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Introducao

Um semigrupo numérico S é um submonoide de (N, +) tal que o maximo divisor
comum dos seus elementos ¢é igual a um. Usando esta defini¢ao, S admite um unico
sistema de geradores {ng,-- ,n,} e designamos ng e p+ 1 como a multiplicidade e a
dimens3o de imersdo, respectivamente. Além disto o conjunto N\ § € finito e referi-
mos o maior inteiro néo pertencente a S como o nimero de Frobenius e denotamo-lo
por g(S). O estudo dos semigrupos numéricos € um problema cldssico equivalente
ao estudo do conjunto das solugdes das equagdes lineares com coeficientes em N (ver
[9, 10, 52, 54]). A partir de 1970 (ver [24, 25, 19]), o estudo dos subsemigrupos era
essencialmente motivado pelas suas aplicagdes em Geometria Algébrica. Como exem-
plo, temos que se K é um corpo, K[S] é uma K-algebra de tipo finito associada a S e
K[X]=K[Xo,...,X,) é um anel de polindmios em p+ 1 indeterminadas, 0 epimorfismo
K-algebra A : K[X] — K([S] definido por X; — 1" & homomorfismo de anéis S-graduado
com grau zero. Assim, o ideal primo associado P = kernel(A) (chamado ideal associ-
ado a S) é homogéneo e define uma curva num espaco afim de dimensao p + 1. Herzog
prova em [24] que encontrar um sistema de geradores para P é equivalente a encontrar
uma apresentagdo para S.

Todo o semigrupo numérico S gerado pelo conjunto {no,---,n,} € isomorfo ao
monoide quociente NP*! /& (ver [39]) com 6 uma congruéncia em NP+l Rédei mostra
em [28] que a congruéncia ¢ em NP+1 ¢ finitamente gerada e portanto existe p um
subconjunto de N7+! x NP*! tal que 6 = (p). Ao conjunto p chamamos apresentagéo

para S e dizemos que p é uma apresentagio minimal se nenhum subconjunto préprio

1



2 INTRODUCAO

de p gerar 6. No processo de encontrar uma apresentacdo minimal para ¢ vamos usar
alguma teoria dos grafos. Esta idéia de caracterizar uma apresentacdo minimal em
termos da conexidade de certos grafos foi introduzida por Rosales (ver por exemplo
[30]). Além disso multiplicidade e a dimensdo de imersdo desempenham um papel
fundamental para uma cota médxima de uma apresentagfo minimal para S. De facto em
[32] demonstra-se que o cardinal de qualquer apresentacdo minimal para S € menor ou
igual a L’_O_(_'_"g_—ll —2(np—1—p).

Definimos semigrupo numérico irredutivel como um semigrupo numérico que nio
pode ser expresso como intersec¢do de dois semigrupos numéricos que o contenham
propriamente. Em [25] temos que um anel de semigrupo K[S] é de Gorestin se e
s6 se § € simétrico; e em [5] temos que um anel K[S] é de Kunz se e s6 se S é
pseudo-simétrico. O capitulo 2 € dedicado ao estudo dos semigrupos numéricos ir-
redutiveis e os seus resultados encontram-se em ([35, 36, 37, 38]). Mostramos que S
¢ irredutivel se e s6 se S é maximal no conjunto de todos os semigrupos numeéricos
com nimero de Frobenius g(S). Em [31] € feito o estudo dos semigrupos irre-
dutiveis com ndmero de Frobenius impar. Assim, o nosso objectivo na primeira
seccao ¢ generalizar este estudo para semigrupos numéricos irredutiveis em geral (com
numero de Frobenius par ou impar). Caracterizamos 0s semigrupos numéricos irre-
dutiveis dando especial atencdo aos seus conjuntos de Apéry. Estabelecemos uma
cota para o cardinal de uma apresentacdo minimal para estes semigrupos em termos
da sua multiplicidade e da sua dimensio de imersdo. Estudamos também os semi-
grupos irredutiveis com méxima dimens@o de imersdo. Sabemos que um semigrupo
numeérico pode ser expresso como uma intersec¢do finita de semigrupos numéricos ir-
redutiveis. Donde € natural questionar quando € que um semigrupo numérico pode

ser expresso como intersec¢do de semigrupos numéricos simétricos. Respondemos



INTRODUCAO 3
a esta questdo caracterizando a classe dos semigrupos numéricos que podem ser ex-
pressos como intersecgdo finita de semigrupos numéricos simétricos (chamados ISY-
semigrupos). A partir do conceito de pseudo-nimero de Frobenius damos uma nova
caracterizagdo de ISY-semigrupo e obtemos um método algoritmo para encontrar uma
sua decomposi¢io. Além disto caracterizamos as classes dos semigrupos numéricos
que podem ser expressos como intersec¢do finita de semigrupos simétricos com o
mesmo nimero de Frobenius (chamados ISYG-semigrupos) e com a mesma dimensao
de imersdo (chamados ISYM-semigrupos). Sejam S um semigrupo numérico € r(S) o
menor inteiro positivo tal que S = §;N---NS, com S; semigrupo numérico irredutivel.
Usando novamente o conceito de pseudo-nimero de Frobenius damos uma cota supe-
rior e uma cota inferior para r(S). Com estes resultados caracterizamos os semigru-
pos numéricos que sdo intersec¢do de semigrupos numéricos simétricos e os que sdo
intersec¢do de semigrupos numéricos pseudo-simétricos. Um problema subjacente a
decompor um semigrupo em irredutiveis € encontrar uma decomposi¢ao com o menor
niimero de elementos. Para resolver esta questdo usamos [48] o qual nos descreve um
algoritmo para uma decomposi¢ao minimal em irredutiveis. A finalizar este capitulo
completamos os resultados de [33]. Provamos que se m ¢ e s30 inteiros positivos tal
3 < e < m— 1, entdo existe um semigrupo numérico irredutivel com nimero de Frobe-
nius par tal que m(S) = m e u(S) = e. Esta prova € construtiva e permite-nos obter uma
familia de semigrupos numéricos irredutiveis com niimero de Frobenius par com mul-
tiplicidade e dimensdo de imersdo arbitrdrias. Mostramos ainda que se u(S) > 4, entdo
o cardinal de uma apresentagio minimal para esta familia de semigrupos numéricos €
igual a ;,_@_9)(_,,.%__9)_-_1_)_ -1
No capitulo 3 estudamos o conjunto dos semigrupos numericos com multiplici-
dade m e os seus resultados encontram-se em ([44]). Dado um semigrupo numérico S

com m = m(S), o conjunto de Apéry relativamente a m é o conjunto Ap(S,m) = {s€e



4 INTRODUCAO
S|s—m ¢ S}. Suponhamos w(i) o menor elemento em S congruente com i médulo m

(denotado por w(i) = i(mod m)) com i € {0,...,n— 1}, entdo temos que
Ap(S,m) = {0=w(0),w(1),...,w(m— 1)}

e w(i) = kym + i para algum k; € N. Por outro lado, [32, Lema 3.3] afirma que para
i,je{0,...,m—1}existemt e Neke {0,...,m—1} tal que w(i) +w(j) =tm+w(k).
Partindo destes resultados deduzimos que (4i,.. ., km;}) é solugdo do sistema linear de
inequagdes Diophantino.

x> 1 ie{l,....m—1},

%i+xj—x4;20 1<i<j<m-LlLi+j<m—1,
Xi+xj=Xipjom2>—1  1<i<j<m-1li+j>m.

Estudamos o conjunto das solugdes inteiras positivas de um sistema de equagdes
Diophantino. Mostramos que estas solu¢des podem ser descritas como um conjunto
finito de pardmetros e que estes podem ser calculados algoritmicamente. Neste con-
texto construimos uma bijec¢do entre, S(m), o conjunto dos semigrupos numéricos
com multiplicidade m e o conjunto das solugGes positivas de um sistema linear de
inequag¢des Diophantino. Como vimos anteriormente um sistema linear de inequagdes
Diophantino pode ser descrito por um conjunto finito de pardmetros logo obtemos
descricdo similar para S(m). Em seguida estudamos os MED-semigrupos (semi-
grupos numéricos com maxima dimensdo de imersdo). Mostramos que o conjunto,
MED(m), de MED-semigrupos com multiplicidade m € bijectivo com um sub-
semigrupo de N™~! este surge de uma adaptaciio das inequacgdes do caso anterior
para maxima dimensdo de imersdo. Particularizamos também estes resultados para
o caso dos semigrupos numéricos simétricos. Neste caso 0s sistemas que apare-
cem contém também equagdes lineares e o conjunto dos semigrupos numéricos € a
unido do conjunto das solugdes inteiras ndo negativas dos sistemas deste tipo. Dize-
mos que um semigrupo numérico S tem um conjunto de Apéry monotdénico se

w(l) <w(2) <--- <w(m(S) — 1), com {0,w(1),...,w(m(S) — 1)} = Ap(S,m(S)).
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Finalizamos este capitulo estudando o conjunto C(m) dos semigrupos numeéricos com
conjunto de Apéry monoténico e multiplicidade m. Mostramos que existe uma corre-
spondéncia biunivoca entre o conjunto C(m) e um subsemigrupo de N"-1 finitamente
gerado.

Existem na literatura um grande nimero de resultados referentes ao estudo de
dominios locais analiticamente irredutiveis de dimenso um via os valores de um semi-
grupo (ver [8, 17, 19, 21, 20, 25, 56, 55]). Entre as propriedades estudadas para este
tipo de aneis, a parte das estudadas antcriormehte neste trabalho (Gorestein e Kunz),
focamos as seguintes: maxima dimensdo de imersdo, (ver [1, 5, 14, 15, 50, 51]), Arf
(ver, [26, 49, 16]) e ser saturado (ver, [57, 27, 12]). O capitulo 4 é dedicado ao estudo
das classes dos MED-semigrupos e dois interessantes tipos destes semigrupos: semi-
grupos numéricos Arf e saturados. Quando descrevemos € trabalhamos com os MED-
semigrupos (respectivamente semigrupos numéricos Arf e semigrupos numéricos sat-
urados) usualmente usamos o seu sistema de geradores. Assim, ndo obtemos van-
tagens da estrutura extra MED-semigrupo (respectivamente semigrupo numérico Arf
¢ semigrupo numérico saturado) que tém estes semigrupos numéricos. Comegamos
por demonstrar que a intersecgéo de dois semigrupos numeéricos Arf (respectivamente
saturado) é ainda um semigrupo Arf (respectivamente saturado). No caso dos MED-
semigrupos é necessério fixar a multiplicidade para provarmos que a intersecgio de
dois MED-semigrupos ¢ ainda um MED-semigrupo. Neste contexto, introduzimos
o conceito de MED-sistema de geradores (respectivamente Arf sistema de geradores
e SAT sistema de geradores) e concluimos que qualquer MED-semigrupo (respec-
tivamente Arf semigrupo e saturado semigrupo) admite um dnico MED-sistema de
geradores (respectivamente Arf sistema de geradores e SAT sistema de geradores).
Provamos que se S é um semigrupo numérico Arf (respectivamente saturado) entdo

SU{g(S)} é Arf (respectivamente saturado). Por outro lado, se S é um semigrupo
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nimérico tal que A o seu sistema minimal de geradores Arf (respectivamente satu-
rado), entdo a € A se e somente se S\ {a} € um semigrupo numérico Arf (respecti-
vamente saturado). Em consequéncia deste resultado ordenamos o conjunto de todos
os semigrupos numéricos Arf (respectivamente saturados) numa arvore bindria cuja
raiz € N (no caso saturado sem folhas). No caso dos MED-semigrupos temos que se
S € um MED-semigrupo e g(S) > m(S), entdo SU {g(S)} é um MED-semigrupo; e
se S € um MED-semigrupo com A o seu minimal MED-sistema de geradores, entdo
a €A\ {m(S)} se e somente se S\ {a} é um MED-semigrupo de multiplicidade m.
Andlogamente isto permite-nos ordenar o conjunto dos MED-semigrupos com multi-
plicidade m numa 4rvore cuja raiz € o semigrupo (m,m+1,...,2m — 1). Finalmente,
dado um semigrupo numérico obtemos um método para calcularmos o seu fecho MED,
Arf e SAT, que €, o menor semigrupo numérico MED, Arf e saturado, respectivamente,

que o contém.



Introduction

A numerical semigroup S is a submonoid of (N, +) such that the greatest commbn
divisor of its elements is equal to one. From this definition, one obtains that S admits
a unique minimal system of generators {ng < --- < n,}. We refer to the numbers no
and p+ 1 as the multiplicity and embedding dimension of S, and denote them by m(S)
and p(S), respectively. Moreover N\ § is finite, and the greatest integer not in S is the
Frobenius number of § and it is denoted by g(S). The study of numerical semigroups
is a classical problem, which is equivalent to the study of the sets of natural solutions
of linear equations with coefficients in N (see for instance [9, 10, 52, 54]). From 1970
(see for instance [24, 25, 19]), the study of subsemigroups of N has been motivated
by its applications to Algebraic Geometry. As an example, if K is a field, K [S] is the
finite type K-algebra associated to S and K[X] = K[Xp, ..., X))] is the polynomial ring
in p+ 1 unknowns, the K-algebras epimorphism A ‘K [X] — K|S] defined by X; — 1™
is a S-graduate ring homomorphism with degree zero. Therefore, the prime ideal P =
kernel()) (called the ideal associated to the semigroup) is homogeneous and defines a
monomial curve in the (p + 1)-dimensional affine space on K. Herzog proves in [24]
that finding a system of generators for P is equivalent to finding a presentation for S.

Every numerical semigroup S with minimal system of generators {ng,...,np} is
isomorphic to the quotient monoid \Gad /o (see for instance [39]) where 6 1S a con-
gruence on NP+!. Rédei shows in [28] that the congruence G on NP+ is finitely gen-
erated and therefore there exists p a finite subset of NP*! x NP+! such that 6 = (p).

The set p is called presentation of S. We say that p is a minimal presentation if no

7



8 INTRODUCTION

proper subset of p generates ©. In the process of finding a minimal presentation for
0, it is used some graph theory. This idea of characterizing a minimal presentation in
terms of the connectedness of certain graphs is due to Rosales (see for example [30]).
Furthermore the multiplicity and the embedding dimension play an important role in
order to find bounds for the cardinality of a minimal presentation for S. In fact in [32]
it is shown that the cardinal of any minimal presentation for S is less than or equal to
%no(no —1) —2(np— 1 — p). Bresinsky proves in [11] that an upper bound for the car-
dinality of a minimal presentation of S can not be given by using only the embedding
dimension of .

We say that a numerical semigroup is irreducible if it can not be expressed as an
intersection of two numerical semigroups that contain it propeﬂy. In [25] it is shown
that the semigroup ring K[S] is Gorestein if and only if S is symmetric; and in [5] it is
shown that the semigroup ring K[S] is Kunz if only if S is pseudo-symmetric. From
[S] and [20] we deduce that § is irreducible with odd Frobenius number if only if
S is symmetric; and that § is irreducible with even Frobenius number if only if S is
pseudo-symmetric. Chapter 2 is devoted to the study of irreducible numerical semi-
groups and the results presented there can be found in ([35, 36, 37, 38]). We prove
that S is irreducible if only if S is maximal in the set of all numerical semigroups
with Frobenius number g(S). Rosales in [31] gives us a study of symmetric numerical
semigroups. Our aim in the first section of this chapter is to generalize this study to
irreducible numerical semigroups in general (that is, with even or odd Frobenius num-
ber). We characterize irreducible numerical semigroups giving especial attention to
their Apéry sets. We give an upper bound for the cardinality of the minimal presenta-
tion for this kind of numerical semigroups in terms of their multiplicity and embedding
dimension. We also study those irreducible numerical semigroups with maximal em-

bedding dimension. A numerical semigroup can be expressed as an intersection of
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finitely many irreducible numerical semigroups. Then, it is natural to ask whether
or not a numerical semigroup can be expressed as an intersection of only symmetric
numerical semigroups. We answer this motivating question, characterizing this class
of semigroups that can be expressed as a finite intersection of symmetric semigroups
(called ISY-semigroups). From the concept of pseudo-Frobenius numbers we give a
new characterization of ISY-semigroups and we derive algorithmic methods to find
such decomposition. Moreover we characterize the class of numerical semigroups that
can be expressed as a finite intersection of symmetric numerical semigroups with the
same Frobenius-number (called ISYG-semigroups) and the same multiplicity (called
ISYM-semigroups). Now suppose that S is a numerical semigroup and we denote by
r(S) the least positive integer n such that S =S1N---N S, with S; an irreducible nu-
merical semigroup. Using again the concept of pseudo-Frobenius numbers we give
an upper bound and lower bound for r(S). We will use these results to characterize
those numerical semigroups that are intersection of symmetric numerical semigroups
and those that are intersection of pseudo-symmetric numerical semigroups. A subja-
cent problem for such decompositions in irreducibles is to found a decomposition with
the least possible number of irreducibles. In order to achieve this result we use [48]
which describes an algorithm for computing a minimal decomposition of a numeri-
cal semigroup in terms of irreducible numerical semigroups. Finally, in this chapter,
we complete the results given in [33]. We prove that if m and e are positive integers
such that 3 < e < m— 1, then there exists an irreducible numerical semigroup with
even Frobenius-number such that m(S) = m and u(S) = e. The prove we give is con-
structive and so we can obtain a family of irreducible numerical semigroups with even
Frobenius-number and with arbitrary multiplicity and embedding dimension. Also we
show that if u(S) > 4, then the cardinality of a minimal presentation for any element

: I (S)(u(S)—1
of this family is equal to “——“—2——-1 —1.



