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Introdução

Um semigrupo numérico § é um submonoide de (N,+) tal que o miáximo divisor

comum dos seus elementos é igual a um' Usando esta definição, S admite um único

sistema de geradores {n0,." ,np} e designamos noe P+ 1 como a multiplicidade e a

dimensão de imersão, respectivamente. Além disto o conjunto N\s é finito e referi-

mos o maior inteiro não pertencente a S como o número de Frobenius e denotamolo

por g(§). o estudo dos semigrupos numéricos é um problema clássico equivalente

ao estudo do conjunto das soluções das equações lineares com coeficientes em N (ver

lg, L0,52,541). A partir de 1970 (ver 124,25, 191), o estudo dos subsemigrupos era

essencialmente motivado pelas suas aplicações em Geometria Algébrica. como exem-

plo, temos que se K é um corpo, I<[S] é uma K-aigebra de tipo finito associada a S e

f[X] - iK[Xg,...,Xr] é um anel de polinómios em p* I indeterminadas, o epimorfismo

K-algebra À: f[X] -+ f[S] definido porXl r+ r'i é homomorfismo de anéis S-graduado

com grau zero. Assim, o ideal primo associado P = kernel(},) (chamado ideal associ-

ado aS) é homogéneo e define uma curva num espaço afim de dimensão p+ 1' Herzog

prova em [z] que encontrar um sistema de geradores para P é equivalente a encontraÍ

uma apresentação para .t.

Todo o semigrupo numérico S gerado pelo conjunto {n0,"' ,np} é isomorfo ao

monoide quociente N/'+1/o (ver [39]) com o uma congruência em N[2+1. Rédei mostra

em [28] que a congruência o em NP+l é finitamente gerada e portanto existe p um

subconjunto de Np+l x NP+1 tal que o - (p). Ao conjunto p chamamos apresentação

para.§ e dizemos que p é uma apresentação minimal se nenhum subconjunto próprio
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de p gerar o. No processo de encontraÍ uma apresentação minimal para o vamos usar

alguma teoria dos grafos. Esta idéia de caracterizar uma apÍesentação minimal em

termos da conexidade de certos grafos foi introduzida por Rosales (ver por exemplo

[30]). Além disso multiplicidade e a dimensão de imersão desempenharn um papel

fundamental para uma cota miíxima de uma apresentação minimal para S. De facto em

[32] demonstra-se que o caÍdinal de qualquer apresentação minimal para § é menoÍ ou

igual a !sE:U - 2@s - 1 - p).

Definimos semigrupo numérico irredutível como um semigrupo numérico que não

pode ser expÍesso como intersecção de dois semigrupos numéricos que o contenham

propriamente. Em [25] temos que um anel de semigrupo K[§] é de Gorestin se e

só se .§ é siméaico; e em [5] temos que um anel K§ é de Kunz se e só se § é

pseudo-simétrico. O capítulo 2 é dedicado ao estudo dos semigrupos numéricos ir-

reduúveis e os seus resultados encontram-se em ([35,361 37r 38]). Mostramos que §

é irredutível se e só se § é maximal no conjunto de todos os semigrupos numéricos

com número de Frobenius g(S). Em [31] é feito o estudo dos semigrupos irre-

dutíveis com número de Frobenius ímpar. Assim, o nosso objectivo na primeira

secção é generalizar este estudo para semigrupos numéricos irredutíveis em geral (com

númeÍo de Frobenius par ou ímpar). Caracterizamos os semigrupos numéricos irrc-

duúveis dando especial atenção aos seus conjuntos de Apéry. Estabelecemos uma

cota para o cardinal de uma apresentação minimal paÍa estes semigrupos em termos

da sua multiplicidade e da sua dimensão de imersão. Estudamos também os semi-

grupos irredutíveis com miíxima dimensão de imersão. Sabemos que um semigrupo

numérico pode ser expresso como uma intersecção finita de semigrupos numéricos ir-

redutíveis. Donde é natural questionar quando é que um semigrupo numérico pode

ser expresso como intersecção de semigrupos numéricos simétricos. Respondemos
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a esta questiÍo caracterizando a classe dos semigrupos numéricos que podem ser ex-

pressos como intersecção finita de semigrupos numéricos simétricos (chamados ISY-

semigrupos). A partir do conceito de pseudo-número de Frobenius damos uma nova

cxacterizaçáo de ISY-semigrupo e obtemos um método algoritmo para encontrar uma

sua decomposição. Além disto caracterizamos as classes dos semigrupos numéricos

que podem ser expressos como intersecção finita de semigrupos simétrico§ com o

mesmo número de Frobenius (chamados ISYG-semigrupos) e com a mesma dimensão

de imersão (chamados ISYM:semigrupos). Sejam S um semigrupo numérico e r(S) o

menor inteiro positivo tal que S = §r O "'O§n com Si semigrupo numérico inedutível'

Usando novamente o conceito de pseudo-número de Frobenius damos uma cota supe-

rior e uma cota inferior para r(§). Com estes resultados caracterizamos os semigru-

pos numéricos que são intersecção de semigrupos numéricos simétricos e os que são

intersecção de semigrupos numéricos pseudo-simétricos. Um problema subjacente a

decompor um semigrupo em irredutíveis é encontrar uma decomposição com o menor

número de elementos. Para resolver esta questão usamos [48] o qual nos descreve um

algoritmo para uma decomposição minimal em irredutíveis. A finalizar este capítulo

completamos os resultados de [33]. Provamos que se m e e sáo inteiros positivos tal

3 1 e 1 m- l, então existe um semigrupo numérico irredutível com número de Frobe-

nius par tal que m(S) - m e p(S) = e. Esta prova é construtiva e permite-nos obter uma

famflia de semigrupos numéricos irredutíveis com número de Frobenius par com mul-

tiplicidade e dimensão de imersão arbitriírias. Mostramos ainda que se p(S) ) 4, então

o cardinal de uma apresentação minimal para esta família de semigrupos numéricos é

ieualaaQ'0f):!-1.

No capítulo 3 estudamos o conjunto dos semigrupos numéricos com multiplici-

dade m e os seus resultados encontram-se em ([44]). Dado um semigrupo numérico S

com rn: m(,S), o conjunto de Apéry Íelativamente a m é o conjunto Ap(§,z) = {s e
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.§ ls - z I S). Supoúamos w(i) o menor elemento em .S congruente com i módulo m

(denotado por w(i) : i(mod z)) com i e {0,.. ., z - I }, então temos que

Ap(s, ru) : {0 : w(0), w( t),. . .,w(m - 1)}

ew(i) : kim+i para algum /<; € N. Por outro lado, 132, Lema 3.31 afirma que para

i, j e {0,...,m - I } existem r € N e ft € {0,...,* - 1} tal que w(i) + w(j) : tm+ w(k).

Partindo destes resultados deduzimos que (/c1 , . . . , t - 1 ) é solução do sistema linear de

inequações Diophantino.

4)l ie{1,...,m-l},
n*xi-n+i)O | <i< j <m-l,i+ j <m-1,

xi*xj-xi+j-^) -l l<i< j<m-l,i* j>m.
Estudamos o conjunto das soluções inteiras positivas de um sistema de equações

Diophantino. Mostramos que estas soluções podem ser descritas como um conjunto

finito de parâmetros e que estes podem ser calculados Neste con-

texto construimos uma bijecção entrc, J(z), o conjunto dos semigrupos numéricos

com multiplicidade m e o conjunto das soluções positivas de um sistema linear de

inequações Diophantino. Como vimos anteriormente um sistema linear de inequações

Diophantino pode ser descrito por um conjunto finito de parâmetros logo obtemos

descrição similar para J(z). Em seguida estudamos os MED-semigrupos (semi-

grupos numéricos com máxima dimensão de imersão). Mostramos que o conjunto,

n{ED(m), de MED-semigrupos com multiplicidade m é bijectivo com um sub-

semigrupo de NIu-l este suÍge de uma adaptação das inequações do caso anterior

para miíxima dimensão de imersão. Particularizamos também estes resultados para

o caso dos semigrupos numéricos simétricos. Neste caso os sistemas que apaÍe-

cem contêm também equações lineares e o conjunto dos semigrupos numéricos é a

união do conjunto das soluções inteiras não negativas dos sistemas deste tipo. Dize-

mos que um semigrupo numérico .§ tem um conjunto de Apéry monotónico se

w(t) < w(2) < ... < w(m(s) - 1), com {o,w(l),...,w(m(s) - l)} - Ap(s,m(s)).
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Finalizamos este capítulo estudando o conjunto C(rrr) dos semigrupos numéricos com

conjunto de Apéry monotónico e multiplicidade m. Mostramos que existe uma corre-

spondência biunívoca entre o conjunto C(m) e um subsemigrupo de N'-1 finitamente

gerado.

Existem na literatura um grande número de resultados referentes ao estudo de

domínios locais analiticamente irredutíveis de dimensão um via os valores de um semi-

grupo (ver [8,17, L9,21,20,25,56, 55]). Entre as propriedades estudadas para este

tipo de aneis, à parte das estudadas anteriormente neste trabalho (Gorestein e Kunz),

focamos as seguintes: máxima dimensão de imersão, (ver [1,5, 14, 15,50,51])' Arf

(ver,126,49,16)) e ser saturado (ver, [57, 27,12]). O capítulo 4 é dedicado ao estudo

das classes dos MED-semigrupos e dois interessantes tipos destes semigrupos: semi-

grupos numéricos Arf e saturados. Quando descrevemos e trabalhamos com os MED-

semigrupos (respectivamente semigrupos numéricos Arf e semigrupos numéricos sat-

urados) usualmente usamos o seu sistema de geradores. Assim, não obtemos van-

tagens da estrutuÍa extra MED-semigrupo (respectivamente semigrupo numérico Arf

e semigrupo numérico saturado) que têm estes semigrupos numéricos. começamos

por demonstrar que a intersecção de dois semigrupos numéricos Arf (respectivamente

saturado) é ainda um semigrupo Arf (respectivamente saturado)' No caso dos MED-

semigrupos é necessiírio fixaÍ a multiplicidade para provalmos que a intersecção de

dois MED-semigrupos é ainda um MED-semigrupo. Neste contexto, introduzimos

o conceito de MED-sistema de geradores (respectivamente Arf sistema de geradores

e SAI sistema de geradores) e concluimos que qualquer MED-semigrupo (respec-

tivamente Arf semigrupo e saturado semigrupo) admite um único MED-sistema de

geradores (respectivamente Arf sistema de geradores e sAT sistema de geradores).

Provamos que se .! é um semigrupo numérico Arf (respectivamente saturado) então

SU {g(S)} é Arf (respectivamente saturado). Por outro lado, se S é um semigrupo
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númérico tal que Á o seu sistema minimal de geradores Arf (respectivamente satu-

rado), então a € Á se e somente se §\ {a} é um semigrupo numérico Arf (respecti-

vamente saturado). Em consequência deste rcsultado ordenamos o conjunto de todos

os semigrupos numéricos Arf (respectivamente saturados) numa árvore binária cuja

raíz é N (no caso saturado sem folhas). No caso dos MED-semigrupos temos que se

S é um MED-semigrupo e g(S) > m(§), então SU {g(§)} é um MED-semigrupo; e

se § é um MED-semigrupo com Á o seu minimal MED-sistema de geradores, então

a e Á \ {m(S)} se e somente se S \ {a} é um MED-semigrupo de multiplicidade m.

Análogamente isto permite-nos ordenar o conjunto dos MED-semigrupos com multi-

plicidade m numa árvore atja raíz é o semigrupo lm,m* 1,...,2m - 1). Finalmenrc,

dado um semigrupo numérico obtemos um método para calcúarmos o seu fecho MED,

Arf e SAÍ, que é, o menor semigrupo numérico MED, Arf e saturado, respectivamente,

que o contém.



Introduction

A numerical semigroup ,§ is a submonoid of (N, *) such that the greatest common

divisor of its elements is equal to one. From this definition, one obtains that S admits

a unique minimal system of geneÍators {nq < "' < np}. We refer to the numbeÍ§ no

and p * 1 as the multiplicity and embedding dimension of §, and denote them by m(S)

and p(S), Íespectively. Moreover N \ S is finite, and the greatest integer not in § is the

Frobenius number of ,s and it is denoted by g(s). The study of numerical semigroups

is a classical problem, which is equivalent to the study of the sets of natural solutions

of linear equations with coeffrcients in N (see for instance [9, 10,52' 54])' From 1970

(see for instance 124, 25, Lgl), the study of subsemigroups of N has been motivated

by its applications to Algebraic Geometry. As an example, if K is a field, K[§] is the

finite type K-algebra associated to § and K[X] = ,<[&' ',Xr] is the polynomiai ring

in p+ 1 unknowns, the K-algebras epimorphism l,: iKlX] -» K[§] defined by X1 + tni

is a s-graduate ring homomorphism with degree zero. Therefore, the prime ideal P -
kemel(À) (called the ideal associated to the semigroup) is homogeneous and defines a

monomial curve in the (p+ l)-dimensional affine space on Í(. Herzog proves in [24]

that finding a system of generators for P is equivalent to finding a presentation for s.

Every numerical semigroup ,S with minimal system of generators {29, ' ' ' , nr} is

isomorphic to the quotient monoid Np+l/o (see for instance [39]) where 6 is a con-

gruence on N2+1. Rédei shows in [28] that the congÍuence o on NP+l is finitely gen-

erated and therefore there exists p a finite subset of Nz+l x N2+l such that o = (p)'

The set p is called pÍesentation of §. We say that p is a minimal presentation if no

7
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proper subset of p generates o. In the pÍocess of frnding a minimal presentation for

o, it is used some graph theory. This idea of characterizing a minimal presentation in

terms of the connectedness of certain graphs is due to Rosales (see for example [30]).

Furthermore the multiplicity and the embedding dimension play an imponant role in

order to find bounds for the cardinality ofa minimal presentation for S. In fact in [32]

it is shown that the cardinal of any minimal presentation for S is less than or equal to

ino(no - l) - z(ns - 1 - p). Bresinsky proves in [11] that an upper bound for the car-

dinality of a minimal presentation of § can not be given by using only the embedding

dimension of §.

We say that a numerical semigroup is ineducible if it can not be expressed as an

intersection of two numerical semigroups that contain it properly. In [25] it is shown

that the semigroup ring Ií[§] is Gorestein if and only if § is symmetric; and in [5] it is

shown that the semigroup ring 1([S] is Kunz if only if § is pseudo-symmetric. From

[5] and [20] we deduce that § is ineducible wiú odd Frobenius number if only if
,S is symmetric; and that § is irreducible with even Frobenius number if only if § is

pseudo-symmetric. Chapter 2 is devoted to the study of irreducible numerical semi-

groups and the results presented there can be found in ([35,36,37, 38]). We prove

that S is irreducible if only if § is maximal in the set of all numeÍical semigroups

with Frobenius number g(S). Rosales in [31] gives us a study of symmetric numerical

semigroups. Our aim in the first section of this chapter is to generalize this study to

irreducible numerical semigroups in general (that is, with even or odd Frobenius num-

ber). We characterize irreducible numerical semigroups giving especial attention to

their Apéry sets. We give an upper bound for the cardinality of the minimal presenta-

tion for this kind of numerical semigroups in terms of their multiplicity and embedding

dimension. We also study those irreducible numerical semigroups with maximal em-

bedding dimension. A numerical semigroup can be expressed as an intersection of
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finitely many ineducible numerical semigroups. Then, it is natural to ask whether

or not a numerical semigroup can be expressed as an intersection of only symmetric

numerical semigroups. We answer this motivating question, characterizing this class

of semigroups that can be expressed as a finite intersection of symmetric semigroups

(called ISY-semigroups). From the concept of pseudo-Frobenius numbers we give a

new characterization of ISY-semigroups and we derive algorithmic methods to find

such decomposition. Moreover we chaÍacterize the class of numerical semigroups that

can be expressed as a finite intersection of symmetric numerical semigroups with the

same Frobenius-number (called ISYG-semigroups) and the same multiplicity (called

ISYM-semigroups). Now suppose that S is a numerical semigroup and we denote by

r(s) the least positive integer n such that § - ,sr n...o§, with §i an irreducible nu-

merical semigroup. using again the concept of pseudo-Frobenius numbers we give

an upper bound and lower bound for r(S). We will use these results to characterize

those numerical semigroups that aÍe intersection of symmetric numerical semigroups

and those úat aÍe intersection of pseudo-symmetric numerical semigroups. A subja-

cent problem for such decompositions in ineducibles is to found a decomposition with

the least possible number of irreducibles. In order to achieve this result we use [48]

which describes an algorithm for computing a minimal decomposition of a numeri-

cal semigroup in terms of irreducible numerical semigroups. Finally, in this chapter,

we complete the results given in t331. We prove that if m and e are positive integers

such that 3 3 e < m- 1, then theÍe exists an ineducible numerical semigroup with

even Frobenius-number such that m(S) : m and p(§) = e ' The prove we give is con-

structive and so we can obtain a family of ineducible numerical semigroups with even

Frobenius-number and with arbitÍary multiplicity and embedding dimension. Also we

show that if g(S) à 4, then the cardinality of a minimal presentation for any element

of this family is equal to s(s)(p(s)-l) - 1.

9
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In Chapter 3 we study the set of numerical semigroups with multiplicity z. The

results presented in this chapter ale collected in ([44]). Given a numerical semigroup

andz: m(§), the Apéry set of § wiú rcspect tom is úe set Ap(§,m) -- {s e S ls-m /
S). It can be shown that if for every i € {0,...,n- l} we take w(i) to be the least

element in S congruent with i modulo ,,l (denoted w(i) = i(mod z)), úen

Ap(S,z) : {0 - w(0),w(l),...,w(zr- l)}

and w(i) = &im * i for some /ct € N. Furthermore, [32, Irmma 3.3] stâtes that for every

i, j e {0,...,m - 1} ttrere exist t € N and,t € {0,...,m - l} such that w(i) + w(j) :
tm+ w(k). From this fact it can be deduced úat (,tr,...,/cr-1) is a solution of the

system of linear Diophantine inequalities

xi21 íe {1,...,n- 1},
xi+xj-ri+j>O l<i! j <m-l,i* j 1m- l,

xi*xi-xiai-n) -l l1i< j<m-1,i+ j>m.
We study the set of nonnegative integer solutions of systems of linear Diophantine

equations. We show that these solutions can be described wiú a finite set of param-

eters and that the coefficients of úese can be computed algorithmically. With this

rcsult we construct a one to one map between the set S(zt) of all numerical semi-

groups with multiplicity rz and the set of nonnegative integer solutions of a system

of linear Diophantine inequalities. Since the above the system of linear Diophantine

inequalities can be described by a finite set of parameters that can be computed, we

have a similar description of J(m). Next we study MED-semigroups (numerical semi-

groups with maximal embedding dimension) and we show that the set fu{ED(n) ot

MED-semigroups with multiplicity z is bijective with a subsemigroup of N'-l aris-

ing from the adaptation of the above inequalities to the maximal embedding dimension

case. Finalln we particularize tlese results for symmetric numerical semigroups. In

this setting the systems that appear also contain linear equations and the set of sym-

metric numerical semigroups is a union of úe sets of nonnegative integer solutions of
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systems of this type. We say that a numerical semigroup § has monotonic Apéry set

if w(1) < w(2) < ... < w(m(s) - 1), with {0,w(1),...,w(m(s) - I )} : Ap(§' m(s)).

We finish úis chapter studding the set C(z) of the numerical semigroups with mono-

tonic Apéry set and multiplicity ,r4. We show that there is a one-to-one conespondence

between C(m) and a finitely generated subsemigroup of N'-1.

In the literatuÍe one can find a long list of works dealing with the study of one

dimEnsional analytically ineducible local domains via their value §emigÍouPs (§ee for

instance 18r 17 r19,21,20,25,56, 551). Among the properties studied for this kind of

ring apart from the one § studied so far in this work (Gorestein and Kunz), we focus

on the following: maximal embedding dimension (see [1, 5, 14, 15, 50, 51])' Arf (see

126,4grL6l) and saturated (see [57, 27,L2». Chapter4 is devoted to the §tudy of

üe class of MED-semigroups and two interesting kinds of these semigroups: Arf and

saturated numerical semigroups. For describing and working with MED-semigroups

(respectively Arf numerical semigroups and saturated numerical semigroups) one can

use their systems of generators (usually this is the case). In this way one does not take

advantage on the extra structure that MED-semigroups (respectively Arf numerical

semigroups and saturated numerical semigroups) have over general numerical semi-

groups. Here we show that the intersection of two Arf (respectively saturated) numer-

ical semigroups is again an Arf (respectively saturated) numerical semigroup' In the

case of MED-semigroups we need to fix the multiplicity to plove that the intersection

of two MED-semigroups is again a MED-semigroup. From this fact we introduce the

concept of MED-system of generators (respectively Arf system of generator§ and SAf

system of generators) and we will §ee that every MED-semigroup (respectively Arf

semigroup and saturated semigroup) admits a unique minimal MED-system of gener-

ators (respectively Arf system of generators and SAI system of generators)' We show

that if ,S is an Arf (respectively saturated) numerical semigroup then so is §U {8(S)}'

1l
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Furthermore, if § is a numerical semigroup and Á it is minimal Arf (respectively SAf,)

system of generatom then a € Á if only if S\ {a} is an Arf (respectively saturated)

numerical semigroup. As a consequence of this result we show that the set of all Arf

(respectively saturated) numerical semigroups can be arranged in a binary tree with

root §tr (no leaves in úe saturated case). For MED-semigroups, we have úat if S

is a MED-semigroup and g(S) > m(S), then SU {g(S)} is again a MED-semigroup;

and if § is a MED-semigroup with Á its minimal MED-system of generators, then

a e Á \ {m(S)} if only if S \ {a} is a MED-semigroup with multiplicity z. This will

allow us to show that the set of MED-semigroups with multiplicity m can be arranged

in a tree whose root is the semigÍotp (m,m* 1,. . . ,2m - 1). We also give a procedure

for computing the MED, Arf and SÁf, closurc for a given numerical semigroup, that

is, the smallest MED, Arf and saturated numerical semigroup, respectively, containing

it.



CHAPTER 1

In this chapter we give a brief introduction to numerical semigroups and we fix the

notation used along this work.

We use N and Z to denote the set of nonnegative integers and the set of the integers,

respectively.

A semigroup is a pair (S,+), with § a non empty set and + a binary operation

deflned on ,§ verifying the associative law. If there exists an eiement, € s such that

Í+s: s+Í: s for all s € s we say that (s,+) is a monoid. This element t is usually

referred to as the identity element and it is denoted by 0. In addition, s is a com-

mutative monoid if for all, a,b e S, a|$ - b* a. Asubmonoid of a monoid '! is a

subset Á of S such that0 €A and for every a,b € A we have that a+ b e A' Given a

subset B of a monoid s, the monoid generated by (8), is the least (with respect to set

inclusion) submonoid of S containing B, which tums out to be the intersection of all

submonoids of s containing B. If s : (B) we say that B is a system of generators of s

or that s is generated by B. Furthermore if s : (B) and there exists no proper subset of

B that generates s we say that B is a minimal system of generators for §. A monoid .§

is finitely generated if it has a finite system of generators. A map g : F -+ S, where F

and S are monoids, is called monoid morphism if q(0) : 0 and «p( a+ b) :9@) + 9(b)

for all a,b it F .

A numerical semignoup is a submonoid of N such that the greatest common di-

visor of its elements is equal to one. The following result gives us alternative ways of

defining a numerical semigÍoup.

l3
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PRoPoSITIoN l. lzt S a submonoid off§. Thefollowing conditions are equivalent:

l) S is a numerical semigroup,

2) the group spanned by S is Z,

3) N\Srsfinira.

Then it makes sense to take into account the gÍeatest element of V, noÍ in .§. We

call this element Frobenius number of .t and denote it by g(S).

Suppose that Á - {a1,..., aa} Ç N and m € N \ {0} are such that ai * a.;(mod m)

for all 1 < i < j < m. We say that Á is a complete system modulo m. For z e § \ {0},
we define the Apéry set of n in § (see [4]) as the set

Ap(S,n):ix€Slx-nlSj.

Next result follows easily.

PRoPoSITIoN 2. Let S be a numerical semigroup and let n e S\ {0}. Tran

Ap(§, z) is a complete system modulo n.

Hence #Ap(§, n) : n (where #Á stands for cardinality of Á).

LEMMA 3. kt S be a numerical semigroup and let n e § \ {0}. Tftenr

(t) g(s) = max(Ap(s, n)) - z,

(2) s= (inluAp(s,n)),

max(A) denotes maximum of A.

As a consequence of the above lemma every numerical semigroup § is finitely

generated. Clearly § has a unique minimal system of generatoÍs. Assume that {n9 <

q < . . , < rr) is a minimal system of generators of .t, we refer to the numbers ng (the

least integer in S \ {0}) and p .l I (cardinality of its minimal system of generators) as

the multiplicity and embedding dimension of §, and denote them by m(§) andp(S),

respectively.
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nelation if the followingA binary relation o on a monoid S is an

properties hold:

l. foralla€.§, a oa (reflexive),

2. for all a,b e S, if ao b thenb o a (symmetric),

3. for all a, b, c e S, tf a o b and b o c, thelr a o c (transitive).

Inaddition,ifoisanequivalencerelationsuchthataoáimpliesthata+cob+cfor

all c € § we say o is a congruence on S. An alternative notâtion for a o á is (4, à) e o.

For p a subset of §F x Ntr, there always odsts the smallest congruence (p) contain-

ing p, which can be described in thÍee steps:

l. p0=pup-rnt,wherep-r :i(v,w) | (w,v) ep)'andt= {(w,w) | weM}'

2. pt = {(v*u,w+z) | (v,w) e p0, and n e N'},

3. (v,w) € (p) if there exist vo: v-..,vk: w with (vi,v+t) € pl for all i e

{0,...,t- l}.

lVe also refer to the congruence (p) as the cong(uence generated by p.

Let F - {ad6 + "'*apXp I oo,...,o, e N} be the free commutative monoid

generated by {Xo,.. .,Xp} and let I : F -+ § be the monoid epimorphism defined by

(aú{o* "'-laiÇ) - asns* "'Iapnp'

It is well known that if o is the kemel congruence of I (that is, xoy if 9(x) : q(y))'

then ,s is isomorphic to the quotient monoid F/o (see t39l). Rédei shows in [28] that

the congruence o is finitely generated and therefore there exists

P: {(xr,Yr), "', (*,'Y,)} Ç F x F

such that o is the congruence on F generated by p. The set p is called a

for the numerical semigroup §. We say that p is minimat presentation if no proper

subset of p generates o. In fact the concepts of minimal presentation and presentation

with úe lowest cardinality coincide for a numerical semigroup (see for instance [30]).
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Let S be a numerical semigmup with minimal system of generato$ {ro < ,r <
- . . < np\ and consider again g : F -+ § defined as above. Denote by o the kemel

congruence of g and, for z e S \ {0}, denote by [z] = {x e F. I g(r) : z} (the inverse

image of n by g). We define in [z] the following equivalence relation (:

aúh +.'. + lpxp & bolh + .. . + b Pxp

if there exist elements

&Ulfo +''' + f9, Xp, hoXo *''' * k1 oXp,'' ., kioXo *... + k j oxp e lnl

such that

aoXo 4 "' * arX.o = kn fu +... + larXe

bdh + "' + b ép = kio)rc,* "' I kjpXp

and fr;o/c;a1o * " '*kiokr+to l0 for all , € {0,... j - l}.
I,et X be aset, lP: {Xr,...JÇ} be a partiüon ofX and "lçX xX be a binary

relation on X. We define the graph G,y associated to y with respect to the partition ?
as a graph whose vertices are the elements in e and,*ff, wiú i I j, is an edge of G,

whenever there exist .r € Xr and y e X; such that (.r, y) e yu p I 
.

The following results can be found in [30].

PRoposITIoN 4. Lct n e S be and let g = {Xr,...,)fi} be the set of \-classes

contained in fnl. If y k a presentation of S, and y, - 1n ([z] x ln)), then the graph

associated to Gy, with respect to the partition e oflnl is a connected graph.

PRoPoSITIoN 5. Let y be a subset of o such that Gy^ is connected for all n e S.

Then y is a presentationfor S.

With these two results together, we obtain the following theorcm.
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THEoREM 6. Izt \ be a subset oÍ 6. Tlun 7 is presenmtion of S if only d Gy" is

cowrectedforallnes.

