). In
the absence of validation data for a target site, transferability can only be estimated by
contrasting predictions with existing expert knowledge or simulations, and, where feasible,
benchmarking performance by projecting models into multiple alternative data-rich scenarios
[6]. Cross-validation can also provide a reasonable approximation of independence, so long
as it can be structured to mimic prediction conditions and minimize correlations (e.g., by
deliberately choosing cross-validation folds to emulate extrapolation) [37]. Ultimately, consis-
tent assessments of transferability will require unified and widely applicable standard metrics
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Outstanding Questions
The question that will arguably always
be outstanding is how good is ‘good
enough’. Inevitably, what constitutes
‘satisfactory’ predictions from a trans-
ferred model will be context-specific,
as will be the relative importance of
accuracy versus precision. Indeed,
developing and transferring models is
only the start of the road towards
informing decision makers; we also
need to ensure findings are accessible
and understandable to enable uptake.
A great part of this will necessitate
effectively quantifying and communi-
cating uncertainty around model pre-
dictions. The onus then lies on
stakeholders and decision makers to
determine what level of uncertainty
they are prepared to accept, and at
what point uncertain or imprecise pre-
dictions from transferred models are
better than no predictions at all. As
the field of modeling progresses and
understanding of transferability
improves, we will be able to better
inform these discussions, ideally by
providing readily comparable transfer-
ability metrics and clear measures of
associated uncertainties. Ultimately,
the question of how good is good
enough will always fall to those who
use models to make decisions.
that enable direct comparisons among studies, systems, and taxa [6]. Instrumental to this are
novel approaches to model evaluation and validation (e.g., [75]) that are generally independent
of model choice and response variable type.

Concluding Remarks
Predictions remain a major frontier in ecology [1,45], not least because they are most pressingly
needed where we lack sufficient ecological information (Box 1). This leads to a catch-22, where
the absence of knowledge encourages the search for transferable models but also impedes
their evaluation. Concerted efforts to increase both data quality and data availability are
therefore crucial to enhancing the practice of model transfers in ecology [2,76]. Ideally, data
should be: unbiased, with explicit coverage of important gradients, high-frequency, long-term,
and real-time, so as to maximize opportunities for anticipatory predictions that can be validated
with minimal delay [76]. Alternatively, model transfers into novel systems can provide a platform
against which data can later be benchmarked once available. Whilst remote sensing, increas-
ingly used in distribution modeling, has the potential to fulfil many of these data ideals, care
must be taken to match scales of data to the phenomena that the models are attempting to
quantify. Indeed, models that are built with a thorough consideration of ecological processes
and the scales at which they operate, even if they are not actually mechanistic models, should
have a greater chance of being transferable. Ultimately, the fastest way to enhance predictions
is to use them as tools for learning [9] (Figure 2). This necessitates meticulous monitoring of
predictive performance, and importantly, rigorous documenting of failures to transfer [20] (Box
4). Quantifying transferability also requires clarity and coherence, yet assessments of model
predictions have rarely been harmonized [1]. Without widely applicable transferability metrics
that summarize different aspects of predictive success, comparisons between studies will
retain little meaning [6]. Indeed, ‘How should transferability be assessed?’ emerged as the
knowledge gap of highest priority during our discussion. Filling this gap appears essential, not
only to demonstrate greater levels of transparency in model applications (Box 1), but also
Box 4. Why Can Model Transfers Fail?