10 INTRODUCTION

In Chapter 3 we study the set of numerical semigroups with multiplicity m. The
results presented in this chapter are collected in ([44]). Given a numerical semigroup
and m = m(S), the Apéry set of S with respect to m is the set Ap(S,m) = {s€ S|s—m g
S}. It can be shown that if for every i € {0,...,n— 1} we take w(i) to be the least

element in S congruent with i modulo m (denoted w(i) = i(mod m)), then
Ap(S,m) = {0=w(0),w(1),...,w(m—1)}

and w(i) = k;m+ i for some k; € N. Furthermore, [32, Lemma 3.3] states that for every
i,j€{0,...,m—1} there existr € N and k € {0,...,m — 1} such that w(i) + w(j) =
tm+ w(k). From this fact it can be deduced that (kq,...,kn—1) is a solution of the

system of linear Diophantine inequalities

x> 1 ie{l,....m—1},
Xi+xj—xiy; >0 1<i<j<m-Li+j<m—-1,
Xi+Xj— Xigjom > —1 1<i<j<m=-1i+j>m.

We study the set of nonnegative integer solutions of systems of linear Diophantine
equations. We show that these solutions can be described with a finite set of param-
eters and that the coefficients of these can be computed algorithmically. With this
result we construct a one to one map between the set S(m) of all numerical semi-
groups with multiplicity m and the set of nonnegative integer solutions of a system
of linear Diophantine inequalities. Since the above the system of linear Diophantine
inequalities can be described by a finite set of parameters that can be computed, we
have a similar description of §(m). Next we study MED-semigroups (numerical semi-
groups with maximal embedding dimension) and we show that the set M ED(m) of
MED-semigroups with multiplicity m is bijective with a subsemigroup of N™~! aris-
ing from the adaptation of the above inequalities to the maximal embedding dimension
case. Finally, we particularize these results for symmetric numerical semigroups. In
this setting the systems that appear also contain linear equations and the set of sym-

metric numerical semigroups is a union of the sets of nonnegative integer solutions of
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systems of this type. We say that a numerical semigroup S has monotonic Apéry set
if w(1) <w(2) < --- < w(m(S) — 1), with {0,w(1),...,w(m(S) — 1)} = Ap(S,m(S)).
We finish this chapter studding the set C(m) of the numerical semigroups with mono-
tonic Apéry set and multiplicity m. We show that there is a one-to-one correspondence
between C(m) and a finitely generated subsemigroup of N1

In the literature one can find a long list of works dealing with the study of one
dimensional analytically irreducible local domains via their value semigroups (see for
instance [8, 17, 19, 21, 20, 25, 56, 55]). Among the properties studied for this kind of
ring apart from the one S studied so far in this work (Gorestein and Kunz), we focus
on the following: maximal embedding dimension (see [1, 5, 14, 15, 50, 51]), Arf (see
[26, 49, 16]) and saturated (see [57, 27, 12]). Chapter 4 is devoted to the study of
the class of MED-semigroups and two interesting kinds of these semigroups: Arf and
saturated numerical semigroups. For describing and working with MED-semigroups
(respectively Arf numerical semigroups and saturated numerical semigroups) one can
use their systems of generators (usually this is the case). In this way one does not take
advantage on the extra structure that MED-semigroups (respectively Arf numerical
semigroups and saturated numerical semigroups) have over general numerical semi-
groups. Here we show that the intersection of two Arf (respectively saturated) numer-
ical semigroups is again an Arf (respectively saturated) numerical semigroup. In the
case of MED-semigroups we need to fix the multiplicity to prove that the intersection
of two MED-semigroups is again a MED-semigroup. From this fact we introduce the
concept of MED-system of generators (respectively Arf system of generators and SAT
system of generators) and we will see that every MED-semigroup (respectively Arf
semigroup and saturated semigroup) admits a unique minimal MED-system of gener-
ators (respectively Arf system of generators and SAT system of generators). We show

that if S is an Arf (respectively saturated) numerical semigroup then so is SU {g(8)}
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Furthermore, if S is a numerical semigroup and A it is minimal Arf (respectively SAT)
system of generators then d € A if only if S\ {a} is an Arf (respectively saturated)
numerical semigroup. As a consequence of this result we show that the set of all Arf
(respectively saturated) numerical semigroups can be arranged in a binary tree with
root N (no leaves in the saturated case). For MED-semigroups, we have that if S
is a MED-semigroup and g(S) > m(S), then SU {g(S)} is again a MED-semigroup;
and if S is a MED-semigroup with A its minimal MED-system of generators, then
a € A\ {m(S)} if only if S\ {a} is a MED-semigroup with multiplicity m. This will
allow us to show that the set of MED-semigroups with multiplicity m can be arranged
in a tree whose root is the semigroup (m,m+1,...,2m— 1). We also give a procedure
for computing the MED, Arf and SAT closure for a given numerical semigroup, that
1s, the smallest MED, Arf and saturated numerical semigroup, respectively, containing

it.



CHAPTER 1

Preliminaries

In this chapter we give a brief introduction to numerical semigroups and we fix the
notation used along this work.

We use N and Z to denote the set of nonnegative integers and the set of the integers,
respectively.

A semigroup is a pair (S,+), with $ a non empty set and + a binary operation
defined on S verifying the associative law. If there exists an element ¢ € S such that,
t+s5=s+1=sforall s € S we say that (S,+) is a monoid. This element 7 is usually
referred to as the identity element and it is denoted by 0. In addition, § is a com-
mutative monoid if for all, a,b € S, a+b = b+a. A submonoid of a monoid S is a
subset A of S such that 0 € A and for every a,b € A we have that a+b € A. Given a
subset B of a monoid S , the monoid generated by (B), is the least (with respect to set
inclusion) submonoid of S containing B, which turns out to be the intersection of all
submonoids of S containing B. If S = (B) we say that B is a system of generators of §
or that S is generated by B. Furthermore if S = (B) and there exists no proper subset of
B that generates S we say that B is a minimal system of generators for §. A monoid §
is finitely generated if it has a finite system of generators. A map ¢ : F — S, where F
and S are monoids, is called monoid morphism if @(0) = 0 and ¢(a+b) = @(a) + ¢(d)
foralla,bin F.

A numerical semigroup is a submonoid of N such that the greatest common di-
visor of its elements is equal to one. The following result gives us alternative ways of

defining a numerical semigroup.

13



14 1. PRELIMINARIES
PROPOSITION 1. Let S a submonoid of N. The following conditions are equivalent:
1) S is a numerical semigroup,
2) the group spanned by S is Z,
3) N\ S is finite.

Then it makes sense to take into account the greatest element of Z not in S. We
call this element Frobenius number of S and denote it by g(S). |

Suppose that A = {a,...,am} C Nand m € N\ {0} are such that a; # a;(mod m)
forall 1 <i< j<m. Wesay that A is a complete system modulo m. For n € §\ {0},

we define the Apéry set of n in S (see [4]) as the set
Ap(S,n)={xeS|x—n¢S}.
Next result follows easily.

PROPOSITION 2. Let S be a numerical semigroup and let n € S\ {0}. Then

Ap(S,n) is a complete system modulo n.
Hence #Ap(S,n) = n (where #A stands for cardinality of A).

LEMMA 3. Let S be a numerical semigroup and let n € S\ {0}. Then:
(1) g(S) = max(Ap(S,n)) —n,
(2) S = {{n}UAp(S,n)),

max(A) denotes maximum of A.

As a consequence of the above lemma every numerical semigroup S is finitely
generated. Clearly S has a unique minimal system of generators. Assume that {ng <
ny < --- < np} is a minimal system of generators of S, we refer to the numbers ng (the
least integer in S\ {0}) and p + 1 (cardinality of its minimal system of generators) as
the multiplicity and embedding dimension of S, and denote them by m(S) and u(S),

respectively.
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A binary relation ¢ on a monoid S is an equivalence relation if the following

properties hold:

1. foralla € S, a ¢ a (reflexive),
2. foralla,b € S, if a 6 b then b 6 a (symmetric),

3. forall a,b,c € S, if a6 b and b G ¢, then a © c (transitive).

In addition, if & is an equivalence relation such that @ ¢ b implies that a+c & b+ ¢ for
all ¢ € S we say G is a congruence on S. An alternative notation for a 6 b is (a,b) € ©.
For p a subset of N” x N”, there always exists the smallest congruence (p) contain-
ing p, which can be described in three steps:
1. pP=puUp~int, where p~! = {(v,w) | (w,v) €p},and T= {(w,w) [wE N"},
2. pl = {(v+u,w+u) | (vw) € p° andu € N'},
3. (v,w) € (p) if there exist vo = Vv,...,vx = w With (v;,viy1) € p! forallic
{0,...,k—1}.
We also refer to the congruence {p) as the congruence generated by p.
Let F = {aoXo+ -+ apXp | ao,...,ap € N} be the free commutative monoid

generated by {Xo,...,X,} and let ¢ : F — § be the monoid epimorphism defined by
o(aoXo+ -+ +apXp) = aono+- - +aphp.

It is well known that if & is the kernel congruence of @ (that is, xoy if @(x) = @(y)),
then S is isomorphic to the quotient monoid F /o (see [39]). Rédei shows in [28] that

the congruence G is finitely generated and therefore there exists

p= {(xh}'l),---,(xn)’r)} _C_ FxF

such that o is the congruence on F generated by p. The set p is called a presentation
for the numerical semigroup S. We say that p is minimal presentation if no proper
subset of p generates ©. In fact the concepts of minimal presentation and presentation

with the lowest cardinality coincide for a numerical semigroup (see for instance [30]).
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Let S be a numerical semigroup with minimal system of generators {ng < n; <
.-+ < np} and consider again @ : F — § defined as above. Denote by o the kernel
congruence of @ and, for n € S\ {0}, denote by [n] = {x € F | ¢(x) = n} (the inverse

image of n by @). We define in [n] the following equivalence relation R :
aoXo+---+apXp R boXo+ - +bpX,

if there exist elements

ko, Xo+ -+ +k0po,k10X0+ . -+k1po,' ki Xo+ - +k;,Xp € [7]

- such that
aoXo+ -+ - +apXp = kogXo + - - - + ko, Xp

and
boXo+ - +bpXp =kjoXo+ - +k;, X

and kjpkit1y+ -+ ki kiy1, #0forallie {0,...j—1}.

Let X be a set, P = {X,...,X;} be a partition of X and YC X x X be a binary
relation on X. We define the graph Gy associated to y with respect to the partition P
as a graph whose vertices are the elements in P and X;X;, with i # j, is an edge of G,
whenever there exist x € X; and y € X; such that (x,y) € YUy~ 1.

The following results can be found in [30].

PROPOSITION 4. Let n € S be and let P = {X;,...,X,} be the set of R -classes
contained in [n]. If Y is a presentation of S, and ¥, = Y ([n] x [n]), then the graph

associated to Gy, with respect to the partition P of |n] is a connected graph.

PROPOSITION 5. Let y be a subset of ¢ such that Gy, is connected for all n € S.

Then v is a presentation for S.

With these two results together, we obtain the following theorem.
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THEOREM 6. Let ¥ be a subset of 6. Then v is presentation of S if only if Gy, is

connected forallne€S§.

Now we show how a minimal presentation of a numerical semigroup can be com-
puted from its minimal system of generators.

For n € S define the graph G, with vertices V,, and edges E, as

Vo = {n; € {no,...,np} | n—n; € S},
E, = {mmj |n— (ni+n;) €8,i,j €{0,...,p},i # j}.

The next result illustrates the connection between R -classes and the graphs Gp.

PROPOSITION 7. ([30]) For every n € S\ {0}, there is a bijective map between the

set of connected components of G, and set of R -classes of [n].

For every n € S, define v, as

1) If G, is not connected and G} = (V,E}),...,G}, = (V,,E;) are its connected
components, then for each i € {1,...,r} we choose a vertex n; € Vi and an element
a; = (ao,...,ap) such that (o) = n and a;, # 0; set ¥, = {(oy,02),...,(01,0) }.

2) If Gy, is connected, set y, = 0.

Using the above results we have the following statement.
THEOREM 8. ([30]) The set Y= UneNYn is a minimal presentation of S.

Therefore, the main idea for computing a minimal presentation of a numerical
semigroup S consists in finding the elements in S such that the graph G, is not con-

nected. Next result shows that G, is not connected only for finitely many n € S.

THEOREM 9. ([30]) Let {ng < ny < --- < np} be a minimal system of generators
of the numerical semigroup S. If G, is not connected for n € S, then there exist w €

Ap(S,n)‘\{O} and j€{1,...,p} suchthatn=w+n;.
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And since g(S) +no = max(Ap(S,np)) then there are at most g(S) + no + n,, ele-
ments of the form w+n; withw € Ap(S,np) and j € {1,...,p}.



CHAPTER 2

Irreducible numerical semigroups

In this chapter, we study irreducible numerical semigroups. From [20] and [5], we
deduce that the class of irreducible semigroups with odd (respectively even) Frobenius
number is the same as the class of symmetric (respectively pseudo-symmetric) nu-
merical semigroups. This kind of numerical semigroups have been widely studied in
literature, not only from the semigroupist point of view, but also by their applications
in Ring Theory. In [25] it is shown that the semigroup ring associated to a numerical
semigroup S (K[S] = ®yesKyy) is Gorestein if and only if § is irreducible with odd
Frobenius number; and in [5] it is shown that the semigroup ring K [S] is Kunz if only
if S is irreducible with odd Frobenius number.

Section 1 is devoted to characterize irreducible numerical semigroups paying spe-
cial attention to their Apéry sets.

In Section 2 we give an upper bound for the cardinality of a minimal presentation
for an irreducible numerical semigroup, in function of their multiplicity and embed-
ding dimension. Finally, in this section, we study those irreducible numerical semi-
groups with maximal embedding dimension.

In Section 3, from the concept of pseudo-Frobenius number of a numerical semi-
group, we characterize the class of numerical semigroups that can be expressed as
an intersection of irreducible numerical semigroups with odd Frobenius number (that
is, symmetric). We construct algorithms for decompositions in symmetric numerical

semigroups in general, and then we study the problem of finding such decompositions

19
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with the restriction that all symmetric numerical semigroup S involved have the same
Frobenius number or multiplicity.

We know that every numerical semigroup can be expressed as a finite intersection
of irreducible numerical semigroups. In Section 4, we give lower and upper bounds
for the minimal number of irreducibles in such decompositions. Associated to the
problem of finding a decomposition into irreducibles with the same Frobenius number,
we introduce and study the concept of atomic numerical semigroup. Finally, we use the
results given in [48] to describe an algorithm for computing a minimal decomposition
of a numerical semigroup in terms of irreducible numerical semigroups.

In Section 5, we construct families of irreducible numerical semigroups with even
Frobenius number, for arbitrary multiplicity m(S) and embedding dimension u(S).
Furthermore, we show who are the presentation with minimal cardinality for this fam-
ily of numerical semigroups. This section complete the results given in [33], to the

case of families of irreducible numerical semigroups with odd Frobenius number.

1. Symmetric and psendo-symmetric numerical semigroups

In this section we characterize and study symmetric and pseudo-symmetric numer-
ical semigroups. Separately, we study semigroups of this kind with multiplicity 3 and
4.

Throughout this section S denotes a numerical semigroup, such that S # N. It is
well known (see for instance [32]) that SU {g(S)} is also a numerical semigroup.

A numerical semigroup S is irreducible if it can not be expressed as an intersection
of two numerical semigroups containing it properly.

From this definition we have the following characterization of irreducible numeri-

cal semigroup.

THEOREM 10. The following conditions are equivalent:
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1) S is irreducible,
2) S is maximal in the set of all numerical semigroups with Frobenius number
g(S),
3) S is maximal in the set of all numerical semigroups that do not contain g(S),

where the order taken is set inclusion.

PROOF. 1) = 2)Let S be a numerical semigroup such that S C S and g(S) = g(5)-
Then S = (SU{g(S)})NS. Since S is irreducible, we deduce that § = S.