Now we show how a minimal prcsentation of a numerical semigroup can be com-

puted fÍom its minimal system of generators.

For z € § defrne the graph G, with vertices V, and edges E, as

v, - {n; e {no, "',np} I r- zi e s},

En : {wi I n - (ni + ni €,s,i,i € {0, "', p},i * i}'
The next result illustrates the connection between R-classes and the graphs Gr.

PRoPosITIoN 7 . (l3Ll) For everyn € S\ {0}, there is a biiective nap berween the

seÍ oÍ connected components of G, and set of \'classes offnl.

For every z € §, define Y, as

t ) lf cn is not connected and G) : (Vl, E),),. - ., Cl, : (Ví, E) are its connected

components, then for each i € {1,...,t} we choose a vertex n|, €Vi and an element

ori : (ae,..., ap) such that q(cq) : n and akt + 0; set Y,, : {(a1, oz), "', (cr, a') }'

2) lf G, is connected, set T,, : 0'

Using the above rcsult§ we have the following statement.

THEoREM 8. ít301) The set ^1: U11çy1\n is a minimal prcsentation of S'

Therefore, the main idea for computing a minimal presentation of a numerical

semigroup § consists in finding the elements in s such that the graph G, is not con-

nected. Next result shows that Ç is not connected only for finitely many z e §'

THEoREM 9. ít301) Izt {ns < \ 1 "' < nrl be a minimal system of generators

of the numerical semigroup S. IÍ Gn is not connected for n e S, then there exi$ w e

lp(S,n)\{0} anit j e {1,...,p} suchthatn-w*ni-
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And since g(§) +zs: max(Ap(§,no)) then there are at most g(S) +zs+n, ele-

ments of the form w*n; wiú w € Ap(§,ns) and j e {1,...,p}.



CHAPTER 2

numerical semigroups

In this chapter, we study irreducible numerical semigroups. From [20] and [5]' we

deduce that the class of irreducible semigroups with odd (respectively even) Frobenius

number is úe same as the cla§s of symmetric (respectively pseudo-symmetric) nu-

merical semigroups. This kind of numerical semigroups have been widely studied in

literatuÍe, not only from the semigroupist point of view, but also by their applications

in Ring Theory. In [25] it is shown that the semigroup ring associated to a numerical

semigroup s (ir[s] : o.,esKy,) is Gorestein if and only if s is irreducible with odd

Frobenius number; and in [5] it is shown that the semigroup ring r[s] is Kunz if only

if § is ineducible with odd Frobenius number.

Section I is devoted to characterize irreducible numerical semigroups paying spe-

cial attention to their APéry sets.

In Section 2 we give an upper bound for the cardinality of a minimal presentation

for an irreducible numerical semigroup, in function of their multiplicity and embed-

ding dimension. Finally, in this section, we study those irreducible numerical semi-

groups with maximal embedding dimension.

In Section 3, from the concept of pseudo-Frobenius number of a numerical semi-

group, we characterize the class of numerical semigroups that can be expressed as

an intersection of irreducible numerical semigroups with odd Frobenius number (that

is, symmeric). we construct algorithms for decompositions in symmetric numerical

semigroups in general, and then we study the problem of finding such decompositions

l9
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with the restriction úat all symmetric numerical semigroup ,§ involved have the same

Frobenius number or multiplicity.

We know that every numerical semigroup can be expressed as a finite intersection

of irreducible numerical semigroups. ln Section 4, we give lower and upper bounds

for the minimal number of irreducibles in such decompositions. Associated to the

problem offinding a decomposition into ineducibles with the same Frobenius number,

we introduce and study the concept of atomic numerical semigroup. Finally, we use the

results given in [48] to describe an algorithm for computing a minimal decomposition

of a numerical semigroup in terms of irreducible numerical semigroups.

In Section 5, we construct families of ineducible numerical semigroups with even

Frobenius number, for arbitrary multiplicity m(§) and embedding dimension p(s).

Furthermore, we show who are the presentation with minimal cardinality for this fam-

ily of numerical semigroups. This section complete the results given in [33], to the

case of families of irreducible numerical semigroups with odd Frobenius number.

1. Symmetric and pseudo-symmetric numerical semigroups

In this section we characterize and study symmetric and pseudo-symmetric numer-

ical semigroups. Separately, we study semigroups of this kind with multiplicity 3 and

4.

Throughout this section § denotes a numerical semigÍoup, such that § I N. It is

well known (see for instance [32]) that SU ig(§)] is also a numerical semigroup.

A numerical semigroup S is irreducible ifit can not be expressed as an intersection

of two numerical semigroups containing it properly.

From this definition we have the following characterization of ineducible numeri-

cal semigroup.

THEoREM 10. The following conditions are equivalent:
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1) S is irreducible,

2) S is maximal in the set of all numertcal semigroups with Frobenius number

c(s),

3) S is maximal in the set of all numerical semigroups that do not contain g(S)'

where the order taken is set inclusion.

PRooF. 1) + 2) LetSbe a numerical semigroup such thatS ç 5 and g(5) = g(S)'

Then § : (S u {g(S) i) n3. Since § is ineducible, we deduce that S :'l'

2) + 3) Let 3 be a numerical semigroup such that § Ç 5 and g(S) l3' Then

3 u ig(S) + 1, g(S) +2,. . .\ is a numerical semigroup that contains '§ with Frobenius

number g(,§). Therefore, S = 3 u {g(S) + 1, g(S) + 2,''' } and so § - 5'

3)=+/)Let§rand52betwonumericalsemigroupsthatcontainsproperly.Then'

by hypothesis, g(S) e Sr and g(§) € ,§2. Therefore § I Sr nSz and so S is irreducible'

x

Using t20l and [5] we deduce the next result.

PRoPosIrIoN 11. 1) f g(S) is odd, then S is irred'ucible if and only if for all

h,h' e V', such that h+h' =g(§), we have that either h e S or h' e S (that is' S is

symmetric).

2) {f g(§) is even, then S is irreducible if anil onlv if for all h'ht e V'\{fl}' such

that h* ht= g(§), we have that either h e S or ht e S (that is, S is pseudo-symmetric)'

The following result is also well known (see [4], [11] or [31])'

PRoPosIrIoN 12. Izt n € S\ {O} with Ap(S,n) = i0 : w(l) < w(2) < "' <

w(n)\. Then S is irreducible with odd Frobenius number (that is' S is symmetric) if

and only if w(i) +w(n- i+ l) = w1n\7o' alt i e {1, " ' 'n}'



22 2. IRREDUCELE NUMERICAL SEMIGROUPS

PRooF. For i € {1,..., n} as w(í) e Ap(S, z) then w(i) - n ( S and, by proposition

1 1, we obtain that w(n) - w(i) = g(S) - (w(i) - z) e s. We have that w(z) - w(i) e

Ap(§,2) because w(n) € Ap(S,n).

tr

Now we see how is Ap(§,n) when S is irreducible with an even Frobenius number.

c(s)-2-

LEMMA 13. I/S is irreducible with even Frobenius number and n e s\ {0}, ràez

*z e Ap(S,n).

Pnoor. It is enough to prove that Ç + n € s, since $ I S, Uut ttris follows from

Proposition 11 (note that (ry +n) + (4P -r) = c(S)). tr

PRoPoSITIoN L4. lzt S be a numertcd semigroup with even Frobenius number

and let n € §\ {0}. Then S is irreducible if anil only if

Ap(§, n) - {o = w( 1) < w(2) < ... < w(n -1) = g(§) + n} u {* * rl

andw(i) +w(n- i) - w(n- t)for all i e {1,...,n - l}.

PRooF. First note that if g(§) is even, then 4p +, e Ap(S,z) and f +n <
max Ap(§,2). If j € { 1,..., n - 1 }, then w(i) - n ( S and w(i) - n * *. SV Proposi-

tion 11, we have that g(S)- (w(i) -n) e §andthus w(n- 1) -w(i) - g(s)+z-w(i) e

§. Since w(n - 1) € Ap(S, n) we deduce that w(n - 1) - w(i) e Ap(S, n). Furthermore

w(n-l)-w(i) + $+, b."ro.. otherwise we wouldhave w(i) - sts). Hence the

reader can check that w(i) + w(n - i) = w(n - 1).

Conversely, let x be an integer such that x * S and x I S. Let us show thar

g(S) -.r€§. Takewe Ap(,9, n) such that w=x(modn). Then x : w - /<n for some

e € N \ {0}. We distinguish two cases.
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(1) If w= 9*r,theng(§)-x=g(§) -(*+r-*n) = 9+(/t- l)n. Be-

sides, x I $ rcaas o kl I and üerefore k) 2. Hence we can assert that

g(s)-res.
(2) n w * I * r, then g(§) - x = e(s) - (w - kn) : g(§) + n - w + (k - t)n =

w(n- l) -w + (k - 1)n e §, since w(z - 1) - 1, € ,S by hypothesis'

ú

Note that if ,s has embedding dimension two, then ,s is ineducible with odd Frobe-

nius number (that is, § is symmetric); in fact,s is a complete intersection (see [24]).

Observe also that trr(S) < m(§) for every numerical semigroup S'

PRoPosITIoN 15. Let S be an irreducible numerical semigroup'

t) fe(s) is odd and m(S) > 3, then 1t(S) S m(s) - 1'

2) tf g(S) is even and m(S) / 4, then p(S) < m(§) - I '

PRooF.l.Supposethat§isasymmetricsemigroupwithminimalsystemof

generators {m(,S),21,.",rr1q-r} then {0 < h < "' < ,?1,(fl-1} Ç Ap(s,m(s)) and

nrçs1t * lv(n). HenceP(s) I m(s)- 1'

2. It is enough to PÍove that p(S) # m(§). If g(S) = m(§), then § is minimally

generated by {m(§),n1, '..,2r(s)-r} and therefore Ap(S,n) is of the form

Ap(§,2) : {0 < n2< "' ( r,(s)-r}u{zr : f +m(S)}'

Since m(S)- 1) 3 then u+n2+nm(s)-l. By Proposition 14 we deduce that

nm(s\-t - nz e S, which contradicts the fact that {m(S)' nt , . . . , nn(s)-l } is a minimal

system of generator§ foÍ S. tr

Note that S = (3, ?, I 1) is an irreducible numerical semigroup with Frobenius num-

ber g(s) _ 8 (it is easy to see that 8 belongs to every numerical semigroup that properly

contains s). That is why in 2) of the above proposition we need that m(§) > 4 instead

of m(§) > 3.
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Using 1) and 2) of the above proposition we can assert that if S is an irreducible

numerical semigroup with m(S) ) a, then p(§) ! m(S) - 1.

Next we study irreducible numerical semigroups wirh multipticiry 3 and 4. By the

remark made after Proposition 14, we know that if p(S) : 2, then s is irreducible.

Recall also, that from Proposition 15, if m(S) = 4 and § is irreducible then p(S) S 3.

Therefore, we focus our study in the cases:

1) § is ineducible with m(S) =,u(§) = 3,

2) § is ineducible with m(§) - 4 and g(S) = 3.

THEoREM 16. The following conditions are equivalent:

1) S is an irreducible numerical semigroup with m(S) = p(§) - 3,

2) S is generated by {3,x*3,?-x*3} with x a positive integer not a multiple of

3.

PRooF. 1) + 2) If m(S) =,tl(S) :3,then {3,ny,n2} is a minimal system of gen-

erators for,5. From Proposition 15 we deduce that g(§) is even and by Proposition 14

we have that

_ g(s)

2
Ap(S,3) = {0,n1 *3,n2-g(S) +3).

Taking.x= I *t huu" thatnl =r+3 andn2:2x+3. Furthermore, Í= I e S

and thus x is not a multiple of 3.

2) + 1) Cleaiy {3,x+3,2x+3} is a minimal system of generators for S and thus

m(S) = p(S) = 3. We have that Ap(S, 3) = {0, x * 3,?-r *3}. Hence 2x+ 3 : g(S) + 3

and therefore $+S-x+S. From Proposition 14 we deduce that s is ineducible. tr

The semigroup S - (3,3*x,?.x* 3) is a MED-semigroup (MED stands for Maxi-

mal Embedding Dimension, that is a numerical semigroup with p(S) : m(S)). Apply-

ing the results obtained in [32] we deduce that a minimal presentation for,S is:

P : {(»h, v'o + Xz), (27,2, xXo +xr ), ( (x + l) xo, \ + Xz)} .



1. SYM]úE'TRIC AND PSEI,JDO.SYMIVÍETRIC NI'MERICAL SEMIGROIJPS 25

Now we study irreducible numerical semigroups with multiplicity 4. We distin-

guish two cases taking into account that üe Frobenius number can be odd (a symmetric

semigroup) or even (a pseudo-symmetric semigroup).

Herzog proves in [Z] that a numerical semigroup ,S with minimal system of geneÍ-

ators {ns,n1,n2} is irreducible with an odd Frobenius number (i.e. symmetric) if and

only if it is a complete intersection. Applying the results obtained in [19] this occurs

if and only it nt e (ffi,ffi) for some {,,i,&} - {0, 1,2}, where (z;,n1) denotes

the greatest common divisor (gcd for short) ofz;, n1.

THEoREM 17. The following conditions are equivalent:

1) § is az irreducible numerical semigroup, g(S) is odd, m(S) = 4 andg(S) - 3,

2) S is a numertcal semigroup generated by {4,2x,x*2y} with y e N \ {0} and

x an odd integer greater than or equal to 3.

PRooF. /) + 2) If m(S) :aandp(§) -3,then {4',n1,n2} is a minimal system of

generators for,s. From the previous remark we only have distinguish two câses.

a) Assume thaí d = gcd{4,n1} and n2 e (),'$). Notice that d -2 and

nt = ?sc with x an odd number greater than or equal to 3' Furthermore

1- gcd{4,n1,n2}, then z2 is an odd number and z2 € (2,Í) thus n2: xl2y

(because all odd numbers in (2,x) are of this kind)'

b) Assume that d = gcd{q,n2} and a e (},Sl' From here we deduce that

nr -- 2d, nz = kzd with kz odd and d an odd integer gÍeateÍ than or equal

to 3. TherefoÍe, nz - d + (kz - \d with (/<2 - l)d even' Taking x - d and

y : (kzit\a 
we obtain the desired result.

2) + I ) Clearly, 2 - gcd{ ,zx} and x * 2v e (i, n' By remark made before this

theoÍem we have that § is an irreducible numerical semigroup with an odd Frobenius

l;l
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number. Now, we need to show that {4,2-x,,x + 2y} is a minimal system of generaton

for S, but this is clear because:

1) x+2y ( (4,2x), since x+2y is odd,

2) ?* Ç (4, x + 2y), since if 2x - a4 + b (x + 2y) wiú a, à € N, then applying that

2x is an even integer not multiple of4 and that x* 2y is odd, we deduce that

à ) 2, conuadicting that 2(.r+ 2y) > 2x.

tr

The semigroup § - (4,2x,x*2y) has Frobenius number g(§) -3x*2)-4. Fur-

thermore using that it is a complete intersection we deduce úat a minimal presentation

for § is:

P : {(2Xr,r&), (?.Xz,yxo + &)}.

Finally, we study irreducible numerical semigroups S for which g(S) is even,

m(S) =4andg(§)=3.

THEoREM 18. The following conditions are equivalent:

l) S is an irreducible ruanerical semigroup, g(S) is even, m(S) = 4 and p(S) :3,
2) S is generated by {4,x*2,t*4} with x an odd integer greater than or equal

to 3.

PRooF. 1) + 2) If m(§) :+anap(S):3,then {4,n1,n21is a minimal system of

generatoÍs for §. From Lemma 13 we know ttrat $ ++ € Ap(S,4). We distinguish

two cases.

a) If $ ++ is a minimal generator then, by Proposition 14, we deduce that

Ap(S,a): {0,n1 : §+l,n ,,Zn =g(S)+a}.

Taking x = S, rcn U: x+4 wtd n2 - x*2. Furthermore g(S) ( § and

thereforc .r is odd.
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b) If ry +4 is not a minimal generator, then

Ap(s,a) = {0,n1,n2,f + 4}.

Hence g(§) 14 = nl or g(§) +4 = n2. Suppose úat g(S) 14 - n1 then, by

Proposition 14, we deduce lhaÍ n1 - n2 € §, contradicting that {4, n1, n2} is a

minimal system of generators.

2) + 1) Clearly, {4,x*2,x+4} is a minimal system of generators of §, whence

m(S) : a and p(S) = 3. The reader can check that

Ap(S,4) - {O,x + 2,x * 4,2x + 4}.

Therefore B(S) : 2x and tnen

Ap(s,a) = 10, f ++, 4p, g(s) +a].

Using Proposition 14 we obtain that § is ineducible. tr

Note that § - \4,x*2,x*4) has Frobenius number 2x' Applying [24] and that

this semigroup is not symmetric (therefore it is not a complete intersection), we can

deduce that a minimal presentation for S is:

p = {(2x2, xo + 2x), (3Xr', kXo + x)' (t xo' h + v')}

una r - EQ#@. observe that 3(x+2) - (x+4) is a multiple3 x*2 xl4
with & -
of 4 if and only if .r is odd, and (.r+a) + (x+2) is a multiple of 4 if and only if x is

odd.

2. Minimal presentations for irrcducible numerical semigroups

our aim in this section is to give an upper bound for the cardinality of a minimal

presentation of an ineducible numerical semigroup. We particularize these results for

irreducible numerical semigroups with maximal embedding dimension.
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Let .§ be a numerical semigroup wiú minimal system of generators {ro < nr <

... < np\. In [32] it is shown the following result (#MR§ denotes the cardinality of a

minimal presentation for ,9).

PRoPoSITIoN 19. Let S be defined as above. Then

#MRS <ry! -z@s-r- p).

In [31] this bound is improved in the case,§ is irreducible with odd Frobenius

number. In fact, the following result is given there.

PRoPoSITIoN 20. If S an irreducible semigroup with odd Frobenius numbe\ ns )
3 and p) 2, then

(nn-z)(ns- 1)
#MRS < - 1+ (p+2 - ns).1

Now we prove the analogue to this result for § an irreducible semigroup with even

Frobenius number.

From [32] we can deduce úe following result.

PRoPoSITIoN 21 . Let S be an irreducible numerical semigroup with g(S) even and

p>3. If {n6,n1,...,np,9(S)} isaminimalsystemof generatorsforSt -Suig(S)},
g(§) > no and ni and ng are in the same connected component oÍ Ggçs1an an, for all

'€ 
{1"" 'P}'then 

#MRS-lp.lz-#MRS..

Applying Proposition 14 and using úat p 2 3 we deduce that e(§) +r?o 2 ni*n j for

somei,j€ {1,...,p} andthereforeg(S) > no. Furthermore, {ns,n1,. ..1nptg(S)} isa

minimal system of generators for ,S/ = SU {g(S)}, since oüerwise we would deduce

from [32] lhatnr= g(§) +no, which contradicts Proposition 14 for pl3.
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LBMMA 22. I*t S be an irreducible numertcal semigruup with g(S) even and p )
3. If ie{1,,...,p}, we Ap(S,26) and ns and ni are in different connected cornPonents

oÍ Gn+rt, then for alt i € Ap(§, ns) such that w - wt € S \ {O} we have that d + ni e

Ap(§,zo)

Pnoor. Suppos e that wt + ni f Ap(§, rq), lhen wt + ni - no € .S. Let § e S \ {0} be

such that w : w'l + s and j € {0,..., P} such that s - n; € §. Then' w+ n i - (ni + nj) € S

ajndw+ni- @i+nç) €.§. Therefore W'iifr € Ev41; âIld so rrí and no are in the

same connected component of Gr1r,. tr

LEMMA 23. kt S be an irreducible numerical semigroup with g(S) even and p )

3. If i e {1,, . . , , p!, then ns and ni are in the same connected component of Gg§\+nn+ni'

Pnoor. Suppose that no and zi are in two different connected components of

Ge(s)+ro+ri. LeÍ i e {1,. . ., p} be such that ni * I * ro and ni I ni (this is possible

because p 2 3). By Lemma 22 and Proposition 14 we deduce that g(S) * ns - ni + ni €

Ap(s,no).

Observe that g(S ) * ns - ni + ni = $) + no, since otherwise using Proposition 14

we would obtain that g(S) +ne - (g(§) +no -ni]- ni) € § and therefore ni - ni e S'

contradicting th at {nx, . . . ,np} is a minimal system of generators for '9'

Let us observe th alni I S *nsbecause otheÍwise we would deduce, from g(S) *

ns-ni *ni = 9$ +ro, that n; = g(S) +r?o and applying Proposition 14 we can assert

that s: (n6,g9.+zs,g(s) +ze), which contradicts that p ) 3. Now assume that

Ap(S,ze) = {0 = w(l) ( "' < w(ns- f)}u{$+no}. We distinguishtwoca§es'

1) If S+n9 É {n1,...,n.},then from Proposition 14 and Lemma 22 we have

that

w( I ) + n1 : w(2),w(2)+ ni = w(3),. . ., w(ns - 2) * ni -- w(ns - l)'
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Hence,

Ap(§,ne) - {0,ni,2n;,...,(ns - 2)21} U {f +ne}

and thus ,5 : (ro,n,,# + nol, a contradiction because p ) 3.

2) If $ + z6 É {ry,. . .,rp},then again from Proposition 14 and Lemma 22 we

obtain that

Ap(§,ns) = {O,ni,...,kni - Ç * ro,n,,nj +ni,...,nj +rni : g(§) +zs}

for some ft,, € N. Therefore, § = (ns,n;,n;), in contradiction again with

p> 3.

tr

PRoPoSITIoN 24. l,et S be an irreducible numerical semigroup with g(S) even

andp)3.Then

(ze - 2) (ne - 1)
#MRS <

2

Pnoon. Applying Lemma 23 and Proposition 21 we deduce that #MRS -
*Mn(Su {g(§)}) - Q +21. From Proposition 19 we have that

#MR(§u {g(s)} ) 
= ryl - 2@o - 1 - p - t).

Hence,

(ns-2)(no- t)

-1+(p+2-no).

- 1+ (p+2- no).#MRS <
2

From Propositions 24 and 20 we can obtain the following result.

THEoREM 25. If S is an irreducible numerical semigroup with 1r(S) ) 4, then

#MRS <@4.1@ _ I + (p(s) + 1 _ m(s)).
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Note tlrat if p(S) : 2, rhen #M RS - t and if p(S) - 3, then #MR,§ : 2 or 3 depend-

ing on the parity of g(S) GeetZl).

A MEDl-semigroup (ineducible semigoup with maximal embedding dimension)

is an irreducible semigroup with multiplicity m ) 5 and embedding dimension m - I '

Remember from Proposition 15 that if .§ is irreducible and m(S) > 5, then p(S) <

m(S) - 1 and this is why we use the name MEDl-semigroup.

tf §- (m(§),n1,...,nm(s)-2) is a MEDl-semigÍoup, then

Ap(S, m(.1)) - {0,n1,...,n*1s)-2, c(s) + m(s)}.

Moreover, from Propositions 12 and 14 we can deduce that g(S) + m(S) = ni + n.i with

i,7 € {1,...,m(S) -2} and i I j. Applyingnow [40, Theorem 1] we getthat

#MRs _(m(s) - 2)_(m(s) - t) _,.'2

Note that for m(s) € {3,4}, the previous formula is not true (for this reason in the

definition of MEDl-semigroup we need that m(,§) > 5). In fact, for m(S) - 3 applying

the previous formula, we have #MRS - 0 but we know that a minimal pÍesentation

for (3,n1) has cardinality l. For m(S) - 4 applying the previous formula' we have

#MRS - 2 and we know that in this class there are semigroups with minimal presen-

tation of cardinality 3 (see the remark after Theorem 18). If S is a MEDl-semigroup

with g(S) odd, then S is a MEDSY-semigroup according to the terminology used in

t311.

THEoREM 26. If S is an irreducible numerical semigroup with p(S) ) 5, then the

following conditions are equivalent :

1) S is a MEDl-semigrouP,

2) #MRS: (m(s)-2Xm(§)-1) - 1.
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PRooF. 2) + 1) Since g(§) ) 4, by Theorem 25 we know that

#MRS <94.1l1§)_.J). - r + (s(s) + r - m(s)).

Since

#MRS = 
(m(s)- 2)(m(s) - 1) 

- ,,'2
we get that p(S) = m(S) - I and therefore .S is a MEDl-semigroup.

l) + 2)Prcved already (see the beginning of this section). tr

The next result appears in [31].

LEMMA 2'7 . lat A = {0 - w( I ), w(2),,...,w(m)} Ç N àe a complete system mod-

ulo m, and let S be a numerical semigruup generated by AU {m}. Then Ap(S,m) -- e if
and only if for aU 1 < i, j < m there exist I 1 k 1 m and t e N such that w(;) + w(j) =
w(k) +tm.

PRoPoSITIoN 28. If S is an irreducible numerical semigroup with m(S) > 5 azd

Ap(s,m(s))= {0=w(1) <.(2) <.'. < w(m(s))},

then the semigroup St generated by

{m(§),w(2) +m(§),...,w(m(s) - l) + m(s)}

is a MEDI-semigroup.

PRooF. In t31, Proposition 2.4) it is proved that {m(S),w(2) +

m(S),...,w(m(S) - 1) + m(S)) is a minimal system of generators for §/. Fur-

thermore, in that proposition it is also shown that if S is symmetric, then §/ is

MEDSY-semigroup. Therefore it is enough to prove that if S is irreducible with g(S)

even, then S' is irreducible. From Lemma 27 we obtain that

Ap(í,m(s)) - {0 < w(2)+m(s) < ... < w(m(s)- l)+m(s)

< w(m(s))+2m(s))
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and, by Proposition 14, we get that S/ is ineducible. tr

As a consequence of the previous proof we have that g(S/) : g(S) + 2m(S).

PRoPosITIoN 29. IÍ S is a MEDl-semigroup with a minimal system of genera'

rors {m(§) < nl < ." < um(s)-z}, then the semigroup St generated áy {m(§),n1 -
m(,S),...,nr1s1-z - m(§)) is irreducible.

PRooF. In [31, Propositon 2.5] it is proved that if § is a MEDSY-semigroup then

í is symmetric. Therefore, it is enough to prcve that if § is a MEDl-semigroup with

g(§) even, then 3 is ineducible.

Assume that z;: S +m(S) and

Ap(§,m(S)) = {0,n1,"',n6151-2,!(S) *m(§) =z1 *um(s)-2}'

Using Lemma 27 it is easy to pÍove that

Ap(í,m(S)) - {0,21 -m(§),"',126151-2 - m(§),g(S) -m(S)}'

From Proposition 14 we conclude that St is ineducible (note that 8(§/) = g(S) - 2m(§)

andn;-m(§): $+rn1s;1' tr

Apptying Propositions 28 and 29 we obtain the following result'

THEOREM 30, There is a one to one correspondence betueen the set oÍ irreducible

numerical semigroups with Frobenius number g and multiplicity m) 5, and the set

of MEDl-semigroups with Frobenius number g*Zm, multiplicity m and the rest of

minimal generators greater than 2m.

PROOF. Let fut(8,*) be the set of irreducible numerical semigroups with Frobe-

nius number g and minimum minimal generator m, and let MEDI (8*m,m) be

the set of irreducible numerical semigroups with Frobenius number g + 2m, minimum

minimal generator m and the rest of minimal generators gÍeateÍ than 2'?r'
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Let §: M(g,m) ---> MEDI(g*rn,m) be the map defined by: for § e

tu{k,^) with Ap(§,2) = {0 = w(1),... ,w(m- l),w(m)} we make Q(S) : lm,w(2)+

m,...,w(m- l)+m). As a consequence of Proposition 28 we have that g is a well

defined map and, by Proposition 29, we conciude that Q is a bijective map. tr

3. Numerical semigroups that can be expressed as an intersection of symmetric

numerical semigroups

We say úat a numerical semigroup is an I§Y.semigrcup if it can be expressed as

a finite intersection of symmetric numerical semigroups. We start by proving Theo-

rem 34 which gives a characterization for this kind of semigroup. Later we see that

this result can be improved (see Theorem 45) and for this we introduce the concept

of pseudo-Frobenius number. We also characterize numerical semigroups that can be

expressed as an intersection of symmetric numerical semigroups with the same Frobe-

nius number (ISYG-semigroups) and with the same multiplicity (ISYM-semigroups).