Failures to transfer occur for many reasons [95]. Arguably the most obvious is that models tightly fitted to calibration data
often do not extrapolate well to novel data [35]. Predictive models also often assume that organisms are at quasi-
equilibrium with their environment, such that occupancy or abundance data reflect site suitability. However, biological
interactions, disturbance regimes, habitat loss and human impacts (e.g., harvesting), stochastic mortality, or dispersal
constraints can prevent species from persisting in or accessing favorable habitats, potentially leading to biased
representation of environmental conditions (i.e., a failure to sample the fundamental niche) (Box 2). Species can exhibit
immediate responses to one or several components of global change, even though disruptions to networks of biotic
interactions can slow down or hasten evolutionary adaptations [96], and population dynamics can lag behind the trend
of global change drivers [97]. Nonstationarity can also undermine transferability, because species–habitat relationships
vary in complexity, strength, and direction across different ecosystems. The effects of population density on apparent
habitat preferences can compromise transferability if increases in population density force individuals into suboptimal
areas [50], although modeling the dependencies of habitat coefficients on population density offers a potential solution
[8,30]. Numerous datasets additionally suffer from sampling biases as well as spatial and temporal autocorrelation,
leading to underestimations of heterogeneity among environmental gradients or populations, which cause problems for
fitting and validating models [98]. Where possible, statistical methods for dealing with spatial and temporal correlation
should be employed to mitigate these issues [99]. Further bias in predictions can arise from local factors that remain
undetected due to the coarse resolution at which most models are calibrated [100]. Mismatched scales between
reference and target systems (e.g., temporal range, sampling year, transect size) and the omission of important
predictors (e.g., fishing pressure, habitat structure) are among other explanations for models transferring poorly [20,27].
Lastly, failures to transfer can simply ensue from inadvertent stochastic events in the evaluation data, rather than from
poor transferability per se (i.e., a model might correctly predict the presence of a species, but the validation data do not
record the presence due to some stochastic process). Clearly, advancing the application of model transfers in ecology
requires increased understanding of the processes and conditions that affect transferability, which will be aided by
encouraging researchers to publish the results of unsuccessful model transfers [20].
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because transferring models beyond the environments in which they were initially built weakens
their credibility and defensibility. Confidence in model predictions will therefore remain limited
until we can determine how well models actually perform on independent datasets [64]. Rather
counterintuitively, better transferability might not necessarily equate to better decisions if the
uncertainties associated with model predictions are not suitably measured, reported, and
communicated to end-users and policy makers [13]. So far, a comprehensive treatment of
uncertainty and its sources has been too complex and laborious to achieve [2], although
significant advances are being made towards this goal. Whilst substantial challenges lie ahead
on the road to realizing the full potential of transferable models, the prospective gains are great.
As Houlahan et al. [1] note, ‘transferability is critical to [scientific] understanding because
understanding without transferability is [ . . . ] ephemeral and transient’.

Author Contributions
A.M.M.S., K.L.Y., and P.J.B. conceived the study. K.L.Y., A.M.M.S., P.J.B., M.J.C., and K.M. organized and delivered the

conference workshop. All authors formulated challenges and voted on the assembled list. K.L.Y., P.J.B., and A.M.M.S.

compiled the data and led the writing of the manuscript. K.L.Y., P.J.B., A.M.M.S., M.J.C., K.M., and C.R. led working

subgroups. All authors contributed to the writing of individual sections of the manuscript and provided comments on drafts.

Acknowledgements
A.M.M.S. was supported by the Australian Research Council (grant: DE170100841) and an IOMRC (UWA/AIMS/CSIRO)

collaborative Postdoctoral Fellowship. P.J.B. received support from the Australian Government’s National Environmental

Science Programme (NESP). C.M. was supported by the Australian Research Council (grant: DE140100701). D.Z. was

supported by the Swiss National Science Foundation (grant: PZ00P3_168136/1) and the German Science Foundation

(grant: ZU 361/1-1). J.E. was supported by the Australian Research Council Centre of Excellence for Environmental

Decisions (CE11001000104). S.P. was supported by the USDA (grant: 17-8130-0570-CA) and DEFRA. P.N.H., J.J.R.,

and L.M. were supported by a US Navy Cooperative Agreement (N62470-15-2-8003). A.R.J. was supported by The

Spencer Gulf Ecosystem Development Initiative and the Goyder Institute for Water Research (project number: CA-16-04).

A.M.B. was supported by FCT and FEDER/COMPETE 2020 (project: IF/00266/2013/CP1168/CT0001). C.F.D. was

supported by the German Science Foundation (grant: DO 786/10-1). We thank all additional participants in the August

2016 IMCC4 symposium on ‘Increasing the utility of predictive models: Understanding model transferability’, including:

Bapu Vaitla, Chris Golden, Mohd Qurban, Kerry Howell, Sara Maxwell, Telmo Morato, Robin Anderson, Pierre Pepin,

Stephanie Sardelise. Our thanks also go to Niklaus Zimmermann for contributing initial questions and providing thoughtful

input in the early stages of manuscript preparation. We also gratefully acknowledge the constructive comments provided

by three anonymous reviewers on a previous version of this manuscript.