2) = 3) Let S be a numerical semigroup such that § C S and g(S) ¢ S. Then
Su{g(S) +1,g(S) +2,...} is a numerical semigroup that contains S with Frobenius
number g(S). Therefore, S = SU{g(S)+1,8(S)+2, -} and s0.S = S.

3) = I)Let S1 and S, be two numerical semigroups that contain S properly. Then,

by hypothesis, g(S) € S1 and g(5) € S2. Therefore S # S1 NS and so S is irreducible.
4

Using [20] and [5] we deduce the next result.

PROPOSITION 11. 1) If g(S) is odd, then S is irreducible if and only if for all
h,h € Z, such that h+ W = g(S), we have that either h € S or K €8 (that is, S is
symmetric).

2) If g(S) is even, then S is irreducible if and only if for all h,h € Z\ { g_gzs_)} such

that h+ K = g(S), we have that either h € S or W € S (that is, S is pseudo-symmetric).
The following result is also well known (see [4], [11] or [31]).

PROPOSITION 12. Let n € S\ {0} with Ap(S,n) = {0 = w(l) < w2) < - <
w(n)}. Then S is irreducible with odd Frobenius number (that is, S is symmetric) if

and only if w(i) +w(n—i+1) =w(n) foralli € {1,...,n}.
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PROOF. Fori€ {1,...,n} as w(i) € Ap(S,n) then w(i) —n ¢ S and, by Proposition
11, we obtain that w(n) —w(i) = g(§) — (w(i) —n) € S. We have that w(n) —w(i) €
Ap(S,n) because w(n) € Ap(S,n).
]

Now we see how is Ap(S,n) when S is irreducible with an even Frobenius number.

LEMMA 13. If S is irreducible with even Frobenius number and n € S\ {0}, then

&5 1 ne Ap(S,n).

PROOF. It is enough to prove that E(Zﬂ +n €S, since g—(z-s—) ¢ S, but this follows from

Proposition 11 (note that (5(5_5—) +n)+ (g(zi) —n)=g($)). O

PROPOSITION 14. Let S be a numerical semigroup with even Frobenius number

and let n € S\ {0}. Then S is irreducible if and only if

Ap(S,n)={0=w(l) <w(2)<...<whn-1)= g(S)+n}U{%92 +n}

andw(i) +w(n—i)=w(n—1) forallie {1,...,n—1}.

PROOF. First note that if g(S) is even, then g(zﬂ +n € Ap(S,n) and 51;—) +n<
max Ap(S,n). If i€ {1,...,n—1}, thenw(i) —n ¢ Sand w(i) —n # @. By Proposi-
tion 11, we have that g(S) — (w(i) —n) € S and thus w(n— 1) —w(i) = g(S) +n—w(i) €
S. Since w(n — 1) € Ap(S,n) we deduce that w(n — 1) — w(i) € Ap(S,n). Furthermore
wn—1)—w(i) # g_(2§) +n because otherwise we would have w(i) = %Q. Hence the
reader can check that w(i) + w(n — i) =w(n—1).

Conversely, let x be an integer such that x # %S) and x ¢ S. Let us show that
g(S) —x € S. Take w € Ap(S,n) such that w = x(mod n). Then x = w — kn for some
k € N\ {0}. We distinguish two cases.
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(1) Iw= 5+, then g() —x = g(S) — (B2 +n—kn) = & + (k— 1)n. Be-
sides, x # 5-(2§—)— leads to k # 1 and therefore k > 2. Hence we can assert that
g(S)—xe€S. |
@) I w# & 4 n, then g(S) —x = g(S) — (w—kn) = g(S) +n—w+ (k—1)n=
w(n—1)—w+ (k—1)n € S, since w(n — 1) —w € S by hypothesis.
O

Note that if S has embedding dimension two, then S is irreducible with odd Frobe-
nius number (that is, S is symmetric); in fact S is a complete intersection (see [24]).

Observe also that u(S) < m(S) for every numerical semigroup S.

PROPOSITION 15. Let S be an irreducible numerical semigroup.
1) If g(S) is odd and m(S) > 3, then pu(S) < m(S) — 1.
2) If g(S) is even and m(S) > 4, then u(S) < m(S) — L.

PROOF. 1. Suppose that S is a symmetric semigroup with minimal system of
generators {m(S),n1, - ,nys)-1} then {0 <np <--- < nys)-1} S Ap(S,m(S)) and
ny(s)—1 # W (n). Hence u(S) < m(S) — 1. 7

2. Tt is enough to prove that u(S) # m(S). If u(S) = m(S), then § is minimally

generated by {m(S),n1,...,nm(s)—1} and therefore Ap(S,n) is of the form
S
Ap(S,n)={0<nm << Nm(s)—1}U{m = —g—(z—)-+m(S)}.
Since m(S) — 1 > 3 then ny # ny # ny(s)—1- By Proposition 14 we deduce that

Rin(s)—1 — N2 € S, which contradicts the fact that {m(S),n1,...,Ay(s)~1} is a minimal

system of generators for S. ]

Note that S = (3,7, 11) is an irreducible numerical semigroup with Frobenius num-
ber g(S) = 8 (it is easy to see that 8 belongs to every numerical semigroup that properly
contains S). That is why in 2) of the above proposition we need that m(S) > 4 instead

of m(S) > 3.
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Using 1) and 2) of the above proposition we can assert that if S is an irreducible
numerical semigroup with rh(S) > 4, then p(S) <m(S) - 1.

Next we study irreducible numerical semigroups with multiplicity 3 and 4. By the
remark made after Proposition 14, we know that if u(S) = 2, then S is irreducible.
Recall also, that from Proposition 15, if m(S) = 4 and S is irreducible then u(S) < 3.

Therefore, we focus our study in the cases:

1) § is trreducible with m(S) = u(S) =3,
2) §Sis irreducible with m(S) = 4 and u(S) = 3.

THEOREM 16. The following conditions are equivalent:

1) S is an irreducible numerical semigroup with m(S) = u(S) =3,
2) S is generated by {3,x+3,2x+ 3} with x a positive integer not a multiple of
3.

PROOF. 1) = 2) If m(S) = u(S) = 3, then {3,n;,n2} is a minimal system of gen-
erators for S. From Proposition 15 we deduce that g(S) is even and by Proposition 14
we have that

Ap(S,3) ={0,n; = g—(z‘g) +3,n = g(S)+3}.
Taking x = _g_(zﬂ we have that n; = x+ 3 and ny = 2x+ 3. Furthermore, x = 5(21) ¢S
and thus x is not a multiple of 3.

2) = 1) Clearly {3,x+3,2x+ 3} is a minimal system of generators for S and thus

m(S) = pu(S) = 3. We have that Ap(S,3) = {0,x+3,2x+3}. Hence 2x+3 = g(S5) +3

and therefore g—(z‘ﬂ + 3 =x+3. From Proposition 14 we deduce that S is irreducible. O

The semigroup S = (3,3 +x,2x+ 3) is a MED-semigroup (MED stands for Maxi-
mal Embedding Dimension, that is a numerical semigroup with u(S) = m(S)). Apply-

ing the results obtained in [32] we deduce that a minimal presentation for S is:

p = {(2X1, X0+ X2), (2X2,xXo + X1), ((x+ 1)Xo, X1 + X2) }.
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Now we study irreducible numerical semigroups with multiplicity 4. We distin-

guish two cases taking into account that the Frobenius number can be odd (a symmetric
semigroup) or even (a pseudo-symmetric semigroup).

Herzog proves in [24] that a numerical semigroup S with minimal system of gener-

ators {ng,n1,nz} is irreducible with an odd Frobenius number (i.e. symmetric) if and

onlyifitisa complete intersection. Applying the results obtained in [19] this occurs

if and only if n; € ( T ) for some {i, j,k} = {0, 1,2}, where (n;,n;) denotes

nnk

the greatest common d1v1sor (gcd for short) of nj, ng.

THEOREM 17. The following conditions are equivalent:

1) S is an irreducible numerical semigroup, g(S) is odd, m(S) = 4 and u(S) =3,
2) S is a numerical semigroup generated by {4,2x,x+ 2y} with y € N\ {0} and

x an odd integer greater than or equal to 3.

PROOF. 1) = 2) If m(S) = 4 and p(S) = 3, then {4,n1,n2} is a minimal system of

generators for S. From the previous remark we only have distinguish two cases.

a) Assume that d = gcd{4,n;} and ny € (3,%). Notice that d = 2 and

= 2x with x an odd number greater than or equal to 3. Furthermore

1 = gcd{4,n1,n2}, then ny is an odd number and n; € (2,x) thus np = x+2y
(because all odd numbers in (2,x) are of this kind).

b) Assume that d = ged{n1,n2} and 4 € (},%). From here we deduce that

ny = 2d, ny = kad with k; odd and d an odd integer greater than or equal

to 3. Therefore, ny = d + (k — 1)d with (k2 — 1)d even. Taking x = d and

= Q‘l}l)—‘{ we obtain the desired result.

2) = 1) Clearly, 2 = gcd{4,2x} and x+2y € (%, %x—) By remark made before this

~ theorem we have that S is an irreducible numerical semigroup with an odd Frobenius

451\ .
£
-
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number. Now, we need to show that {4,2x,x+ 2y} is a minimal system of generators
for S, but this is clear because:
1) x+2y ¢ (4,2x), since x+ 2y is odd,
2) 2x ¢ (4,x+2y), since if 2x = a4 + b(x+ 2y) with a,b € N, then applying that
2x is an even integer not multiple of 4 and that x + 2y is odd, we deduce that

b > 2, contradicting that 2(x + 2y) > 2x.

O

The semigroup S = (4,2x,x+ 2y) has Frobenius number g(S) = 3x+ 2y — 4. Fur-
thermore using that it is a complete intersection we deduce that a minimal presentation
for § is:

p = {(2X1,xXo), (2X2,yX0 + X1)}.
Finally, we study irreducible numerical semigroups S for which g(S) is even,

m(S) =4 and u(S) = 3.

THEOREM 18. The following conditions are equivalent:

1} Sis an irreducible numerical semigroup, g(S) is even, m(S) =4 and u(S) =3,
2) S is generated by {4,x+2,x+4} with x an odd integer greater than or equal

to 3.

PROOF. 1) = 2)If m(S) =4 and u(S) = 3, then {4,n;,n3} is a minimal system of
generators for §. From Lemma 13 we know that @ +4 € Ap(S,4). We distinguish

two cases.

a) If @ +4 is a minimal generator then, by Proposition 14, we deduce that
_ _ &5 _
Ap(Sv4) - {0,”1 - —'2—' +4’n272n2 - g(S) +4}

Taking x = @, then n; = x+4 and n; = x+ 2. Furthermore g(S) ¢ S and

therefore x is odd.



2. MINIMAL PRESENTATIONS FOR IRREDUCIBLE NUMERICAL SEMIGROUPS 27

b) If %S—) + 4 is not a minimal generator, then

S
Ap(S,4) = {0,n],n2, -g-(z—) +4}.

Hence g(S) +4 = n; or g(S) +4 = ny. Suppose that g(S) +4 = n; then, by
Proposition 14, we deduce that n; —n € S, contradicting that {4,n,n2} is a

minimal system of generators.

2) = 1) Clearly, {4,x+2,x+4} is a minimal system of generators of S, whence

m(S) = 4 and u(S) = 3. The reader can check that
Ap(S,4) = {0,x+2,x+4,2x+4}.

Therefore g(S) = 2x and then

Ap(s.4) = (0.8 44 BI2 (5 4y,

Using Proposition 14 we obtain that § is irreducible. g

Note that § = (4,x+2,x+4) has Frobenius number 2x. Applying [24] and that
this semigroup is not symmetric (therefore it is not a complete intersection), we can

deduce that a minimal presentation for § is:
p = {(2X2, X0 +2X1), (3X1,kXo + X2), (1X0, X1 + X2) }

with k = 2652-034) gnq ;= EH26H2) Obgerve that 3(x+2) — (x+4) is a multiple
of 4 if and only if x is odd, and (x+4) + (x+2) is a multiple of 4 if and only if x is
odd.

2. Minimal presentations for irreducible numerical semigroups

Our aim in this section is to give an upper bound for the cardinality of a minimal
presentation of an irreducible numerical semigroup. We particularize these results for

irreducible numerical semigroups with maximal embedding dimension.
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Let S be a numerical semigroup with minimal system of generators {rg < n; <
-++ < np}. In [32] it is shown the following result (#MRS denotes the cardinality of a

minimal presentation for S).

PROPOSITION 19. Let S be defined as above. Then

(no—1)
2

#MRS < 22 —2(no— 1~ p).

In [31] this bound is improved in the case S is irreducible with odd Frobenius

number. In fact, the following result is given there.
PROPOSITION 20. If S an irreducible semigroup with odd Frobenius number, ny >
3and p > 2, then

#MRS < 1+ (p+2—no).

(no—2)(mo—1)
2

Now we prove the analogue to this result for S an irreducible semigroup with even
Frobenius number.

From [32] we can deduce the following result.

PROPOSITION 21. Let S be an irreducible numerical semigroup with g(S) even and
p > 3. If {no,m,...,np,g(S)} is a minimal system of generators for ' = SU{g(S)},
g(S) > no and n; and ng are in the same connected component of Gg(s)ny+n; fOr all
ie€{l,...,p}, then

#MRS + p+2 = #MRS'.

Applying Proposition 14 and using that p > 3 we deduce that g(S) +no > n;+n; for
some i, j € {1,...,p} and therefore g(S) > ng. Furthermore, {ng,n1,...,n,,8(S)}isa
minimal system of generators for S’ = SU{g(S)}, since otherwise we would deduce

from [32] that n,, = g(S) + no, which contradicts Proposition 14 for p > 3.
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LEMMA 22. Let S be an irreducible numerical semigroup with g(S) even and p >

3. Ifie {1,...,p}, w€ Ap(S,no) and ny and n; are in different connected components

0f Gyyin;, then for allw' € Ap(S,no) such that w—w' € S\ {0} we have that w' + n; €
Ap(S,ng)

PROOF. Suppose that w' +n; ¢ Ap(S,no), thenw’ +n;—np € S. Let s € S\ {0} be .
such that w=w'+sand j € {0,...,p} such thats—n; € S. Then, w+n; — (n;+n;) €S
and w+ n; — (nj+ng) € S. Therefore A7, TijAg € Ew4n; and so n; and ng are in the

same connected component of Gyn;. o

LEMMA 23. Let S be an irreducible numerical semigroup with g(S) even and p >

3. Ifie {l,..., p}, then ng and n; are in the same connected component of Gg( S)+no+n;-

PROOF. Suppose that np and n; are in two different connected components of
Gg(s)4no+n;- LEL J € {1,...,p} be such that n; # 8_(2-9. +ng and n; # n; (this is possible
because p > 3). By Lemma 22 and Proposition 14 we deduce that g(S)+no—nj+n; €
Ap(S,no).

Observe that g(S) +no—n;+n; = g%-ﬁl + ng, since otherwise using Proposition 14
we would obtain that g(S) +no — (g(S) +no — nj+n;) € S and therefore n; —n; € S,
contradicting that {no,...,n,} is a minimal system of generators for §.

Let us observe that n; # 5(%) + np because otherwise we would deduce, from g(S) +
no—nj+n;= @ +ng, that n; = g(S) + ng and applying Proposition 14 we can assert
that S = (no, g—(;-)- + ng, g(S) + no), which contradicts that p > 3. Now assume that

Ap(S,np) = {0=w(1) <--- <w(ng—1)}U {g(z—s) +np}. We distinguish two cases.

D If g—(js-l +ng € {n1,...,np}, then from Proposition 14 and Lemma 22 we have

that

w(1)+n; = w(2),w(2) +n; =w(3),...,w(no—2) +ni = wlno— 1).
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Hence,
S
Ap(S,ng) = {0,n;,2n;,...,(ng—2)n;} U {_g_(z_) +ng}

and thus S = (ng, n;, g_(;l +ng), a contradiction because p > 3.
2) If g(z—s) +ng ¢ {n1,...,np}, then again from Proposition 14 and Lemma 22 we

obtain that

g(S)

Ap(S,ng) = {0,n;, ... kn; = ——2——+no,nj,nj+ni,...,nj+tni = g(8) +no}

for some k,t € N. Therefore, S = (no,n;,n;), in contradiction again with
p=>3.

O

PROPOSITION 24. Let S be an irreducible numerical semigroup with g(S) even
and p > 3. Then

no—2)(mo—1)

#MRS < ( >

1+ (p+2—np).

- PROOF. Applying Lemma 23 and Proposition 21 we deduce that #MRS =
#MR(SU{g(S)}) — (p+2). From Proposition 19 we have that

#R(sU{g(9)}) < 0D o1 p-1)

Hence,

—2)(ng~1
#mRs < 0 )2(”0 )—1+(P+2——n0).

From Propositions 24 and 20 we can obtain the following result.