From Theorem 10 and Proposition l1 we deduce the following result.

LEMMA 31. Let g be an integer number and S(g) the set of all numerical semi-

groups with Frobenius nwnber g. Then S e S(g) is symmetic if and only if g is odd

and S is maximal with respect to set inclusion in S(g).

In order to prove Theorem 34 we introduce the following lemmas.

LEMMA 32, If S is a numerical semigroup and x is an odd positive integer not in

S, then there exists a symmetric numerical semigroupS such that S ÇS and g(3) - x.

PRooF. Let S' - SU {x+ l,x+2,...}. Clearly, ,S/ is a numerical semigroup and

g(9) = x . Let S be a maximal semigroup in §(.r) such that 3 g 5. By Lemma 31 we

can deduce that 3 is symmetric with Frobenius numberx and contains §. tr
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LEMMA 33. Let S be a numerical semigroup and let x be an even positive integer

not in S. Then, the following conditions are equivalent:

l) there exists a syrnn etric semigroupS such that S Ç3 and x é5,

2) there exists an oü positive integer y such that x + y /. \S,y).

PRooF. 1) + 2) Let y - g(3) - x. Since x is even and s( ) is odd' we have that

y is odd (note úat, by Lemma 31, the Frobenius number of a symmetric semigroup is

always odd). Furthermore, ) = g(S) -.r e 5, since x /5 andS is symmetric. Hence,

(§,y) Ç § and thus x*y = g(3) É (s,1,).

2) + 1)Let St : (S,y) u {x+y+ 1 ,x+y+2,. . .}. Then §' is a numerical semigroup

with odd Frobenius numberr*y. using Lemma 32 we deduce that there exists a sym-

metric semigroup § such that I Ç 5 and e(5) - Í + y. Then S Ç S and x I 3' because

otherwise, since y € S, we would obtain that g(3) - x+y e 5, which is impossible' tr

THEOREM 34. lzt S be a numerical semigroup. The following conditions are

equivalent:

1) S is an lSY-semigrouP,

2) for every even positive integer x Ç. S, there exists an odd positive integer y

such that x + y /. (S ,yl .

PRooF. /) + 2) lret x be an even positive integer such that x / S and let 5 be

a symmetric numerical semigroup such that S C S and x / S lttre existence of S is

guaranteed because S is ISY-semigroup). Applying Lemma 33 we deduce that there

exists an odd positive integer y such that x +y / (S,y).

2) + 1) Ifx is an odd positive integer such that x / S, then let Sr be a symmetric

numerical semigroup with § Ç §,, and g(sr) = x (Lemma 32 guarantees the existence

of S*). If r is an even positive integer such that x I § then, by Lemma 33, we deduce
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úat there exists a symmetric numerical semigroup §* fulfilling that § Ç §, andx ( §,.

Finally, it is clear that §: OrÉs§.r. tr

The next result has an immediate proof.

LEMMA 35. Izt 5,51,. ..,5, be numerical semigroups such that S = §t O... OSz.

Then g(S) = max{g(§r),...,e(Sr)i.

As a consequence of úis lemma and from the fact that the Frobenius number of a

symmetric numerical semigroup is aiways odd, we get the next result.

LEMMA 36. If S is an lSY-semigroup, then g(S) is odd.

We can see, with the following example, that the converce of this result is not true.

EXAMPLE 37. If § = (4,5,6,7), then g(S) = 3. Now we see that S is not an ISY-

semigroup and for this we use the Theorem 34. In fact,2 /. S (2 is even) and for every

odd positive integer y we have that 2 +y € (S,)). tr

Arguing as in this example and using Lemma 36, the reader can check the follow-

ing result.

PRoPoSITIoN 38. If m ) 3, then § = \m,m * 1,...,m * (* - 1)) is not an ISY-

semigroup.

Note that if § is a numerical semigroup and p(S) e { 1, 2} then § is symmetric (see

for instance [Z]). Then, (5,7) n (5,8) - (5.,21,24,28,32) is an lSY-semigroup.

Let ,5 be a numerical semigroup. We say that an element of x € % is a pseudo.

Frobenius number of § if .r / § and Í + § € § for all § € S \ {0}. We denote by Pg(§)

the set of pseudo-Frobenius numbers of§. The cardinality ofPg(§) is the type of§ and

it is denoted by type(S). In [20] it is pÍoved that a numerical semigroup is symmetric

if and only if type(S) : I (or equivalently Pg(§) = {e(S)}).
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Now, our main goal is to prove Theorem 45 which is an improvement of Theorem

34. The following result is easy to demonstrate.

LEMMA 39. Let S be a numertcd semigroup generated by {n1,...,n0} and let

xeZ. Then x is a pseudo-Frobenius number ofS if and only ifx I S and x* ni e S for

all i e {1,...,p}.

Using úe previous lemma it is clear that if § = (5,6'7'8,9), then Pg(S) -
{1,,2,3,4}. ln general, if S = \m,m * 1,..',m * (m - 1 )), úen Pg(S) = { 1,. ..' m - I }'

Let S be a numerical semigroup, we define in ,S the following partial order:

a<sb if b-a€5.

By [20, Proposition 7] we deduce the following result.

LEMMA 40. IÍ S is a numerical semigroup, n € S\ {0} and {wir,"',wi,} =

maximalsarAp( S, n), then Pg(S) : {w i, - n,.. .,w i, - n}'

Recall that a MED-semigroup is a numerical semigroup whose multiplicity equals

its embedding dimension. From Lemma 40 we get the following result'

LEMMA 41. I*t S be a numerical semigroup. The following conditions are equiv-

alent:

1) S is a MED'semigrouP'

2) type(S) : m(s)- 1.

Next we prove that the role thât plays Pg(s) in a numerical semigroup is analogue

to the one played by g(S) when the semigroup is symmetric.

PRoPosITIoN 42. lzt S be a numerical semigroup, 81,"'tgr be the pseudo-

Frobenius numbers oí S and xe Z. Then xl S if and only if g;-xê Sfor some

i€{1,...,r}
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PRooF. If .r /. S and n € S \ {0} then there exists w e Ap(§, z) and fr e N \ {0}
suchthatx=w-kn.l-et{w1,...rw;r}:64qi11.1s<rAp(§,n) beandlet j€ {1,...,1}
such that wji -w e.§. By Lemma 40 we can assume that g; =wji-n. Then g;-x =
w ji-n- (w -kn) - (wii-w) + (ft- l)n e §.

Conversely, since 8r, -, € S and g; / § we obtain that x /. S. tr

Now we study sufficient conditions for a numerical semigroup to be an ISY-

semigroup.

PRoPoSITIoN 43. Let S be a numerical semigroup whose all pseudo-Frobenius

numbers are odd. Then S is an lSY-semigroup.

Pnoor. Suppose that 91 , . . . , g1 aÍe the pseudo-Frobenius numbers of ,5. For each

I e { 1, . . . , t} let §r, be a symmetric numerical semigroup such that S Ç .tsl and g(§r,) -
g; (the existence of §r, follows by Lemma32). We will see that § - §r, í') . . . O,Sr,. To

this purpose it is enough to prove that Ssr n ... fl §r, Ç §. Assume that x I ,1, then

by Proposition 42, there exists i€ {1,...,n} such that gi-xe§andthus gi-xe
.9sr n...n§s,. Hence g;-.r € Sr, and sox/S*, (notethatgi É.t8l). tr

The converse of Proposition 43 is not true in general, as the following example

shows.

EXAMpLE 44. Let § = (5,21,24,28,32) - (5,7) n (5,8), which is an

ISY-semigroup. Then Ap(S,5) - {0,21,,24,28,32} and maximals<.Ap(,§,5) =

{21,24,,28,32}. Using Lemma 40 we obtain that Pg(§) = {16,19,23,,27}. Note that

§ has an even pseudo-Frobenius number but it is an ISY-semigroup. tr

THEoREM 45. Let S be a numerical semigroup and let g1 ...,& be its pseudo-

Frobenius numbers. The following conditions are equivalent:

1) S is an lSY-semigroup,
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2) Íor alt, gi even, there exists an odd positive integer yi such that 8i +yi É (§, yi).

PROOF. .t) + 2) It is a consequence of Theorem 34.

2) + 1) If g; is even, by Lemma 33, we deduce that there exists a symmetric

semigroup §s, such that S Ç §r, and g; / §r,. The case g; odd and the proof of §:

Ss1 n...n,Ss, follows as in Proposition 43. tr

As a consequence of the proof of 2) + l) of the previous theoÍem we obtain the

following result.

Conollanv 46. lat S be an lSY-semigroup with type(§) = t' Then S can be

expressed as an intersection oft symmeffic numerical semigroups'

Now we describe an algorithmic method to express an ISY-semigroup as an inter-

section of symmetric numerical semigroups. From the proof of 2) + 1) in Theorem

45 it suffices to determine, from a numerical semigroup with odd Frobenius number

g(§), a symmetric numerical semigroup 5 such that S Ç S and g(5) - g(s)' To this

purpose the next result is crucial and has similar proof to the one of [31, Lemma 3.2]

and it is also contained in the proof of [20' Proposition 4]'

Lul4t\4a 47. Let S be a non symmetric element of S(g) with g$) - g odd and set

ft = max{x € N I x I S and I - x I S}' rhen Su {h} e S(g).

Let us consider the sequence of elements in J(S);

.,s - s,

. sj+r =Sju{ftr'}, wereh;=max{xe N lxl§j andg-xlSilt'

Then there exists r € N verifying that {x e N I x ( §' and g - x / S'} - 0' Clearly'

,S'is a symmetric numerical semigroup such that § Ç §'and g(S') : g'

In order to illustrate this method' we give an example.
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EXAMPLE 48. Let § - (5,21,24,,28,,32) be a numerical semigroup. Then g(S) :
27. We compute a symmetric numerical semigroup_S such that.§ Ç S and S(S) : ZZ.

Note that § = {0,5, 10, 15,20,21,24,25,26}U {x> 28]r

. ft r - max{.r € N | .r / § and 27 - Í É S} -- 23 and Sr = S u {23},

. hz : max{x eN I x ( 51 and 27 - x Ç S1l - 19 and 52 = Su { 19,23},

. hs - mü{x€ N I x É Sz nd 27 - x /. 52} = 18 and 53 - SU { 18, 19, 23},

'/r+ = max{x € N lx É 5: and27 -x /. g} = 16 and.Y = §u {16, 18,19,23},

. &s = max{x € N | .r / §a and 27 - x / Sa} = 14 and,S5 : S U { 14, 16, 18, 19,23},

' {x e N I x / §5 and 27 - x / St} : O. Hence, S = .95 is a symmetric numerical

semigroup generated by {5, 14, 16, 1 8} with Frobenius number g(§) containing §.

Now, we express 
^§ = (5,21,24,28,32) as an intersection of symmetric numerical

semigroups.

Note that the pseudo-Frobenius numbers of § are 91 = 16, g2 - 19, ga - 23 and

&:27 (see the example before Theorem 45). Nore also that 16+7 d (S,7) and

therefore, by Theorem 45, we obtain úat § is an ISY-semigroup. From úe proof of

2) + 1) in Theorem 45, we have úat § = §ro O,§rg n §zg O§zz.

' §16 is a symmetric numerical semigroup which contains S/ - (S,7) U {x > 24}

and 9(§16) :8(S') - 23.

. §rq is a symmetric numerical semigroup which contains §/ - §U {x > 20} and

g(srs)=s(§'):19.

. §23 is a symmeric numerical semigroup which contains §/ : SU {t > 24} and

g(S23)-g(Sr)=21.

. §27 is a symmetric numerical semigroup which contains S/: §u {x } 28} - S

and s(S27) :8(S/) = g(S) = 27.

Using the sequences described after Lemma 47 we obtain that §16 = (5,7), Sl9 -
(5,11,72,13), S23 - (5,,12,14,16) and §27 - (5,14, 16, 18). tr
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Reuenr 49. Note that in the preceding example 5 is expressed as an intersection

of four symmetric numerical semigroups, though in Example 44 this same semigroup

is expressed as an intersection of only two symmetric numerical semigroups. The

algorithmic process described above does not supply the minimal decomposition of an

ISY-semigroup.

3.1. tSYG-semigroups. We say that a numerical semigroup is an ISYG-

semigroupif§-Srn...nS.,whereS1,...,§.aresymmetricnumericalsemigroups

such that g(S1) - . . . : g(Sr) - g(S)' In this section we study this kind of semigroups'

LEMMA 50. lat S be a numerical semigroup with oü Frobenius number g' The

following conditions are equivalent :

1) S is an lSYG-semigrouP,

2) for every x€ Z \ S, we have that g I \S,g - x)'

PRooF. 1) + 2) Take x / ,§. Since ,9 is an ISYG-semigroup, theÍe exists a sym-

metric numerical semigroup 5 such that S Ç S, s(S) :gandxlS' thusS-r€Sand

therefore g É (S,S - x), because (5, g - x) Ç 5 and S É S'

2) + l)For x eN\ S, let S, be a maximal numericai semigroup containing (S, g -
x) with g(S,) : g. By Lemma 31, we know that S* is a symmetric numerical semigroup

with Frobenius number g and úat x / S'' It follows that 'S 
: 0..e Nls Sr' tr

LEMMÀ51. Let S be a numerical semigroup wirft Pg(S) :{gr,"',8,} and g(S):

g. Then the following conditions are equivalent:

l) for every x e Z\5, we have that g l $,g - x),

2) sl$,e-ei)foratli e {1,...,t}'

PRooF. 1) + 2)Itis trivial, because gr € z\'sforall 
' 
€ {1,"','}'
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2) + I ) ff x €. Z \§, úen by Proposition 42, we know that theÍe exists i € { 1,. . ., r}

such that gi-xç §. Assume that s € § is such that g; =r+s. Then, since g (
(S,C-S,) : (§,9-.r-s) ) (§,9-.r), wehave thatg/. (5,,g-x) tr

As a consequence of Lemmas 50 and 51 we get the following result.

THsonrN,Í 52. I*t S be a numerical semigroup with odd Frobenius number g and

Pg(S) = {g r,. . ., g,}. The following conditions are equivalent :

1) S is an lSYG-semigroup,

2) s/$,5-Si)foralli e {1,...,r},

Assume that S is an lSYG-semigroup and hence it verifies Condition 2) of the

previous theorem. We denote by §r, a symmeric numerical semigroup with Frobenius

number g such that (S,S - S,) C .§r,. The existence of §r, follows by Lemma 31 and

furthermore we can construct Sr, using úe procedure given after Lemma 47. Then

S =,Scr í'l ... oSe,. In fact, if * e Z\S, then by Proposition 42, we know that g; -x € §

forsomeie {1,...,t}. Hence g;-x € §s,, since § C §r,. Then we can conclude that

I -Í €,S8i andthusx/Sr,.

Note that if g / (5,,g- gir,...,C- Cik) with {i1,...,11} g {1,...,r}, then we can

take,S", - S.. : ... : S". .ô,1 ét2 ét*

Assume Íhat t > 2 and 91 - g (recall that I € Pg(S)). Then using the previous re-

mark we can take §g, : ,§s, and thus S = Sgr rl' . 'Í')§r,_,, whence we have the following

result.

CORoLLARY 53. Let S be a non symmetric lSYG-semigroup. Then type(S) : t >

3 and S can be expressed as an intersection of at most t - 1 symmetric numerical

sernigroups with Frobenius number g(S).

In [20, Theorem 1 1] úe following result is given.
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Lur'rue 54. If S is a natneical semigroup with p(S) : 3, then tyW$) € { l' 2}'

As a consequence of Corollary 53 and lrrnma 54, we have the following.

coRoLLARY 55 ' Let s be a numertcal semigroup with p(s) :3' Then the follow'

ing conditions are equivalent:

l) S rs az ISYG- semigroup,

2) S is a symmetric numerical semigroup.

EXAMPLE 56. We prove that S: (6, ll,l5,2},25l is an ISYG-semigroup. More-

over, applying the remark after Theorcm 52, we see that,S can be expressed as an

intersection of symmetric numerical semigroups with Frobenius number equal to 19.

Note that

Ap(s, 6) : {o, t t, 1s,20,22,25}

and g(s) : 19. Then maximals<rAp(S,6) - {15,20,22,25}, by I-emma 40, we have

that Pg(S) : {er : 9,sz : 14, $ : 16, ga - g(§) - 19} and thercfore C(S) - gr - l0'

g(s) -sz:5, g(s) -es :: and g(s) -sa: a' It is clearthat 19 É (s' l0)' 19 É (s' 5)'

19 É (S,3) and 19 / (S,0). Hence, from Theorem 52, we deduce that S is an ISYG-

semigroup.

Note that 19 É (S, 10,5,0), whence we can take Ssr : Sg, : Scr and this semigroup

is symmetric with Frobenius number g(§1) : 19 cóntaining (s, l0' 5,0)' Applying the

method given after kmma 47, we have úat Srr : Sgz : Ss4 : (5,6)'

Note also that ,Ss, is a symmetric semigroup with g(S*', ) - l9 and such that (S, 3) Ç

Sr, . Applying again the previous method we have that S*, : (3 
' 
I I ) '

Finally, S - Sr, nS82 nSr3 nSs4 - (5,6) n (3, I l). tr

Next we study those numerical semigroups of type 2 that arc in@rsection of sym-

metric numerical semigroups. Our goal is to prove Theorem 59 which states that the

converse of Proposition 43 is true for numerical semigroups of type 2'
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LEMMA 57. lzt S be anumerical semigroup, x,,y e Z and s e S, If x+y / (S,y)

and x+y+s Ç S, then xi-y* s ( (S,y + s).

PRooF. If .r+) + s € (§,y+s), then there exist s' € § anda € N such that.r+y*

s-s'+a()*s). Sincex+y+s íS,a*0. Hencexly= s'+(a- l)s+aye (S,y) a

contradiction. tr

LEMMA 58. lct S be a numerical semigroup, with pseudo-Fmbenius numbers

91,... t gt and let y e V, be such that gi * y / (S,yl for some I e i 1,..., r). Then there

exists gi 2 gi*y such that g j l (§,s; - Si).

Pnoor. Since Si+y /,S, then by Proposition 42, we deduce that there exists g;

such that g; - (gi+y) e § and so gj: gi+y+s for some s € §. Hence, we have that

Bi + y / (S'y), gi + y + s / S and s € §. Using the previous lemma, we obtain that

g,+)+s É (s,y+s) andtherefore si * §,si-si) tr

Now we can prove the following result.

THEoREM 59. lzt S be a numerical semigroup with type(S) = 2 and Pg(S) -
{el < g2}. The following conditions are equivalent:

l) S is an lSY-semigroup,

2) 91 and 92 are odd.

PRooF. 2) + 1) Follo-rvs from Proposition 43.

I) + 2) By Lemma 36 we know that g2 - g(S) is odd. If g1 is even , then from

Theorem 45, we deduce that there exists an odd number y such that il + y / (S,y).

Using Lemma 58 we obtain that gz / \S,Sz- er). Note that S satisfies the condition 2)

of Theorem 52 and so S is an ISYG-semigroup, which contradicts Corollary 53. tr
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ExAMPLE 60. Using Theorem 59, we deduce that S = (5,6,7) is not ISY-

semigroup because Pg(S) : {8,9}. Applying again Theorem 59 we have that §:
(5,6,8) isanlSY-semigroupsincePg(§) ={7,9}. tr

3.2. I§YM-semigroups. We say that a numerical semigroup § is an ISYM'

semigroupif§:Srn...n,tr,withSr,...,srsymmetricnumericalsemigroupssuch

that ll1(§1) : ... : n(S) : m(S).

Suppose that S is a numerical semigroup with m(S) ) 3. Note that if m(S) : 1,

then N = S and if m(§) : 2 then 5: (2,g(S) * 2); in both cases the semigroup ,S is

symmetric.

LEMMA 61. Izt S be a symmetric numerical semigroup wità m(§) ) 3' Then

g(s))2m(s)-1.

PRooF. Note that g(§) is odd and so g(§) 2 3' If g(S) < 2m(S) - 1, then theÍe

existsr,y € { l,..., m(S) - 1} such that x+y: C(S). Applying that 'S 
is symmetric we

deduce thatx €,t or) € §, contradicting that m(S) - min S\ i0)' Ú

LEMMÀ 62. IÍ m is an integer greater than or equal to 3, then

S - (m,m* 1,...,m * (* - 2))

is the unique symmetric numerical semigroup with m(.S) = lz and g(S) -2m- 1'

PRooF. By definition, it is obvious that S is symmetric. Now we need to show

that § is unique. Suppose that S is a symmetric semigroup wiú z(3) : n and s6) :

2m - 1. Wehave that {1,...,* - l} nS = 0, therefore

{(2m- t) - 1,...,(2m- t)- (m - t)} Ç 5

and thus m,m*1,...,m|(m-2) e5' Hence we conclude that,§ = 5' tr
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LEMMA 63. lat S be a numerical semigroup such that m(S) >_ 3 and g(S) is odd.

The following conditions are equivalent:

r) e(s) 2 2m(s)- 1,

2) there exists a symmetric numerical semigroup S such that S CS and m(S) -
m(§).

PRooF. 1) + 2) Let § be the symmetric numerical semigroup obtained from § by

using the recurrent method exposed after Lemma 47. Now, it is enough to see that

m(s) :,n (S). In fact,

fti = max{x € N l.r ( si and g(s) -x ( s;}, I a 49-1
and so ft; > m(S).

2,) + 1) Follows from Lemma 6l (note that g(§) > S(S)). n

Using the previous results we can characterize lSYM-semigroups.

THEoREM 64. Let S be a numerical semigroup with m(S) > 3, g(S) odd and

g(S) ) 2m(S) + 1. The following conditions are equivalent:

1) S is an lSYM-semigroup,

2) for every x €.N\S witÀ x > S, there exisr y e.N such that:

i) ,+) > 2m(s) - 1,

ii) x+y is odd,

iii) x+y ( (S,y),

iv) tÍy*0,theny>m(S).

PRooF. J) + 2,) Since S is an ISYM-semigroup, for.t e N\,9 there exists a sym-

metric numerical semigroup S such that S Ç 5, m(S) = ,n(S) and Í ( §. If we choose

):8(S) -Í, then, since S is symmetric, g(5) is odd and y e 5. Hence ii) and iv) are
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satisfied. Furthermore, by Lemma 61, i) is fulfilled. Finally, iii) is verified too, since

.r+y:s(S) ÉSr (s,y).

2) + 1) Let 5 be a symmetric numerical semigroup obtained from ,S by using

the recurent method exposed after Lemma 47. In the proof of Lemma 63 we saw

thatrn(S):m(s). It is clear thatif x€S\s, üenxÉS, g(s) -x(S andx> 4P.

We will see that there exists a symmetric numerical semigroup .§, such that S C Sr,

m(5") - m(§) and x I5,. Lety € N verifying i), ii), iii) and iv) and t.1 J : 1S'v) u

{x+y} l,x-ly*2,...}. Then S' is a numerical semigroup with multiplicity m(.1)

and Frobenius numberx*y > 2m(S) - l Take,S, a symmetric numerical semigroup

such that J Ç §,, m (S,) : m(S) and S(S,) :r+1r ( the proof of 1) + 2) in Lemma 63

guarantees the existence of ,Sr). Furtherm orc, x Ç. Sr, since y €,S' and g(§r) :.r+),'

Clearly, S: Sn (Ê,es\sSr) and úerefore § is an ISYM-semigroup' !

Finally we illustrate the previous results with some examples.

ExAMPLE SJ. §= (5,6,8,9) is a numerical semigroup with m(S) - 5 and g(S) -
7. As g(§) < 2m(S) - 1, üen by Lemma 63 we obtain that § is not an ISYM-

semigroup. tr

EXAMPLE 66. S: (6, 11,15,20,25) is a numerical semigroup with m(S) :6 ana

g(S) - 19. Takingx: 16, wehave that 16 e N\S' 19-6= 3 d,9and 16 > +' Itis

clear that the unique natural number y such that.r+ y is odd and x*y É (S,y) is y - :'

Hence § is not an ISYM-semigroup because the condition iv) of Theorem 64 is not

satisfied for y: 3. tr

ExAMPLE 67. S * (5,21,24,28,32) is a numerical semigroup with m(S) :5 ana

g(S) -- 27. It is easy to see that {x } I a | .r I S and 27 - x Ç S} = { 14, 1 6, I 8. 19, 23}'

Taking x - 14 we can use y : 5 which verifies conditions i), ii), iii) and iv) of Theorem

64. Analogously, foÍ,r - 16 we can use y - 7, for.r: 18 we can use y = 5 and for
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x : 23 we can use ) : 0. Hence, by Theorem 64 we deduce that ,§ is an ISYM-

semigroup. Note that ,S can be expressed as an intersection of symmetric numerical

semigroups with multiplicity 5, for this we apply the method that it is deduced from

úe proof of 2) =+ 1) in Theorem 64. tr

4. Decomposition of a numerical semigroup as an intersection of irreducible

numerical semigroups

We know that every numerical semigroup S admits a decomposition .! : Sr íl . . .O

S, with .! irreducible (that is, ,§i is symmetric or pseudo-symmetric) for all i and we

denote by r(S) the least positive integer n. Our aim in this section is to give an upper

bound and a lower bound for r(§). We also describe an algorithm for computing a

minimal decomposition of a numerical semigroup into irreducibles.

We assume that.! I N and úerefore Pg(S) Ç N (see Lemma 40).

LEMMA 68. IÍ S is a numerical semigroup and x e N\§ tften there exists an

irreducible numerical semigroup S such that S ÇS and g(S) - x.

Pnoon. Let S/ - S u {x+ l,x+2,...}.It is clear that,§/ is a numerical semigroup

with g(S/) : x. Let 3 be a maximal element in the set of all numerical semigroups with

Frobenius number x containing S/. From Theoreml0 we deduce that S is an irreducible

numerical semigroup. tr

LEMMA 69. lzt $,...,5, be numerical semigroups containing S. The following

c o nditions are e quiv alent :

1)S:,§rn..'n.S",

2) tf C' e Pg(S), then the re exists i e {1,. . .,, n} such that gt Ç. S i.

PRooF. 1) +2) Ase'êS:.§1 o...oS4, then there exist i € {1,...n} such that

s'#si.
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2) + 1) It is enough to pÍove that if, € N\§, then there exists i € {1,...,ni

such that x f S;. Suppose that -r f S, from Proposition 42, we obtain that there exists

g/ e Pg(S) such that g'-xe S. By hypothesis we can find Íe {1,..',2} such that

gt 4. si md since gr - x € S Ç & we obtain that x ( ,§;. El

As a consequence of [31, Theorem 3.3] we obtain the following result.

LEMMA 70. If S is a numerical semigroup , then there existsB Ç {'r€ X: x> S}
such that St-tB is an irreducible numerical semigroup and g(St-t B) - g(S)'

Let S be a numerical semigroup. Define

Beg(s): {s'e egls; I e', P}.a

THEoREM 71. lzt S be a numerical semigroup withBPg(S) : {g1, " ',g,}' Then

there exist 5r,,.. . ,5,. irreducible numerical semigroups such thnt S : St O "'o§, and

g(S;) : s; for all i e {1,...,r}.

Pnoor. Suppose that 8r : g(S) and 51 is the irreducible numerical semigroup

described in Lemma 70. For each i € {2,...,r),1et Sr be an irreducible numerical

semigroup such úat S Ç Si and g(S;) : 8i ( the existence of § is guaranteed by Lemma

68). Now for proving that S - Sr o "'o §r we use Lemma 69' If gt e Pg(S) and

c' S +, then gt ÇS1. If g/ e Pg(S) and g/ > ets), th"n 8' : g; for some i e { 1, "', r}

and therefore gt f S;. n

From [20] we can deduce that if S is an irreducible numerical semigroup, then

{e(s)} ifg(S)is odd,

{e(s),9} if g(s) is even.

From this remark and Theorem 71 we obtain the following result'

coRoLLARy 72. If S is a numerical semigroup, then the following conditions are

equivalent:

Pg(s) -
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l) S is irreducible,

2) #BPg(s) : 1.

Let § be a numerical semigroup. Recall that r(§) is the smallest positive inte-

ger n such that S - Sr o...o §n with § irreducible numerical semigroups for all

i e {1,...,n}. As a consequence of Theorem 71 we have the following result.