Supplemental Information
Supplemental information associated with this article can be found, in the online version, at https://doi.org/10.1016/j.tree.

2018.08.001.

References

1. Houlahan, J.E. et al. (2017) The priority of prediction in ecologi-

cal understanding. Oikos 126, 1–7

2. Mouquet, N. et al. (2015) Predictive ecology in a changing world.
J. Appl. Ecol. 52, 1293–1310

3. Verbruggen, H. et al. (2013) Improving transferability of intro-
duced species’ distribution models: new tools to forecast the
spread of a highly invasive seaweed. PLoS One 8, e68337

4. Urban, M. et al. (2016) Improving the forecast for biodiversity
under climate change. Science 353, aad8466

5. Clark, J.S. et al. (2001) Ecological forecasts: an emerging imper-
ative. Science 293, 657–660

6. Sequeira, A. et al. (2018) Transferring biodiversity models for
conservation: opportunities and challenges. Methods Ecol. Evol.
9, 1250–1264

7. Evans, M.R. (2012) Modelling ecological systems in a changing
world. Phil. Trans. R. Soc. B 367, 181–190
800 Trends in Ecology & Evolution, October 2018, Vol. 33, No. 1
8. Paton, R.S. and Matthiopoulos, J. (2016) Defining the scale of
habitat availability for models of habitat selection. Ecology 97,
1113–1122

9. Dietze, M.C. (2017) Ecological Forecasting, Princeton University
Press

10. Werkowska,W.etal. (2016)Apractical overviewof transferability in
species distribution modeling. Environ. Rev. 25, 127–133

11. Mukherjee, N. et al. (2015) The Delphi technique in ecology and
biological conservation: applications and guidelines. Methods
Ecol. Evol. 6, 1097–1109

12. Robinson, N.M. et al. (2017) A systematic review of marine-
based species distribution models (SDMs) with recommenda-
tions for best practice. Front. Mar. Sci. 4, art421

13. Pielke, R.A. and Conant, R.T. (2003) Best practices in prediction
for decision-making: lessons from the atmospheric and earth
sciences. Ecology 84, 1351–1358
0

https://doi.org/10.1016/j.tree.2018.08.001
https://doi.org/10.1016/j.tree.2018.08.001
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0005
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0005
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0010
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0010
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0015
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0015
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0015
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0020
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0020
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0025
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0025
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0030
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0030
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0030
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0035
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0035
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0040
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0040
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0040
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0045
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0045
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0050
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0050
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0055
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0055
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0055
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0060
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0060
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0060
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0065
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0065
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0065


14. Peñalver-Alcázar, M. et al. (2016) Microhabitat selection in the
common lizard: implications of biotic interactions, age, sex, local
processes, and model transferability among populations. Ecol.
Evol. 6, 3594–3607

15. Soininen, J. and Luoto, M. (2014) Predictability in species dis-
tributions: a global analysis across organisms and ecosystems.
Global Ecol. Biogeogr. 23, 1264–1274

16. Wogan, G.O. (2016) Life history traits and niche instability impact
accuracy and temporal transferability for historically calibrated
distribution models of North American birds. PLoS One 11,
e0151024

17. Eskildsen, A. et al. (2013) Testing species distribution models
across space and time: high latitude butterflies and recent
warming. Global Ecol. Biogeogr. 22, 1293–1303

18. Dobrowski, S.Z. et al. (2011) Modeling plant ranges over 75
years of climate change in California, USA: temporal transfer-
ability and species traits. Ecol. Monogr. 81, 241–257

19. Howard, C. etal. (2014) Improving speciesdistribution models: the
value of data on abundance. Methods Ecol. Evol. 5, 506–513

20. Sequeira, A.M.M. et al. (2018) Challenges of transferring models
of fish abundance between coral reefs. PeerJ 6, e4566

21. Weber, M.M. et al. (2017) Is there a correlation between abun-
dance and environmental suitability derived from ecological
niche modelling? A meta-analysis. Ecography 40, 817–828

22. Estrada, A. and Arroyo, B. (2012) Occurrence vs abundance
models: differences between species with varying aggregation
patterns. Biol. Conserv. 152, 37–45

23. Maguire, K.C. et al. (2016) Controlled comparison of species-
and community-level models across novel climates and com-
munities. Proc. R. Soc. B 283, 20152817