THEOREM 25. If S is an irreducible numerical semigroup with u(S) > 4, then

(m(S) —2)(m(S) - 1)

#MRS <
S< 2

— 14 (u(S)+1—-m(S)).
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Note that if u(S) = 2, then #MRS = 1 and if u(S) = 3, then #MRS = 2 or 3 depend-
ing on the parity of g(§) (see[24]).
A MEDI-semigroup (irreducible semigroup with maximal embedding dimension)
is an irreducible semigroup with multiplicity m > 5 and embedding dimension m — 1.
Remember from Proposition 15 that if § is irreducible and m(S) > 5, then u(S) <
m(S) — 1 and this is why we use the name MEDI-semigroup.

If S = (m(S),n1,...,nm(s)-2) is a MEDI-semigroup, then

Ap(Sa m(S)) = {O)nl’ ser anm(S)—Zag(S) + m(S)}
Moreover, from Propositions 12 and 14 we can deduce that g(S) +m(S) = n; +n; with
i,j€{1,...,m(S)—2} and i # j. Applying now [40, Theorem 1] we get that

(m(8) —2)(m(S) — 1)
2

#MRS = -1

Note that for m(S) € {3,4}, the previous formula is not true (for this reason in the
definition of MEDI-semigroup we need that m(S) > 5). In fact, for m(S) = 3 applying
the previous formula, we have #MRS = 0 but we know that a minimal presentation
for (3,n;) has cardinality 1. For m(S) = 4 applying the previous formula, we have
#MRS = 2 and we know that in this class there are semigroups with minimal presen-
tation of cardinality 3 (see the remark after Theorem 18). If Sis a MEDI-semigroup
with g(S$) odd, then S is a MEDSY-semigroup according to the terminology used in
[31].

THEOREM 26. If S is an irreducible numerical semigroup with u(S) > 5, then the

following conditions are equivalent:

1) S is a MEDI-semigroup,
2) #MRS = <m(S)—2)2(m(S)_1) _1
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PROOF. 2) = I) Since u(S) > 4, by Theorem 25 we know that

(m($) —2)(m($) — 1)
2

#MRS < - 14+ (u(S)+1—-m(S)).

Since

=-2)(m(S)-1)
2

we get that 4(S) = m(S) — 1 and therefore S is a MEDI-semigroup.

#MRs = (0O)

_1,

1) = 2) Proved already (see the beginning of this section). O

The next result appears in [31].

LEMMA 27. Let A = {0 =w(1),w(2),...,w(m)} C N be a complete system mod-
ulo m, and let S be a numerical semigroup generated by AU{m}. Then Ap(S.m) =A if
and only if forall 1 <1i,j < mthereexist 1 <k <mandt € N such that w(i) +w(j) =

w(k) +tm.

PROPOSITION 28. If S is an irreducible numerical semigroup with m(S) > 5 and

Ap(S,m(S)) = {0=w(1) <w(2) <--- <w(m(5))},
then the semigroup S' generated by
{m(S),w(2) + m(S),...,w(m(S) — 1) + m(S)}

is a MEDI-semigroup.

PROOF. In [31, Proposition 2.4] it is proved that {m(S),w(2) +
m(S),...,w(m(S) — 1) + m(S)} is a minimal system of generators for §'. Fur-
thermore, in that proposition it is also shown that if S is symmetrié, then S is

MEDSY-semigroup. Therefore it is enough to prove that if S is irreducible with g(S)

even, then §' is irreducible. From Lemma 27 we obtain that

Ap(S',m(S)) = {0 < w(2) +m(S) < --- < w(m(S) — 1) + m(S)

< w(m(S)) +2m(S)}
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and, by Proposition 14, we get that §' is irreducible. O

As a consequence of the previous proof we have that g(S') = g(S) +2m(S).

PROPOSITION 29. If S is a MEDI-semigroup with a minimal system of genera-
tors {m(S) < ny < --- < ny(s)—2}, then the semigroup S’ generated by {m(S),n; —

m(S),...,Am(s)—2 — m(S)} is irreducible.

PROOF. In [31, Propositon 2.5] it is proved that if S is a MEDSY-semigroup then
S’ is symmetric. Therefore, it is enough to prove that if § is a MEDI-semigroup with
g(S) even, then §' is irreducible.

Assume that nj = g_(z.S) +m(S) and
Ap(S,m(S)) = {0,71,+* , im(5)—2, &(S) +m(S) = 11 + Nin(s)—2}-
Using Lemma 27 it is easy to prove that
Ap(S’,m(S)) = {0,n1 —m(S)," -, Am(s)—2 — M(S), &(S) —m(S)}.
From Proposition 14 we conclude that §' is irreducible (note that g(8") = g(S) —2m(S)
and nj —m(S) = £+ m($)). O

Applying Propositions 28 and 29 we obtain the following result.

THEOREM 30. There is a one to one correspondence between the set of irreducible
numerical semigroups with Frobenius number g and multiplicity m 2 5, and the set
of MEDI-semigroups with Frobenius number g +2m, multiplicity m and the rest of

minimal generators greater than 2m.

PROOF. Let M (g, m) be the set of irreducible numerical semigroups with Frobe-
nius number g and minimum minimal generator m, and let MEDI (g+ m,m) be
the set of irreducible numerical semigroups with Frobenius number g + 2m, minimum

minimal generator m and the rest of minimal generators greater than 2m.
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Let ¢ : M(g,m) — MEDI(g + m,m) be the map defined by: for S €
M (g, m) with Ap(S,m) = {0=w(l),...,w(m—1),w(m)} we make 0(S) = (m,w(2)+
m,...,w(m—1)+m). As a consequence of Proposition 28 we have that ¢ is a well

defined map and, by Proposition 29, we conclude that ¢ is a bijective map. d

3. Numerical semigroups that can be expressed as an intersection of symmetric

numerical semigroups

We say that a numerical semigroup is an ISY-semigroup if it can be expressed as
a finite intersection of symmetric numerical semigroups. We start by proving Theo-
rem 34 which gives a characterization for this kind of semigroup. Later we see that
this result can be improved (see Theorem 45) and for this we introduce the concept
of pseudo-Frobenius number. We also characterize numerical semigroups that can be
expressed as an intersection of symmetric numerical semigroups with the same Frobe-
nius number (ISYG-semigroups) and with the same multiplicity (ISYM-semigroups).

From Theorem 10 and Proposition 11 we deduce the following result.

LEMMA 31. Let g be an integer number and S(g) the set of all numerical semi-
groups with Frobenius number g. Then S € S(g) is symmetric if and only if g is odd

and S is maximal with respect to set inclusion in S(g).
In order to prove Theorem 34 we introduce the following lemmas.

LEMMA 32. If S is a numerical semigroup and x is an odd positive integer not in

S, then there exists a symmetric numerical semigroup S such that S C S and g(§) = x.

PROOF. Let ' = SU{x+1,x+2,...}. Clearly, S’ is a numerical semigroup and
g(8') = x . Let S be a maximal semigroup in $(x) such that ' C §. By Lemma 31 we

can deduce that S is symmetric with Frobenius number x and contains S. a
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LEMMA 33. Let S be a numerical semigroup and let x be an even positive integer

not in S. Then, the following conditions are equivalent:

1) there exists a symmetric semigroup S such that S C S and x & S,

2) there exists an odd positive integer y such that x+y & (S, y).

PROOF. 1) = 2) Let y = g(5) — x. Since x is even and g(S) is odd, we have that
y is odd (note that, by Lemma 31, the Frobenius number of a symmetric semigroup is
always odd). Furthermore, y = g(5) —x € S, since x ¢ S and § is symmetric. Hence,
(S,y) C S and thus x+y = g(S) & (S,).

2)=I)LetS' =(S,y)U{x+y+1,x+y+2,...}. Then §' is a numerical semigroup
with odd Frobenius number x+y. Using Lemma 32 we deduce that there exists a sym-
metric semigroup S such that S’ C S and g(S) = x+y. Then S C § and x ¢ S, because

otherwise, since y € S, we would obtain that g(5) = x+y € S, which is impossible. [

THEOREM 34. Let S be a numerical semigroup. The following conditions are

equivalent:

1) S is an ISY-semigroup,
2) for every even positive integer x € S, there exists an odd positive integer y

such that x+y & (S, y).

PROOE. 1) = 2) Let x be an even positive integer such that x ¢ S and let S be
a symmetric numerical semigroup such that S C S and x ¢ S (the existence of S is
guaranteed because S is ISY-semigroup). Applying Lemma 33 we deduce that there
exists an odd positive integer y such that x+y & (S, y).

2) = 1) If x is an odd positive integer such that x ¢ S, then let Sy be a symmetric
numerical semigroup with S C S, and g(Sx) = x (Lemma 32 guarantees the existence

of 5,). If x is an even positive integer such that x ¢ S then, by Lemma 33, we deduce
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that there exists a symmetric numerical semigroup S, fulfilling that S C S, and x & S,.

Finally, it is clear that § = NyggSy. O

The next result has an immediate proof.

LEMMA 35. Let S,S1,...,S, be numerical semigroups such that S = S1N...NS,.
Then g(S) = max{g(S1),...,8(Sn)}-

As a consequence of this lemma and from the fact that the Frobenius number of a

symmetric numerical semigroup is always odd, we get the next result.
LEMMA 36. If S is an ISY-semigroup, then g(8S) is odd.
We can see, with the following example, that the converse of this result is not true.

EXAMPLE 37. If S = (4,5,6,7), then g(S) = 3. Now we see that S is not an ISY-
semigroup and for this we use the Theorem 34. In fact, 2 &€ S (2 is even) and for every

odd positive integer y we have that 2+y € (S, y). O

Arguing as in this example and using Lemma 36, the reader can check the follow-

ing result.

PROPOSITION 38. If m > 3, then S= (mm+1,...,m+ (m— 1)) is not an ISY-

semigroup.

Note that if S is a numerical semigroup and u(S) € {1,2} then S is symmetric (see
for instance [24]). Then, (5,7) N (5,8) = (5,21,24,28,32) is an ISY-semigroup.

Let S be a numerical semigroup. We say that an element of x € Z is a pseudo-
Frobenius number of S if x ¢ S and x+ s € S for all s € S\ {0}. We denote by Pg(S)
the set of pseudo-Frobenius numbers of S. The cardinality of Pg(S) is the type of S and
it is denoted by type(S). In [20] it is proved that a numerical semigroup is symmetric

if and only if type(S) = 1 (or equivalently Pg(S) = {g(5)}).
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Now, our main goal is to prove Theorem 45 which is an improvement of Theorem

34. The following result is easy to demonstrate.

LEMMA 39. Let S be a numerical semigroup generated by {ni,...,np} and let
x € Z. Then x is a pseudo-Frobenius number of S if and only if x ¢ S and x+n; € S for
allie {1,...,p}.

Using the previous lemma it is clear that if § = (5,6,7,8,9), then Pg(S) =
{1,2,3,4}. In general, if S = (m,m+1,...,m+ (m— 1)), then Pg(§) = {1,...,m— 1}.
Let S be a numerical semigroup, we define in S the following partial order:

a<sb if b—a€s.

By [20, Proposition 7] we deduce the following result.

LEMMA 40. If S is a numerical semigroup, n € S\ {0} and {wi,...,wi} =

maximals<,Ap(S,n), then Pg(S) = {wi, —n,...,w;, — n}.

Recall that a MED-semigroup is a numerical semigroup whose multiplicity equals

its embedding dimension. From Lemma 40 we get the following result.

LEMMA 41. Let S be a numerical semigroup. The following conditions are equiv-
alent:
1) Sis a MED-semigroup,
2) type(S) =m(S) — 1.

Next we prove that the role that plays Pg(S) in a numerical semigroup is analogue

to the one played by g(S) when the semigroup is symmetric.

PROPOSITION 42. Let S be a numerical semigroup, g1,...,8 be the pseudo-
Frobenius numbers of S and x € Z. Then x ¢ S if and only if gi—x € S for some
ie{l,...,t}
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PROOF. If x ¢ S and n € S\ {0} then there exists w € Ap(S,n) and k € N\ {0}
such thatx =w—kn. Let {wj1,...,wj } = maximals<,Ap(S,n) be and leti € {1,...,¢}
such that wj; —w € S. By Lemma 40 we can assume that g; = w;; —n. Then g; —x =
wjii—n—(w—kn)= (wji—w)+(k—1)nes.

Conversely, since g; —x € S and g; ¢ S we obtain that x & S. O

Now we study sufficient conditions for a numerical semigroup to be an ISY-

semigroup.

PROPOSITION 43. Let S be a numerical semigroup whose all pseudo-Frobenius

numbers are odd. Then S is an ISY-semigroup.

PROOF. Suppose that g1,...,g; are the pseudo-Frobenius numbers of S. For each
i€ {1,...,t} let S, be a symmetric numerical semigroup such that S C S, and g(S,,) =
gi (the existence of Sg; follows by Lemma 32). We will see that S =S, N...N Sg,- To
this purpose it is enough to prove that S;; N...NS,, € S. Assume that x € S, then
by Proposition 42, there exists i € {1,...,n} such that g;—x € S and thus g; — x €

Sg;M...NS,,. Hence g; —x € Sg; and so x ¢ Sy, (note that g; € S,). a

The converse of Proposition 43 is not true in general, as the following example

shows.

EXAMPLE 44. Let § = (5,21,24,28,32) = (5,7) N (5,8), which is an
ISY-semigroup. Then Ap(S,5) = {0,21,24,28,32} and maximals<,Ap(S,5) =
{21,24,28,32}. Using Lemma 40 we obtain that Pg(S) = {16,19,23,27}. Note that

S has an even pseudo-Frobenius number but it is an ISY-semigroup. (]

THEOREM 45. Let S be a numerical semigroup and let g1 ...,g, be its pseudo-

Frobenius numbers. The following conditions are equivalent:

1) S is an ISY-semigroup,
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2) for all g; even, there exists an odd positive integer y; such that g;+y; & (S, yi)-

PROOF. 1) = 2) It is a consequence of Theorem 34.
2) = 1) If g; is even, by Lemma 33, we deduce that there exists a symmetric
semigroup Sy, such that S C S;; and g; & Sg;. The case g; odd and the proof of § =

Sg, N-+-NSg, follows as in Proposition 43. O

As a consequence of the proof of 2) = 1) of the previous theorem we obtain the

following result.

COROLLARY 46. Let S be an ISY-semigroup with type(S) =t. Then S can be

expressed as an intersection of t symmetric numerical semigroups.

Now we describe an algorithmic method to express an ISY-semigroup as an inter-
section of symmetric numerical semigroups. From the proof of 2) = 1) in Theorem
45 it suffices to determine, from a numerical semigroup with odd Frobenius number
g(S), a symmetric numerical semigroup S such that § € S and g(S) = g(S). To this
purpose the next result is crucial and has similar proof to the one of [31, Lemma 3.2]

and it is also contained in the proof of [20, Proposition 4].

LEMMA 47. Let S be a non symmetric element of S(g) with g(S) = g odd and set

h=max{xeN|x¢gSandg—x¢&S} Then SU{h} € 5(2)-

Let us consider the sequence of elements in $(g);

0=,

. §it = Siu{hj}, were hj=max{x €N |x¢ S/ and g —x ¢ SiY.

Then there exists 7 € N verifying that {x e N | x ¢ §" and g —x ¢ §"} = 0. Clearly,
S is a symmetric numerical semigroup such that § C " and g(5" )=2g.

In order to illustrate this method, we give an example.
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EXAMPLE 48. Let S = (5,21,24,28,32) be a numerical semigroup. Then g(S) =
27. We compute a symmetric numerical semigroup S such that S C S and g(5) = 27.

Note that § = {0,5,10,15,20,21,24,25,26} U {x > 28} |

+hi=max{xeN|x¢Sand27—x¢ S} =23 and ' = SU{23},

-hy=max{xeN|x¢ S and27-x¢ S} =19 and §? = SU{19,23},

-hy=max{xeN|x¢gS,and27-x¢ S} = 18 and §*> = SU{18,19,23},

+hsy=max{x N |x¢S3and 27 —x ¢ S3} = 16 and §* = SU {16, 18,19,23},

hs =max{x e N|x¢ Ssand 27 —x &€ S4} = 14 and §° = SU{14,16,18,19,23},

-{x€eN|x¢g S5 and 27 —x & $°} = 0. Hence, S = S° is a symmetric numerical
semigroup generated by {5, 14, 16, 18} with Frobenius number g(S) containing S.

Now, we express S = (5,21,24,28,32) as an intersection of symmetric numerical
semigroups.

Note that the pseudo-Frobenius numbers of S are g; = 16, g» = 19, g3 = 23 and
ga = 27 (see the example before Theorem 45). Note also that 16 +7 & (S,7) and
therefore, by Theorem 45, we obtain that S is an ISY-semigroup. From the proof of
2) = 1) in Theorem 45, we have that § = SN S19NS23 N S27.