CoRoLLARY 73. If S is a numerical semigroup, then r(S) J #BPg(§).

The decomposition given in Theorem 71 is not minimal as the following example

illustrates.

EXAMpLE 74. Let 5 = (5,7) n (5,8) = (5,21,,U,28,32), Then Ap(S,s) -
{O,21,24,28,32}, using Lemma 40 we get Pg(§) = {16,19.,23,27 } and so #BPg(S) =
4. Note that a numerical semigroup generated by two elements is symmetÍic (see

l24l) and thus § = (5,7) n (5,8) is a decomposition of § as an intersection of ine-

ducibles. tr

CoRoLLARY 75 . If S is a numerical semi group such that #BPg(S) : 2, then r (S) =
2.

PRooF. If #BPg(S) : 2, then by Corollary 72 we have that S is not an ineducible

numerical semigroup and thus r(S) ) 2. Besides, applying Corollary 73 we get that

r(§) < 2. Hence we have that r(S) - 2. tr

Note that, from Example 74, we can see that the converse of Corollary 75 is not

true. But úere are many semigroups verifying the hypothesis of Corollary 75 as we

see in the following example.

EXAMrLE 76. Latm apositive integer greater than or equal to 3 and 1et 5 - ({x €

N l, 2 mj\{2m -2,2n- 1}) u{0}. The reader can prove that S is a numerical
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semigroup and Pg(S) - {2m - 2,2m - 1 }. Applying Corollary 75 we get that r(S) -
tr2.

Now we give a lower bound for r(S). Suppose that § is a numerical semigroup and

BPg(§) = {gr,...,g,}. Foreach i e {1,...,r}, define

6(gi) : {gi+' I xe N andsi+x I (s,x)}'

THEoREM 77 . Izt S be a numerical semigroup with fg(S) = {g1,. . . ,gr} and let

gi e {g,....,g,}. // 5 rs an irreducible numerical semigroup such that S ÇS and

ei #.3, then s(5) e í(C). Conversely, rÍ 8i + x ç l(g;) then there exists an irreducible

numerical semigroupS such that S Ç-5, gi lS and g(S) = gi + *.

Pnoor. If g; f 3, then by Proposition I 1 we get that g(S) - si e 5 (note that g(S) 5

g(§)and that g; ) S an<t úerefore s,+*). Since 8i+(s(5)-gr):8(S) É S2

(S,g(3) - c,) we obtain ttrat s(5) e E(si).

Conversely,ifgr+r€É(gi),thenei+xl(S,x)'LetSbeanineduciblenumerical

semigroup such that (S,x) Ç S and 8r *x - 8(S) (the existence of '§ is guaranteed by

Lemma 68). Since x e 5 and g; ax : 8(S) É S, we obtain that g; I 5' tr

CORoLLARY 78. IÍ S = §r ft" 'n Sn with Sl,'..,§, ineducible numerical semi-

groups,thenÍoreachie{1,...,r} thereexists j €{1,...,2} suchthatg(51)eÇ(g1)'

PRooF. Ifi € {1,...,r}, then 8i # § - Sr n"'t-l§, and therefore there exists j €

{l ...,"} such that 91 f §;. Using Theoreml7 we get that 8(.ti) e E(gr)' tr

CoRoLLARY 79 . Izt xt ). . ., xr €. N be such that ei + xi e l(g i) for all i e {1,..., r}'

ThenthereexistirreduciblenumericalsemigroupsSl,...,srsuchthatS-'Stn"'nSr

and {g(51),...,g(S')} Ç {sr *xr,...,g,*x,}.

PRooF. Assume that gy - g(§). Note that ((g1) - {81 } and thus .rr - 0' Let Sr be

the numerical semigroup SUB described in Lemma ?0. Now, for each d e {2, " ', r} let
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& be an irreducible numerical semigroup such that S Ç Si, Si Ç S; and g(§) : g, +r,
(the existence of§ is guaranteed by Thconem 77). Applying Lemma 69 we can deduce

that § -,§r n ".nS,. tr

Let á be a subset of N. We say that § is an Á - semigroup if S can be expressed as

an intersection of irreducible numerical semigroups whose Frobenius numbers are in

Á (that is, ,S : §r í'1. . .O§z with §; irreducible numerical semigroups and g(§) e Á for

all i e { 1,. .., z}). Denote by h(§) - min{#Á | S is an Á - semigroup}.

CoRoLLARY 80 . If A is a subset ofN, thzn thcfollowing conditions arc equivalcnt:

l) S is an A-semigruup,

2) there exist (ar,..., a,) e É(Cr ) x . . . x t(gJ such that {at,. . ., a,} C A.

PRooF. 1) + 2) This is a consequence of Corollary 78.

2) + 1) Follows from Corollary 79.

CoRoLLARY 81 . I/ S is a nwnerical semigroup, then r(S) > h(S) -
min{#{a1,...,a,} l(or,...,a,) e Ê(gr) x...x E(g.)}.

PRooF. As a consequence of Corollary 80 we get that

tr

h(s) : min{#{a t,..., d,} I (or,..., o,) e Ê(gr) x .. . x 6(sJ}.

Now we see that r(S) ) h(S). In fact, if §1,...,,S, are irreducible numerical semi-

groupssuchthat§=§ríl'..í,).§z,then^tisa{g(§1),...,9(§,)}-semigroupandthus .

z > #{s(sl),...,s(s,)} 2 h(S). Hence r(S) > h(s). tr

Note that if we take again .S - (5, 7) n (5, 8) : (5,21 4,28,32) (see Example 74)

we know that r(S) = 2. Remember that BPg(S) : {16,,19,,23,27 } and so 6(16) :

{16,23}, É(re) : {1e,27},EQ3) = {23} ndl(27): {27}. Applying corollary 81,

we obtain that h(S) : 2 and úerefore h(S) : r(S). Note úat there arc many examples
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for which the previous equality does not hold. Observe that if 51 and 52 arc irreducible

numerical semigroups with g(S1) : g(S2), then r(§1 n52) :2 and h(S1 n52) : 1.

4.L. Odd and even numerical semigroups. We say that a numerical semigroup

is an odd numerical semigroup (respectively even numerical semigroup ) if it can

be expressed as an intersection of irrcducible numerical semigroups with odd (respec-

tively even) Frobenius numbers.

Note that odd (respecüvely even) numerical semigroups arc numerical semigroups

that are inteÍsection of symmetric (respectively pseudo-symmetric) numerical semi-

groups. If S,.S1,...,S, are numerical semigroups and S:§rfl"'o§a, then g(S) -
max{g(S1),...,g(S,)} and thereforc if S is an odd (rcspectively even) numerical semi-

group, then g(S) is odd (respectively even). Note also that every numerical semigroup

is odd, even, or an intersection of an odd and an even numerical semigroup'

As a consequence of corollary 80 we get the following result that is a generaliza-

tion and an improvement Theorem 45.

CoRoLLARY 82. If S is a numerical semigroup and BPg(S) : {g1, ' ' ' ,g,}, then

thc following conditions are equivalent:

l) S is an od.d (respectively even) numerical semigroup,

2) l(g) conrains at least an odd (respectively even) element for all i e {1, ' ",r}'

Note that a numerical semigroup is a {g} - semigroup if .S : 51 fl' " o Sa with S;

an irreducible numerical semigroup and s(&) - g for all i e { 1,...,lr}. Observe that

^S 
is a {g} - semigroup if only if h(S) - l.

As an immediate consequence of Corollary 80 we obtain the following rcsult'

CoRoLLARY 83. f S is a numerical semigroup and BPg(S) : {g1, ' ' ',g,}, then

the following conditiow are equivalent:

l) S is a {g(S)} - semiSÍouP,
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2) g(S) e \(s;) for att i e{1,...,r}.

4.2. Atorns. Let g be a positive integer. Set

Z(g) - {S | ,S is a numerical semigroup with g(S) - g}

and

Zõ : tS | ,S is a numerical semigroup wiú g(S) S s).

Note that fZG), nl is a semigroup and, as a consequence of Theorem 71, the set of

irreducible numerical semigroups of Zõ i. a minimal system of generators for it.

Note also that ,(g) is a subsemigroup of (2fr, n;. An element in Z(g) is an atom

if it is not an intersection of rwo elements of Z(g) containing it properly. Note that an

irreducible numerical semigroup of Z(g) is an atom, but in general the converse is not

true (see Exarnple 89).

LEMMA 84. Let S and S be two numerical semigroups with S C S and let x :
max (S\S). Then SU{x} is a numerical semigroup.

In particular if S andS e L(g), then Su {x} e L(g).

PRooF. From the definition of x we obtain thaÍ 2x e S andx*s €,S for all s €

S \ {0}. Hence S u {x} is a numerical semigroup. Since x € S, x I g(S) = I and thus

s(su{r}) -9. tr

Lrum 85. If S e L(g) and S is not an atom of L(g), then there exist xl, x2 € N\ S

such that 4 I x2 and SU {x1} and SU {x2l1 are elements of L(g).

PRooF. ff § is not an atom, then there exist Sr,§z € Z(g) such that ,S C 51 and

.§ C ,§2 and §: Sr l-'l Sz. Assume that x; : max(Si \ S) for i: 1,2. Applying Lemma

84 we obtain that SU {-r1},SU {x2} e t(g). Note that x1 f x2 because otherwise we

would have .x1 - ,2 € ,Sl n 52 - §, y6i"1, contradicts .r1 ( S. tr
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LEMMA 86. Izt S be a nurnerical semigroup and x e N\S. Iàen §u {x} is a

numerical semigroup if only fx e Pg(S) and?.x lPg(S).

PRooF. ff S U {x} is a numerical semigroup, then x + s €,S for all s e S \ {0} and

thus r € Pg(§). Furtherm ore 2x e § and whence 2x f Pg(S).

Conversely, if x e Pg(§), then.r+ s € § for all s e S \ {0}. If 2Í É Pg(§) then, since

.x € Pg(S), we can deduce that 2x e §. Hence SU {x} is a numerical semigroup. tr

PRoPosITIoN 81 . IÍ S e L(g), then the following conditions are equivalent:

1) S is not an atom of L(g),

2) there exist x1,xz e Pg(S) \ ig) such that x1 f x2 and {2q'2xz} nPz$) : 0.

PRooF. /) + 2) By Lemma 85 we know that úere exist Í1,.r2 € N such thar \ #

12 and § U {xt } and § u {x2} are elements of L(g). Using Lemma 86 and the fact that

e # Su i.rr) and s ( §U {x2}, we deduce that Íi € Pg(S) \ {s} and 2x1 I Pg(S) for

i - 1,2.

2) + 1) From Lemma 86 we deduce that §u {x1}, SU {-r2} € Í(g)' Since S:

(Su {x1})n (Su {x2}), we have that § is not an atom of Z(s) tr

As an immediate consequence of the previous proposition we get the following

result.

CoRoLLARY 88. f S is an numertcal semigroup and type(S) e {1,2}' then S is

an atom of L(g(S)).

EXAMPLE 89. Let § = (4,5, 1 1). Then Pg(S) : {6,1} (see Example 76) and there-

fore type(§) - 2. Applying the previous corollary, we get that.t is an atom of L(7)'

Note also that S is not irreducible because, using Lemma 86, we have that SU {6} and

Su {7} are numerical semigroups for which,§: (SU {6}) n (SU {7})' tr
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43. Computing minimal decompositions. \Ve finish this section by describing

an algorithm for computing a minimal decomposition of a numerical semigroup into

irreducibles.

For a numerical semigroup §, we define

H(s) - y1 5 urd EH(S) - {x e Ií(s) | 2, € S, x*s € § for all s € s\ {0}}.

And from úis definition, it easy to prove the following result.

PRoPoSITIoN 90. lzt S be a numerical semigmup and x é. H(S). Tftez x € EH(S)

if only if Su {x} is a numerical semigruup.

The set EH(S) is a subset of Pg(S) - {.r ( S I x*s € § forall § € S\ {Oi}.

Remember thaq from Lemma 40, we have úat Pg(§) = {wit - n, . . . ,wi, - z} with

{wr,...,wü} = maximalsssAp(S,z) andúat the cardinal of Pg(S) was called the type

of S and denoted by type(§). Hence, this implies that

#EH(s) S type(S) < m(s) - l.

As a consequence of kmma 84, we can see that all numerical semigroups that contain

properly the numerical semigroup S must contain an element of EH(S). In fact S is

maximal in the set of all numerical semigroups not cutting EH(S). From, Theorem

10, we know that § is irreducible if only if ,S is maximal in the set of all numerical

semigroups úat do not contain g(S). So we have the next result.

CoRoLLARY 91. I*t S be a numerical semigroup. Then S is irreducible tf only rf

#EH(S): r.

Given two numerical semigroups § and § such that S C § for z € NI, define recur-

sively the semigroup §o as:

r,S9:§,
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s,, if s, - §,

Sn u {max(S \ S,)}, otherwise.

If e : #(S\ §), then we get the sequence

S-SoC'§rC"'c'1 ='S'

As a consequence of Lemma 84, we deduce that for all i e {0,...k} S; is a numerical

semigroup. Then we can compute all numerical semigroups S containing S. The idea is

to proceed as follows: once you have an element I containing S (you start with Í - ,S),

compute EH(S') : {xr,...,r.} and thus we obtain 9u{x1},'..,3u{x.} which are

numerical semigroups containing S; next do the same with each I u {x;}. Performing

this process as many times as necessary we get all numerical semigroups containing s.

Denote by

3(s) : {S ineducible I S c s}.

Its clear that s: sr O...Osn with s; € 3(s). we can remove those irreducibles that are

not minimal with respect to inclusion. As an immediate consequence of this remark

we obtain the following result.

PRoPosITIoN 92. Let S be a numerical semigroup such that minimalscS(S) :

{Sr,...,S.}. Then S : Srn... nSr'

But the decomposition described above is not necessary minimal as we can see in

the following examPle.

EXAMPLE 93. Let 5 - (5,6,8)' We compute EH(S) : {7,9}' by Proposi-

tion 90, SU {?} and SU {9} are numerical semigroups. For SU {7} we have úat

EH(S.I{?}) - {9}, by Corollary 91, we conclude that Su{7}) is irreducible and

thus su {7} € minimalscf,(s). For su {9} we have EH(su {9}) - {3'4,7}' Using

againPropositiong0,weobtainthat,Su{9,3},Su{9,4}andSu{9,7}arenumerical

semigroups. Now we deduce that S u {9, 3}' S u {9,4} are irreducibles and S u {9,7}

o .Sr+t :
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contains the iÍreducible §u {7}. Thcrefore we get that

minimalscS(S) : {(Su {7},su {9,3},su {9,4}}.

§: (su {7}) n (su {e,3})n (su {e,4}) : (su {7})n (§u {e,3}).

Hence

tr

However, to express a numerical semigroup S as intersection of the least possible

number of irreducibles, it sufÊces to search among úe decompositions with elements

in minimalscS(§).

PRoPoSITIoN 94. Let S be a numerical semigroup. If S: Sr n...n§. with Si €

X(S), then there exists §, € minimalscf,(.S) í, e {1,..., r} ) such that S - Si n...nSl.

PRooF. For each Si e l(S), we take Sj € minimalscf,(,S) such úat §j Ç §; and so

s: si n.'.nsl. tr

The next result sheds some light on which semigroups are required in a decompo-

sition (compare with Lemma 69).

PRoPosITIoN 95. Let S be a numerical semigmup and 51,,. . .,5, e X(S). The

following conditions are equivalent :

1) §-§1 n...nSn

2) for eachheEE(S) there exism i e {1,...,r} suchthathÇ. S;.

PRooF, 1) + 2)Íf h € EH(S) úen & is not in S and so there exist i € {1,...,r}
such that lr ( §;.

2 ) + 1 ) lt is clear that S C 
^§r 

fl. . . ílS,.. Suppose that S c Sr n " . n §". This implies,

by Lemma 84, SU {max(n§, \ S)} is a numerical semigroup and, by Proposition 90,
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,': {max(n&\s)} € EH(s). We have Íhath1EH(S) and à e,S; for all {1,...,r}

which contradict the hypothesis. n

From the set minimalscT(s) - {sr,...,s,} we define for each & with i € {1" "'t}

c(s): {h € EH(s) I h ê st}.

Using Proposition 95 we have that

§: S;r n...nS;, if and only if C(s,r)u "'u C(s,,) - EH(s).

with the above results, we can obtain a algorithm for computing a decomposition

of § as an intersection of irreducible semigroups using the least possible number of

them.

ALcoRITHM 96. Let S be a non-irreducible semigroup.

(l) Compute the set EH(S)'

(2) SetI-OandC={S}.

(3) For all S' € C, compute (using Proposition 90) all the semigroups S such that

#(S \ S') : I . Remove I from C' Let B be the set formed by the semigroups

constructed in this waY'

(4) Remove from B the semigroups S/ fulfilling that EH(S) C S/'

(5) Remove from B üe semigroups .Í/ such that there exists S e f wittrSc S''

(6) Set C : {S' € B I S/ is not irreducible}.

(7) Set 1 - Iu{S/ € B I S' is ineducible}.

(8) IfC+0,gotoSteP3.

(9) For every S e 1, comPute C(S).

(10) Choose {Sr, . . . , S,} such that r is minimum fulfilling that

c(sr)u "'u c(s,) - EH(S)'

ü(11) ReturnSr,...,S..
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Now we illustrate the above method with an example.

EXAMPLE 97. We consider again the semigroup S - (5,6,8). We have that

EH(S) : {7,9}. Performing the steps of the above algoriúm, we get (in üe Steps

6 and 7) ttrat I - {(5,6,7,8)} and C: i(5,6,8,9)}}. Since C 10, we go back to Step

3 obtaining that I - { (5, 6, 7, 8), (3, 5), (4, 5, 6) } and C - 0. Step 8 yields

c((5,6,7,8)): {9}, C((3,5)) : {71, C((4,s,6)): {7}.

The minimal decompositions of ,S ale

s= (5,6,7,8)n(3,5)

and

§- (5,6,7,8)n(4,5,6).

5. Irreducible numerical semigroups with arbitrary multiplicity and

dimension

In this section we study families of irreducible numerical semigroups with even

conductor. Furthermore, we give a minimal pÍesentation for all semigroups in these

families.

Let § be a numerical semigroup and n € S\ {0}. From Lemma 13 and Proposition

14, we will derive the Lemmas 98, 100 and 102 which give families of irreducible

numerical semigroups with even conductor,

LEMMA 98. lzt m, q € N áe such that m> 2q+5 and kt S be the submonoid of

(N,+) generated by

{m, m * l, (q -l l)m * q * 2,,. . .., (q * l)m -l m - q - 3, (q + l)m + m - l}.

Then S is an irredacible numerical semigmup withm(S): m, p(S) - m-Zq- I and.

g(S) -2(qar)m-Z.

tr
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PRooF. Since Ecd{m,,m + 1}- l, then we have that,§ generates Z as a gÍoup and

therefore,S is a numerical semigroup. Note that m - min S\ {0} and so m(§) - n. It

is easy to see úat

{ro= ^,rr = ma 1,n2 - (q+1)m+q+2,... 
'

nr-r - (Q * 1)m+ m - q - 3,np = (4 * l)m + m - lj

is a minimal system of geneÍators for 's and thus p(s) : m - 2q - 1 ' The reader can

prove that

Ap(S, m) = {0, n1,,2ny,. . .,, (q * l)n1, n2,. . ., n p-r fl t * n o4,Znr * rt p- r',. . .,

qu *npt,,E(s) + m = (q+ l)nt *np-rlu {np},

and if p > 4, then in addition g(s)+m :nilnp-i for all i e {2,...,lplzl} (lq1

denotes the integer part of the rational number q). Hence, g(§) = 2(q + l)m - 2 atd

ro $+rn - (q+l)m+(m-l) =nr. Applying Proposition 14 we get that '§ is an

irreducible numerical semigroup. tr

We give an example that illustrates the previous lemma and its proof'

Ex.a.NapLe 99. We take Q=2 and n = l1 (note Íhatm> 2q+5)' then by the

previous lemma, we have that 5 - (1I, 12,37,38,39,43) is an ineducible numerical

semigroup with m(s) = 11, p(s) - 6 and g(s) : 6a' Furthermore' from the proof of

this lemma, we obtain that

Ap(§, 1 1 ) = {0, 12,24,36,37, 38, 39, 5 l, 63, 75} U {43}'

tr

LEMMA lOO. Let m€ N and 4 € N \ {0} be such that m > 2q + 4 and let S be the

submonoid of (l§, 1) generated bY

{m,m* 1,qm*2q+3,...,qm+ m - l,(q* \)m+ q+2}'
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Then S is an irreducible numerical semigroup witft m(§) - m, p(S) : m - 2q and

e§):2qm+2q+2.

PRooF. since gcd,{m,,m * 1}:1,üenwehavethat§generatesZ as a group and

therefore ,S is a numerical semigroup. Note also that z - min S\ {0} and so m(S) : m.

Clearly,

{nO = ^,,nt: 
m+1,,n2: qn}Zq*3,...,

np-t = qm+ (m- l),no -- (q+ 1)m+ q+2\

is a minimal system of generators for § and so p(S) : m-2q. The reader can pÍove

that

Ap(§, m) - {0,n1,2n1,. . . ,qnt,n2,, , . . ,,np-t,np,h1* np,2n1* 17pt . . . t

g(s) + m : qu + nP\ u {(q + ,)nr}'

and g(,9) + m = n 1 I np-i+t for all i € {2,..., I (p + 1 )/21 }. Then g( S) = 2qm + 2q + 2

and thus 9 * 
^ - (q + l)m + q + t = (q + I )n1. Using Proposition 14, we deduce

that ,S is an ineducible numerical semigroup. tr

We also give an example to illustrate the above lemma.

EXAMPLE 101. Let q : 2 and m = 1 1 (note that m / 2q + 4). Then, by the above

lemma, we have that S - (11, 12,,29,30,31,32,37) is an ineducible numerical semi-

group with m(§) = I 1, p(§) - Z and g(S) - 50. Furthermore, from its proof, we obtain

that

Ap(S, 1 1 ) - {0, 12,,24,29,30., 3 l, 32,37,, 49, 6 I } U {36}.

tr

LEMMA 102. If m is a positive integer greater than or equal to 4, then there exists

an irreducible numerical semigroup S with g(S) even, m(S) - m and p(S):3.
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PRooF. We distinguish two cases depending on the parity of rz.

I)lf mis even, then m=2q*4 for some q € N. Let 5 - (m,m*1,(q*l)m+

(.- t )). It is clear that m(§) : m andp(S) = 3. The reader can prove that

Ap(S,n) : {O,m* 1,2(m+ 1),...,(n-2)(m+ 1)} u {(4+ 1)n + (n - l)}.

Therefore, g(S) : (m - 2)m- 2 is even and $ + - : (q + 1)m + (n - 1 ). By Propo-

sition 14 we conclude that § is an ineducible numerical semigroup.

2) If rz is odd, th en m = 2q * 3 for some g € N\ {0}' Let § = (m,m * 1,, (q I l)m *
q+2). Cleaily, m(S) = z andp(§) = 3' In this setting'

Ap(§, m) - {0, m I 7,2(m * l),..., q(m + l), (q + l)n + q + 2,

(m+ 1) + (q+r)m+q+2,...,4(m* 1)+ ({+ t)m+q+2}tl{(a+ l)(rn+ l)}'

Hence, g(§) : (2q+1)z- 1 is even and ***: (q+1)(m+ l)' Bv Proposition

14, we have that S is an ineducible numerical semigroup' tr

REMARK 103. /) As a consequence of the proof of case l) in Lemma 102 and

since zr: 2ql4,wehave that if rn is an even integer greater than or equal to 4, then

5:. (m,m*t,Ç7 is an irreducible numerical semigroup with m(S) = m, g(§) =

(m-z)m-2andp(S) - l.
2) As a consequence ofthe proofofcase 2) in Lemma 102 and since z - 2q*3,we

have that if ln is an odd integer greater than or equal to 5, then § = (m,m* 1 , ff1 is

an irreducible numerical semigroup with m(§) - n, g(S) =(m-2)m- I andg(S) =l'

EXAMPLE 104. S - (6,'7 ,171is an ineducible numerical semigroup with m(S) =

6, p(S) - 3 and g(§) = 22. Furthermore,

AP(S,6) = {0,7,14,21,28} u {17}.

D
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ExAMPLE 105. 5 = (7,8,25) is an ineducible numerical semigÍoup with m(§) -
7, P(s) : 3 and g(§) = 34. Furthermore

Ap(§, 7) - {0, 8, 16, 25, 33,41} Q {24}.

tr

We are ready to prove the main result of this section.

THEoREM 106. Iztmande positive integers suchthat3l e 1m- 1. Then there

exists an irreducible numerical semigroup with even conductori nultiplicity m and

embedding dimension e.

PRooF. If e = 3, then Lemma 102 guarantees the existence of this semigroup.

Thus, in sequel, we shall assume that 4 < e 1m- 1. We distinguish two cases.

. lf m- e is odd, then there exists q € N such Íhat m- e:2q+ 1. Furthermore,

since e ) 4, then m> 2q + 5. By Lemma 98, we deduce that there exists an ineducible

numerical semigroup § with g(§) even, m(§) : 2 and p(§) :m-2q-1=e.
. lf m - e is even, then there exists q € N \ {0i such that rr4 - e = 2q. Funhermore,

since e ) 4, then m> 2q*4. By Lemma 100, we deduce that there exists an ineducible

numerical semigroup §with g(§) even, m(S) :pandp(S) -rn-zq:e. E

Now we describe minimal presentations for the families of numerical semigroups

obtained from Lemmas 98, 100 and 102. Note that the family of numerical semigroups

described in Lemma 102 is (see remark 103):

1) S: \m,m*t,ú*),if z is an even positive integer greater than or equal to 4.

2) S = (m,,m + t,ú#), if m is an odd positive integer greater than or equal to 4.

In both cases § is a non symmetric numerical semigroup with Ir(S) - 3. Using

the results of [24], we deduce that the cardinality of a minimal presentation for these

numerical semigroups is 3. Furthermore, from this paper, we know that a minimal
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pÍesentation foÍ a non symmetric numerical semigroup S : (ns,n1,n2) is

P : { (coxo, aor Xr * as2x2), (c 1x1, a toxo * a nxz),, (c 2x2, a2sxo I a^x1)}

where c; : mln{J € N \ {0} I lni e (n i,n*l}with i 
j, i, k} - {0, l, 2} and cini -- a ; in i *

aiknk.

In order to find minimal presentations for the semigroups belonging to the families

given in the preceding section, we must introduce and recall some concepts and results.

If ,S is a numerical semigroup with minimal system of generators {n6 < ... < np)

and s € S, then there exists (49,...,ar) e Nz+t such that s: aono l "'*aonn. We

say that an element s has unique expression when (o0,. . . ,ap) is unique'

In [34] it is given a method to obtain a minimal presentation for a numerical semi-

group fulfilling the condition that all the elements of Ap(s, n6) have unique expression.

The process is the following: let

f -{(a1,...,ap) e NP lcrnr }"'*arn, ÉAp(s'no)i

and

{cx1 - (tt'11,...,drp),.",or : (c,r,'..o,p)} - minimalsl(I),

where ( is the usual order of Np (observe that by Dickson's Lemma this set is finite)'

Foreveryr€ { 1,...,r} wedefinexi:OXo*o'itXr*"']- o"ipXp e F' Since q(x;) /
Ap(§,n6) (recall the deflnition of q and F given in the Preliminaries)' we deduce that

theÍe exists (Pio, Pi,, .. . , Pir) e N/'+l with Pio # 0 such that

9(x;) : B;on6+ Bí.r,t + "' +PiPnp'

For every i e { 1,. .., r} we define y; - B;oXs } p;,X1 *''' -l p 
i rXp' Note that 9(-r;) -

g(y;) forallie {1,...,t} andso

p = {(xr,yr),..., (.,r,,},)} g o.

In [34] it is proved the following result.
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PRoPosIrIoN 107. Under the standing lrypothesu P : {(xr,yr), . . ., (x1,n)} rs o

minimal presentation for S.

Noq with these results, we can give a minimal prcsentation for the family of nu-

merical semigroups obtained from Lemma 102 (or Remark 103).