24. Fletcher, R.J. et al. (2016) Integrated models that unite local and
regional data reveal larger-scale environmental relationships and
improve predictions of species distributions. Landsc. Ecol. 31,
1369–1382

25. Tingley, M.W. et al. (2016) An integrated occupancy and space-
use model to predict abundance of imperfectly detected, terri-
torial vertebrates. Methods Ecol. Evol. 7, 508–517

26. Aubry, K.B. et al. (2017) The importance of data quality for
generating reliable distribution models for rare, elusive, and
cryptic species. PLoS One 12, e0179152

27. Sequeira, A.M. et al. (2016) Transferability of predictive models
of coral reef fish species richness. J. Appl. Ecol. 53, 64–72

28. Mitchell, P.J. et al. (2017) Sensitivity of fine-scale species distri-
bution models to locational uncertainty in occurrence data
across multiple sample sizes. Methods Ecol. Evol. 8, 12–21

29. Dormann, C.F. et al. (2008) Components of uncertainty in spe-
cies distribution analysis: a case study of the great grey shrike.
Ecology 89, 3371–3386

30. Matthiopoulos, J. et al. (2015) Establishing the link between
habitat-selection and animal population dynamics. Ecol.
Monogr. 85, 413–436

31. Scales, K.L. et al. (2017) Scale of inference: on the sensitivity of
habitat models for wide-ranging marine predators to the reso-
lution of environmental data. Ecography 40, 210–220

32. Barbosa, A.M. et al. (2009) Transferability of environmental
favourability models in geographic space: the case of the Iberian
desman (Galemys pyrenaicus) in Portugal and Spain. Ecol.
Model. 220, 747–754

33. Beyer, H. et al. (2010) Habitat preference: understanding use
versus availability designs. Philos. Trans. R. Soc. Lond. B Biol.
Sci. 365, 2245–2254

34. Bamford, A.J. et al. (2009) Trade-offs between specificity and
regional generality in habitat association models: a case study of
two species of African vulture. J. Appl. Ecol. 46, 852–860

35. Moreno-Amat, E. et al. (2015) Impact of model complexity on
cross-temporal transferability in Maxent species distribution
models: an assessment using paleobotanical data. Ecol. Model.
312, 308–317
36. Bell, D.M. and Schlaepfer, D.R. (2016) On the dangers of model
complexity without ecological justification in species distribution
modeling. Ecol. Model. 330, 50–59

37. Wenger, S.J. and Olden, J.D. (2012) Assessing transferability of
ecological models: an underappreciated aspect of statistical
validation. Methods Ecol. Evol. 3, 260–267

38. Thuiller, W. et al. (2004) Effects of restricting environmental
range of data to project current and future species distributions.
Ecography 27, 165–172

39. Evans, M.R. et al. (2013) Do simple models lead to generality in
ecology? Trends Ecol. Evol. 28, 578–583

40. Merow, C. et al. (2014) What do we gain from simplicity versus
complexity in species distribution models? Ecography 37,
1267–1281

41. Zurell, D. et al. (2009) Static species distribution models in
dynamically changing systems: how good can predictions really
be? Ecography 32, 733–744

42. Zurell, D. et al. (2012) Predicting to new environments: tools for
visualizing model behaviour and impacts on mapped distribu-
tions. Divers. Distrib. 18, 628–634

43. García-Callejas, D. and Araújo, M.B. (2016) The effects of model
and data complexity on predictions from species distributions
models. Ecol. Model. 326, 4–12

44. Dormann, C.F. (2007) Promising the future? Global change
projections of species distributions. Basic Appl. Ecol. 8,
387–397

45. Petchey, O.L. et al. (2015) The ecological forecast horizon, and
examples of its uses and determinants. Ecol. Lett. 18, 597–611

46. Perrin, E. (1904) On some dangers of extrapolation. Biometrika
3, 99–103

47. Torres, L.G. et al. (2015) Poor transferability of species distribu-
tion models for a pelagic predator, the grey petrel, indicates
contrasting habitat preferences across ocean basins. PLoS One
10, e0120014

48. Mesgaran, M.B. et al. (2014) Here be dragons: a tool for quanti-
fying novelty due to covariate range and correlation change
when projecting species distribution models. Divers. Distrib.
20, 1147–1159

49. Evans, M.R. et al. (2012) Predictive ecology: systems
approaches. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367,
163–169