- S16 is a symmetric numerical semigroup which contains §' = (S,7) U {x > 24}
and g(Si6) = g(S') = 23.

- S19 is a symmetric numerical semigroup which contains §' = SU {x > 20} and
8(S19) = g(8") = 19.

- 23 is a symmetric numerical semigroup which contains §' = SU {x > 24} and
8(S23) = g(8') = 23.

- Sp7 is a symmetric numerical semigroup which contains § = SU {x > 28} =§
and g(Sz7) = g(8') = g(S) = 27.

Using the sequences described after Lemma 47 we obtain that Sj¢ = (5,7), Sj9 =

(5,11,12,13), S23 = (5,12, 14,16) and Sy7 = (5, 14, 16, 18). O
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REMARK 49. Note that in the preceding example S is expressed as an intersection

of four symmetric numerical semigroups, though in Example 44 this same semigroup
is expressed as an intersection of only two symmetric numerical semigroups. The
algorithmic process described above does not supply the minimal decomposition of an

ISY-semigroup.

3.1. ISYG-semigroups. We say that a numerical semigroup is an ISYG-
semigroup if S = $1N...NS,, where §y,...,S, are symmetric numerical semigroups

such that g(S1) = - -- = g(S,) = g(5). In this section we study this kind of semigroups.

LEMMA 50. Let S be a numerical semigroup with odd Frobenius number g. The

following conditions are equivalent:

1) S is an ISYG-semigroup,
2) for every x € Z\ S, we have that g & (S,g — x).

PROOF. 1) = 2) Take x & S. Since S is an ISYG-semigroup, there exists a sym-
metric numerical semigroup S such that SC S, g(S) =gand x ¢ S. Thusg—x € Sand
therefore g & (S,g — x), because (S,g —x) C Sand g ¢ S.

2) = 1) Forx € N\ S, let S, be a maximal numerical semigroup containing (S,g —
x) with g(Sx) = g. By Lemma 31, we know that S, is a symmetric numerical semigroup

with Frobenius number g and that x ¢ S,. It follows that S=0N eN\S Sy O

LEMMA 51. Let S be a numerical semigroup with Pg(S) = {g1,...,8} and g(S) =

g. Then the following conditions are equivalent:

1) for every x € Z\ S, we have that g & (S,8 —x),
2) g€ (S,g—gi) forallie {1,...,t}.

PROOF. I)=> 2)Itis trivial, because g; € Z\ S forall i € {1,...,t}.
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2)= 1)Ifx € Z\ S, then by Proposition 42, we know that there exists i € {1,...,7}
such that g; —x € S. Assume that s € S is such that g; = x+s. Then, since g ¢
(S,g—8i) =(S,g—x—s) 2 (S,g—x), we have that g & (S,g —x) O

As a consequence of Lemmas 50 and 51 we get the following result.

THEOREM 52. Let S be a numerical semigroup with odd Frobenius number g and

Pg(S) = {g1,...,&} The following conditions are equivalent:

1) S is an ISYG-semigroup,
2) g€ (S,g—gi)forallic {1,...,t}.

Assume that S is an ISYG-semigroup and hence it verifies Condition 2) of the
previous theorem. We denote by S,; a symmetric numerical semigroup with Frobenius
number g such that (S,g — g;) C Sg;. The existence of S, follows by Lemma 31 and
furthermore we can construct S,, using the procedure given after Lemma 47. Then
S =S8g, N...NS,. Infact, if x € Z\ S, then by Proposition 42, we know that g; —x € S
for some i € {1,...,t}. Hence g; —x € Sg,, since S C S,,. Then we can conclude that
g—x€ Sy and thus x ¢ S,,.

Note that if g & (S,g —gi,,..-,8& — &i,) with {i1,...,it} C {I,...,t}, then we can
take Sg; =S¢, =+ =5g, .

Assume that r > 2 and g; = g (recall that g € Pg(S)). Then using the previous re-
mark we can take Sy, = S;; and thus S = S, N---NS,,_,, whence we have the following

result.

COROLLARY 53. Let S be a non symmetric ISYG-semigroup. Then type(S) =1t >
3 and S can be expressed as an intersection of at most t — 1 symmetric numerical

semigroups with Frobenius number g(S).

In [20, Theorem 11] the following result is given.
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LEMMA 54. If S is a numerical semigroup with u(S) = 3, then type(S) € {1,2}.
As a consequence of Corollary 53 and Lemma 54, we have the following.

COROLLARY 55. Let S be a numerical semigroup with u(S) = 3. Then the follow-

ing conditions are equivalent:

1) Sis an ISYG-semigroup,

2) S is a symmetric numerical semigroup.

EXAMPLE 56. We prove that S = (6,11,15,20,25) is an ISYG-semigroup. More-
over, applying the remark after Theorem 52, we see that S can be expressed as an
intersection of symmetric numerical semigroups with Frobenius number equal to 19.
Note that

Ap(S,6) = {0,11,15,20,22,25}
and g(S) = 19. Then maximals<;,Ap(S,6) = {15,20,22,25}, by Lemma 40, we have
that Pg(S) = {g1 = 9,82 = 14,83 = 16,84 = g(S) = 19} and therefore g(S) — g1 = 10,
g(S)—g2=>5, g(S) — g3 =3 and g(S) —ga = 0. Itis clear that 19 ¢ (S,10), 19 & (S,5),
19 ¢ (S,3) and 19 € (S,0). Hénce, from Theorem 52, we deduce that S is an ISYG-
semigroup.

Note that 19 € (S, 10,5,0), whence we can take Sy, = Sy, = Sp, and this semigroup
is symmetric with Frobenius number g(§1) = 19 containing (S, 10,5,0). Applying the
method given after Lemma 47, we have that S, = Sg, = S, = (5,6).

Note also that Sy, is a symmetric semigroup with g(S +,) = 19 and such that (§,3) C
Ses- Applying again the previous method we have that S,, = (3,11).

Finally, S = Sg, N Sg, N Se; NSg, = (5,6)N(3,11). O

Next we study those numerical semigroups of type 2 that are intersection of sym-
metric numerical semigroups. Our goal is to prove Theorem 59 which states that the

converse of Proposition 43 is true for numerical semigroups of type 2.
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LEMMA 57. Let S be a numerical semigroup, x,y € Zand s € S. If x+y & (S,y)
andx+y+s ¢S, thenx+y+s & (S,y+s).

PROOF. If x+y+s € (S,y+s5), then there exist s € S and a € N such that x+ y +
s= s'+a(y+s). Since x+y+s¢S,a#0. Hence x+y=s +(a—1)s+ay e (S,y)a

contradiction. O

LEMMA 58. Let S be a numerical semigroup, with pseudo-Frobenius numbers
g1,...,8 and lety € Z be such that g;+y & (S,y) for some i € {1,...,t}. Then there
exists gj > gi+y suchthat g; & (S,8;— &)-

PROOF. Since g;+y ¢ S, then by Proposition 42, we deduce that there exists g;
such that g; — (g;+y) € S and so g; = g;+y+ s for some s € S. Hence, we have that
gi+y¢&(S,y), g+y+s¢SandscS. Using the previous lemma, we obtain that
gi+y-+s¢(S,y+s) and therefore g; & (S,g; — i) d

Now we can prove the following result.

THEOREM 59. Let S be a numerical semigroup with type(S) = 2 and Pg(S) =

{81 < g2}. The following conditions are equivalent:

1) S is an ISY-semigroup,
2) g1 and g3 are odd.

PROOF. 2) = 1) Follows from Proposition 43.

1) = 2) By Lemma 36 we know that g» = g(S) is odd. If g; is even , then from
Theorem 45, we deduce that there exists an odd number y such that g; +y ¢ (S,y).
Using Lemma 58 we obtain that g> & (S, g2 — g1). Note that S satisfies the condition 2)

of Theorem 52 and so S is an ISYG-semigroup, which contradicts Corollary 53. [
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EXAMPLE 60. Using Theorem 59, we deduce that S = (5,6,7) is not ISY-
semigroup because Pg(S) = {8,9}. Applying again Theorem 59 we have that § =
(5,6,8) is an ISY-semigroup since Pg(S) = {7,9}. O

3.2. ISYM-semigroups. We say that a numerical semigroup S is an ISYM-
semigroup if S = S;N---NS,, with S1,...,S, symmetric numerical semigroups such
that m(S;) = --- = m(S,;) = m(S).

Suppose that S is a numerical semigroup with m(S) > 3. Note that if m(S) =1,
then N = § and if m(S) = 2 then § = (2,g(S) + 2); in both cases the semigroup § is

symmetric.

LEMMA 61. Let S be a symmetric numerical semigroup with m(S) > 3. Then

g(8) > 2m(S) - 1.

PROOF. Note that g(S) is odd and so g(S) > 3. If g(S) < 2m(S) — 1, then there
exists x,y € {1,...,m(S) — 1} such that x+y = g(S). Applying that § is symmetric we
deduce that x € S or y € S, contradicting that m(S) = min S\ {0}. O

LEMMA 62. If m is an integer greater than or equal to 3, then

S={mm+1,....m+(m—2))

is the unique symmetric numerical semigroup with m(S) = m and g(S)=2m-1

PROOF. By definition, it is obvious that S is symmetric. Now we need to show
that S is unique. Suppose that S is a symmetric semigroup with m(S) =mand g(S) =

2m — 1. We have that {1,...,m— 1} NS = 0, therefore
(@m=1)-1,...,@m—1) = (m—1)} C§

and thus m,m+1,...,m+ (m—2) € S. Hence we conclude that § = §. |
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LEMMA 63. Let S be a numerical semigroup such that m(S) > 3 and g(S) is odd.
The following conditions are equivalent:
1) g(8) > 2m(S) - 1,
2) there exists a symmetric numerical semigroup S such that S C S and m(S) =

m(S).

PROOF. I)=>2) Let S be the symmetric numerical semigroup obtained from § by
using the recurrent method exposed after Lemma 47. Now, it is enough to see that

m(S) = m(S). In fact,

’ 2m(s) — 1
hjzma.x{xeN|)C¢Sjandg(S)—thSj}>8(25)2 m(?
and so 4; > m(S).
2) = 1) Follows from Lemma 61 (note that g(S) > g(5)). 0

Using the previous results we can characterize ISYM-semigroups.

THEOREM 64. Let S be a numerical semigroup with m(S) > 3, g(S) odd and

g(S) > 2m(S) + 1. The following conditions are equivalent:

1) Sis an ISYM-semigroup,
2) for every x € N\ S withx > %gl, there exists y € N such that:
i) x+y>2m(S) -1,
1) x+yis odd,
iil) x+y € (S,y),
iv) ify#0, then y > m(S).

PROOF. 1) = 2) Since S is an ISYM-semigroup, for x € N\ S there exists a sym-
metric numerical semigroup S such that S C S, m(S) = m(S) and x ¢ S. If we choose

y = g(S) — x, then, since § is symmetric, g(S) is odd and y € S. Hence ii) and iv) are
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satisfied. Furthermore, by Lemma 61, 1) is fulfilled. Finally, iii) is verified too, since
x+y=2g(S)¢S2(5y)

2) = 1) Let S be a symmetric numerical semigroup obtained from S by using
the recurrent method exposed after Lemma 47. In the proof of Lemma 63 we saw
that m(S) = m(S). It is clear that if x € S\ S, then x & S, g(S) —x & S and x > &3,
We will see that there exists a symmetric numerical semigroup S, such that § C §,,
m(Sy) = m(S) and x & Sy. Let y € N verifying i), ii), iii) and iv) and set §' = (S,y) U
{x+y+1,x+y+2,...}. Then S’ is a numerical semigroup with multiplicity m(S)
and Frobenius number x+y > 2m(S) — 1. Take Sy a symmetric numerical semigroup
such that §' C Sy, m(Sy) = m(S) and g(Sx) = x+ ( the proof of 1) = 2) in Lemma 63
guarantees the existence of Sy). Furthermore, x ¢ Sy, since y € Sy and g(Sx) =x+y.

Clearly, S = SN (N,¢5\55x) and therefore S is an ISYM-semigroup. a

Finally we illustrate the previous results with some examples.

EXAMPLE 65. S = (5,6,8,9) is a numerical semigroup with m(S) = 5 and g(S) =
7. As g(S) < 2m(S) — 1, then by Lemma 63 we obtain that S is not an ISYM-

semigroup. O

EXAMPLE 66. S = (6,11,15,20,25) is a numerical semigroup with m(S) = 6 and
g(S) = 19. Taking x = 16, we have that 16 € N\ S, 19— 6 =3 ¢ Sand 16 > 7. Itis
clear that the unique natural number y such that x+y is odd and x+y & (S,y)isy=3.
Hence S is not an ISYM-semigroup because the condition iv) of Theorem 64 is not

satisfied for y = 3. (]

EXAMPLE 67. §= (5,21,24,28,32) is a numerical semigroup with m(S) = 5 and
g(S) = 27. It is easy to see that {x > 14 | x ¢ S and 27 —x ¢ S} = {14,16, 18, 19,23}.
Taking x = 14 we can use y = 5 which verifies conditions 1), i1), iii) and iv) of Theorem

64. Analogously, for x = 16 we can use y = 7, for x = 18 we can use y = 5 and for
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x =23 we can use y = 0. Hence, by Theorem 64 we deduce that S is an ISYM-
semigroup. Note that § can.be expressed as an intersection of symmetric numerical
semigroups with multiplicity 5, for this we apply the method that it is deduced from
the proof of 2) => 1) in Theorem 64. 0

4. Decomposition of a numerical semigroup as an intersection of irreducible

numerical semigroups

We know that every numerical semigroup S admits a decomposition S = S1N---N
S, with S; irreducible (that is, S; is symmetric or pseudo-symmetric) for all i and we
denote by r(S) the least positive integer n. Our aim in this section is to give an upper
bound and a lower bound for r(S). We also describe an algorithm for computing a
minimal decomposition of a numerical semigroup into irreducibles.

We assume that S # N and therefore Pg(S) C N (see Lemma 40).

LEMMA 68. If S is a numerical semigroup and x € N\ S, then there exists an

irreducible numerical semigroup § such that S C S and g(S) = x.

PROOF. Let §' = SU{x+1,x+2,...}. Itis clear that §' is a numerical semigroup
with g(§’) = x. Let § be a maximal element in the set of all numerical semigroups with
Frobenius number x containing S’. From Theorem10 we deduce that S is an irreducible

numerical semigroup. O

LEMMA 69. Let S,,...,S, be numerical semigroups containing S. The following
conditions are equivalent:

DS=S8N...08,

2) if g’ € Pg(S), then there exists i € {1,... ,kn} suchthatg' ¢ S;.

PROOF. I) = 2) As g’ ¢ S =S;N---NS,, then there exist i € {1,...n} such that

gé¢s.
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2) = 1) It is enough to prove that if x € N\ S, then there exists i € {I,...,n}
such that x ¢ S;. Suppose that x ¢ S, from Proposition 42, we obtain that there exists
g’ € Pg(S) such that g’ —x € S. By hypothesis we can find i € {1,...,n} such that
g ¢ S; and since g’ —x € S C §; we obtain that x ¢ S;. a

As a consequence of [31, Theorem 3.3] we obtain the following result.

LEMMA 70. If S is a numerical semigroup , then there exists BC {x € N: x> g(fs_)}

such that SUB is an irreducible numerical semigroup and g(SUB) = g(5).

Let S be a numerical semigroup. Define

BPa(s) = {¢' € Pe(s) | ¢/ > 7).

THEOREM 71. Let S be a numerical semigroup with BPg(S) = {g1,...,8r}. Then

there exist S1,...,S, irreducible numerical semigroups such that § = SiN---NS§, and

g(S;)=giforallie {1,...,r}.

PROOF. Suppose that g; = g(S) and Sj is the irreducible numerical semigroup
described in Lemma 70. For each i € {2,...,r}, let S; be an irreducible numerical
semigroup such that S C S; and g(S;) = g; ( the existence of §; is guaranteed by Lemma
68). Now for proving that S = S;N---NS, we use Lemma 69. If g’ € Pg(S) and
g < gizS_), then g’ ¢ Sy. If g’ € Pg(S) and g’ > 5(2491, then g’ = g; for some i € {1,...,r}
and therefore g’ ¢ ;. O

From [20] we can deduce that if S is an irreducible numerical semigroup, then

_j {e(5)} if g(8) is odd,
Pe(5) = { {g(S),@ if g(S) is even.

From this remark and Theorem 71 we obtain the following result.

COROLLARY 72. If S is a numerical semigroup, then the following conditions are

equivalent:
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1) S is irreducible,

2) #BPg(S) = 1.

Let S be a numerical semigroup. Recall that r(S) is the smallest positive inte-
ger n such that S = §;N---NS, with §; irreducible numerical semigroups for all

i€ {l,...,n}. Asaconsequence of Theorem 71 we have the following result.
COROLLARY 73. If S is a numerical semigroup, then 1(S) < #BPg(S).