PRoPoSITIoN lO8. l) If m is an even positive integer greater than or equal to 4,

PRooF. 1) Let S : (no : tn,nr : m* l,nz :
Lemma 102, we have that

then a minimal presentation for S -- (m,m * t,Ç7 is

o = {<!!2, 
n, x r } xz), ((m - t)x r, * h + xz), (2)t2,, xo + (m -a& ) }

2) If m is an odd positive integer grcater than or equal to 5, then a minimal pre-

sentation Íor S = (m,m + l,ú{) is

e = {t^a,Çxr + xz), (Txr, xo -t xz), (Dh, (' - r )e + xr ) }'
ú*t . ,V the proof of case l ) in

Ap(§, zs) : {0, n1,2n1,..., (ns - 2)n1,n21.

It is clear that all elements in Ap(§, ne) have a unique expression. Applying Proposi-

tion 107 úe reader can check that

fff A, x, + x2), (m - r) xr, 
Txo 

+ xr), (Lrz, v,o + @ - z) x)j,:{

is a minimal presentation for ,S.

2) Let S = (zs = m, nt = m + l,nz = ú{1. By the proof of case 2) in kmma

102, we have that

Ap(S, zo) - {O,n1,2nr,. . . ,(q * l)n1,n2,n1* nz,. . .,qnt + nz}.

Clearly, all elements in Ap(§,26) have again unique expression, Using hoposition

107 again the reader can check that

,:{ wa,Çx, + xz1, 1!x1,xo + xz), (»t2, (, - I )& + & ) )
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is a minimal presentation for S. tr

We illustrate this proposition with some examples.

EXAMPLE 109. If we lake m = 6, then a minimal pÍesentation for the numerical

semigroup § - (6,7, 17) is

p = { Xs,Xt I X)', (5h,3Xo + x2), (»{2',xs | 4X.)}'

tr

EXÁMPLE 110. If we take m= 7, then a minimal pre§entation for the numerical

semigroup 5 : (7, 8, 25) is

p : {7 Xs, 3X1 + Xz), (4Xr, Xo + 7,2), Q)tz, 6Xo + X t )}'

tr

Now we describe the minimal presentations for the families of numerical semi-

groups obtained from Lemmas 98 and 100.

PRoPosITIoN 1ll. I*t m,,q € N àe sucà thdt m> 2q+5 and

S - (rs : m,nt = m+ 1,n2 = (q I 1)m* q *2,'

...,np-t = (q+ l)m+m- Q-3,np= (q+ l)m+m- 1)'

The cardinatity ol a minimal presentation for S is equal to

p(p + t)--z-- ''

PRooF. By Lemma 98, we obtain that

Ap(S, n6) - {0, n1,2n1,..., (q I 1)n1, n2,... )n p-t' n p, nt * n p-t,2U * n p-1,

...,qn1* np-t,(A* l)A * n1t-t = n2+ nP-2 = nl * np4"'\'
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Note that all the elemens the in Ap(§,26), except

g(§) + zo = (q + l)n1 + n p-r -- n2 + n r-2 : n3 * n 1t-1...,

have a unique expression. It easy to see that .Í = s U {g (s) } is a numerical semigroup

wiú a minimal system of generatoÍs {ng,n1,...,n0,2o11 -g(s)} and

Ap(9, zs) : {O, n1,2n1,. . ., (q * l)n1, n2,..., n p-r, n p, nt + np- t,

... rqn1* np-trnplt\.

Since all the elements in Ap(.Í,ng) have unique expression, using Proposition 107,

we can compute a minimal presentation p' for §'. Then we have that

P' : {((q + 2)&, yr ), (& + 7+,»), . . ., ((q * l)x1 * x r- 1, y r- ), (xr I x p, y p),

(Xr * X p +t, ! p + r), (?.7a, y o a2), (X2 * Xt, ! p + g),,, ., (Xz * X p+ r, ! z p+ t),

. . .,(2){p,yp+r+na...a3a1),(X, +Xr+t,yp+t+p+...+3+z),(2)Ç+r,yp+l+p...+3+2+t )}.

Therefore,

#p' = p * 1 + p +..' 3 + 2 +, - (p + 2)!p + t) 
- P@ -) 

1) 
+ p + t.

By hoposition 2l and Lemma 23, we obtain that, if p is a minimal presentation for,S,

then#p+p+2:#p,.Hence, 
p(p+r)itp--Í--t. 

tr

EXAMPLE 1 12. Íf we take q - 0 and rz - 5, thsn § - (5, 6, 7, 9). Using the previous

proposition we get that the cardinality ofany minimal presentation for S is 5. tr

PRoPoSITIoN I13. Izt n e N and q e N \ {0} áe sucà that m > 2q * 4 and

S - (29 - m,,nt : m+ l,n2 : qml2q * 3,...,np-t - qm * m - l,

n, - (q-rl)n+q+2l.
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Then the cardinality of a minimal presentationfor S is equal to

p(p + 1)-- 2 -r.

69

PRooF. By Lemma 100, we deduce that

Ap(§, ns) - {0, n1,2n1,,. . ., (q + l)n1, n2, . . ., tt p- | fl p t ttt * n p,Znr * n p,

. . ., (q - l)nt * n p,, qnt * n, = n2 j n o- t = nl * n p-2 "' \.

Note also that all the elements in Ap(S, n9), except

g(S) +ne - Qnt * np : nz* np-r = nt * np-2"''

have unique expression. Clearly,9 = SU {g(S)} is a numerical semigroup with mini-

mal system of generatoÍs {nç,,n1,. , . ,np,n41 - g(§)} and

Ap(St, ns) - {0, n1,2n1,. . ., (q + l)u,n2,...,, n p, nt * tt p,2nt * npt

. , (q - l)a + np,np+rj .

Since all úe elements in Ap(St, zo) have unique expression, by Proposition 107, we

have that a minimal presentation p' foÍ ,S/, is

pt -- {((q + 2)x1, }r ), (xr * Xz,vz),''', (Xr * xp;,t p- r), (qh * x p' I à'

(X1* Xpar J p+r).,(Dt2,ypaz),(Xz* Xt,y p+t),' . . ,(X2* Xpar,!p+r+n),

.. . ,(2Xp,!p+r+na...a3a),(Xr+ Xr+r,y p+r+P+"'+3+2),(Xp+r,!p+l+p +3+2+l))'

Hence,

#pt = p * 1 + p +...3 + 2 +, - (p + 2)-(p + 1) ='!+! + p + r.

using again Proposition 2l and Lemma 23, we obtain that if p is a minimal presenta-

tion for ,S, then #P + p +2 = #P/. Hence.

p(p+r) ,+to : '---------'.- - \.'2tr
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EXAMPLE 114. We takeq-landm= 6. ThenS= (6,7, 11,15). Applyingthe

previous proposition we obtain that the caÍdinality of any minimal presentation foÍ S

is5. tr



CHAPTER 3

Systems of inequalities and numerical semigroups

Let S be a numerical semigroup with multiplicity m and Ap(§,rn) : {0 =

w(O),krm+ 1 : w(1),....,k1n-1n11m-l: w(m-1)j. Then for every i'j €

{1,...,m- 1} there exist I € N and & € {0,...,r2- 1} such that w(i) +w(j) =

tm+w(k). Using this fact, in this chapter' we describe a one-to-one conespondence

between the set of numerical semigroups wiÚr multiplicity m and asubsemigroup of

Nr-l.
In Section 1, we study the set of nonnegative solutions of systems of linear Dio-

phantine equations. we see that these solutions can be described wiú a finite set of

parameters and the coefficients of these can be computed algorithmically'

In Section 2, we deduce that there is a one-to-one correspondence between the set

§(m)ofnumericalsemigroupswithmultiplicitymandthesetofnonnegativeinteger

solutions of a system of linear Diophantine inequalities. As a consequence of these

results, this conespondence infers in §(m) a semigroup structure with the resulting

semigroup isomorphic to a subsemigroup of N'-l .

In Sections 3 and 4, we particularize the previous results to MED-semigroups and

to symmetric numerical semigroups. In the symmetric case, the systems that appear

also contain linear equations, and the set of symmetric numerical semigrcups is a union

of sets of nonnegative integer solutions of systems of this type'

We say that § has monotonic Apéry set if Ap(S,n) = {0 < w(l) < " ' 1w(m-

1)). Denote by C(m) the set of numerical semigroups with monotonic Apéry set

and multiplicity rz. our main goal , in section 5, is to study this particular case of

7l
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numerical semigÍoups. We show úat there is a one-to-one correspondence, between

C(m) and a finitely generated subsemigroup of Nr-l. Finally we study the set of

symmetric numerical semigroups of C(m).

1. Nonnegative integer solutions to Diophantine linear inequalities

Our aim in this section is to describe the set of nonnegative integer solutions of

systems of linear inequalities and equations with integer coefÊcients. Assume úat we

are given the system

br,

(1)

(2)

(3)

a\xt*"'*a\xn

a74rX1*...*ayynXq

arrxl+...+arnxn
ar+lfil l'''* ar+\,Ín

arict+,,,+arkxn-xn+r
ar+\xt+,,,+ar+Inxn

b
br*1r

bl,

br+t t

b,,
br+1,

br+t t

with a;,,bi e Z. ln oÍder to solve it we will use the following supplementary systems

of linear Diophantine equations.

A7L4rl1*...*4yq1nX4

a1rx1t...la1,xn-xn*l

and

atft +.., + a\xn - xn+t - blxn+r+l 0,

:0,
=0,

arél + "' + arnxn - xnqy - byx41rll
ar+\xt + "' + a4\Xr1 - b41Xn1r11

ar+hxl + ' ' '+ ar+4,Xn - b74xn1r11 0,

The variables xr*lr...,rn+r are usually known in the literature as slack variables (see

for instance [13] and the references there). The set of nonnegative integer solutions of

(3) is a monoid and it is generated by its set of nonzero minimal elements wiü respect
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to the usual paÍtial oÍder < in nf+'+l (this set is finite in view of Dickson's lemma;

see for instance [41]).

The following result is straightforward to prove.

LEMMA ll5. Thz element (q,...,so) e §l' is a solutionof (1) if and only if there

ert'srs sz+I,,..,§r, +" €N such thaÍ (s1,...,s2,s2a1,...,§z+r) is solution to (2).

From [42, Section 4] we deduce the following rcsult.

LEMMA 116. Let Á: {or,...,e}, with o,;: (cr4,...,c;*,*r), be a system of

genemtors of the Dioptuntine monoid given by the set of nonnegative solutions of (3).

Assunu tlut &i,. . . ,dtt are the elements in A laving its last coordinate eqrml to zeru

and that cd+l,. . . , Gts arc those elements in A with the last cootditute eqtml to one.

Then the set of nonnegative solutions of (2) is

{Q+r,. ",ds} * (dr,...,-od)'

wlured4 -- (oir,. . ., oü*,)'

PRoPosIrIoN 117. Izt {4r,...,4,}, {cr,...,qa} and {o,aa1,...,ar} be as in

I*mnu 116, utd let n: Nr+r+l -+ Ntr' áe the projecrton onto the rtr$ n coordinates'

Then the set of nonnegartve integer solutions of ( 1 ) k

{z(qa*r),. .',2(ar)} + (r(ar)' '..,r(qd)).

PRooF. Let (sr,...,sr) € N' be a solution of (l). By Lemma ll5, there exist

s4a11...,§z{r € N such that (s1,...,sr,sn+1,"',§z+r) is a solution for (2)' Applying

Lemma 116, we deduce that (s1,...,s74,) € {-Qa+r,...,ds}+Fr,.'.'da), whence

(sr,...,s,) e {t(aa+r),..., n(a*)} + (r(ar ),..',t(cu)).

Conversely, if (s1,. . .,s2) e {lr(qa+r),.",r(ar)} + (t(ar),. '.,r(aa))' then

(sr,...,s,) - n(aa*;) + a1n(or) + "' +aazr(oa)
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for some i e {1,...,g-d} and at,...,ad € N. Let sr*lr...rsn*r*l € N be such

that (sl,...,s,,,Jn1lr...rsn1l1r) : o,i+a * alcrt +...*aga4. Using Lemma 116,

(s1,...,s1-p.) is a nonnegative integer solution to (2) and by Lemma 115 we conclude

that (s1,...,sr) is a nonnegative integer solution for (1). tr

We now sharpen these results a bit more, taking into account some monoid struc-

ture arising in the process. Let f be the monoid of nonnegative integer solutions of the

system of inequalities

a\xt+"'+a\xn

ar+\xl* "'* Lr+rnxn

a7rx1*.,,*a7nx7
ar+\Íl * "'l ar+\xn

0

0

(4) 0
0

Denote by Í the set of nonnegative integer solutions of the system (l).We define on

Í the following binary relation: x17yif y- x €T.

LEMMA 118. The binary relation 17 is an order relation on Í.

PRooF. Observe that <r is reflexive since 0 € 7. As 7 is unit free, (7 is an-

tisymmetric. Finally, if x (1 ) and y (7 3, then y-xe T and z-y € ?, whence

z- x= z-y+y -x € 7 and thus x ír z. tr

LEMMA 119. Let {or,...,o,}, {or,...,oa} and {a1,,y,...,ar} be as in Lemma

116. Then

r = (7r(cr),..., 7r(ck)),

where tt is defined as in Proposition 117.

PROOF. The elements ol , . . . , od are nonnegative integer solutions of (3) with the

last coordinate equal to zero, whence {z(o1),...,n(qa)} g f. If (s1,...,sn) € 7,
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then there exist slr...:sr*r € N such that (s1, . , . , sa, saa1, . . . , sn+r,0) is a nonnegative

integer solution of (3). Hence úere exist dt,...,ar € N such that (s1, . . . , s21.,0) :

alar + ... * arc&. Observe that for k > d, aç must be zero, since the last cooÍ-

dinate of (s1,...,sna,,O) is zero. Therefore (s1,...,s,,) - aln(crl) + "'adÍc(o,d) e

(r(o1),...,r(cq)). tr

LEMMA 120. The setMinimalsar(Í) has finitely many elements.

PRooF. By Proposition 117 and Lemma 119, t - {n(aa+r),. . ., n(cr*)} + f'
whence

Minimals<, (Í) g {n(ctd+r),..., n(cts)}.

THEoREM l2l. LetÍ be the set of nonnegative integer solutions of(1) and T be

the set oÍ nonnegative integer solutions of (4) Then

Í : Minimals< r(Í) +T

and the set l|'Áinimalsa.r(Í) is finite.

PRooF. We already know by Proposition 117 and Lemma I 19 that Í -
{zt(o7a1),...,n(ar)} + f. From the proof of Lemma 120, we have that

Minimalsa, (Í) C {n(cx711),...,7t(cl8)}, and from the definition of (7, it follows

that Í - Minim als<r(Í) +T . tr

REMARK 122. (1) There are sevetal algorithms for finding the set of ele-

ments described in Lemma 116 (see for instance [13] or [39]). Hence we

know how to compute {or, . . . , cr,}. From this set one can compute a sys-

tem of generators of Z by projecting onto the first n coordinates the ele-

ments ct1,...,c!d. Using now (4) one can easily check which elements in

tr
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{n(oa* 1), . . . , n (or)} belong to Minimalsa, (Í), whence we have a complete

procedure for describing all the elements in Í.
(2) One might wonder why we are introducing and proving Theorem l2l in-

stead of using Proposition 1 17. The idea is that the set Minimalsa, (Í)
can be strictly included (and in fact be much smaller than) the set

{n(o7*1),...,2r(og)}. ft may also happen that one can find a smaller set

of generators for 7 by a method not relying on the procedure explained in the

above remark. Besides, Theorem 121 gives a description for systems of in-

equalities similar to the one obtained in Lemma 116 for systems of equations.

(3) ln t2l it is presented an algorithm for solving (1) wiúout adding slack vari-

ables. This algorithm can be used to find zl(o,r),...,lr(sr).

(4) In the literature on can also find implementations relying on Grtibner basis

computation for solving (3). Unfortunately in the examples we give in this

section the number of variables becomes too large for using this kind of algo-

rithm.

Let us illustrate this process with an example.

EXÀMPLE 123. Let'Í be the set of nonnegative integer solutions of

and I be the set of nonnegative integer solutions to the associated "homogeneous"

system of inequalities. A minimal system of generators for the monoid of nonnegative

integer solutions of
x1 * 4 -2x7
x2-x4-2x1
2x1-x2-x5-x1
2x2-x1 -x6

-Xl

Xl
x2

2x1
2xz

>)
>,
>1,
>0,

-0,:0,
:0,
:0,
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{or, . . ., c, } = {(2,2,0,0, 1,2, 1), (2,3,0, 1,,0, 4, l),, (3,2, 1, 0, 3, l, I ),

(4,2,2,,0,,5,0,1),,(1,2,1,2,0,3,0), (1,1,1,1,1,1,0), (2, 1,2, 1,3,0,0)).

Hence

{crr, . . ., cra} = {(1,2,1, 2, 0, 3, 0), ( 1, 1, 1, 1, 1, l, O), (2, 1, 2, l, 3, 0, 0) }

and

{oa+r,.,.,os}:{(2,2,0,,0,1,2,1),(2,3,0,7,0,4,1),(3,2,1,0,3,1,1),(4,2,2'0'5,0, 
1)}'

By Lemma 119,

r - ((1,2), (1,1), (2,1))

and by Proposition 1 17

íÍ -- {(2,2), (2,3), (3,2)' (4'4} + r.

In this case Minimals<r(Í) = {ll(aa*1),...,n(o*)}' tr

2. Systems of inequalities a§§ocisted to the set of numerical semigroups with

fixed multiPlicitY

LetS(m) bethesetof all numerical semigroups with multiplicity la e N \ {0}' In

this section we prove that there is a one-to-one conespondence between this set and

the set of nonnegative integer solutions of a system of linear Diophantine inequalities.

The key for this correspondence is given in the following result that can be derived

from [32, Lemma 3.3]. lf m= l the only semigroup with multiplicity rz is NI' whence

the interesting cases arise when m > l. Thus we will assume that m > I '

LEMMA 124. I*t m be an integer greater than one and let

x = {o = w(0), w(1),...,w(. - t)}
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be a subset o/ N wirft m elements such that w(i) = i (mod m) and rn < w(i) for afi
i e {1,. . . ,m - 1}. Izt S be the submonoid of ls generated by X U {m}. Then S is a

numerical semigruup with muhiplicity m. Furthermore Ap(S,m) _ X iÍ and onty if for
all i, j e {1,,..,m- 1} there exist k e {0,...,m- l} andt e N such that w(i)+ w(j) _

w(k) +tm.

Next lemma associates to J(m) a system of linear Diophantine inequalities.

LEMMA 125, lzt m be an integer greater than one and let S be in S(m) with

Ap(S,rr) = {0 - w(0), w( 1),...,,w(m - 1)}.

For all i e {1, . . . ,m - 1} let ki €. N áe sacl, that w(i) = kim* i. Then

( 1 ) ki 2 I for all i e {7,,...,m - 1},

(2) ki'l ki - ki+1 > 0 for all l < i < j 1 m - l with i + i < m - 1,

(j) ki*ki-ki+j-m>-1 Íorall 1<rS j<m-lwithi+ j>m.

Pnoor. Since § is a numerical semigroup of multiplicity m and w(i) e S\ {0} for

allie {1,...,m- t}, w(l) ) m,whencek; > 1.If 1 < rS j S m-l and,it j <m-1,
by Lemma 124, there exist, € N and & e {0,...,m - 1 } such that w(i) + w(i) = tm I
w(t). Note that i + j :- w(i) + w (j) : w (k) : w(i + j) (mod m) and by the defi nition of

the elements in Ap(§, m) we obtain w(k) -,a,1;a il and this leads to (ki*ki - ki+)m =
trn; thus ki*kj -ki+j ) 0. Now assume that i+/ > m, using again Lemma 124, there

existr€Nandke {0,...,*- 1} suchthatw(i) +w(j) -1a|*(ft). Arguing as above

we deduce that lr(k) =w(i+ j -m) and(ki+k)m+i+ i - 71n"1r,*._^m*it j -m,
which yields ki*k j - ki+.i-,r) -1. D

Observe that (k1,...,k,--r) € N'-' is determined uniquely for s e S(z) and it is

a nonnegative integer solution of the system of inequalities

x;)l forallde {1.,....,m-l},xi+xj-xí+j>0 for all I < i< j<m-1,iq j1m-1,
xi*xi-xiai-a) -l for all I ( i< j <tn-1,i+ j> m.
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Denote by Í(m) the set of nonnegative solutions of this system of inequalities' Next

we associate to each element in Í (m) an element in § (n).

LEMMA 126. lzt m be an integer greater than one. For (k1,. . . ,k*-t) e Í (m),

the semigtoup

S - (m,k1m * 1,k2m* 2,...,ka-lm + m - ll

has multiplicity m and Ap(S.,m) - {0,k1m* 1,...,k-am*m- 1}.

Pnoon. We make use of Lemma 124 with

X = {O : w(0),k1m * 1 = w(1), -..,ka-ún * m - | = w(m - I ) }'

Then úe monoid S = (X U {m }) is a numerical semigroup of multiplicity rz < w(í) for

all i € {1,...,m - 1} and w(i) = i(modm) for all i ê {0," '',m- 1}' Now we have to

check that for i,j € {1,...,*- 1} there exist k e {0,...,^- 1} and r € N such that

w(r) + w(i) = w(k) t tm. Given i, j e {1,..., m} we distinguish three cases'

(1) If ,+i Sm-l,thenw(i) +w(j) = tm+w(i+ j) witht=ki*/(i-&i+i€N

(here arises the condition ,t1* k1 > kial).

(2) lf i + j :m, then w(d) * w(.1) = rn + w(O), with Í ='ti * &j * 1 € N'

(3) If i + i ) ,,?, then rry(,) + wU) - tm + w(i * j -m), with t : ki + ki * 1 -
kiai-mr-N (we are using thatfti*&; -kiai-,n) -l)'

É

As a consequence of Lemmas 125 and 126 we obtain the following Iesult that

states the desired correspondence.

THEoREM 127 . Let m be an integer greater than one' The map 9: Í (m)-+ §(m)

defined by

Q(ft r,. . ., ftr-r) - \m,fum * l,k2m * 2,. . .,,k,n-1m * m - 1)
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is one-to-one. Moreover

Ap(g(ft1, . . ., &, -r),m) = {0,k1m * 1,...,k -r + m - 1}.

Using the results obtained in Section 1 we know that Í(m): {Êr,...,F*} +
(yr,...,X) for some Pi: (Êi,,...,Êt,-,), T, = (T ,...,y*_,) € N'-1, and we have

a procedure for computing them. Hence

S (m) - {(m, kp * 1,...,, k--1 + m - l) I (h,..., k.-r) e {Fr,. . ., Fr} + (yr, . . ., %)}.

Next we illustrate these results with a couple of examples.

EXAMPLE 128. The set of all numerical semigroups with multiplicity 3 is

§(3) = {(3,3/<1 +1,3k2+2) I @r,kz) €'I(3)}

and Í (3) is the set of nonnegative integer solutions of

xl
x2

Lrt - xz

-xr l2xz
We proceed as we did in Example 123 and obtain

rIQ): {(1,1),(1,,2),(2,1), (3, 1)} + ((1,2), (1, 1), (2, l)).

EXAMPLE 129. IVe describe those numerical semigroups with multiplicity 4. The

sel rI (4) is the set of nonnegative soluüons to the system of inequalities:

Xl
x2
x3

2\-xz
xtlxz-x3
-x1{ x2* x3

-xz * Zxz

)1,
>1,
)0,
>-1

tr

>1,
)1'
) 1,

>0,
>0,
) -1,> -1.
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Computing those solutions we obtain

Í(4) - {((1, l, 1), (1,1,2), (1,2, 1), (1,2,3), (1 ,2,2),(2,1, l), (3, 1, 1),

(2,2,1),(2,3,1),(3,2,1),(4,2, l), (3,3,1), (4,3, 1), (5,3, 1))

+ ((1, O, 1), (1,2 ,3),(1,2,2),(1,2, I ), (1, 1,2),

(1,1,1), (2, I, l), (2,2, 1), (3'2, l)).

Hence

S(4): {(4,k14+l,kz4*2,ks413) | (ft1,t2,fr3) eíf g)}'

The description of J(m) in terms of Í(rz) also allows us to construct all numerical

semigroupswithgivenmultiplicityandFrobeniusnumber.Weillustratethiswithan

example.

EXAMPLEl30.Weconstructallnumericalsemigroupswithmultiplicity5and

Frobenius number 13. If S is a numerical semigroup with m(S) - 5 and g(§) = 13'

then n € §forallz> 13. Besides

Ap(S, 5) = {0, /t15 * l,kz1 +2,h5 + 3,k45 + 4},

and we know that g(S) : max(Ap(§,5)) - 5' whence max(Ap(S,5)) : l8 = 3(mod 5)'

which means that &3 must be equal to 3. From 14,15 ,16,17 € § we deduce the follow-

ing conditions on \,k2,1<a.

1 -4+ x hS
15:0+3 x 5
16:1+3x5
17 -2+3x5

h<3
kz í3

tr
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Hence the set of numerical semigroups with multiplicity 5 and Frobenius number

13 is

{ {t, 0,, * t, k25 * 2, ks5 * 3, ks + 4) 
| o, !oà:i;' ! iX)1|,,il =, }- {(5, 1 1,7, 18,9), (5, 1 1,7, 19, 14), (5, 11, 12, 18,9), (5, 1 1, 12, 18, 14),

(5, 1 1, 17, 1g, g), (5, I 1, 17, lg, 14),(5,16,7 ,19,9), (5, 16,7 ,lg,l4),

(5,16,12,19,9), (5, 16, l2,lg,l4),(5,16,17,,19, g), (5, 16, 17, 1g, l4)).

The same procedure can be used to obtain a description of the set of numerical

semigroups with fixed Frobenius number g. One has to look for numerical semigroups

with multiplicity m e {2,...,g- 1,g+ 1} andproceed as in Example 130.

Recall that a numerical semigroup is a MED-semigroup if its multiplicity equals its

embedding dimension. Denote by tut ED(m) the set of MED-semigroups with mul-

tiplicity rz. We show that there is a one-to-one conespondence between M ED(m)

and a subsemigroup of N'-l (here is one of the main differences with J(n); actu-

ally Í(m) is not a semigroup, see for instance in Example 128 that (3, 1) e 7(3) but

2(3,1) é Í(3)). The following result plays the same role as Lemma 124 didfor S(m).

LEMMA 131. Let m be an integer greater than one and let S be a numerical semi-

group of multiplicity m and

Ap(S,rn) = {0 = w(0),w(1),...,w(m - 1)}.

Then S is a MED-semigroup if and only if for all 1<i< j <m-l there exi$ ke

{0,...,m-l} andt e N\{0} szcà thatw(i)+w(j) -tpLr.11r1.

tr

3.
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Pnoor. From the definition of MED-semigroup it follows that ,S is a MED-

semigroup if and only if (Ap(S,l,lt) \ {0}) U {z} is a minimal system of genera-

tors for .t. If 1< i < j <m-1, by Lemma 125, we deduce üat w(i) +w(i):
tm+w(k) forsomer€Nand k e {O,...,m- l}. Observe that, t 0, since otherwise

(ep(S, la) \ {O}) u {z} would not be a minimal system of generators for S. Conversely,

assume that

w(i) : ao*l orw(l) + ...4 ai-1w(i- 1) * aiav(i+ l) + ...+ a--1w(m- 1)

for some a, € N. Using the hypothesis several times we obtain that w(i) :1ún+

w(4) for some À € N\ {O} and q e {0,...,m- 1}, which is in contradiction with

the definition of the elements in Ap(§,,,?) (observe also that m cannot be written as

ap(l) * . . .* a*-ü(m - 1)' since n < w(l) for all i). tr

The proof of the following result is analogous to the one of Lemma 125, but now

using Lemma 131.

LEMMA 132. Izt m be an integer greater than one and let S e MED(m) with

Ap(S,lz) - {0 - w(0),w(1),...,w(n- 1)1. For all i e {1,'.',m- ll let ti € N àe

suchthatw(i) - kim+i. Then

(1) ki> lforatli € {1,...,,r2- t},

(2) ki*ki-ki+i2]rÍoratl I <i< j Im-1withi+ j!m-1'

(3) ki * ki - ki+j-^ > 0 Íor all 1 < i < j < m - 1 with i + j > m'

In this setting (h, . . . ,k*-t) € Nr-l is a nonnegative integer solution of the system

of inequalities

x;)-7 forallie {1,...,m-1},
xilxj-xi+j21 forall I I i< j <m-1,i1i !m-1'

xi*xi-xiai-alO for all 1( i< j <m-f i* j> m'

Denote by M (m) the set of nonnegative solutions of this system of inequalities, which

is a subsemigroup of Nltr-t as the following result (with straightforward prooq shows.
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LEMMA 133. l,et bt,.,.,b, € N anda;, e V,. Then the set of nonnegative integer

solutions oÍ the system

a\\*"'*alox4 ) b1,

:

arÍt+,,'+arnxt ) br,,

is a subsemigroup of Na.