50. McLoughlin, P.D. et al. (2010) Considering ecological dynamics
in resource selection functions. J. Anim. Ecol. 79, 4–12

51. Street, G.M. et al. (2015) Habitat selection following recent
disturbance: model transferability with implications for manage-
ment and conservation of moose (Alces alces). Can. J. Zool. 93,
813–821

52. Godsoe, W. et al. (2015) Information on biotic interactions
improves transferability of distribution models. Am. Nat. 185,
281–290

53. Matthiopoulos, J. et al. (2011) Generalized functional responses
for species distributions. Ecology 92, 583–589

54. Meynard, C.N. and Quinn, J.F. (2007) Predicting species dis-
tributions: a critical comparison of the most common statistical
models using artificial species. J. Biogeogr. 34, 1455–1469

55. Beaumont, L.J. et al. (2016) Which species distribution models
are more (or less) likely to project broad-scale, climate-induced
shifts in species ranges? Ecol. Model. 342, 135–146

56. Mi, C. et al. (2017) Why choose Random Forest to predict rare
species distribution with few samples in large undersampled
areas? Three Asian crane species models provide supporting
evidence. PeerJ 5, e2849

57. Heikkinen, R.K. et al. (2012) Does the interpolation accuracy of
species distribution models come at the expense of transfer-
ability? Ecography 35, 276–288

58. Iturbide, M. et al. (2018) Background sampling and transferabil-
ity of species distribution model ensembles under climate
change. Global Planet. Change 166, 19–29
Trends in Ecology & Evolution, October 2018, Vol. 33, No. 10 801

http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0070
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0070
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0070
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0070
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0075
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0075
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0075
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0080
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0080
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0080
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0080
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0085
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0085
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0085
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0090
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0090
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0090
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0095
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0095
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0100
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0100
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0105
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0105
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0105
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0110
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0110
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0110
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0115
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0115
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0115
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0120
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0120
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0120
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0120
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0125
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0125
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0125
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0130
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0130
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0130
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0135
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0135
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0140
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0140
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0140
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0145
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0145
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0145
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0150
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0150
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0150
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0155
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0155
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0155
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0160
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0160
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0160
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0160
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0165
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0165
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0165
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0170
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0170
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0170
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0175
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0175
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0175
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0175
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0180
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0180
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0180
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0185
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0185
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0185
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0190
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0190
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0190
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0195
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0195
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0200
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0200
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0200
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0205
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0205
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0205
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0210
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0210
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0210
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0215
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0215
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0215
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0220
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0220
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0220
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0225
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0225
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0230
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0230
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0235
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0235
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0235
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0235
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0240
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0240
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0240
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0240
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0245
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0245
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0245
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0250
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0250
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0255
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0255
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0255
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0255
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0260
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0260
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0260
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0265
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0265
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0270
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0270
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0270
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0275
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0275
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0275
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0280
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0280
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0280
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0280
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0285
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0285
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0285
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0290
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0290
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0290


59. Guisan, A. et al. (2007) What matters for predicting the occur-
rences of trees: techniques, data, or species’ characterictics?
Ecol. Monogr. 77, 615–630

60. Zhu, G.-P. and Peterson, A.T. (2017) Do consensus models
outperform individual models? Transferability evaluations of
diverse modeling approaches for an invasive moth. Biol. Inva-
sions 19, 2519–2532

61. Zurell, D. et al. (2016) Benchmarking novel approaches for
modelling species range dynamics. Global Change Biol. 22,
2651–2664

62. Kearney, M. and Porter, W. (2009) Mechanistic niche modelling:
combining physiological and spatial data to predict species’
ranges. Ecol. Lett. 12, 334–350

63. Kearney, M.R. et al. (2010) Correlative and mechanistic models
of species distribution provide congruent forecasts under cli-
mate change. Conserv. Lett. 3, 203–213

64. Beale, C.M. and Lennon, J.J. (2012) Incorporating uncertainty in
predictive species distribution modelling. Phil. Trans. R. Soc. B
367, 247–258

65. Gregr, E.J. and Chan, K.M. (2014) Leaps of faith: how implicit
assumptions compromise the utility of ecosystem models for
decision-making. Bioscience 65, 43–54