The decomposition given in Theorem 71 is not minimal as the following example

illustrates.

EXAMPLE 74. Let S = (5,7) N (5,8) = (5,21,24,28,32). Then Ap(S,5) =
{0,21,24,28,32}, using Lemma 40 we get Pg(S) = {16,19,23,27} and so #BPg(S) =
4. Note that a numerical semigroup generated by two elements is symmetric (see
[24]) and thus S = (5,7) N (5,8) is a decomposition of S as an intersection of irre-

ducibles. [

COROLLARY 75. If S is a numerical semigroup such that #BPg(S) = 2, thenr(S) =

PROOF. If #BPg(S) = 2, then by Corollary 72 we have that S is not an irreducible
numerical semigroup and thus r(S) > 2. Besides, applying Corollary 73 we get that
r(S) < 2. Hence we have that r(S) = 2. a

Note that, from Example 74, we can see that the converse of Corollary 75 is not
true. But there are many semigroups verifying the hypothesis of Corollary 75 as we

see in the following example.

EXAMPLE 76. Letm a positive integer greater than or equal to 3 and let S = ({x €

N| x>m}\{2m—-2,2m—1})U {0}. The reader can prove that S is a numerical
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semigroup and Pg(S) = {2m —2,2m — 1}. Applying Corollary 75 we get that r(S) =
2. O

Now we give a lower bound for r(S). Suppose that S is a numerical semigroup and

BPg(S) = {g1,...,8-}. Foreach i€ {1,...,r}, define

E(gi)={gi+x| xeNandgi+x¢ (S,%)}.

THEOREM 77. Let S be a numerical semigroup with Pg(S) = {g1,...,8r} and let
gi € {g1,---,&} If S is an irreducible numerical semigroup such that § C S and
gi ¢ S, then g(S) € &(g;). Conversely, if g; +x € §(gi) then there exists an irreducible

numerical semigroup S such that SC S, gi ¢ S and g(S) = gi+x.

PROOF. If g; ¢ 5, then by Proposition 11 we get that g(S) — g; € S (note that g(S) <
g(S) and that g; > &) and therefore g; # @). Since gi+ (g(S) —gi) = 8(S) €S2
(S,8(S) — gi) we obtain that g(S) € §(g:)-

Conversely, if gi+x € £(g;), then g;+x ¢ (S,x). Let S be an irreducible numerical
semigroup such that (S,x) C S and g; +x = g(S) (the existence of S is guaranteed by

Lemma 68). Since x € S and g;+x = g(S) ¢ S, we obtain that g; & S. a

COROLLARY 78. If S=81N---NSy with Sy,...,5x irreducible numerical semi-

groups, then for eachi € {1,...,r} there exists j € {1,...,n} such that g(S;) € E(gi).

PROOF. Ifi € {1,...,r}, then g; ¢ S=5;N---NS, and therefore there exists j €

{1...,n} such that g; ¢ S;. Using Theorem 77 we get that g(S;) € E(g:)- O

COROLLARY 79. Letxy,....xr € N be such that gi+x; € §(gi) foralli€ {1,...,r}.

Then there exist irreducible numerical semigroups Sy, ..., Sy such that $ = §;N---N Sy

and {g(S1),..-,8(S-)} C{&1 +X1y.e e, 8r+Xr}

PROOF. Assume that g; = g(S). Note that §(g;) = {g1} and thus x; = 0. Let S be

the numerical semigroup SU B described in Lemma 70. Now, for each i € {2,...,r}let
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S; be an irreducible numerical semigroup such that SC S;, g; ¢ S; and g(S;) = gi +x;
(the existence of §; is guaranteed by Theorem 77). Applying Lemma 69 we can deduce

that S =S51N---NS,. a

Let A be a subset of N. We say that S is an A — semigroup if S can be expressed as
an intersection of irreducible numerical semigroups whose Frobenius numbers are in
A (thatis, S = S1n---NS, with S; irreducible numerical semigroups and g(S;) € A for
alli € {1,...,n}). Denote by h(S) = min{#A | §is an A — semigroup}.

COROLLARY 80. IfA is a subset of N, then the following conditions are equivalent:
1) S is an A-semigroup,

2) there exist (ay,...,a,) € &(g1) X --- x E(g,) such that {ay,...,a,} CA.

PROOF. 1) = 2) This is a consequence of Corollary 78.

2) = 1) Follows from Corollary 79. O

COROLLARY 81. If S is a numerical semigroup, then t(S) > h(S) =

min{#{a1,...,a,} | (a1,...,ar) €&(g1) x --- x E(g,) }.
PROOF. As a consequence of Corollary 80 we get that

h(S) = min{#{ay,...,a:} | (a1,...,a,) € E(g1) x--- x&(gr)}.

Now we see that r(S) > h(S). In fact, if S1,...,S, are irreducible numerical semi-
groups such that S = S1N---NS,, then Sis a {g(S1),...,8(Sx)} — semigroup and thus -
n>#{g(S1),...,8(Sn)} > h(S). Hence r(S) > h(S). O

Note that if we take again S = (5,7)N (5,8) = (5,21,24,28,32) (see Example 74)
we know that r(S) = 2. Remember that BPg(S) = {16,19,23,27} and so &(16) =
{16,23}, £(19) = {19,27}, £(23) = {23} and §(27) = {27}. Applying Corollary 81,

we obtain that h(S) = 2 and therefore h(S) = r(S). Note that there are many examples
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for which the previous equality does not hold. Observe that if S; and S; are irreducible

numerical semigroups with g(S1) = g(82), then r(S1NS2) =2 and h($1NS2) = 1.

4.1. Odd and even numerical semigroups. We say that a numerical semigroup
is an odd numerical semigroup (respectively even numerical semigroup ) if it can
be expressed as an intersection of irreducible numerical semigroups with odd (respec-
tively even) Frobenius numbers.

Note that odd (respectively even) numerical semigroups are numerical semigroups
that are intersection of symmetric (respectively pseudo-symmetric) numerical semi-
groups. If 8,81,...,S, are numerical semigroups and § = §;N--- NSy, then g(s) =
max{g(S1),...,2(Sx)} and therefore if S is an odd (respectively even) numerical semi-
group, then g(S) is odd (respectively even). Note also that every numerical semigroup
is odd, even, or an intersection of an odd and an even numerical semigroup.

As a consequence of Corollary 80 we get the following result that is a generaliza-

tion and an improvement Theorem 45.

COROLLARY 82. If S is a numerical semigroup and BPg(S) = {g1,..-,8}, then
the following conditions are equivalent:
1) S is an odd (respectively even) numerical semigroup,

2) &(g;) contains at least an odd (respectively even) element for all i € {1,...,r}.

Note that a numerical semigroup is a {g} — semigroup if § = §; N ---NS, with §;
an irreducible numerical semigroup and g(S;) = g for all i € {1,...,n}. Observe that
Sis a {g} — semigroup if only if h(S) = 1.

As an immediate consequence of Corollary 80 we obtain the following result.

COROLLARY 83. If S is a numerical semigroup and BPg(S) = {g1,...,8r}, then
the following conditions are equivalent:

1) S is a {g(S)} — semigroup,
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2)g(S)€&(gi) forallie{l,...,r}.

4.2, Atoms. Let g be a positive integer. Set
L(g) = {S| S is a numerical semigroup with g(S) = g}

and
L/(;) = {§ | S is a numerical semigroup with g($) < g}.
Note that (Z-(ES, M) is a semigroup and, as a consequence of Theorem 71, the set of
irreducible numerical semigroups of f(?) is a minimal system of generators for it.
Note also that £(g) is a subsemigroup of (f@, N). An element in £(g) is an atom
if it is not an intersection of two elements of £(g) containing it properly. Note that an
irreducible numerical semigroup of L(g) is an atom, but in general the converse is not

true (see Example 89).

LEMMA 84. Let S and S be two numerical semigroups with S C S and let x =
max (S\ S). Then SU{x} is a numerical semigroup.

In particular if S and S € L(g), then SU{x} € L(g).

PROOF. From the definition of x we obtain that 2x € Sand x+s € S for all s €

S\ {0}. Hence SU {x} is a numerical semigroup. Since x € S, x # g(S) = g and thus
g(Suix}) =g O

LEMMA 85. If S € L(g) and S is not an atom of L(g), then there exist x1,x; € N\ §
such that x| % xp and SU {x1} and SU{x2} are elements of L(g).

PROOF. If S is not an atom, then there exist 51,52 € L(g) such that § C §; and
S C Sz and S = 81N S,. Assume that x; = max(S;\ S) for i = 1,2. Applying Lemma
84 we obtain that SU {x;},5U {x2} € L(g). Note that x; # x because otherwise we

would have x; = x; € §1 NS> = S, which contradicts x; ¢S. U
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LEMMA 86. Let S be a numerical semigroup and x € N\S. Then SU{x} is a

numerical semigroup if only if x € Pg(S) and 2x ¢ Pg(S).

PROOE. If SU {x} is a numerical semigroup, then x+s € S for all s € S\ {0} and
thus x € Pg(S). Furthermore 2x € S and whence 2x ¢ Pg(S).
Conversely, if x € Pg(S), then x+s € S for all s € §\ {0}. If 2x ¢ Pg(S) then, since

x € Pg(S), we can deduce that 2x € S. Hence SU {x} is a numerical semigroup. [

PROPOSITION 87. If § € L(g), then the following conditions are equivalent:
1) S is not an atom of L(g),
2) there exist x1,x> € Pg(S)\ {g} such that x; # x; and {2x1,2x2} NPg(S) = 0.

PROOF. )= 2) By Lemma 85 we know that there exist x;,x2 € N such that x; #
x, and SU{x;} and SU {x,} are elements of L(g). Using Lemma 86 and the fact that
g ¢ SU{x;} and g ¢ SU {x2}, we deduce that x; € Pg(S) \ {¢g} and 2x; ¢ Pg(S) for
i=1,2.

2) = 1) From Lemma 86 we deduce that SU {x1}, SU {x2} € L(g). Since § =

(SU{x1}) N (SU{x2}), we have that S is not an atom of L(g) O

As an immediate consequence of the previous proposition we get the following

result.

COROLLARY 88. If S is an numerical semigroup and type(S) € {1,2}, then S is
an atom of L(g(S)).

EXAMPLE 89. Let S = (4,5,11). Then Pg(S) = {6,7} (see Example 76) and there-
fore type(S) = 2. Applying the previous corollary, we get that § is an atom of L(7).
Note also that S is not irreducible because, using Lemma 86, we have that SU {6} and

SU {7} are numerical semigroups for which § = (SU{6}) N (SU {7}). a
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4.3. Computing minimal decompositions. We finish this section by describing
an algorithm for computing a minimal decomposition of a numerical semigroup into
irreducibles.

For a numerical semigroup S, we define
H(S)=N\SandEH(S)={x€ H(S) | 2x€ S, x+s e Sforall s € S\ {0} }.

And from this definition, it easy to prove the following result.

PROPOSITION 90. Let S be a numerical semigroup and x € H(S). Then x € EH(S)

ifonly if SU{x} is a numerical semigroup.

The set EH(S) is a subset of Pg(S) = {x ¢ S | x+s € S forall s € S\ {0}}.
Remember that, from Lemma 40, we have that Pg(S) = {wi, —n,...,w;, —n} with
{wi,...,w;, } = maximals<;Ap(S,n) and that the cardinal of Pg(S) was called the type
of S and denoted by type(S). Hence, this implies that

#EH(S) < type(S) < m(S) — 1.

As a consequence of Lemma 84, we can see that all numerical semigroups that contain
properly the numerical semigroup S must contain an element of EH(S). In fact S is
maximal in the set of all numerical semigroups not cutting EH(S). From, Theorem
10, we know that S is irreducible if only if S is maximal in the set of all numerical

semigroups that do not contain g(S). So we have the next result.

COROLLARY 91. Let S be a numerical semigroup. Then S is irreducible if only if

#EH(S) = 1.

Given two numerical semigroups S and S such that S C S for n € N, define recur-

sively the semigroup S, as:

® S5o=>_,
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Sn, if S, =S,
| ] Sn+1 p— —_
SpU{max(S\S,)}, otherwise.

If k = #(S\ S), then we get the sequence
S=SCScC---CS=S.

As a consequence of Lemma 84, we deduce that for all i € {0,...k} S; is a numerical
semigroup. Then we can compute all numerical semigroups S containing S. The idea is
to proceed as follows: once you have an element S’ containing S (you start with §'=3),
compute EH(S') = {x1,...,% } and thus we obtain &' U{x1},...,8' U {x;} which are
numerical semigroups containing S; next do the same with each §' U {x;}. Performing
this process as many times as necessary we get all numerical semigroups containing S.
Denote by
3(S) = {S irreducible | S C S}.

Its clear that S = §; N+ - - NS, with S; € J(S). We can remove those irreducibles that are
not minimal with respect to inclusion. As an immediate consequence of this remark

we obtain the following result.

PROPOSITION 92. Let S be a numerical semigroup such that minimalsc J(S) =

{Sl,...,S,-}. Then S=S1N...NS,.

But the decomposition described above is not necessary minimal as we can see in

the following example.

EXAMPLE 93. Let S = (5,6,8). We compute EH(S) = {7,9}, by Proposi-
tion 90, SU {7} and SU {9} are numerical semigroups. For SU {7} we have that
EH(SU{7}) = {9}, by Corollary 91, we conclude that SU {7}) is irreducible and
thus SU {7} € minimalscJ(S). For SU{9} we have EH(SU{9}) = {3,4,7}. Using
again Proposition 90, we obtain that SU{9,3}, SU{9,4} and SU{9,7} are numerical
semigroups. Now we deduce that SU{9,3}, SU{9,4} are irreducibles and SU{9,7}
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contains the irreducible SU{7}. Therefore we get that
minimalsc 3(S) = {(SU{7},SU{9,3},5U{9,4}}.
Hence
S=(SU{THN(SU{9,3})N(SU{9,4}) = (SU{7})N(SU{9,3}).

O

However, to express a numerical semigroup S as intersection of the least possible

number of irreducibles, it suffices to search among the decompositions with elements

in minimalsc J(S).

PROPOSITION 94. Let S be a numerical semigroup. If S=81N---NS, with S; €
3(S), then there exists S; € minimalsc J(S) (i € {1,...,r}) such that S§=S;N---NS}.

PROOF. For each S; € J(S), we take §; € minimalsc J(S) such that S; C §; and so

S=8,n---NS. O

The next result sheds some light on which semigroups are required in a decompo-

sition (compare with Lemma 69).

PROPOSITION 95. Let S be a numerical semigroup and S,...,S, € J(S). The
following conditions are equivalent:
HS=8N---NS,
2) for each h € EH(S) there exists i € {1,...,r} such thath ¢ S,.

PROOF, 1) = 2) If h € EH(S) then 4 is not in S and so there exist i € {1,...,r}
such that z ¢ §;.
2) = I)Itisclearthat S C S1N---NS,. Suppose that S C S;N---NS,. This implies,

by Lemma 84, SU {max(NS;\ S)} is a numerical semigroup and, by Proposition 90,
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h = {max(NS;\ S)} € EH(S). We have that h € EH(S) and k € §; for all {1,...,r}

which contradict the hypothesis. O
From the set minimalsc J(S) = {S1, ..., S} we define for each S; withi € {1,....r}
C(Si) ={r € EH(S) | h & Si}.
Using Proposition 95 we have that
S=8;N---NS; if and only if C(S;;)U---UC(S;,) = EH(S).

With the above results, we can obtain a algorithm for computing a decomposition
of S as an intersection of irreducible semigroups using the least possible number of

them.

ALGORITHM 96. Let S be a non-irreducible semigroup.

(1) Compute the set EH(S).

(2) SetI=0and C = {S}.

(3) For all §' € C, compute (using Proposition 90) all the semigroups S such that
#(S\ ') = 1. Remove §' from C. Let B be the set formed by the semigroups
constructed in this way.

(4) Remove from B the semigroups S fulfilling that EH(S) © S

(5) Remove from B the semigroups S’ such that there exists Serwith§CS.

(6) Set C = {S§' € B| S is not irreducible}.

(7) SetI=I1U{S € B| S isirreducible}.

(8) If C # 0, go to Step 3.

(9) For every S € I, compute C(S).

(10) Choose {Si,...,Sy} such that r is minimum fulfilling that

C(S1)U---U C(Sy) = EH(S).

(11) Return Sp,...,5,. O
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Now we illustrate the above method with an example.