Hence Lemma 132 associates to every element in lvt E D(m) and element in the

semigroup tut(m). The following result, whose proof is analogous to the one of

Lemma 126, gives the corespondence in the other direction.

LEMMA 134. Let m be an integer greater than one. If (\,. . ., k--r) e fut (m), then

the nume rical s emi g ro up

is a MâD-semigroup with Ap(S,,m) = {O,fum-l1,...,\nqm*m- l}.

As a consequence of Lemmas 132 and 134 we obtain the correspondence between

tut(m) and frtED(m\

THEoREM 135. lzt m be an integer greater than one. The map ty: M (m) -+

tutED(m) definedby

§ - \m,k1m * 1,k2m{2.,..,,k*am * m - 1)

y(h,....,b"-r) - (m,k1m * 1,...,k.am * m - 1l

is one-to-one. Furthermore

Ap(ty(k1,. . ., k -r), m) : {0, k1m + 1,...,k.-1m i m - l}

and

{ m,k1m * 1,...,k^-1m I m - 1}

is a minimal system oÍ generators for y(k1, . . . ,k*-1).
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The semigroups 9|í(rn) are not finitely generated as the following two results show

(except tu{(2): N\ {0}).

LEMMA 136. I*tS - (§r,...,sr) be a submonoid of Np for some positive integer

p, Assume that there exist v,,w € NP sucâ that v+kw € S for all k eN. Then there

exists I €. N\ {0}/or wfticft lw e §.

PRooF. FoÍ every [ € N tate (trf,...,1,f) e N'such that v+k]r- li1 Àfsl' The

set i(ÀÍ,. ..,t4.) I X € Àl) has inflnitely many elements' and by Dickson's lemma, it

followsthatthereexist&1,ft2€Nsuchthat(ftt,...,dt) a(?r!r',...,*). Hence(t2-

ft1)w€§. tr

PRoPosITIoN 137. Let m be an integer greater than two. The semigroup 9v{ (m)

is not finitely generated.

PRooF. lVe already know by Theorem 121 that M(m) = Minimals<, (fí(m))+

7, where ? is the set of nonnegative integer soiutions of

.r; ) 0 forall i€ {1,..',*-l},
xi*xi-x;ai?-0 forall I ( i<i=m-1',i+ jSm-1'

x;*xi-xili-620 for all 1< i<i<m'f i* j> m'

Hence v*lçw e Tvt (m) forall ve Minimals<,.(íy'(m)), w e T and k €N' Observe

that the element v= (1,...,1) e Minimals<, (lr{ (*)) and w: v*ênr-t € I (as usual,

ei denotes the element all of whose coordinates ate zeÍo except the ith which is equal

to one). Hence v+kw e tut(m) for all ft e N. If M(m) is finitely generated, then

by Lemma 136 there must be a positive integer / such that lw e 9v{ (m), but this is

impossible, since this element does not fulfill the equation ;r1 * xn-z - x^t 2 1' tr

Let m be an integer greater than one and leÍ MED(m) be the set of MED-

semigroups of multiplicity z and with minimal generators gÍeater than 2m (except

of course z). This condition yields /., > 2forall i é {1,... 'm- l} in thedefinition of
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u 1*1 = ry-t çU eo1*11 - {(k1,,...,ka-r) e tut (m) | ft > 2 for i e { t, . . ., z - r }}.

Therefore the system of inequalities that defines il 1*1 is

xi)2 forallie {L,...,m-ll,
xi]-xj-xi+j) 1 forall I < iS i 3m-1,i+ j <m-1,

xi]-xi-xiai-a)0 for all 1 < iS i < m-1,,i* j > m.

By Lemma 133, lvt(m) is a subsemigroup of N'-1. Recall that Í(m) was the set of

nonnegative integer solutions of the system

xi)l forallie {1,...,m-1},
xi+xj-xi+j>O for all 1 § i< j <m-l,i+ j !m-1,

x;*xi-xi',.;-^) -l forall I S i< j<m-l,i+ j>m.
From these two systems of inequalities it follows easily that if (ft1,...,&r-1) €

Í(m), then (tr + 1,. ..,km-t*t) eil(m); and (k1,....,k--1) e 7(z) impties

(k1 - 1,...,ka-1 - 1) e 'Í(m). Hence we obtain the following conespondence be-

tweenÍ(m) anail@).

PRoPoSITIoN 138. Izt m be an integer greater than one, Then

Í (m) = {(-1,..., -t)l +il (m).

Since Í(lz) is bijective with J(m) anail@) is bijective wiuffi1m), we

obtain the following consequence ([32, Theorem 3.5]).

CoRoLLARY 139. There is a one-to-one correspondence between the set of nu-

merical semigroups wtth multiplicity m > 1 and the set of MED-semigroups with mul-

tipliciry m and minimal generators dffirent from m greater than 2m.

Proposition I l7 and Theorem l2l yield "finite parametrizations" of Í(m), but now

light is shed there on úe structure of J(m). Nevertheless, hoposition 138 describes

Í(m) as â translation of a subsemigroup of N'-1. We use this information to give
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semigroup structure to J(rn) and to get a result stronger than Corollary 139. Given

§- (nr,k1m*1,...,k--tm*m- 1),S: lm,E1m*1,...,Ín-tm*m- 1) e §(ln),

S + S - (ln, (&1 +h + l)m + 1,. ", (&,n-r *Í,,-r * l)m + m - l)'

The reader can check that (&r + Er + 1, "',k -r *Í^-t * 1) e Í (m)'whence s i' 3 €

5(m). The pair (5(z), *) is a semigroup and the map

o : §(n) -+il 1^1, o(§) : (1,..', 1) + 9-1 (s)

is a semigroup isomorphism, where I is the map given in Theorem 127'

coRoLLARy 140. The set of numertcal semigroups with multiplicity m is a semi-

group isomorphic to a subsemigroup ofN*-t .

4. Symmetric numerical semigroups

In this section we particularize the results obtained in Section 2 for symmetric

numerical semigroups. We see how the defining inequalities of Í(m) are reshaped by

the symmetric ProPerty.

From Proposition 12, we have that .Í is symmetric if the §et Ap(§, m) has a maxi.

mum with respect to the partial ordering (5 induced in s by addition. Given an integer

m> | and p e {1,...,m- 1}, deflne

S!y(*) = {§ e §(n) | S is svmmetric and g(§) = p(mod la)}'

We prove that there is a one-to-one correspondence between j{,(rn ) and the set ofnon-

negative integer solutions of a system of linear Diophantine equations and inequalities.

This set will dependonp= m- | or plm- 1, whence we study them separately' The

following lemma collects the necessary extra conditions we have add to the ones given

in Lemma 125 for general numerical semigroups for the specific case of semigroups
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in .çJí- I (rn). Those extra conditions are a direcr consequence of Proposition 12 taking

into accounr that for s e S#-t @) with Ap(s, ln) = {o : w(0), w( t),. . .,w(m - t)},
we have that g(§)+m=w(m- 1), since g(§) *z -- maxs(Ap(S,z)) and g(S) 

= m -
1(modlz). Hence the condition g(S) +n-w e Ap(S,n) forallrrye Ap(.§,m) trans-

lates to: for all i e {1,...,m - 1}, w(m - 1 ) - u(i) = ru(J) for some j e {1,..., m - 1}.

LEMMA 141. kt m be an integer greater than one and let S e S&-t (m) with

Ap(S,rz) : {0: w(0),w(l),...,w(m- t)}. For every i e {1,...,m- 1} /erl<i e N àe

such that w(i) = kim * i. Then

(I) ki2lforalli e {1,...,2- 1},

(2 ) ki + k; - ki+1 > O for all 1 < i < j 1 m - I with i + j < m - l,

(3 ) ki + ki - kn-t = 0 for all 1 < i A j 1 m - I with i + i = 6 - 1,

(4) ki*ki-ki+i-*) -lforall 1 <, S i 1m-l withi* j > m.

Thus we obtain that (h,,. . . ,k^-t) is a nonnegative integer solution of the follow-

ing system

x;) 1

xt*xt-x;-;)O
xilxi-x.-1 -Q
xi*x1 - xi'ri-. ) -l

forallie {1,.,.,m-l},
for all 1 < i< j <m- I with i* j <m-1,
for all I ( i< j <m- I with da j:n2- 1,

for all 1< i< j<m- l withi+j>m.
We denote ay 'Í$-t (m) the set of nonnegative solutions of this system of linear Dio-

phantine equations and inequalities.

As for p I m- 1, we obtain the following result similar to Lemma 14l, using once

more Lemma 125 and Proposition 12.

LEMMA 142. I*t m be an integer greater than nvo and let p e {1,. . . ,m - 2}, Iet

S e $,(rr) with Ap(5,, m) = {0 = w(0), w( 1),...,w(m - l)}. For every i e {1,. ..,, m -
lj let ki e N áe sncà that w(i) = kim * i. Then

( 1) ki 2 1 for all i e {1,...,m - 1},
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(2) ki * ki - ki+i Z 0 Íor att I í, < j 1 m - I with i * j < m - | and i + i * p'

(j) ki+ki-kp=0Íorall I <,Si <m-lwithi+ j--p,

(4) ki + ki - ki+j-- > -l for alt 7 < i < j < m - I with i + j > m and i + i *
mlp,

(5) ki * ki - kp = -l for all 1 < i < j l tn - l with i + j : m * P.

The element (&r,.. ., frr-r ) beiongs to 'T"Ç(n) ' the set of nonnegative integer solu-

tions of the system

xiZl forallie {1,'..,r2-1},
*ii*j-ri+j2O forall1( i3iím-lwithi*j1m-l,i*it'p'
xi*ij-xp:0 forall 1 < i< j <m- I with d+ j= p,

,i+ij -ii+j-*2 -l forall I < i < j(rn- 1 with i+ j > m,i+ i + m+ p'

xi*ij-xp: -7 forall 1 ( i < j 3^- 1 with i+ j:m*P'
As in section 2, we now get the following consequence (we omit the proof since it is

similar to üe one given there).

THEoREM 143. lztmbe an integer greater than one and let p e {1,"',m- l}'

Then the map 9ly : Í,1(m) -+ S{y(m) defined bv

9!y(h,' ",k*-r): lm,fum+ 1',kzrn*2'" ' 'k^-1m*m- 
1)

is a one-to'one correspondence, Furthermore,

Ap(q(r(t1,...,&, -r),m) - {O,k1m* 1," ',knam*m- l}

and s(g!r(h,. . . ,k^-)) : (k, - r)n+ p.

E(9!y (kr,. . ., k--t ) ) : (ftp - 1 )nz + p follows from the defl nition of 5('(m) and the

fact that for every numerical semigroup g(§) * m - max(Ap(S, m))'

REMARK 144. (t) It is well known that the Frobenius number of any sym-

metricnumericalsemigroupisodd'Henceifbothnzandpareeven'then

Í,!(lz) is empty.
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(2) We know by Theorem 121 that f"l @) = {F r, . . ., Êr} + (Tr, . . ., T,) for some

B;'s and ú's in N'-1. We also have procedures for computing úem (see the

remark after Theorem 121). Hence

S!, (m) : {(m, k1m * 1,.. ., k7-1m { m- I ) | (ft 1, . . ., fra - r) e,I,í (m)}

gives a complete "parametric" description of Síy(m).

(3) Set §r(lll) : {S e 5(rz) | § is symmetric}. Clearly J,y(ltl) : UP_l S{r1^1.

EXAMPLE 145. Let us describe §r(4). By the remarks given above, it sufâces to

compute l.ry(4) and.tÍy(4); -t§y(4) = 4y(4) uJ,3y(4).

For qi(4) we obtain the following system of equations and inequalities:

xl
x2

x3

Zxt - xz
x1!x2-x3
Lrz - xz

xz*xt-xt

)1,
)1,
)1,
>0,
)0,

>1,
)1,
)1,
>0,
-0,) -1,) -1,

1,

1,

and using the procedures explained in Section 1 we obtain

r"íg) = {(3,1,1), (4,2,1), (s,3, l)} + ((1,0,1), (2, t, t), (3,2,1)).

As for {}(+) we start fÍom the system

Íl
x2

x3

2xt - xz
xt*xz-x3
2xl - xz
x2*x3-x1

and obtain

,r&@) : {(t,t,z),(1,2,3)} + ((1, O, 1),(1,2,3),(1,1,2)).

Hence

J,y (4) : {\4, k14 + t, k24 + 2, b4 + 3) | (k1, k2, fu , fu) € f"i@ u Í8@}.
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tr

The concept of MEDSY-semigroup among symmetric numerical semigroups is

the analogous to MED-semigroup in numerical semigroups, Actually, by Proposition

12, the embedding dimension of a symmetric numerical semigroup cannot be m for

m ) 3 (symmetric numerical semigroups with multiplicity 2 are of the form (2,2k+ 1)

for k I O), whence a MEDSY-semigroup is a symmetric numerical semigroup with

multiplicity m) 3 and embedding dimension equal to m- l. lf S is a symmetric

semigroup with multiplicity m and Frobenius number g, then s is a MEDSY-semigroup

if and only if the set (Ap(S,m) \ {0,r(p)i) U {m} is a minimal system of generators

for,9 with g - p(mod m), p < {1,...,m- 1 }. Using this idea we proof the following

result.

LEMMA 146. Let S be a numerical semigroup with multiplicity m > 3' Ap(S' m) =

{0 = w(0), w( 1 ),. . .,w(m - l)) and Frobenius number g = 
p(mod m), p e {1,' ", m -

1).

( 1 ) If p = m - l, then S is a MEDSY'semigroup if and only if for all I S' < i <

m- I suchthat i* i f m- 1 there existO 1k < m- | andt e N\ {0} szctr

thatw(i) +w(j) =tm+w(k) andw(i)+w(j) - w(m- 1) for i+ j = m- t'

(2) IÍ p * m - l, then S is a MEDSY-semigroup if and onlv d for all | < i !
j < m- | such that i+ j I p(mod m) there exist 01k 1m- 1 and t €

N\ {0} srch rfta t w(i) +w(j) --tm+w(k) andv'(i) +w(i) -w(p) for i+ j:

p(modln).

pnoor. Assume that.§ is a MEDSY-semigroup. Notethatg+m =max(Ap(S,n)),

whenceifg-p(modm)'theng+m_w(p).Since§isissymmetric'Proposition

12, states that w(p) -w(i):w(i)' forsomeJ€ {0'"''m- l}' Thus w(p)= p=

w(r) +w(.1) : i +.1(mod z) forces i+i: p(mod rz) (the case p -- m- I in this setting

9l
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leads to i+ j- rz- 1). Now for i+ j I p(mod n), in view of Lemma 124 there exist

k e {O,...,m - I } and r € N such that w(;) + w(j) - tm + w(k). The inrcger r cannot

be zero when § is a MEDSY-semigroup, because {rz,w(l),...,w(m- t)} \ {lrl(p)}
would not be a minimal system of generators for S.

Conversely, the condition w(i) *w(f) : ,(p) for i+i: p(mod lll), by Proposition

12, implies that ,S is symmetric. Now assume that § is not a MEDSY-semigroup, or

equivalently, that {m, w(l), . . .,w(m - t)} \ {r(p)} is not a minimal system of gener-

ators for §. Then there exist i I p such that w(i) =ü=l,i+,po;w(j) for some a; e N.

The reader can check that after using the nrles w(i) + w(j) = tm*w(k) úis leads to a

conradiction. tr

Let mbe aninteger greater than two, letp e {1,...,m- l} and let

^,tEDSyp 
(m) - {S e J(z) | S is a MEDSY-semigroup and g(S) : p(mod z)}.

Using last lemma it is easy to proof the next result.

LEMMA 147. Let m be an integer greater than two and let p € {1,...,2 - l}.
tet S e tu{ EDS ye Qn) witn Ap(§, m) : {0 : w(0), w (1),. . .,w(m - l)}. For every

i e {1,...,m- l} let ki eN be suchthatw(i) = kim+i. Thm

(I) If p-a-1, 1,"n

(a) ki 2 I for atl i € {1,...,m - l},
(b) ki*ki-ki+i>lforall I <i< j1m-lwithi* j<m-1,
(c) h+ki-k -t =oÍor allI < i< j< rn-I withi+j -m-l,
(d) ki+ki-k+i-n,-Oforall I <i< j< m-Twithi* j>m.

(2) If p/ m-1, then

(a) ki >_ I for all i e {1,...,m - l},
(b) ki+ki-ki+i>lforalll<i< j <m-1withil j<m-l andi+it' p,

(c) ki*ki -kp:OÍor all 1 < i < j 1 m- I with i+ j - p,
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(d) ki + ki - ki+i-m ) 0 for all I < i 3 i < m - 1 with i + j > rn and i + i +

93

m+p,

(e) ki*ki -kp = -l Íor all I < i < j < m- | with i+ j ) m and i+ j =
m+p.

ln the first case (h,.. .,k*-t) belongs to W-r @)'the set of nonnegative integer

solutions of the system

(s)

which by Lemma 133 is a subsemigroup of N'-1. In the second case (&1''",fr,,-1)

belongs to 1vt"!(m) determined by the system

xi) I
xilxi-xi1i) 1

xi*xi-xo=Q
xi*xi-xia1-r>-0
xi*xi-xr= -l

m-1,i*i*p,

xi:. 1

xi*xi-xiai) |
xi+x j - /'m-t -0xil-xi-x;gi-a)0

ie{1,...,m-11,
1<i< j §nz-lwith i+ j<m-1,
1 < i < j ( m- I with i+ i - 1- 1,,

1<i<j(m-lwithi+i>m,

(6)

ie{1,...,m-l]1
l<i<j<m-1
l3i< j ím-l
1<i<j!m-1
l<i<j<m-1

P,
m,i+ jf m+p,
tn,i* j -- m* P.

,+i í
i+i=
i+ j>
i+j>

(This set is not a subsemigrouP of N.-1.)

hoceeding as we did in section 2 we obtain the following result which is the

restriction of Theorem ul to gvtEDS/p (m).

THEoREM 148. l,et mbe an integer greater than tvro aid let p e {1,"',rn - 1}'

The mapyly, tu{ty@) -+ tíEDS/p(m), defined as

Y{y(h, "',k--r) : @,fum + l,kzm I 2'' "'knam * m - 1)

is a one-to-one correspondence, Furthermore,

Ap(ryfr(&1, . . ., k* -), m) - {0,fum * 1,.' ., kaam * tn - l}

and g(tylr(\,...,k -r)) = (kp - 1)m+ p.
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Let mbe an integer gÍeater than two and let p € {1,...,m-1l1. Define

ilf EDSY-p (m) to be the set of elements S e Sfy(m) such that the minimal generators

of ,S different from rn are greater than 2m. I-etflr'@) be úe set of nonnegative

solutions of the system (5) obtained replacing x; ) 1 by x; 2 Z;il?*1d is obtained

performing the same operation in (6). The following result is a direct consequence of

Theorem 148.

THEoREM 149. lzt m be an integer greater than two and let p e {1,..., m - 1}.

The mapfilr,il'*1^1 -+ ucosf @), defined as

V{r(h,...,k^-r) = (m,fum * l,k2m | 2,..., k -1m * m - 1)

is a one-to-one correspondence. Furthermore,

Ap(Sf, (/<1, . . ., &,' -r), ^) = {0, k1m * 1,,. . .,,kn am } m - 1}

and g(plr@1,...,k^-r)) = (ko - l)n+ p.

As in Proposition 138, the reader can check, byjust comparing the defining systems

tur'f"Ç@) arraillrçm),úat the following holds.

PRoPoSITIoN 150. Let m be an integer greater than two and let p € {1,..., m -
lj. Then

Í"!(m) = {(- 1,..., - 1) - 
" 
r} +fr!r1^1.

As a consequence of this result we obtain the following Corollary appearing in

t311.

CoRoLLARY 151. There is a one-to-one correspondence between the set oÍ

symmetric nurnerical sernigroups with multiplicity m > 2 and the set of MEDSY-

semigroups with multipticity rn and minimatl generators different from m greater than

2m.
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---rn-l -

Observe also that ili' @) is a subsemigroup of N'-l by Lemma 138, whence

S$-|(m) can be endowed with a semigroup structure with the operation * defined as

in Section 3. This semigroup is isomorphic toflr'çr).

5. Numerical semigroups with monotonic Apéry set

We say that a numerical semigroup S has monotonic Apéry set if w(1) < w(2) <

...< w(m- 1), with {0,w(1),.,.,w(m- l)} = Ap(S,m), w(i) = i(mod m) for all

i e {1, . . . ,m - 1} . Our main goal in this section is to study the set C(m) of numerical

semigroups with monotonic Apéry set and multiplicity m. We show that there is a one-

to-one corÍespondence between C(rz) and a flnitely generated subsemigroup of N--1,

and for proving this conespondence we use again Lemma 124.

The main result is Theorem 154, and for its proof we need two lemmas'

LEMMA L52. lat m be an integer greater that one and let S be in C(m) with

Ap(§,n) ={0=w(0) <}r(1) < "'<w(m-l)}.

Forie {7,...,m-l]}, seÍ&i € N to be the element such that w(i) =kim*i (observe

that w(i) > i, since i < m)' Then 1 < &r < "' 3 h,-r and ki * k1 >- kia i for all i' i €'

{1,...,m- 1} suchthat i* j Sm- 1.

PRooF. Since § is a numerical semigroup of multiplicity m and w(l) € S\ {0},

we have thatw(1) )mandthus&1 ) 1. As w(1) < "'<w(m- 1), we obtain I (

h1...1k^-r. Nowfor i,je {1,...,nt- 1} suchthat i+ j!m-1,Lemma124

states that w(;) +w(j) =tm*w(I) for some, € N and I e {0,"',m- 1}' Observe

thatw(i+ j) =i* j=w(,)+wU) =w(/)(modn) and this forces / tobe i+ j' whence

ki*ki Zki+i. tr
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We deduce that (&1,...,t -,) a M-'is determined uniquely forS e C(z) and it

is a nonnegative integer solution of the system of linear Diophantine inequalities

x1 )1
xi+r-xi )0, forail ie{l ...m-2}

xi+xj-xi+j > 0, forall i,i e{L...m- 1}, ,+ j 1m-1.
Denote by A(m) the set of nonnegative solutions of this system of inequalities. From

Lemma 133, we have tàat â(z) is a subsemigroup of ND-I.

The next result associates to each element of A(m) an element in C(la).

LEMMA 153. lzt mbe an integer greater than one and let (/cr,...,&,r-r) e N'-1

with l1&1 < ... 1\n4 and ki*ki 2kiai for all i,j €. {1,...,m- l} such that

i* j < n- 1. Then there exists a numerical semigroup S with multiplicity m and

Ap(S, m) : {O,k1m * l,kzm * 20...,k^am I m - 1}.

PRooF. We make use of Lemma 124 with

X = {0: w(O),k1m*l =w(1),...,k^-tn+1 -w(m-1)}.
Then the monoid ,S = (X U {n}) is a numerical semigroup of multiplicity m. Now we

have to check that foÍ i, / € {1,...,m- 1} there exist fr e {0,...,^- l}andteNsuch

thatw(i)+w(j) -w(k)+tm. For given i, j e {1,...,m} we distinguish three cases.

(1) If , + J 1 m - l,then w(i) + w(j) - tm + w(i + j) wiú, = &i * kj - ti+j € N

(here arises the condition ki* kj 2 ki+).

(2) If i + j = m, then w(i) + w(i) - 6 a r(0), with, : &i * &j * 1 e N.

(3) If ,+j>rz,theni) i+ j*m ) l,whenceft;mlilkiai-amlil j -m and

this leads to kim* it kimi j ) kiai-am* i+ j - m. Since kim* i*kim*
j : kiai-fum* i+ j - m(mod m), we deduce that there exist, € N such that

w(i) +w(j) = tm+w(i + i - m).

tr

With the above lemmas we prove the following result.
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THBoREM 154. Izt

97

c(m) -
S numerical
semigroup

m(S) = 7,
S has monotonic Apéry set

and

A(m) =
(/r1,...,t -1)€N'-1 hS"'Sk^-r',

-t for21i+ i < m- |
l<

k;*k;) k;

Then the map tp A(m) -+ C(m) defined by

Q(ftt,...,*r-r) - (m,k1m* 7,..',fun-1m I m - 1l

is one-to-one. Moreovei

Ap(q(ftr,...,*,, -r),*): {O,k1m* 1,.. ',kaam-lm- 1)'

PRooF. In fact, by Lemma 153, we have that rp is a well defined map with

Ap(g(&r,. . ., &, -),m) = {O,fum -l 1, "', klnam -f m - l}

and, from Lemma 152, we can conclude that I is a bijective map' tr

Assume that Á - {or,.'.,a,} i§ a system of generators of A(rn) ' with 4':

(air,...,ai^-r) for i e {1,..., r}. Then

rr
C (m) - {(m, (l}uiair)m * 1,...,, (lL1a1,-,)m * m - I ) I (Àr'''', X') € N' \ {0}}'

Él i=l

lVe illustrate this result with an example.

EXAMPLE 155. Let us describe C(5). We have that

A(5) = (x1,x2,x3,x4) € N4

x1l0,x2) x1,x3 )- x2,x4 ) x3

2x1 ) x2,x1* x2 | x3,x1 * xt 2 xt
7sc2 ) x4

and using the process explained in Section 1, we get that

A(s): ((t,2,2,2), (1, 1, 1, 1), (1, 1, 1,2),(1,2,2,3),

(1, 1,2,2), (1,2,3,3), (1,2,3,4)).
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Hence C(5) consists on all numerical semigroups of the form

(5, *15 * l, k25 + 2, h5 + 3,L45 + 4,

such that (\,k2,fu,l<a) e á(5), or in other words,

kr
k2

kz

L4 )'(i).'(l *tr:
1

2
2
3

1

I
I
2

I
2
J
5

I
2

3
J

1

1

2
2

+X.4

* ?ts *Ào +)vt

forsome (Àr,...,Àz) € N7\{0}.

Next we give the minimal systems of geneÍators for A(n) with m € {2, . . . ,8},

which describe the set of numerical semigroups with monotonic Apéry set and multi-

plicity up to 8.

o .4(2) is generated by { I },

o A(3) is generated by {(1,1), (1,2)},

c A(4) is generated by { ( 1, 1, t ), ( 1, 1,2), (1,2,2), (1,2,3)},

. a system of generators for .4(5) is given in Example 155,

o A(6)isgeneratedby

{(1,2,2,2.,2), (1, 1, 1,, 1, 1), (1,2,2,2,3), (1, 1, l, l, 2), ( l, l, 1,2,2),

(1,2,2,3,3), (1,2,,2,3,4), (1,2,3,3,3), (1, 1,2,2,2), (1, 1,2,,2,3),

(1,2,3,3, 4), (1,2,3, 4,4), (1,2, 3, 4, 5) ),

tr



5. NI]MERICAL SEMIGROI,'PS tr'TTII MONOTOMC APÉRY SET 99

o á.(7) is generated by

{(1,2,2,2,,2,2),(1,1,1, l, l,l),(1,2,2,2,2,3), (1,1,1,1,1,2),(1,2,2,3,3,3),

(1,1,,1,1,2,2),(1,2,2,2,3,4),(1,2,,2,3,3,3),(1,1,1,2,,2,2),(1,2,2,3,3,4),

(1,2,2,3,4,4),(1,2,3,3,3,3),(1,1,2,2,2,2),(1,2,3,3,3,4), (1, l, 2,2,,2,3),

(1,2,3,3,4,4),(1,1,2,2,3,3),(1,2,,3,3,4,4),(1,2,3,4,,4,4),(2,2,3,4,4,5).