66. Gould, S.F. et al. (2014) A tool for simulating and communicating
uncertainty when modelling species distributions under future
climates. Ecol. Evol. 4, 4798–4811

67. Tingley, M.W. et al. (2009) Birds track their Grinnellian niche
through a century of climate change. Proc. Natl. Acad. Sci.
U. S. A. 106, 19637–19643

68. Rapacciuolo, G. et al. (2012) Climatic associations of British
species distributions show good transferability in time but low
predictive accuracy for range change. PLoS One 7, e40212

69. Varela, S. et al. (2009) Is current climatic equilibrium a guarantee
for the transferability of distribution model predictions? A case
study of the spotted hyena. J. Biogeogr. 36, 1645–1655

70. Varela, S. et al. (2011) Using species distribution models in
paleobiogeography: a matter of data, predictors and concepts.
Palaeogeogr. Palaeoclimatol. Palaeoecol. 310, 451–463

71. Moreno-Amat, E. et al. (2017) Incorporating plant fossil data into
species distribution models is not straightforward: pitfalls and
possible solutions. Quat. Sci. Rev. 170, 56–68

72. Anderson, A.S. et al. (2013) Current analogues of future climate
indicate the likely response of a sensitive montane tropical
avifauna to a warming world. PLoS One 8, e69393

73. Fourcade, Y. et al. (2018) Paintings predict the distribution of
species, or the challenge of selecting environmental predictors
and evaluation statistics. Global Ecol. Biogeogr. 27, 245–256

74. Randin, C.F. et al. (2006) Are niche-based species distribution
models transferable in space? J. Biogeogr. 33, 1689–1703

75. Fieberg, J.R. et al. (2017) Used-habitat calibration plots: a new
procedure for validating species distribution, resource selection,
and step-selection models. Ecography 41, 737–752

76. Pennekamp, F. et al. (2017) The practice of prediction: what can
ecologists learn from applied, ecology-related fields? Ecol.
Complex. 32, 156–167

77. Addison, P.F.E. et al. (2013) Practical solutions for making
models indispensable in conservation decision-making. Divers.
Distrib. 19, 490–502

78. Vanreusel, W. et al. (2007) Transferability of species distribution
models: a functional habitat approach for two regionally threat-
ened butterflies. Conserv. Biol. 21, 201–212

79. Oppel, S. et al. (2004) How much suitable habitat is left for the
last known population of the pale-headed brush finch? Condor
106, 429–434

80. Mannocci, L. et al. (2017) Extrapolating cetacean densities to
quantitatively assess human impacts on populations in the high
seas. Conserv. Biol. 31, 601–614
802 Trends in Ecology & Evolution, October 2018, Vol. 33, No. 1
81. Medley, K.A. (2010) Niche shifts during the global invasion of the
Asian tiger mosquito, Aedes albopictus Skuse (Culicidae),
revealed by reciprocal distribution models. Global Ecol. Bio-
geogr. 19, 122–133

82. Tuanmu, M.N. et al. (2011) Temporal transferability of wildlife
habitat models: implications for habitat monitoring. J. Biogeogr.
38, 1510–1523

83. Keller, R.P. et al. (2008) Preventing the spread of invasive
species: economic benefits of intervention guided by ecological
predictions. Conserv. Biol. 22, 80–88

84. Doak, D.F. et al. (2008) Understanding and predicting ecological
dynamics: are major surprises inevitable? Ecology 89, 952–961

85. Barve, N. et al. (2011) The crucial role of the accessible area in
ecological niche modeling and species distribution modeling.
Ecol. Model. 222, 1810–1819

86. Thuiller,W.etal. (2013)Aroadmap for integratingeco-evolutionary
processes into biodiversity models. Ecol. Lett. 16, 94–105

87. Peterson, A.T. et al. (2015) Mechanistic and correlative models
of ecological niches. Eur. J. Ecol. 1, 28–38

88. Evans, T.G. et al. (2015) Mechanistic species distribution model-
ling as a link between physiology and conservation. Conserv.
Physiol. 3, cov056

89. Mathewson, P.D. et al. (2017) Mechanistic variables can
enhance predictive models of endotherm distributions: the
American pika under current, past, and future climates. Global
Change Biol. 23, 1048–1064

90. Robertson, M.P. et al. (2003) Comparing models for predicting
species’ potential distributions: a case study using correlative
and mechanistic predictive modelling techniques. Ecol. Model.
164, 153–167