EXAMPLE 97. We consider again the semigroup S = (5,6,8). We have that
EH(S) = {7,9}. Performing the steps of the above algorithm, we get (in the Steps
6 and 7) that I = {(5,6,7,8)} and C = {(5,6,8,9)}}. Since C # 0, we go back to Step
3 obtaining that I = {(5,6,7,8),(3,5),(4,5,6) } and C = 0. Step 8 yields

C((5,6,7,8)) = {9}, C((3,5)) = {7}, C((4,5,6)) = {7}
The minimal decompositions of S are
§=1(5,6,7,8)N(3,5)
and
S=1(5,6,7,8)(4.5,6).
O

5. Irreducible numerical semigroups with arbitrary multiplicity and embedding

dimension

In this section we study families of irreducible numerical semigroups with even
conductor. Furthermore, we give a minimal presentation for all semigroups in these
families.

Let S be a numerical semigroup and n € S\ {0}. From Lemma 13 and Proposition
14, we will derive the Lemmas 98, 100 and 102 which give families of irreducible

numerical semigroups with even conductor.
LEMMA 98. Let m, g € N be such that m > 2q -+ 5 and let S be the submonoid of
(N,+) generated by
{mm+1,(g+1)m+qg+2,...,(g+1ym+m—qg—-3,(g+1)m+m—1}.

Then § is an irreducible numerical semigroup with m(S) = m, u(S) =m—2q— 1 and

g(S)=2(g+1)m-2.
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PROOF. Since gcd{m,m+ 1} = 1, then we have that § generates Z as a group and
therefore S is a numerical semigroup. Note that m = min S\ {0} and so m(S) = m. It

is easy to see that
{no=mm =m+1nm=(q+1)m+q+2,...,

np—1=(g+1)m+m—q—3,n,=(q+1)m+m—1}
is a minimal system of generators for S and thus (S) = m — 2g — 1. The reader can
prove that

Ap(S,m) = {0,n1,2n1,...,(g+ D)ny,na,...,np_1,A1 +np_1, 201 +Rp_1,.-,

gn1 +np—1,8(8) +m= (g+ Dni +np_1}U{np},

and if p > 4, then in addition g(S) +m = nj+n,_; for all i € {2,..., [p/21} (4]
denotes the integer part of the rational number g). Hence, g(S) = 2(¢+ 1)m —2 and
SO g_(;_) +m = (qg+ 1)m+ (m— 1) = n,. Applying Proposition 14 we get that § is an

irreducible numerical semigroup. d

We give an example that illustrates the previous lemma and its proof.

EXAMPLE 99. We take g = 2 and m = 11 (note that m > 2g+5), then by the
previous lemma, we have that § = (11, 12,37,38,39,43) is an irreducible numerical
semigroup with m(S) = 11, u(S) = 6 and g(§) = 64. Furthermore, from the proof of

this lemma, we obtain that
Ap(S,11) = {0,12,24,36,37, 38, 39,51,63,75} U {43}.

g

LEMMA 100. Let m € N and g € N\ {0} be such that m > 2q +4 and let S be the
submonoid of (N, +) generated by

{m,m+1,gm+29+3,....gm+m—1,(g+ m+q+2}.



62 2. IRREDUCIBLE NUMERICAL SEMIGROUPS
Then S is an irreducible numerical semigroup with m(S) = m, u(S) = m — 2q and

g(S) =2gm+2q+2.

PROOF. Since gcd{m,m+ 1} = 1, then we have that S generates Z as a group and
therefore S is a numerical semigroup. Note also that m = min S\ {0} and so m(S) =m.
Clearly,

{no=mn=m+1,np=gm+2q+3,...,
np-1=gm+(m—1),np = (g+ )m+q+2}
is a minimal system of generators for S and so u(S) = m — 2q. The reader can prove

that

Ap(S,m) ={0,n1,2n1,...,gn1,n2,...,Rp_1,np,n1 +Np, 201 +Np, ...,

g(8) +m=gm+n,} U{(g+ m},
and g(S)+m=n;+np_iy1 foralli€ {2,...,[(p+1)/2]}. Then g(S) = 2gm+2q+2
and thus g_(2§l +m=(g+1)m+g+ 1= (g+ 1)n;. Using Proposition 14, we deduce

that S is an irreducible numerical semigroup. O

We also give an example to illustrate the above lemma.

EXAMPLE 101. Let g =2 and m = 11 (note that m > 2q +4). Then, by the above
lemma, we have that § = (11,12,29,30,31,32,37) is an irreducible numerical semi-
group with m(S) = 11, u(S) = 7 and g(S) = 50. Furthermore, from its proof, we obtain
that |

Ap(S,11) = {0,12,24,29,30,31,32,37,49,61} U{36}.

O

LEMMA 102. Ifm is a positive integer greater than or equal to 4, then there exists

an irreducible numerical semigroup S with g(S) even, m(S) = m and u(S) = 3.
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PROOF. We distinguish two cases depending on the parity of m.
1) If m is even, then m = 2g + 4 for some g € N. Let S = (m,m+1,(g+ 1)m+

(m—1)). It is clear that m(S) = m and u(S) = 3. The reader can prove that

Ap(S,m) = {0,m+1,2(m+1),...,(m—2)(m+ 1) }U{(g+ )m+(m—1)}.

Therefore, g(S) = (m—2)m— 2 is even and g—(2s—) +m= (q+ 1)m+ (m— 1). By Propo-
sition 14 we conclude that S is an irreducible numerical semigroup.

2) If mis odd, then m = 2g + 3 for some ¢ € N\ {0}. Let S = (m,m+1,(g+ 1)m+
g+2). Clearly, m(S) = m and p(S) = 3. In this setting,

Ap(S,m) = {0,m+1,2(m+1),...,q(m+1),(g+1)m+q+2,

(m+1)+(g+1)m+q+2,...,q(m+1)+(g+ Dm+qg+2}U{(g+1)(m+1)}.

Hence, g(S) = (2¢+ 1)m— 1 is even and &l+m-_— g+ 1)(m+ 1). By Proposition
2

14, we have that § is an irreducible numerical semigroup. O

REMARK 103. I) As a consequence of the proof of case 1) in Lemma 102 and
since m = 2g + 4, we have that if m is an even integer greater than or equal to 4, then
S={mm+1, m_22—_2) is an irreducible numerical semigroup with m(S) = m, g($) =
(m—2)m—2 and u(S) = 3.

2) As a consequence of the proof of case 2) in Lemma 102 and since m = 2q+ 3, we
have that if m is an odd integer greater than or equal to 5, then S = (m,m+ 1, ’"2—2+l) is

an irreducible numerical semigroup with m(S) = m, g(S) = (m—2)m— 1 and u(S) = 3.

EXAMPLE 104. S = (6,7,17) is an irreducible numerical semigroup with m(S) =

6, u(S) = 3 and g(S) = 22. Furthermore,

Ap(S,6) = {0,7,14,21,28} U {17}.
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EXAMPLE 105. S = (7,8,25) is an irreducible numerical semigroup with m(S) =

7, u(S) = 3 and g(S) = 34. Furthermore

Ap(S,7) = {0,8,16,25,33,41} U {24}.

We are ready to prove the main result of this section.

THEOREM 106. Let m and e positive integers such that 3 < e < m— 1. Then there
exists an irreducible numerical semigroup with even conductor, multiplicity m and

embedding dimension e.

PROOF. If e = 3, then Lemma 102 guarantees the existence of this semigroup.
Thus, in sequel, we shall assume that 4 < e < m — 1. We distinguish two cases.

- If m — e is odd, then there exists g € N such that m — e = 2¢ + 1. Furthermore,
since e > 4, then m > 2g+ 5. By Lemma 98, we deduce that there exists an irreducible
numerical semigroup S with g(S) even, m(S) =mand y(S) =m—-2g—-1=e.

- If m — e is even, then there exists g € N\ {0} such that m — e = 2g. Furthermore,
since e > 4, then m > 2g+4. By Lemma 100, we deduce that there exists an irreducible

numerical semigroup S with g(S) even, m(S) = m and u(S) =m—2g =e. O

Now we describe minimal presentations for the families of numerical semigroups
obtained from Lemmas 98, 100 and 102. Note that the family of numerical semigroups
described in Lemma 102 is (see remark 103):

1)S={mm+1, m-zfz), if m 1s an even positive integer greater than or equal to 4.

2)S={(mm+ l,ﬂzzil-), if m is an odd positive integer greater than or equal to 4.

In both cases S is a non symmetric numerical semigroup with u(S) = 3. Using
the results of [24], we deduce that the cardinality of a minimal presentation for these

numerical semigroups is 3. Furthermore, from this paper, we know that a minimal



5. IRREDUCIBLES WITH ARBITRARY MULTIPLICITY AND EMBEDDING DIMENSION 65

presentation for a non symmetric numerical semigroup S = (ng,n1,n2) is

p = {(coXo,a01 Xy + anX2), (c1X1,a10X0 + a12X2), (c2X2, @20Xo0 + a21X1) }

where ¢; = min{l € N\ {0} | In; € (nj,m)} with {i, j,k} = {0,1,2} and cin; = a;jn; +
a;png.

In order to find minimal presentations for the semigroups belonging to the families
given in the preceding section, we must introduce and recall some concepts and results.

If S is a numerical semigroup with minimal system of generators {no < ... <np}
and s € S, then there exists (ao,...,ap) € NP1 such that s = apno+--- +apn,. We
say that an element s has unique expression when (ao, ..., ap) is unique.

In [34] it is given a method to obtain a minimal presentation for a numerical semi-
group fulfilling the condition that all the elements of Ap(S, no) have unique expression.

The process is the following: let
T ={(ai,...,ap) € NP | ain; +---+apn, & Ap(S,no)}
and
{og = (QU1y ey Q1p)ye ey O = (O1,y- - Op) } = minimals<(7T’),
where < is the usual order of N” (observe that by Dickson’s Lemma this set is finite).
For every i € {1,...,t} we define x; = 0Xp+ 0 X1 + -+ + QipXp € F. Since @(x;) ¢
Ap(S,ng) (recall the definition of @ and F given in the Preliminaries), we deduce that

there exists (Big, Biy, - -, Bi,) € NP1 with Bj; # 0 such that
@(xi) = Bigno+ Biyn1 + - -+ Bi,np.

For every i € {1,...,t} we define y; = BjXo+ B, X1 + -+ - + Bi,X. Note that 9(x;) =
o(y;) foralli € {1,...,7} and so

p= {(xlayl)v'“a(xhyt)} co.

In [34] it is proved the following result.
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PROPOSITION 107. Under the standing hypothesis, p = {(x1,y1),...,(x, %)} isa

minimal presentation for S.

Now, with these results, we can give a minimal presentation for the family of nu-

merical semigroups obtained from Lemma 102 (or Remark 103).

PROPOSITION 108. 1) If m is an even positive integer greater than or equal to 4,

. . 2 5, .
then a minimal presentation for S = (m,m+ 1, m—7—-2) is

+2
p= {(mz Xo,X1 +X2), ((m— 1)X1,§X0+X2),(2X2,X0+ (m—Z)Xl)} :

2) If m is an odd positive integer greater than or equal to 5, then a minimal pre-
, 241y .
sentation for S = {m,m+ 1,22} is

m-—1 m+1
p={(mX0, 7 X1+X2),(———X1,X0+X2),(2X2,(m—1)X0+X1)}.

2
PROOF. I)Let S={(np=mny=m+1,ny = #) By the proof of case 1) in
Lemma 102, we have that
Ap(S,ng) = {0,n1,2ny,...,(no—2)n1,n2}.

It is clear that all elements in Ap(S,np) have a unique expression. Applying Proposi-

tion 107 the reader can check that

2

is 2 minimal presentation for S.

+2
p= {(m——Xo,Xi +X2), (m—1)X, %Xo +X5),(2X2, X0+ (m — 2)X1)}

2)Let S=(no=mn =m+1l,np= ﬁzﬂ). By the proof of case 2) in Lemma
102, we have that
Ap(S,ng) = {0,n1,2n1,...,(qg+ Dn1,na,ny +no,...,qn1 +na}.

Clearly, all elements in Ap(S,np) have again unique expression. Using Proposition

107 again the reader can check that

m—1 m+1
p= {(mXO:TXI +X2),(TX1,X0 +X2),(2X2,(m—1)Xo +X1)}
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is a minimal presentation for S. O

We illustrate this proposition with some examples.

EXAMPLE 109. If we take m = 6, then a minimal presentation for the numerical

semigroup S = (6,7,17) is
p = {4Xo, X1 + X2), (5X1,3X0 + X2), (2X2, X0 +4X1) }.

a

EXAMPLE 110. If we take m = 7, then a minimal presentation for the numerical

semigroup S = (7,8,25) is
p = {7X0,3X1 + X2), (4X1,Xo+X2), (2X2,6X0 +X1)}.

d

Now we describe the minimal presentations for the families of numerical semi-

groups obtained from Lemmas 98 and 100.

PROPOSITION 111. Let m,q € N be such that m > 2q+5 and

S=(np=mn =m+1ln=(g+1)m+q+2,
conpt = (g+ )m+m—q=3,np=(q+1)m+m— 1).

The cardinality of a minimal presentation for S is equal to

plp+1)
> :

PROOF. By Lemma 98, we obtain that

Ap(S,no) = {0,n1,2n1,...,(g+ )n1,na, ..., np_1,8p, 01+ Np—1,201 +1p1,

NN/ i 3] +np_1,(q—+— 1)n1 +np_1=m+np2 =n3+n,,_.3---}.
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Note that all the elements the in Ap(S, ng), except
g(S)+no=(q+)m+n,_1=m+np_2=n3+n,_3---,

have a unique expression. It easy to see that §' = SU{g(S)} is a numerical semigroup

with a minimal system of generators {ng,n1,...,np,n,41 = g(S)} and

Ap(S',np) = {0,n1,2n1,...,(g+ l)nl,nz,...,np_l,np,nl +np,-1,
.o, gny +np_1,n,,+1}.

Since all the elements in Ap(S’, ng) have unique expression, using Proposition 107,

we can compute a minimal presentation p’ for §’. Then we have that

p' = {((g+2)X1,y1),(X1 +X2,52), ..., ((g+ DX1 + Xp-1,Yp—1), (X1 + X5, ¥p),
(X1 +Xp+1,Yp+1), (X2, ¥p42)s (X2 + X3,Yp43), - (X2 + Xpt1,Y2p41)5
e (2%, Yp a1 ptet341)s (Xp + Xpt 1 Vpt 1 pot342), (2Xpt 1, Ypa 14 p434241)

Therefore,

2)(p+1 +1
o =ptitpt-3+2+1=LF )2(” ):‘D(p2 ) ot

By Proposition 21 and Lemma 23, we obtain that, if p is a minimal presentation for S,

then #p +p+ 2= #pl. Hence,
1

=0T

2
O

EXAMPLE 112. If we take g=0and m =S5, then S = (5,6,7,9). Using the previous

proposition we get that the cardinality of any minimal presentation for § is 5. O

PROPOSITION 113. Let m € N and g € N\ {0} be such that m > 2q + 4 and

S={np=m,m :-m—i—1,n2=qm+2q+3,...,n,,_1 =gm+m—1,

np=(g+1)m+g+2).
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Then the cardinality of a minimal presentation for S is equal to

p(p+1)

AL

2

PROOF. By Lemma 100, we deduce that

Ap(S,no) = {0,n1,2n1,...,(g+ )ny,n2,...,np_1,np,n1 +np,2m +np,
o (g=Dni+np,gni+n,=na+np_1 =n3+np_z---}.
Note also that all the elements in Ap(S, no), except
g(S)—f-no =gqni+n,=ny+np_1=n3+np_2---,

have unique expression. Clearly, §' = SU{g(S)} is a numerical semigroup with mini-

mal system of generators {ng,n1,...,np,Mp+1 = g(S)} and

Ap(S',ng) = {0,n1,2n1,...,(g+ 1)n1,n2,...,np,n1 +np, 201+ np,
..,(q— 1)1’11 -i—n,,,n,H_l}.

Since all the elements in Ap(S’,no) have unique expression, by Proposition 107, we

have that a minimal presentation p’ for &', is

p’ = {((q+2)X1y1)7(X1 +X21y2)a”'a(Xl +X ——lvyp-])a(qXI +X]77yl7)a
(X1 +Xpi1,¥p41)s (2X2,p42), (X2 + X3,Yp43)s - (X2 + Xp+1,Ypt14p);
. --a(sz7Yp+1+p+~--+3+l)a (Xp +Xp+l1yp+1+p+~-+3+2)a(ZXp+layP+1+p---+3+2+l)}-

Hence,

N(p+1 +1
fo' = p+ 1t pto-3r2+1=EF )2(”+ )=p(”2 ) pt1.