(1,2,3,4,4,5),(2,3,4,,6,6,8),(2,2,3,4,5,6),(1,2,3,4,5' 5), (1,2,3,4,5,6)),

r á.(8) is generated bY

{(1,2,3,3,3,3,3), (1,2,2,2,2,2,2), (1, 1,2,2,2,2,2), (1, l, 1, 1, l, l, I ),

(1,2,2,2,2,,2,3), ( l, l, l, l,l,l,2),(1,2,3,3,3,3,4), ( 1, 1,,2,,2,2,2,3),

(1,2,2,2,2,3,3),(1, l, 1,1,1,2,2), (1,2,2,2,2,3,4), (1,2,3,3,3,4,4),

(7,7,2,2,,2,3,3),, (1,2,3,3,3,4,5), (1,,2,2,2,3,3,3), (1,1, 1,1,2,2,2),

(1,2,2,2,3,3,4), (1,2,2,2,3,4',4), (1,2,3,3,4,4,4), (1,1,2,2,3,3,3),

(1,2,3,3,4,,4,5),(1,1,2,2,3,3,4),(1,2,,3,,3,4,5,5),(1,2,3',3,4,5,6),

(1,2,,3,4,4,4,4),(1,,2,,2,3,3,3,,3),(1,1,1,2,2,2,2),(1,2,,2,3,3,3,4),

(1, l, 1,2,2,2,3), (1,2,3,4,4,4,5), (2,2,3,4,4,6,6), (1,2,2,3,3,4,4),

(1,2,2.,3,3.,4,5), (7,2,3,4,4,5.,5), (1,2,3,4,4,5,6)' (2, 3,4, 6, 6, 8, 8)'

(2,3,4.,6,6,8,g), (2,2,3., 4, 5,6,6), (2,2,3,4, 5, 6,7), (1,2,,2,3, 4, 4, 4)'

(1,2,2,3,4,4,5), (1,2,3,4,5,5,,5), (1,2,3,4,5,5,6), (1,2,3,4,5,6,6),

(1,2,3.,4,5,6,7)\.

we finish úis chapter studding the symmetric elements of c(m). If we denote by

C,v@): {S e C(n) | .Sis symmetric}, then we show that Gv(m) is isomorphic to a

subsemigroup of -ã(zr) which we denote by 45y (zr).
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Let § be an element of C (n) and Ap(S, n) - {0 < ft 1z* I 1 . . . 1 kplam! m - l}.
Then, from Lemma I 2, we deduce that § is symmeric if and only if &; * Ç -Li : kn-t

for all i € {1,...,m-21. As a consequence of this fact and Theorem 154 wc obtain

the following result.

PROPoSITIoN 156. Lct rn be an integet grcater tlan one, Qr(m) be the subset .of

symmetic semigmups of C(m) M e"v@) be the set of elements in A(m) such that

ki * k--çi : k -1 for all i e {7,,,.,,m -2}
Then the map q : A,y(*) + Çr(n) defmed by

g(h,...,k^-r) - (m,k1m * 1,...,k*-1m * m - l)

is one-to-one. Moreover,

Ap(g(/c1,...,/<,, -i,rn): {O,fum* 1,...,k^-pn*m - l}.

Thus the element (h,. . . ,k--r) in Atr(m) is the set of nonnegative integer solu-

tions of the system

x1 )l
ni+t-xi >0, forall ie{l ...m-2}

xi4xi-x;+i )0, forall i,ie{1...m- l}, r+j
xi+/'n-t-i = xm-tt foralli€ {1,...,m-2

1m- 1

).



CHAPTER 4

MED, Arf and saturated closure of a numerical semigroup

The purpose of this chapter is the study of the class of numerical semigroups

with maximal embedding dimension (MED-semigroups), and two types of this kind of

semigroups that are of particular interest: the Arf and saturated numerical semigroups.

For describing and working with MED-semigroups (respectively Arf' saturated) one

can use their system of geneÍators, which do not take any advantage of their additional

structure. As a fundamental result of this chapter we will see that every numerical

MED-semigroup (respectively Arf, saturated) admits a unique minimal MED (respec-

tively Arf, SAT) system of generators, which is in general smaller than its classical

minimal system of generators'

In Section 1, we deduce that the inteÍsection of two MED-semigroups with the

same multiplicity is again a MED-semigroup. This fact allows us introduce the concept

of MED system of generators. we see that the set of MED semigroups with multiplic-

ity m canbe arranged in a tree whose root is the semigroup (m,m*1,"'rn*m-l)'

Finally, in this section, from Theorem 170 we can compute the MED closure of

any numerical semigroup that is, the minimum (with respect to set inclusion) MED-

semigroup with the same multiplicity containing it.

In Section 2, from the concept of Arf semigroup, we deduce that the intersection

of two AÍf numerical semigroups is again an Arf numerical semigroup' This again

is used to introduce the concept of Arf system of generators. This study allows us to

arrange the set of all Arf numerical semigroups in a binary tree whose root is N. we

.jj
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also present an algorithmic procedure for computing, from a finite subset X ofN with

gcd(X) - l, the elements of Arf(X).

In Section 3, we characterize the subsets of N that aÍe saturated numerical semi-

groups. We see that the intesection of two saturated numerical semigroups is again

saturated, from úis we introduce the concept of SAI system of generators for a satu-

rated numerical semigroup. This enables us to pÍesent a recursive method for comput-

ing the set of all saüÍated numerical semigroups, and arrange it in a binary tree with

no leaves and rooted in NI. Theorem 198, allows us to construct a saturated numerical

semigroup from one of its SAI system of generators.

1. MED systems of generators

In this section we introduce the concept of MED system of generators for MED-

semigroups. From úis concept we prcsent a recursive method for computing the set

of all MED-semigroups with fixed multiplicity. Also we compute the MED closure of

a numerical semigroup.

h the bibliography therc are many characterizations of MED-semigroups (see for

instance [5, Proposition I.2.9] were a series of them have been collected). Condi-

tion (v) of the abovementioned proposiüon tells us that a numerical semigroup S is

a MED-semigroup if and only if (S\ {0}) - m(S) is a semigroup. As an immediate

conse4uence we obtain the following rcsult.

PRoPoSITIoN 157. IÍ S is a numerical semigruup, then the following conditions

are equivalent:

(1) S is a MED-semigruup,

(2) for every x,y €.5 such that x) y > m(S), tiazr*y-m(S) e S.

The following orample shows that the intersection of two MED-semigroups is not

in general a MED-semigroup.
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EXAMPLE 158. Let §1 = (3,7, 11) and §2: (5,6,7,8,9)' which are MED-

semi$oups. However, Sr n §z - (6,7,9, 10, l1) is not a MED-semigroup, since

m(Sr n§z) :6 # 5:ÉÍ(Sr nS2).

PRoPosITIoN 159. lzt Sr and. Sz be two MED-semigruups with multiplicity m.

Then S r i, Sz is a MED-semigroup of multiplicity m.

PROOF. The result follows easily using the fact that sr o §z has multiplicity rz and

then applying Proposition 157. tr

Recall that if ,! is a numerical semigroup, then N \ § has finitely many elements'

whence there are only finitely many numerical semigroups containing '§'

For a given subsetx of N, 5s11- =x\ {0}' If gcd(x) = 1' then denote by MED(X)

the smallest MED-semigroup containing x and with multiplicity min(x-). observe

that the set of MED-semigroups with multiplicity min(X*) containing x is not empty'

since {0, min(x*),min(x*) * 1,-+} is in this set. Note also that this set i§ finite by

the above remark. Hence by Proposition 159, MED(X) is just the intersection of all

MED-semigroups with multiplicity min(x*) containing X, and we call it the MED

closure of X.

If § is a MED semigroup and X Ç N is such that gcd(X) = 1 and MED(X) - S'

then we will say that x is a MED system of generators of § and it is a minimal

MED system of generators provided that no proper subset of x is a MED system of

generators of S. Trivially, if §: (n1,...,np) is a MED-semigroup, then {n1,"',zr} is

a MED system of generators of ,S, whence every MED-semigroup admits a MED sys-

tem of generators (another trivial MED system of generators is the semigroup itselfl.

our next goal is to pÍove that every MED-semigroup admits a unique minimal MED

system of generators.
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LEMMA 160. kt S be a nontivial submonoid ofl\ anil let m = min(S+). Then

9 = {.rr *... * x* - am I t e N\ {0, 1,},a e Z,a ! k - 1,x1,...,x1€ S-} u {O}

is a submonoid ofN, min(Í-) : m ands Ç9.

Pnoop. Forx€ §*, takerr =x,xz=m(k-2)anda: l. Thenx=xr +x2-ame
,S/, which yields.S C 3. Next we prove that,S/is a semigroup. Let o,B € St*. Then

q =xr *... lx1- amand B -y, *...*y, - bm, withr;,yy € S*, e,j € N\{0,1},
a 1 k - 1 and b 1 I - l. Clearly o + p : .r1 +... +Í& +y1 1... + yt - @ + b)m e St.

Finally observe that since x1,...,.4 € ,S*, we obtain that x; ) m, and as a ( & - 1, we

have that x1 I . . .* xp - am ) z. Hence min(S/*) = ,r?. tr

LEMMA 161. If S is a numerical semigroup, then St Ç MED(S).

PRooF. Lets- xr+...+xk-am €,S/. To prove that s € MED(§), use induction

on /< (starting with k - 2) and apply Proposition 157 toMED(S). tr

As a consequence of Proposition 157 and Lemmas 160 and 161 we obtain the

following result.

PRoPoSITIoN 162. Let S be a numerical semigroup. The following conditions are

equivalent:

( 1) S is a MED-semigroup,

e) st çs,
í3) S' - S.

Given ,5 a nontrivial submonoid of NI, define recursively §r by

.,P=s
o S,+1 - (S'll)/.
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If S is a numerical semigroup, then by l,emmas 160 and 16l, we know that § C 'Í c

MED(S), and that min(§,-) - m(§) = m(ruED(S)). Hence MED(S) ç IvGD(S) ç

MED(S), which leads to MED(S) - MED(Y)' Consequentlv, MED(S) -- MED(^9)

for all n e §tr, whence ,§n ç MED(S) for all z € N. Therefore we have that

s:.f Ç.y Ç .'. ç.9 ç ... g MED(S).

Since there are finitely many numerical semigroups containing S, at a certain step of

this chain, it must happcn that.§p = SP+I. By definition, SP+l - SP', and in view

of Proposition 162, this implies that §P is a MED-semigroup. Thus SP : MED(Sr)'

which leads 6 5r - IrAED(S), since MED(Sr) = MED(S). We have pÍoved the fol-

lowing result.

PROPOSITION 163. I*t S be a numertcal semigroup, then there exists P € §tr s&clt

/urSP: MED(S).

LEMMA16/,.lztSbeaMED-semigroup,andletAbeaMEDsystemofgenerators

of S. For every s € S, set

B(s):{aeÁla<s}.

For every n€ N, t/s e \Aln, then se (B(s))n.

PnooF. we use induction on n. For z : 0, the result follows trivially. As induction

hypothesis assume úat s € (Á)' implies s e (B(s))'. Let s e (A)'+l' Then s:xt *

"' + xk - amfor some,i € (A)" \ {0}' k € N \ {0' l} and a < k - l' By induction

hypothesis we know that.x; € (B(',))' for all i e {1,""e}' since for all i' we get

s - xi + (ü+ixj - am), x i 2 z (Lemma I 60) and a ( k - 1' we have that s ) xi for all

i and thus xi e (B(s))'. Therefore s € (B(s))r+l' tr

THEoREM 165. Izt A and B be minimal MED systems of generators oÍa MED-

semigroup S. Then A - B.
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PnooF. Assume that Á = {nr < rz< ... } and B = {mt < mz < ...}. From úe

definition of MED system of generators, it follows that n1 - mr = m(S) (since both

A and B are minimal systems of generatoÍs, they do not contain the zero element).

Suppose that A I B and let r be the least positive integeÍ such úat n" * m, (observe

that this integer exists since n1 : ry,Al B and B ÉÁ). Without loss of generality,

assume that r 1rtr, By Proposition 163, there exists p € N such that tn, e (A)p,

and by Lemma 164 we have that mt e. (\,,. . . ,n,-rlp, which by the definition of r is

equal to (mr,. . . ,m,-r)P, whence m,. € MED(B \ im")). This also implies that S -
MED(B \ {n,}), in contradiction with the fact thar B is a minimal MED system of

generators ofS. tr

The preceding theorem allows us to introduce úe concept of MED rank of a

MED-semigroup. Let S be a MED-semigroup. The MED rank of ,S, denoted

by MED - rank(S), is the cardinality of its minimal MED system of generarors.

As we pointed out above, if § - (n1,. . .,nr) and § is a MED semigroup, then

MED({n1, . . ., zr,}) = S, and thus MED - rank(§) ( p(S) - m(S).

Now our goai is to anange the set of MED-semigroups with multiplicity m in a

tree rooted by lm,m*1,...,m1m- l). The purpose of the following results will be

to show how to construct this tree. First we describe how to construct the father of any

vertex (not being of course the root) in the tree; by repeating the pÍocess we get the

path from the given vertex to the root.

LEMMA 166. Let S be a MED-semigroup with g(S) > m(S). Then SU {g(S)} is

also a MED-semisroup and m(S) = m(SU {g(S)}).

PRooF. We already know that SU {g(S)} is a numerical semigroup and as g(S) >

m(§), we have that m(§) = m(Su ig(S))).

o If .r,y € §, then as S is MED, we obrain úat x+y - m(S) € S c SU {g(S)}.
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o If g(S) € {r,y}, then.r+y-m(,5) > g(S)andthusÍ+y-m(S) € Su{e(S)}.

observe that the only numerical semigroup with multiplicity m and Frobenius

number less than m is (m,m*1,...,m+m-l). Given a numerical semigroup § we

deflne §, recurrently by

o §6-§,

r if g(§,) >m(S,),then§n+t =S,u{g(§,)};Sn+1 = Sn, otherwi§e'

Clearly, there exists n € N such that So: (m,m* 7,...,m1rn- l). If § is a MED-

semigroup, then Lemma 166 states that

tr

§6 C 51 Ç ... Ç S, : {O,m,,m+ 1,-+}

is a chain of MED-semigroups' Moreover' si = si+t \ {a} for some a € §ia1' This

gives rise to the question: if § is a MED-semigroup, which a e § can be chosen so that

§ \ {a} is a MED-semigrouP?

LEMMÀ 167 . Let S be a MED-semigroup with multipticity m and let a e S \ {m}'

The following conditions are equivalent:

(1) a belon7s to the minirnal MED system of generators of S,

(2) S\ {a} is a MED'semigroup with multiplicitv m'

PRooF.(/)impties(2).MED(S\{a})isproperlycontainedin§,sinceotherwise

the minimal MED system of generators of S would not contain a Hence S\ {o} Ç

MED(S\ {a}) c § and thus MED(S\ {4}) - S\ {4}, which implies that s\ {ai is a

(2) implies (1), lt adoes not belong to the minimal MED system of generators of

s, then MED(S \ {a}) = S ana therefore s \ ia} is not a MED-semigroup Ú
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Recall that for every MED-semigroup § we have a sequence (paú) S = §s C . . . C

Sn = {0, m, m * 1, -+} such that & U {g(§r} - s1a1. Thus s1 is obtained by removing

a certain element of §111, which actually becomes its Frobenius number. Next result

describes this construction and tells us how to build up the sons of a given vertex in

the tree (if there are any).

PRoPoSITIoN 168. kt S be a MED-semigroup with mukiplicity m. The following

conditions are equivalent :

(1) S = 3u {g(S)} with S a MED-semigroup of muhipticity m,

(2) the minimal MED system of generators of S contains an element a such that

almanda>g(S).

PRooF. í/) implies (2). Let § - 3u {g(S)}. Then S - S\ {s(S)} and since S is

a MED-semigroup, Lemma 167 ensures thar g(S) belongs to a minimal MED system

of generators of S. As S E S and g(S) e S, we deduce that g(S) > g(s) and clearly

e6)*m=m(s)=m(3).
(2) implies ( I ). Let a f m be an element of the minimal MED system of genera-

tors of § such that a > g(S). By Lemma 167, 5 : S \ {a} is a MED-semigroup with

multiplicity m. Since a > g(S), we have rhat a = g(S). Hence.§ = 5u {g(3)}. tr

The results presented so far in this section allow us to construct from (m,m*

1,...,rn*m- 1) the set of all MED-semigroups with multiplicity lz (see the figure).

This construction aranges this set in a tree, and as one gets farther from the root, the

obtained MED-semigroups have larger Frobenius numbers. The father of any vertex,s

inthetreeisSU{g(S)}providedthatSl {O,,m,mt1,-+},andthepossiblesonsare

S\ {a}, with a > g(S) an element in the minimal MED system of generarors of § other

than m. By Proposition 168 a vertex has no sons (it is a leafl if and only if its minimal
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FIGURE 1. The tree of MED numerical semigroups wiú multiplicity 4
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MED system of geneÍatoÍs has no elements different from its multiplicity and greater

úan its Frobenius number.

Next we present an algorithmic proceduÍe for computing the MED closure of a

given numerical semigroup. observe that if § is a numerical semigroup generated by

Á, then MED(§) - MED(Á) and gcd(A) = 1. Thus we focus our attention on finding

a procedure for computing MED(X) for a given finite set X with gcd(X) = l '

LEMMA 169. Let S be a numertcal semigroup and let m € S* ' Then (m+S)u{0}

is a MED-semigroup with multipliciry m.

PRooF.Clearly,(zz+s)u{0}isanumericalsemigroupwithmultiplicityrn.Let

s1,s2 € ,S. Then (m+s1)+ (mt s2) - m -- rn* st*s2 € ,,?*'§, which by Proposition

157 implies that (n+§) U {0} is a MED-semigroup' tr

THEoREM 170. Iztm,r1,...,r, e N* be such that gcd{m,r1,"',rr} - I' Then

lvÍED(m, m 4 r 1,. . ., m I r p) - (m * \m, r 1,"', ro) ) U {0}'

PRooF. By Lemma 169, (ml (m,r1,...,r0))u {0} is a MED-semigroup' Fur-

thermore, rn,m+ r1,...,m* r, e (m* \m,r1,"',rr)) U {0}' which implies that



110 4. MED, ARF AND SATLJRATED CLOSITRE OF A NLII\IIERICAL SEMIGROI P

MED(m,m* 11,. . . ,m+ rp) Ç (m* lm,11,. . ., rp)) U {O}. For the other inclusion, take

i, j e {1,...,p}. Tlten as m,m{ r;tm+ r j eMED(m,m} 11,...,m+ rp), by Proposi-

tion 157, we have that m * ri + r j = (m + ri) * (m * r.i) - z e MED(n,m + \,...,m +
rr). Nowtake&€ {L,...,p}. Since rz,rz4 4-f r j,m+ rk e lvIEDQn,m* rt,... tmi
rr), we have tJnatm+ri+rj+rpelllED(m,m!11,...,mlrr). Using this idea one

getsthatrn+Ef=1airi €NED(m,m*11,...,mlrr) foralla1,...,a, € N. tr

EXAMPLE 171.

MED(s, 8, 9) = (5 + (5, 3,4)) u {0} = (5 + {0, 3,4, 5, 6, -+}) u {0}

={0,5,8,9, 10, 11,-i}-(5,8,9, 11,12). tr

EXAMPLE 172. Let m be a positive integer.

MED(m,m* 1)= (m+ (2, t))u{0}: (m+N)u{0}

- (m,m*1,...,m*m-l).

If ml2,

MED(m, m * 2,m + 3) = (m + \m,2,3)) u {0} - (m + {0, 2, 3, -+i) u {0}
* (m,ma2,m13,...,m* rn- L,m* m* l).

tr

The following result desmibes the set of MED-semigroups with MED-rank two.

CoRoLLARY 173. lzt m,r be two positive integers such that gcd{m,r} - l. Then

MED(m,m+ r) - lm,m+ r,maZr,...,mf (m- l)r).

PRooF. Applying Theorem 170 we obtain that MED(lz,nr+ r) - (m+ lm,r))U

{0}. Clearly \m,,m{ r,. .. ,,ml (n- 1)rl C (m* \m,r))U {0}. For the other inclusion,

take a e. m * (m, r). Then a = (L + l)m + pr for some ?r,,p e N. There exist 4, d € N
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such thatl: gn +d, d < m. Hencg a: (1,+q+ l)m+dr e (tn,ml r,m*Zr,. . .,m*

(m- t)r). tr

2. Arf systeurs of generator§

In this section we introduce the concept of Arf system of generators for an Arf

semigroup. This concept allows us to arrange the set of all Arf numerical semigroup in

a binary tree. we also describe an algorithmic method to compute, ftom a finite subset

X of N with gcd(X) : I , the elements of Arf(X) '

A numerical semigroup S is an Arf numericat semigroup if for every rr),2 € §

such üat x>y> z, we have that.r+y-z € § (see [5, Theorem I'3'4] for fifteen

alternative characterizations of úis property).

For Á Ç lrl with gcd(Á) = l, if f is an Arf numerical semigroup containing Á, then

clearly I must contain S = (Á). A candidate for the smallest (with respect to set in-

clusion) Arf numerical semigroup containing Á is the intercection of all Arf numerical

semigroups containing §, provided that úe intersection of a finite set of AÍf numerical

semigroups is Arf. Actually this is ensured by the next result, which follows easily

from úre definition.

PRoPosITIoN 174. IÍ&,...,S,areArf numerical semigroups, thez §: St O"'Ít

S" is also Arf.

This enables us to define the Arf numerical semigroup generated by Á (gcd(Á) :

1) as the intersection of all Arf numerical semigroups containing Á (and thus (Á))'

and will be denoted by Arf(Á). observe that in view of Proposition l7a' Arf(Á) is

the smallest Arf numerical semigroup containing Á. Note also that if § is an Arf

semigroup, then clearly Arf(S) - S. If S = Arf(Á), we say that Á is an Arf system

of generators of .s, and we will say that Á is minimal if no proper subset of Á is an
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Arf system of generators of §. For a numerical semigroup ,S, Arf(S) will be also called

the Arf closure of ,§.

Next we show that every Arf numerical semigroup has a unique minimal system of

generators (Theorem 179). First we give a description of Arf(A). Observe that if we

are given Á Ç N with gcd(Á) = I, then Arf(Á) must contain the set of all the elements

of the form x+y - zwith x,y,z € (á) and x >y > z, It must also contain the set of

elements that are derived from those obtained above using t}te same rule and so on.

This motivates the following results and definitions.

LEMMA 175. Let S be a submonoid ofN. Tlren

t = {x* y - z I x,,y,z €s,x Z y } z}

is a submonoid ofN and § Ç,!/.

PRooF. Letx € S. Then x+x-x € §/, whence S Ç §| Clearly §/ Ç N. Now

take a,b e I and let us prove that a + b e 3. By úe definition of §/, there exist

xr g2tyr ty2tzt,zz €,S, such that xi > yi ) zi, i € { 1, 2}, and a = xt * yr - zr, b :
x2 + y2 - 22. Hence, a * b = (\ + x2) + (yr + yz) - (u -l zz). Clearly x1 i xz,yr i
yz zt*zz€Sandxl*x2)y1*yz>.zr*zz'Thereforea+à€,5/. tr

For a given submonoid ,,9 of N and z € N, define §x recunently as follows:

.,f :s,

. Sl,+l = (Sn)/.

LEMMA 176. l,et S be a nurnerical semigroup. Then there exists k e N szcft tàat

§ft : Arf(§).

Pnoor. Using induction on n, it can be easily proved that §" q Arf(S) for all n € N.

By Lemma 175, ,tx C S'+1 and § Ç ,Str for all n e N. As we pointed out befoÍe, the

number of numerical semigroups containing S is finite, whence St: St+l for some
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k e N. Clearly s* is an Arf numerical semigroup and St Ç Arf(S), and since Arf(§) is

the smallest Arf numerical semigroup containing.S, we obtain Se = Arf(S)' tr

For proving that minimal Arf systems ofgenerators are unique, we first show that every

Arf system of generators must contain the multiplicity of the semigroup'

LEMMA 177 . Let S be an Arf numerical semigroup and let A be an ArÍ system oÍ

generators of S. Then m(S) e A.

PRooF. Forx,y'z e §\{m(S)i withx ) v > z, we getthat x+y - ze S\{m(S)}'

whence S\ {m(§)} is an Arf numerical semigroup' If m(S) í Á, then Arf(A) Ç Arf(S\

irn(S))) = S\ {m(§)} f S, which contradicts Arf(Á) - S' Ú

We already know thât for a given numerical semigroup '§ = (Á)' there exists /< e N

such that 5t : erf(á). This in particular implies that every element in Arf(Á) can be

expressed as a linear combination with integeÍ coefflcients of the elements in Á. what

we basically prove next is that for s € Arf(Á) the generâtoÍs that appear in any of the

expressions of s must be smaller than s.

LEMMA 178. l,et S be an Arf numerical semigroup and let A be an Arf system

of generators of S. For every s e§ ser B(s) - {a e A l' <'}' If s e \A)'' then

s e (B(s))u.

PROOF. we use induction on z. For z - 0, the result is clear by the deânition of

B(s). Now assume úat the result is true for n € N and let us prove it for n + 1' Take

se (Á)'+1. Then there exist x,y,ze \A)n with x à y 2 z and such that s -x+y-z'By
induction hypothesis x e (B(x))a,ve (B(v))'andze (B(z))n' Sinces=x*y-zand

x > y > z,we have that z < ) í x < s, whence B(e) Ç B(v) Ç B(x) Ç B(s)' It follows

rhat x,y,ze (B(s))'andthis leads tos=x+v-ze (B(s))'+l' tr
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THEoREM 179. l,et A and B be to minimal Arf systems of generators of an Arf

numerical semigroup S. Then A -- B.

PRooF. AssumethatÁ= {nr <... <np<...} andB= {ru <... <mq<...}.

By Lemma 177, we have that nt: mr =m(S). If Á I B, then let r be the least integer

such that n, f 2.. Assume without loss of generality that tr 1nr. As mr € S, we can

apply Lemma 176 and obtain thaí th e. (Á)' for some nonnegative integer n. Using

Lemma 178 we deduce that m, e (h,. . . ,,nr-t)n. Since m;, : n* for all ft < r, we

have úat m7 €. (m1,,...,m.-r)', whence zr" e Arf(B \ {z'}) and 5 : Arf(B \ {2.}),
contradicting that B is a minimal Arf system of generators. tr

This result allows us to define the Arf rank of an Arf numerical semigroup ,§ as

the cardinality of its minimal Arf system of generators. This amount will be denoted

by Arf- rank(§). Hence Arf - rank(§) < g(S), that is, the Arf rank of § is smaller

than or equal to its embedding dimension. Clearly, every Arf numerical semigroup has

maximal embedding dimension, that is, p(S) = m(§) (MED-semigroup). It follows

that for an Arf numerical semigroup §

Arf - rank(§) S s(s) = m(s) = min< (s \ {0}).

A binary tree is a rooted tree in which every vertex has 0, I or 2 sons (see [23]).

Now we describe a recursive procedure that arranges the set of all Arf numerical semi-

groups in a binary tree whose root is N. The idea is to leam how to construct new AÍf

numerical semigroups by adding or removing an element from a given Arf numerical

semigroup. We will show first that adding the Frobenius number to an Arf numerical

semigroup yields a new Arf numerical semigroup, and this oPeration will enable us to

move from one vertex in the tree to its parent. The process of generating the sons of a

vertex will be by removing certain elements from úe minimal Arf system of generators

of the semigroup.
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LEMMA l8O. IÊt S be an Arf numerical semigroup, S + N. fl,en Su ig(S)) 
's

again an ArÍ nutnerical semigroup.

PRooF. We already know that Su {g(S)} is a numerical semigroup. Take x'y,e €

§U {g(S)} such that.r ) ! ) z,and let us prove thaÍ x+y - z e Su {g(S)}.

t lf. x,y,z€ ,S, then as S is Arf, we obtain that Í+y - z € S c Su {g(S)}'

o If g(S) € {x,y,z}, then x * y - z ) g(§) and thus x+v - z € SU {g(S)}'

Given a numerical semigroup §, for n € N, define recursively the semigroup Sn as:

o §s= §'

. Sn+t =SDU{g(S,,)},if S, lN; Sz+t = N, otherwi§e'

Clearly for every numerical semigroup there exists /( € N such that '§a = N' Note also

that if S is an Arf numerical semigroup, then by Lemma 180, the chain § = So Ç Sr Ç

... Ç Sr = N is a chain of Arf numerical semigroups, and §; - Si+r \ {a} for some

a € §i+t. The following result studies the condition that we must impose to an element

a in an Arf numerical semigroup S for §\ {ai to be Arf'

LEMMAlsl,LetSbeanArfnumericalsemigroupandletaeS.Thefollowing

conditions are equiYalent :

(l) a betongs to the minimal Arf system of generators of S,

(2) S \ {a} is an Arf numerical semigroup.