91. Dormann, C.F. et al. (2012) Correlation and process in species
distribution models: bridging a dichotomy. J. Biogeogr. 39,
2119–2131

92. Martínez, B. et al. (2015) Combining physiological threshold
knowledge to species distribution models is key to improving
forecasts of the future niche for macroalgae. Global Change
Biol. 21, 1422–1433

93. Stensgaard, A.-S. et al. (2016) Combining process-based and
correlative models improves predictions of climate change
effects on Schistosoma mansoni transmission in eastern Africa.
Geospat. Health 11, art406

94. Petitpierre, B. et al. (2016) Selecting predictors to maximize the
transferability of species distribution models: lessons from
cross-continental plant invasions. Global Ecol. Biogeogr. 26,
275–287

95. Roach, N.S. et al. (2017) Poor transferability of a distribution
model for a widespread coastal marsh bird in the southeastern
United States. Ecosphere 8, e01715

96. Van der Putten, W.H. et al. (2010) Predicting species distribution
and abundance responses to climate change: why it is essential
to include biotic interactions across trophic levels. Philos. Trans.
R. Soc. Lond. B Biol. Sci. 365, 2025–2034

97. Dullinger, S. et al. (2012) Extinction debt of high-mountain plants
under twenty-first-century climate change. Nat. Clim. Change 2,
619–622

98. Araújo, M.B. et al. (2005) Validation of species–climate impact
models under climate change. Global Change Biol. 11, 1504–
1513

99. Dormann, C.F. et al. (2007) Methods to account for spatial
autocorrelation in the analysis of species distributional data: a
review. Ecography 30, 609–628

100. Randin, C.F. et al. (2009) Climate change and plant distribution:
local models predict high-elevation persistence. Global Change
Biol. 15, 1557–1569
0

http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0295
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0295
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0295
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0300
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0300
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0300
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0300
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0305
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0305
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0305
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0310
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0310
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0310
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0315
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0315
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0315
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0320
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0320
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0320
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0325
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0325
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0325
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0330
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0330
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0330
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0335
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0335
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0335
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0340
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0340
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0340
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0345
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0345
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0345
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0350
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0350
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0350
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0355
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0355
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0355
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0360
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0360
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0360
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0365
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0365
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0365
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0370
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0370
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0375
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0375
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0375
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0380
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0380
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0380
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0385
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0385
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0385
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0390
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0390
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0390
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0395
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0395
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0395
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0400
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0400
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0400
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0405
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0405
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0405
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0405
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0410
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0410
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0410
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0415
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0415
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0415
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0420
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0420
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0425
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0425
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0425
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0430
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0430
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0435
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0435
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0440
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0440
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0440
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0445
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0445
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0445
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0445
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0450
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0450
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0450
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0450
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0455
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0455
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0455
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0460
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0460
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0460
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0460
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0465
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0465
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0465
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0465
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0470
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0470
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0470
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0470
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0475
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0475
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0475
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0480
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0480
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0480
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0480
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0485
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0485
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0485
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0490
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0490
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0490
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0495
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0495
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0495
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0500
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0500
http://refhub.elsevier.com/S0169-5347(18)30181-2/sbref0500

	Outstanding Challenges in the Transferability of Ecological Models
	Predicting the Unknown
	Defining the Challenges
	Fundamental Challenges
	Is Model Transferability Trait- or Taxon-Specific?
	Which Response Variables Make Models More or Less Transferable?
	To What Extent Does Data Quality Influence Model Transferability?
	How Can Sampling Be Optimized to Maximize Model Transferability?
	How Does Model Complexity Influence Model Transferability?
	Are There Spatial and Temporal Limits to Extrapolation in Model Transfers?

	Technical Challenges
	How Can Non-analog Conditions Be Accounted for When Transferring Models?
	How Can Nonstationarity and Interactions Be Incorporated in Model Transfers?
	Do Specific Modeling Approaches Result in Better Transferability?
	How Should Uncertainty Be Quantified, Propagated, and Communicated When Transferring a Model?
	How Can We Best Transfer Models through Time and Evaluate Them in Temporally Dynamic Systems?
	How Should Transferability Be Assessed?

	Concluding Remarks
	Author Contributions

	Acknowledgements
	Supplemental Information
	References