PROOF. (/ ) implies (2). Since a belongs to the minimal Arf system of generators of

§, we have that Arf(s\ {o}) is strictly contained in §. Hence ,9\ {4} Ç Arf(S\ {a}) E s'

and s I Arf(s\ {a}) yields Arf(s\ {oi) = §\ ia}, which means that s\ {a} is an Arf

numerical semigÍouP.

tr
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(2) implies (/). If a does not belong to the minimal Arf system of generators of .S,

then Arf(s \ ia)) = §, ano this in particular implies that § \ {a} does not have the Arf

property. tr

With the following result we can detect when an Arf numerical semigroup has been

constructed by using the procedure described in Lemmâ 180.

PRoPoSITIoN 182. l,et S be an Arf numerical semigroup. The following condi-

tions are equivalent:

(l) S = 3u {g(3)}, withS an Arf numerical semigroup,

(2) the minimal Arf system of generators of S contains at least one element

greater than g(S).

PRooF. í1,) impties (2). Clearly, if s = Su {g(S)}, úen 5 - s\ {g(S)}. Using

Lemma 181, we obtain that g(§) must belong to the minimal Arf system of generators

of .§, and since 3 q S and g(S) € ,s, we get that g(S) > g(S).

(2) implies (1). lí a is an element of the minimal Arf system of generators of ,S,

then by Lemma 181 we know that 3 - S\ {a} is an Arf numerical semigroup. If in

addition a > C(S), úen a = g(§), whence S - 5u {e(S)} with 5 an Arf numerical

semigroup. tr

Proposition 182 together with the remark given just after Lemma 180 allow us to

construct recursively from the Arf numerical semigroup N the set of all Arf numerical

semigroups (see the figure). This construction arranges them all in a tree ordering

shape. It is also clear that as we move "downwards" the branches of this ffee, we

encounter semigroups with larger Frobenius numbers.

An Arf numerical semigroup having no sons is a leaf. As a consequence of Propo-

sition 182 we get the following result.
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FIGURE 2. The binary tree of Arf numerical semigroups
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CORoLLARY 183. Let S be an Arf numerical semigroup. Then S is a leaf if and

only if the minimal Arf system of generators of s does not contain elements greater

than g(S).

Finally we show that the tree of Arf numerical semigroups is binary. To this end we

need a couple of technical lemmas. The idea is to prove that in a minimal Arf system

of generators there are at most two elements greater than the Frobenius number and

then use Proposition 182.

LEMMA 184. Letx€NazdXÇNwltà{x,x+1} CX.Then {ae Nla>x}ç
AÍf(x).

Pnoop. We use induction to prove that x+ r? € Arf(X) for all n € N. For n = 0, we

getx e X ç tuf(X). Now assume thatx*n € Arf(X). Then x*r * I e Arf(X), since

x+n+1= (x+z)*(x+ 7) -x,x*n,x+ l,xe Arf(X) andx+nZx+1)x' tr
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LEMMA 185. Let S be an Ad numerical semigroup and let A be its minimal Arf

system of generators. Then {a e Á | g(S) < a} has at most tvvo elements.

Pnoor. Let{a1 ,...,a"}= {ae Á la<g(S)}. UsingLemmas 178and 184,wede-

duce üat Arf(a1,..., a., g(,§).| 1,g(S)+ 2) = §, whence {a1,..., a",g(§)* l,g(S)+ 2}

is an Arf system of generatoÍs of S. Applying now Theorem 179 we get that

{ae lg(s)<a}Ç{e(s)+1,s(s)+2}. tr

PRoposITIoN 186. The tree of Arf numerical semigroups is binary.

PRooF. It suffices to observe, by Lemma 185 and Proposition 182, that if 7 is a

son of§, then either r = s\ {g(s) + l} or I - s\ {g(s) * 2}. Therefore every vertex

in the tree has at most two sons. tr

Next we present an algorithmic procedure for computing, from a finite subsetX of

N with gcd(X) = 1, the elements of Arf(X) (Arf closure of a numerical semigroup).

The reader will find a similitude between the algoriúm described here and Euclid's

algorithm for computing gcd's. It turns out that finding the elements of Arf(X) is

much easier than computing (X).

LEMMA 187. lit S be an Ad numerical semigroup and take m € S. Then (m+

S) u {0} is also an Arf numerical semigroup.

PRooF. It is clear that (m + §) u {0} is a numerical semigroup. Now take ln +

st,m+ sz,m+ sr € ,?1* S with ,t1 +q> m+ s2) ml st. Then s1 ) s2 ) s3 and since

§isArf,wegetsl+s2-s3e §. It follows that (rr4+sr) +(m+sz) - (m+s3):

m * (sr * sz - sr) e rz + S. The reader can check that this proves that (re + S) u {0i is

Arf. tr

LEMMA 188. Let m, r 1,. .., r, € N suclr that gcd({m, 11,. ..., rp}) : 1. Then

m * (m, 11,...,r rln Ç Arf(m,m + 11,...,m * rp).
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PRooF. We use once more induction on n. For n:0 we have to prove that

m I \m,r1,..., rpl Ç Arf(m,,m + 11,...,m * r p). Lel i, j e { 1,...,p}. T"hen m,m *
ri,m+rj Ç Arf(m,m*11,...,m* ro), whence m+ri+11 - (m* r) * (m+ ri) -
me Art(m,m + 11,...,m* rr). Now forke {1,...,p}, m,tn* ri+rjtm+ rk €

Arf(m,mlrr,...,m*r1,) and therefore m + ril ri * 11, = (m+ri+ri)+(m*rl - m e

Art(rn,m* 11,...,m+ rk). Using úis idea we obtain that for every 4.41,...,4, € N.

we have that (d+ l)m+a1r1 +...+aprp e Art(m,m+rr,...,m+rr) and thus

m+ (m,,rtt...,,rp) Ç Asf(m,m-l 11,...,m* rp).

Now assume that m * (m, r 1,. . ., r r)n Ç Arf (m, m + 11,. . ., m * r p) and let us prove

Íhat rn+ (rn,,\'.. .,rr)'*r C Afi(m,m*r1,,...,m*rr)'Letae m+ lm,rr,. ..,rp)n+r .

Thena:m+bwithb€(m,r1,..,,rr)n+l.Hen".thereexistÍ,),2€\m.,r1,....rr)n

such that x > y > z and x + y - z - b. ln this way a= m*b = m+x+y-z=

(m+x) + (m+y) - (m+ z) €. Arf(m,m+11,. '., m * rr), since by induction hypothesis

m+x,,m+ytm+Zem*(m,r1,...,rp)'ÇArf(m,m|11,...,m+rp). tr

THEoREM 189. lzt m1rtt.,.,rp be nonnegative integers with greatest cornmon

divisor one. Then

Art(m,m* rr,...,m* rr) : (m+ Art(m,r1,..., rr))u {0}'

Pnoor. Using Lemmas 176 and 188 we obtain that (m* Art(m,r1,,...,r))t)

{0} Ç Arf(rz, z + \,...,m+ rp). For the other inclusion observe that m,m +

tr,...tn + r, e (rn * Arf(m,r1,...,rr)) u {0}, and since by Lemma 187, (m+

Arf(rn,n,. . . ,ro)) U {0} is an Arf numerical semigroup, we get that Art(m,m +

r1,...,m*rp)Ç(m+Art(m,r1,...,rr))u{0}' tr

As an immediate consequence of Theorem 189 we obtain the following result.
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CoRoLLARY l9O. Izt m,r1,.,.,r, be nonnegative integers with greatest comrnon

divisor one. Then

g(Arf (m, m * 11,. . ., m * r )) = m + g(AÍf (m, r t,. . ., r p)).

Let ,S be an Arf numerical semigroup. Since every system of generators of § is one

of its Arf systems of generato$, the above corollary can be applied to any system of

generators of §. This in particular yields Proposition I.1.11 a) with i - I in [5]. Let

X Ç N\ {0} be such that gcd(X) - 1. Define recursively the following sequence of

subsets of N:

o A1 -X,
c A,a1 = ({x-minaÁ, lxe Á,}\{0}) u{min4Á,}.

As a consequence of Euclid's algorithm for the computation of gcd(X), we obtain that

theÍe exists q - min<{& e N | 1 € Ár}.

THEoREM 191. Under the standing notation, we have that

0,minqÁt,min<Á1 { min<Á2,. .. , minaÁ1 a... -1- min<Áa- r

are the elements in Arf(X) that are less than or equal to g(Arf(X))+ l.

PRooF. Since 1 eAq, Atf(Aq): N. Hence applying Theorem 189, we get that

arf(Áa-r ) - (minaÁq-r +N) u {0}. This implies that the elements 0,min<Áo-r are

the elements that are less than or equal to g(Arf(Áa-r))-F l. Assume as induction hy-

pothesis that 0, min4án-;, min<Áa-t +min<Á4-,+l,...,minqÁ4-i *...* min<Áa-r

are the elements of Arf(Aa-i) less than or equal to g(Arf(Aa-r)) * 1. We must prove

now that 0, minaÁr-i-r, minaAq-i-t -1-.minaÁa-i,..., min4Ár-i-r +.'. + min4An-1

are the elements of Arf(Áa-i-r) less than or equal to g(Arf(Áa-i-1))+ 1. By Theorem

189, we know that Arf(Aa-i-r) = (min5Á4-i-r + Arf(áq-i)) u i0). Using now the

induction hypothesis and Corollary 190, we obtain the desired result. tr
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EXAMPLE 192. Let us compute Arf(7,24,33).

ü: {7,U,33}, min<Á1 - J,

A2 = {7, 17,26}, rrttn<Az = 7,

g: {7 ,10, 19}, minaÁ3 - 7,

Aa = {7,,3, L2l, mir.aAa -- 3,

A5 = {4,3,9}, min<Á5 - 3,

Á5 = { 1,3,6},

whence Arf (7, 24, 33) = {0, 7, 14,2L,,24,21, -+}.

t2l

n

3. SAT sYstems of generator§

In this Section we characterize the subsets of N that are saturated numerical semi-

groups. From the concept of sAI system of genemtom, for a saturated numerical

semigÍoup, we arrange the set of all saturated numerical semigloup in binary tree with

no leaves.

A numerical semigroup § is saturated if the following condition holds: if

s,§r,...,sr e S are such that si ( s for all i e {1,'..,r} and zt,"',Zr €Z are such

üatz1s1 +"'+zrsr ) 0, then s+ztsl + "'+zrrr € S' ForÁ Ç N and a € Á' denote by

$(a)= gcd{xeÁ lxSo}.

LEMMA 193. Let S be a saturated numerical semigroup and let s e S' Then s*

d5(s) e S.

PRooF. Let {sr , . . . , sr} = {x e S I , í s}. By Bezout's identity' there exists

Ztt...tzr €Z s'tch that ztst *"'*zrsr = ds(s)' Using now that S is saturated' we

gets+ds(s) € S. tr

LEMMA 1g4. Let A be a nonempty subset o/ N suclz that gcd(A) = I and al

$(a) e Afor all a € A. Then a+ kd1'(a) e Afor all k e N'
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Pnoor. For the sake of simplicity, and since there is no possible misunderstand-

ing, we denote d4(a) by d(a). We use induction on d(a).

If d(a) = 0, then the result follows trivially. Next we see that if d(a) - 1, 11.n

a+keAfoÍoJlk€N.Tothisendweuseinductionon&.For/<-0,theresultistrivial.

Assumethata*ft€Á. Since 0 + d(a+ft) < d(a) = l,wehavethatd(a+/<) - 1. Hence

a+k+1- a+k+d(a+k) eA.

By induction hypothesis we assume that if at € Á and d(a/) < d(a), then a/*
/<d(a') eÁ forallfte N. Thus, suppose that d(a) > 2 and let us prove that a + td(a) eÁ

forall&€N. Note that since gcd(Á) = 1, there exise á e Á such that d(à) - I and that

if d(a+ed(a)) :d(a) and a+kd(a) €Á, then a+(k+ 1)d(a) = a+kd(a) +d(a+

&d(a)) e Á. From these two remarks we deduce that therÉ exists the least positive

integer r such that a * td(a) € Á and d(a+td(a)) < d(a). As d(a+td(a)) < d(a),

applying induction hypothesis, we obtain that (a+ td(a)) +kd(a+td(a)) e Á for all /c e

N. Clearly, d(a+td(a)) divides d(a), whence d(a) = ld(a+td(a)) for some positive

integer /. Consequently a+td(a)+kllld(a+td(a)) e Á for all & e N, and thus a+

(t + n)d(a) € Á for a1l z € N. From the defi nition of t, it follows that a * &d(a) e Á for

all k e {0,...,t}. We concludethata+ kd(a) e Aforall k e N. tr

LEMMA 195. Let A be a nonempty subset o/N szcft that gcd(A) :1 and a*
fu(a) e Afor all a e A. Then At-t {0} is a numerical semigroup.

Pnoor. Since gcd(Á) : 1, it suffices to prove that foÍ any a, b e A, one gets a + b €.

Á. Assume that a ( à. Then d1(à) divides d,a(a) and thus there exits À e N such that

fu,(a) : À.da(à). Note also that d(a) divides a, whence a - p$(a) for some p € N.

Therefore a16: pfu(a) a 5 - fi'fu(b) * à, which by Lemma 194 is in Á. n

THEoREM L96. IÊt A be a nonempty subset of l§ such that 0 e A and gcd(A) = 1.

The following conditions are equivalent:
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(1) A is a saturated numerical semigroup.

(2) a + de(a) e A for all a € A.

(3) a + kfu(a) €. Afor all a€ Á dnd t € N.

PRooF. (1J implies (2). Follows from Lemma 193.

(2) implies (3). Follows from Lemma 194.

(3) implies (1). By Lemma 195 we already know that Á is a numerical semigroup.

Weseethatitis saturated. Leta,at,....'ar €Á with ci ( a for all i e {1,...,r} and let

Ztt. . . tzr be integers such that zrar *' ''* arz, ) 0. Since a; ( a, it follows th at d/a)

divides ai for all i e { 1,.. ., r}. Hence úere exists /r € N such that zlar + "'+ zrar :

/cd1(a) and úus a + z1ar + "'+ 2,a, : a.+ kdA(a) € A. tr

Next we introduce the concept of sAI system of generatoÍs for a saturated nu-

merical semigroup. In order to do this we first need to prove that for a given X Ç N

with gcd(x) : 1, there exisrs the least (with respect to set inclusion) saturated numeÍ-

ical semigroup that contains X. The best candidate as usual is the intersection of all

saturated numerical semigroups that contain X.

PRoPosITIoN 1g7. Let 51 and 52 be two saturated numerical semigroups' Then

,§ - §r n,lz is a saturated numerical semigroup.

PRooF. We make use of Theorem 196 (note that 0 € S and that gcd(S) - t)' It

suffices to prove that s+ds(s) e s for all s e ,s. For a given s € s, we have that s € 5i

and that dç(s) divides d5(s) for i e {1,2}. Hence there exits nonnegative integers k1

and &2 such that ds(s) - k1d5,(s) : t2d5, (s). By Theorem 196, s+k1d5,(s) € Si for

iÇ{1,2},whences*d5(s) €.!. tr

As we already now, the set of numerical semigroups containing S is finite, since N\

.§ is finite. Let x be a subset of N such that gcd(x) - 1. Then every saturated numerical

semigroup containing X must also contain (X), and thus theÍe are finitely many of
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them. We denote by Sat(X) the intersection of all saturated numerical semigroups

containing X, and call it the saturated closure of X. Observe úat Sat(X) = Sat((X)).

As a consequence of Proposition 197 and the above remark, we have that Sat(X) is the

smallest saturated semigroup containing X. If § is a saturated numerical semigroup

and X is a subset of N such that gcd(X) : I and Sat(X) : §, then we will say that

X is a SAT system of generaúors of §. We say that X is a minimal SAI system of

generators if in addition no proper subset of X is a S:AT system of generators of ,§.

Every numerical semigroup is finitely generated (as a semigroup). Hence for a given

numerical semigroup §, there exists {lr1,...,nr} c N suchthat§- (n1,...,n0). If .§ is

a saturated numerical semigroup, then clearly Sat(n1,...,nr) : Sat(S) = §, and thus

every saturated numerical semigroup admits a finite SAI system of generators.

gcd(n1,. ..,nn) = l. For every i e {1,...,p}, set di = gcd(21,...,n;) and for all

j e {1,..., p - l} d.efine ki - max{ft € NÍ | n; + kd; 1 nial}. Then

Sat(n1,...,nr) - {0,n1,ryt dr,...,h+ kit,nz,n2+ d2,...,n2* k2d2,

,,,,, tt p-t t k p-l * d p-t t,,, t n p- | * kp-1d p; 1 
n p 1 

n2 * 1, -+).

PRooF. Ler

A- {O,,n1,n1} dt,,..,nt * ktdt,nz,,nz* d2,...,n2* k2d.2,

. . . ,rtp-l trtp-l * dp-15, . ' tnp-l *kp-ldp-l,np,n2 f l, -+).

Clearly Á is not empty, 0 € Á, gcd(A) = 1 and a + d1(a) € á for all a € A. By

Theorem 196, Á is a saturated numerical semigroup, and as {r?1,.,.,rrr} C Á, we

get that Sat(n1,...,np) Ç A. For the other inclusion, take a e á. Then there ex-

ists i € {1,...,p} and /c € N such that a= ni*kdi (note that dp: l). Since

{u,...,np} c Sat(n1,...,nr), we have that d5"11,,,...,,r1(n;) divides d, whence there
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exists / € N such that d, : ldsu(r,,...,rr1(ni). Using Theorem 196' we know that

n * Íds41r,,...,,r1(zi) e Sat(nr,. ..,np) for allte N and thus a- ni+kdi :ni+

kldsaçn.,,...,nr1(ni) € Sat(n1,...,nr). tr

EXAMPLE 199. Let{n1,n2,ry} - {4,10,23}.Ttrer,ú -4,d2=2,ds = 1, &t : 1

and k2 :6. Hence

Sat(4, 10, 23) = {0, 4, 8, I 0' 12', 14, 16, 18,20,22,23,24, -+).

tr

It may happen that one is interested in the minimal system of generators (as a semi-

group) of Sat(X). It is well known (see for instance [1E]) that any saturated numerical

semigroup has the Arf propeíy, whence it is of maximal embedding dimension (see

[5]). From [32] one can deduce thatif m = min(X \ {0})(= min(Sat(X) \ {0})), then

the minimal system of generators of § : Sat(X) is

A - {,n}u({§€ § | s-n És}\{0}).

since we know that the cardinality of Á is rn, once we have computed sat(x) as ex-

plained in Theorem 198, in order to calculate {s e S I s - z I S} it suffices to find the

first m elements in the list such that subtracting m to them the result is not in the list.

In the preceding example, § - Sat(4, 10,23)'m - 4 and

{s e S ls-z É S} = {0, 10,23,25},

and thus Sat(4, 10, 23) = (4, 10,23,25).

Next we show that every saturated numerical semigroup has a unique minimal SAI

system of generators.

LEMMA 2OO. lzt S be a saturated numerical semigroup and let s e S \ {0}' fte

following conditions are equivalent:

(1) S: §\ {s} is a saturated numerical semigroup,
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(2) ds(s) * ds(st) Íor all st e S with st < s.

PRooF. (1) implies (2). Assume that ds(s) : ds(.r') for some s' € .S such that s/ < s.

Since / < s, tlere exists 4 € N\{0i such that s: s'+a, and as d5(s) : ds(s'), we

have úat d5(s/) divides both s and s/, whence it atso divides a. Thus, a: &ds(s')

for some k € N. From S - S\ {si and s/ < s, we deduce that d5(s/) : ds(s'). Using

now Theorem 196 for S, we get úat s: s'+ a - s'+kds(s') € S - S\ {s}, which is

impossible.

(2) implies (1). By Theorem 196, it suffices to show that ifc € S and a f s, then

a+d3(a) I s. Note úat d5(a) divides ds-(a), whence a+dr-(a) - aa7s65(a) for some

k e N. If a + /cds(a) = s, then a < s. But this leads to d5(s) - ds(s') with s/: max{.r e

S | ,r < s), in contradiction with the hypothesis. !

LEMMA 201. Itt S be a saturated numeical semigroup and let s e S\{0} be such

that ds(s) I ds(st) for all st < s. Then s belongs to every SAT system of generators of

s.

PRooF. Let X be a SAT system of generators of S and assume that s É X. Then

Sat(X) c Sat(S\ {s}) : S\ {r} by Lemma 200. Hence Sat(X) I S, contradicting that

X is a SAI system of generators of ,S. tr

Let ,S be a saturated numerical semigroup. Since N \,§ has finitely many elements,

there exists s € § such that d5(s) = 1, and d5(s/) - l foralls/€.!,s/ >s. Hence the

set {s e S\{0} I 0s(0 I d5(s') for all s/< s,s/e,l} is finite.

LEMMA 202. Let S be a saturated numericdl semigroup and let {s1, . . . , s'} : {s €

S \'{0} I ds(s) I ds(^í) /or all st < s,sf € S}. Iften Sat(s1,.. .,s.) : .!.

Pnoor. Since sr , . . . , rr € .9, we have that Sat(s1 , . . . , sr) Ç .t. Let s € ,t and assume

that s1 <'..< s* <r < sr+l < ".< sr. It follows úat d5(s) : ds(sr) ands:sr+a
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for some a € N, which implies that d5(s1) divides a. Hence s - s* * tds(s*) for some

, € N. As Sat(s1,...,s.) C 
^S, 

we have that d5(sp) divides ds"(",,...,".) (st) and thus

s: s1 * Id5"q",,...,§r) (§r) for some / e N. Using now Theorem 196 we get that r €

Sat(s1,...,s,). Ú

As an immediate consequence of Lemmas 201 and 2O2, we obtain the following

result.

THEoREM 2O3. Izt S be a saturated nwnerical semigroup. Then

{sr,...,s,} - {s e S\ {O} | d5(s) I a5(/)pr all st < s,s' € S}

is the minimnl SAT system of generotors of S.

EXAMPLE 2(X. Let .S be the saturated numerical semigroup

S: {0,4,8, 10, 12, 14, 16' 18,20,22,23,24,-+}.

It follows that ds(4) - 4 : ds(8), ds( I 0) : "' : ds(22) : 2 and ds(23) : I - ds(23 +

n) for all z e N. By Theorem 203 the minimal SAI system of generators is {a' l0'23}'

!

using Theorem 203 it makes sense to define the sAT rank of a saturated numerical

semigroup ,§ by the cmdinality of its minimal SAI system of generators, which we will

denote by SAT-rank(S). Note that SAT-rank(S) í s(S) : m(S) : min(S\ {0})'

The following rcsult describing those saturated numerical semigroups of sAf rank

two is a direct consequence of Theorem 198.

CoRoLLARY 205 . Izt n1.,n2 be wo integers such that U < n2 and gcd(q,n2) : 1.

Then

Sat(21, z2) : (n1,n2.,n2* 1,n2 +2,--+)

: {O,n1.,ry * n1,. . .,n1 * kn1,n2,n2 * 1., -+}
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withk- max{l e N lnr +lnr < zz}.

Next result gives us a sharper upper bound for the SAI rank of a saturated numer-

ical semigroup in terms of its multiplicity.

CoRoLLARY 206. kt u < n2 < ... < n, be positive integers such that its great

est common divisor is one. Then {q,...,np]' is a minitnatl SAT system of gener-

atois of Sat(21,...,nr) if and only if gcd(n1,...,,ni) I gcd(n1,...,,n1,ni+t) Íor all

ie{1,...,p-1}.

Pnoon. Use Theorem 198 for the description of Sal(n1, . . . ,nr) and Theorem 203.

tr

PRoposITIoN 207. Izt mbe a positive integer and m - pi'...pf' be its decom-

position into primes. If S is a saturated numerical semigroup with multiplicity m, then

SAT - rank(§) 1 ar *... * a,* 1.

Pnoor. If {z:nt <... < zr} is the minimal SAI system of generators of S(by

Lemma 201, m = n) be and set d; = gcd(n1,....,ni) for all i € { 1,.. ., p}. Corollary

206 states thatm= ú > dz>...> dp = I and as d;-p 1 divides d;, the proof follows

easily. n

CoRoLLARY 208. Every saturated numerical semigroup with muWplicity a prime

number has SAT rank two.

We finish this section by showing that the set of saturated numerical semigroups is

a binary tree with no leaves and rooted in N. We first show how to construct üe father

of any non root vertex (actually, repeating the process yields the path connecting the

given vertex to the root; compare with the binary tree of Arf numerical semigroups).

PRoPosITIoN 209. lat § # N áe a saturated numerical semigroup. Then S =

SU ig(S)i is also saturated.
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Pnoor. In view ofTheorem 196 it suffices to show that if se S'thens+d5-(s) e S'

Ifs < g(s), then s € § and d5(s) : ds(r), whence s+dg(s) - s+ds(s) € sc S' If

s > c(§), then s * d5-(s) > g(§). and thuss+ds(s) e S. tr

For a given numerical semigroup §, define recursively S, by

o 56= §,

o If & : N, then S,+r : Sni Sz+t : s, U {g(s,) }' otherwise'

clearly, there exists ft € N such that.s7. - N. If in addition s is a saturated numerical

semigroup, Proposition 209 statesthats-So Ç sr c "'C s*:sis achain of saturated

numerical semigroups' Moreover, & : Si+l \ {a} for a some 4 € Sl+r (a becomes the

Frobenius number of .§;). This idea motivates the next result, which explains how the

sons of a vertex in the tree are constnrcted.

PROPOSITION 210. Iat s be a saturated numerical semigroup. The following

conditions are equivalent.

(1) S: S/ U ig(9)\ with St a saturated nwnerical semigroup'

(2) the minimal SAT system of generators of S contains an eletnent Sreater than

c(s).

PRooF.(1)implies(2).IfS:S/U{g(s,)}withS/asaturatednumericalsemi-

group, then S' - S\ {g(S')}, which by Lemma 200 and Theorem 203' implies that

g(S') belongs to the minimal SAI system of generators of S' As Sr Ç S and g(9) e S'

we get that g(Sr) > g(S).

(2) implies (1). By Lemma 200 and Theorem 203, if a belongs to the minimal

sAI system of generators of .s, then s' : s\ {a} is a saturated numerical semigroup.

If in addition d > C(S), then a = g(S/), whence S - S' u {g(S')}, with S/ a saturated

numerical semigroup. tr
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This proposition allows us to construct recursively (starting from N) the set of all

saturated numerical semigroups. This construction arranges this set in a tree. It is

clear that once we move downwards along the branches ofthe tree, the semigroups we

encounter have greater Frobenius numbers.

FIcURE 3. The tree of saturated numerical semigroups

Sat(1),

8=-1
v

sat(2,3),
8= 1

/\
Sat(3,4), Sat(2, s),
I =Z 8=3

)/\\
Sat(4,s), Sat(3,s), sat(2,7),
S=3 g=4 c:5

Sat(5,6),
c=4

Sat(4,6,7),
8=5

Sat(3, 7),

8=5
Sat(2,9),

8:7

PRoPoSITIoN 211. The tree of saturated numerical semigroups is a binary tree

with no leaves.

PRooF. Let Á = {q < ... < np} be the minimal SAI system of generators of a

saturated numerical semigroup §. By Theorem 198, we know that {np,np+ l, -+} ÇS,

whence n, > g(S), and thus S cannot be a leaf by Proposition 210. Now consider the

set {s1,...,s7} : {s e S\ {0} I , < g(S)}. BV Theorem 198, Sat(s1,...,s.,8(§) *
1,g(s) +2) : §, whenceÁ Ç {sr,...,s,,c(s)+ 1,g(s)+2}. using Proposition 210,

we get that ifS is a son of,S, then either Sr= S\ {g(S) * l} or S'= S\{g(S) +2}.

Therefore § has at most two sons, and the tÍee of saturated numerical semigroups is

binary. tr
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