Using again Proposition 21 and Lemma 23, we obtain that if p is a minimal presenta-

tion for S, then #p + p+2 = #p’. Hence,

pip+1) |

#p = 3
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EXAMPLE 114. We take g = 1 and m = 6. Then S = (6,7,11,15). Applying the
previous proposition we obtain that the cardinality of any minimal presentation for S

is 5. 4



CHAPTER 3

Systems of inequalities and numerical semigroups

Let S be a numerical semigroup with multiplicity m and Ap(S,m) = {0 =
w(0),kim + 1 = w(l),....km_ym+m—1=w(m—1)}. Then for every i,j €
{1,...,m— 1} there exist t € N and k € {0,...,m — 1} such that w(i) +w(j) =
tm+w(k). Using this fact, in this chapter, we describe a one-to-one correspondence
between the set of numerical semigroups with multiplicity m and a subsemigroup of
Nm-1

In Section 1, we study the set of nonnegative solutions of systems of linear Dio-
phantine equations. We see that these solutions can be described with a finite set of
parameters and the coefficients of these can be computed algorithmically.

In Section 2, we deduce that there is a one-to-one correspondence between the set
S(m) of numerical semigroups with multiplicity m and the set of nonnegative integer
solutions of a system of linear Diophantine inequalities. As a consequence of these
results, this correspondence infers in S(m) a semigroup structure with the resulting
semigroup isomorphic to a subsemigroup of N1

In Sections 3 and 4, we particularize the previous results to MED-semigroups and
to symmetric numerical semigroups. In the symmetric case, the systems that appear
also contain linear equations, and the set of symmetric numerical semigroups is a union
of sets of nonnegative integer solutions of systems of this type.

We say that S has monotonic Apéry set if Ap(S,m) = {0 < w(l) <...<wm—
1)}. Denote by C(m) the set of numerical semigroups with monotonic Apéry set

and multiplicity m. Our main goal , in Section 5, is to study this particular case of

71
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numerical semigroups. We show that there is a one-to-one correspondence, between
C(m) and a finitely generated subsemigroup of N"~!. Finally we study the set of

symmetric numerical semigroups of C(m).

1. Nonnegative integer solutions to Diophantine linear inequalities

Our aim in this section is to describe the set of nonnegative integer solutions of
systems of linear inequalities and equations with integer coefficients. Assume that we

are given the system

(ayxy+---+ag,x, > b,

(1) J an X1+ +apXxy > by,
are X1+ F a1, X = brya,
L ArinXt+ -t ey, Xy = br—Ha

with a;,,b; € Z. In order to solve it we will use the following supplementary systems

of linear Diophantine equations.

(anx1+--+ayxn—xpe1 = by,
(2) ! anXi+-+anXn=Xnyr = by,
Aryp X1+ + a1, X0 = bryy,
\ Ar+nX1 + - Ay, X = br-Ha
and
( ayxy+--+ay,xXn —Xpp1 — b1xprrp1 = 0,
3) { anXx] + -+ anXn—Xnpr—brxpyr1 = 0,
Ary1, X1+ +Crp1,%0 — brpiXngrp1r = 0,
\ Qri X1+ F A, Xn — BrpiXngrsn = 0,
The variables x,11,...,x,, are usually known in the literature as slack variables (see

for instance [13] and the references there). The set of nonnegative integer solutions of

(3) is a monoid and it is generated by its set of nonzero minimal elements with respect
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to the usual partial order < in N+7+1 (this set is finite in view of Dickson’s lemma;
see for instance [41]).

The following result is straightforward to prove.

LEMMA 115. The element (sy,...,sn) € N" is a solution of (1) if and only if there

eXiStS Spi1,- .- Sntr € N such that (s1,...,8n,8n41,- - Sntr) is sOlution to (2).
From [42, Section 4] we deduce the following result.

LEMMA 116. Let A = {04,...,0,}, with & = (Qi,...,0,,,,,), be a system of
generators of the Diophantine monoid given by the set of nonnegative solutions of (3).
Assume that O, ...,0 are the elements in A having its last coordinate equal to zero
and that 04.1,...,0 are those elements in A with the last coordinate equal to one.

Then the set of nonnegative solutions of (2) is
{Ggs1y- -y Og} + (Tpy ..., 0a),
where 0; = (Qiy ..., Qi )-
PROPOSITION 117. Let {au,...,04}, {01,...,0s} and {Qui1,...,0} be as in

Lemma 116, and let T : N*t"+1 — N" be the projection onto the first n coordinates.

Then the set of nonnegative integer solutions of (1) is
{m(Ogs1)s- - T(Og) } + (m(0t1), ..., T(0tg)).

PROOF. Let (s1,...,5,) € N" be a solution of (1). By Lemma 115, there exist
Sutls- -y Snsr € N such that (s1,...,8,8041,--,5+r) is @ solution for (2). Applying
Lemma 116, we deduce that (s1,...,5n4r) € {Ggs1,-.-,0g} + (C1,...,04), whence
(s1,.--,8n) € {T(Qgs1),- -, T(0g) } + (R(01), ..., W(Ca)).

Conversely, if (s, ...,52) € {&R(0taz1),- .., T(0) } + (R(0t1), ..., T(Cg)), then

(Sl, ceey s,,) = 7'C(('1.d+j) +a1n(a1) 4. —’:—adTC((Xd)
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for some i € {1,...,g —d} and ay,...,a5 € N. Let sp41,...,5n+r+1 € N be such
that (S1,...,8n,Snt1y-- -y Sngldr) = Oirg +a10q + -+ + ag0y. Using Lemma 116,
(s1,---,Sn+r) is 2 nonnegative integer solution to (2) and by Lemma 115 we conclude

that (s1,...,s,) is a nonnegative integer solution for (1). ]

We now sharpen these results a bit more, taking into account some monoid struc-
ture arising in the process. Let T be the monoid of nonnegative integer solutions of the

system of inequalities

(ayx1+---+ax, > 0,

4) { anXl + -+ ap,Xn > 0,
ary1y X1+ -+ arp1, X0 = 0,

\ ar+t1x1 + cee + ar+tnxn —_— 0.

Denote by 7 the set of nonnegative integer solutions of the system (1).We define on

T the following binary relation: x <r yify—x € T.
LEMMA 118. The binary relation <7 is an order relation on ‘T .

PROOF. Observe that <t is reflexive since 0 € T. As T is unit free, <7 is an-
tisymmetric. Finally, if x <r yand y <7z, then y—x €T and z—y € T, whence

Z—x=7—y+y—x€T andthusx <7 z. O

LEMMA 119. Ler {ay,...,0}, {01,...,04} and {O441,...,0,} be as in Lemma

116. Then
T = (112(0(1),~--,7t(ad)>1

where T is defined as in Proposition 117.

PROOF. The elements o, ...,0y are nonnegative integer solutions of (3) with the

last coordinate equal to zero, whence {n(0y),...,n(0z)} C 7. If (s1,...,5,) € T,



1. NONNEGATIVE INTEGER SOLUTIONS TO DIOPHANTINE LINEAR INEQUALITIES 75
then there exist s1,..., S+ € N such that (sq,...,S,8n+1, . - -, Sn+r, 0) 1S a nonnegative
integer solution of (3). Hence there exist ay,...,a, € N such that (s1,...,5,4,,0) =
cartg + -+ a0y Observe that for k¥ > d, a; must be zero, since the last coor-
dinate of (s1,...,S44r,0) is zero. Therefore (s1,...,8n) = a17(01) + ---agm(Qy) €

<E((l1),...,TC(ad))- O
LEMMA 120. The set Minimals<,.(7) has finitely many elements.

PROOF. By Proposition 117 and Lemma 119, T = {n(0g41),...,®(%)} + T,
whence
Minimals<, (7T) C {m(0y11),...,7(0g) }-

O

THEOREM 121. Let T be the set of nonnegative integer solutions of (1) and T be

the set of nonnegative integer solutions of (4) Then
7 = Minimals<,(7)+7T

and the set Minimals<,.(T) is finite.

PROOF. We already know by Proposition 117 and Lemma 119 that T =
{n(Gtg41),...,®(0tg)} + T.  From the proof of Lemma 120, we have that
Minimals<, (T) C {n(Q4+1),...,%(0)}, and from the definition of <r, it follows

that 7 = Minimals<,(7)+T. O

REMARK 122. (1) There are several algorithms for finding the set of ele-
ments described in Lemma 116 (see for instance [13] or [39]). Hence we
know how to compute {¢,...,0}. From this set one can compute a sys-
tem of generators of T by projecting onto the first n coordinates the ele-

ments ¢;,...,0,. Using now (4) one can easily check which elements in
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{n(ctg+1),..., (o)} belong to Minimals<, (T), whence we have a complete
procedure for describing all the elements in 7.

(2) One might wonder why we are introducing and proving Theorem 121 in-
stead of using Proposition 117. The idea is that the set Minimals<, (7T)
can be strictly included (and in fact be much smaller than) the set
{m(0tgz1),---,7(0)}. It may also happen that one can find a smaller set
of generators for 7 by a method not relying on the procedure explained in the
above remark. Besides, Theorem 121 gives a description for systems of in-
equalities similar to the one obtained in Lemma 116 for systems of equations.

(3) In {2] it is presented an algorithm for solving (1) without adding slack vari-
ables. This algorithm can be used to find m(a1),...,w(0l).

(4) In the literature on can also find implementations relying on Grobner basis
computation for solving (3). Unfortunately in the examples we give in this
section the number of variables becomes too large for using this kind of algo-

rithm.
Let us illustrate this process with an example.

EXAMPLE 123. Let 7 be the set of nonnegative integer solutions of

X1 > 27
X2 2> 27
2y —x2 2> 1,
2x2—x1 > 0,

and T be the set of nonnegative integer solutions to the associated “homogeneous”
system of inequalities. A minimal system of generators for the monoid of nonnegative

integer solutions of
X} — X3 — 2x7 =
X2 — X4 — 2x7
2X] — X3 — X5 — X7
2x7 — X1 — Xg =

I
cooo

~

-
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is

{ocl,...,oc,} = {(2,2,0,0, 1,2,1),(2,3,0, 1,0,4,1),(3,2,1,0,3,1, 1),

(4,2,2,0,5,0, 1),(1,2,1,2,0,3,0),(1,1,1,1,1, 1,0),(2, 1,2,1,3,0,0)}.
Hence
{al,...,(xd} = {(1,2, 1,2,0,3,0),(1,1,1,1,1, 1,0),(2, 1,2,1,3,0,0)}

and

{(xd+1,...,0tg} = {(2,2,0,0, 1,2, 1),(2,3,0,1,0,4, 1),(3,2, 1,0,3,1,1),(4,2,2,0,5,0, 1)}.

By Lemma 119,
T = ((112), (1,1), (2, 1))
and by Proposition 117
T =1{(2,2),(2,3),(3,2),(4,2)} +T.

In this case Minimals<,.(T) = {R(0g41),---,T(0g) }. O

2. Systems of inequalities associated to the set of numerical semigroups with

fixed multiplicity

Let .S(m) be the set of all numerical semigroups with multiplicity m € N\ {0}. In
this section we prove that there is a one-to-one correspondence between this set and
the set of nonnegative integer solutions of a system of linear Diophantine inequalities.
The key for this correspondence is given in the following result that can be derived
from [32, Lemma 3.3). If m = 1 the only semigroup with multiplicity m is N, whence

the interesting cases arise when m > 1. Thus we will assume that m > 1.

LEMMA 124. Let m be an integer greater than one and let

X ={0=w(0),w(1),...,w(m=1)}



78 3. SYSTEMS OF INEQUALITIES AND NUMERICAL SEMIGROUPS

be a subset of N with m elements such that w(i) = i(mod m) and m < w(i) for all
i€ {1,...,m—1}. Let S be the submonoid of N generated by X U {m}. Then Sisa
numerical semigroup with multiplicity m. Furthermore Ap(S,m) = X if and only if for
alli,je{1,...,m—1} there existk € {0,...,m—1} and t € N such that w(i) +w(j) =
w(k) + tm.

Next lemma associates to §(m) a system of linear Diophantine inequalities.

LEMMA 125. Let m be an integer greater than one and let S be in S(m) with
Ap(S,m) = {0=w(0),w(1),...,w(m—1)}.
Forallie {1,...,m— 1} let k; € N be such that w(i) = kym+1i. Then
(1) ki > 1forallic {1,...,m—1},
(2) ki+kj—kiy;j20forall1 <i<j<m—1withi+j<m-1,

(3) ki+kj—kiyjom>—1foralll <i<j<m—1withi+j>m.

PROOF. Since S is a numerical semigroup of multiplicity m and w(i) € S\ {0} for
allie{1,...,m—1},w(i) >m,whence k; > 1. If 1<i< j<m-—landi+j<m—1,
by Lemma 124, there existt € Nand & € {0,...,m— 1} such that w(i} +w(j) = tm+
w(k). Note that i + j = w(i) + w(j) = w(k) = w(i + j)(mod m) and by the definition of
the elements in Ap(S, m) we obtain w(k) = w(i+ j) and this leads to (k;+k; — ki j)m =
tm; thus k; + kj — ki j > 0. Now assume that i+ j > m, using again Lemma 124, there
existz € Nand k € {0,...,m— 1} such that w(i) + w(j) = tm+w(k). Arguing as above
we deduce that w(k) = w(i+ j—m) and (ki+k;)m+i+ j=tm+kiy j_mm+i+ j—m,
which yields k; +kj — ki j_m > —1. O

Observe that (k1,...,ks—1) € N™~! is determined uniquely for S € S(m) and it is

a nonnegative integer solution of the system of inequalities
x> 1 forallie {1,...,m—1},
Xi+xj—xi4j >0 forall 1 <i<j<m—-1,i+j<m-1,
Xi+Xj—Xigjom > —1 foralll1 <i<j<m-1,i+j>m.
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Denote by 7'(m) the set of nonnegative solutions of this system of inequalities. Next

we associate to each element in 7 (m) an element in §(m).

LEMMA 126. Let m be an integer greater than one. For (ki,...,kn—1) € T(m),

the semigroup
S=(mkim+1,kom+2,... . kpmim+m— 1)

has multiplicity m and Ap(S,m) = {0,kim+1,... . km_iym+m—1}.

PROOF. We make use of Lemma 124 with
X = {0=w(0),kym+1=w(l),...,kp_im+m—1=wm—1)}.

Then the monoid S = (X U {m}) is a numerical semigroup of multiplicity m < w(i) for
allie {1,...,m—1} and w(i) = i(mod m) for all i € {0,...,m— 1}. Now we have to
check that for i, j € {1,...,m — 1} there exist k € {0,...,m— 1} and r € N such that
w(i) +w(j) = w(k) +tm. Given i, j € {1,...,m} we distinguish three cases.
(1) i+ j <m—1, then w(i) + w(j) =tm+w(i+j) witht =k +k; —kiy;€N
(here arises the condition k; +k; > ki ).
) Ifi+ j =m, then w(i) + w(j) =tm+w(0), witht =k +k; +1 € N.
(3) If i+ j > m, then w(i) +w(j) = tm+w(i+ j—m), with 1 =ki+kj+1—
kit j—m € N (we are using that k; + kj — kiy j—m = —1).

O

As a consequence of Lemmas 125 and 126 we obtain the following result that

states the desired correspondence.

THEOREM 127. Let m be an integer greater than one. The map @ : T (m) — S(m)
defined by

k1, .. kmot) = (mkim+ L kgm+2,... . kn_ym~+m— 1)
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s one-to-one. Moreover

Ap(Q(ky,....km—1),m) ={0,kim+1,... ky—1 +m—1}.

Using the results obtained in Section 1 we know that T (m) = {Bi,...,B} +

M1,...,Ys) for some B; = (Biy, .., Bins)s ¥i = (Virs---»%i,_,) € N*~1, and we have

a procedure for computing them. Hence
S(m) = {(m,k1m+ 1,....kp1+m— l) ! (kla---;km—l) € {[31,...,Bk}+('yl,...,'ys)}.

Next we illustrate these results with a couple of examples.

EXAMPLE 128. The set of all numerical semigroups with multiplicity 3 is
S(3)={(3,3k1 +1,3k2+2) | (k1,k2) € T(3)}

and 7 (3) is the set of nonnegative integer solutions of

X1 Z 17
X2 > 1,
2 -x2 > 0,
—x1+2x > -—1.

We proceed as we did in Example 123 and obtain

T(3)= {(la 1),(1,2),(2, 1)1(3-; 1)}+<(1a2)3(17 1),(2, 1))

O

EXAMPLE 129. We describe those numerical semigroups with multiplicity 4. The

set 7 (4) is the set of nonnegative solutions to the system of inequalities:

X1 > 1,
X2 2 la
X3 2 Ia
2x1—x2 > 0,
x+x—x3 > 0,
—X1+x2+x3 > -1,
—Xx2 +2x3 > -1
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Computing those solutions we obtain

T4 ={((1, 1,1),(1,1,2),(1,2,1),(1,2,3),(1,2,2),(2,1, 1),(3,1,1),
(2,2,1),(2,3,1),(3,2,1),(4,2,1),(3,3,1),(4,3, 1),(5,3,1)}
+{(1,0,1),(1,2,3),(1,2,2),(1,2,1),(1,1,2),

(1,1,1),(2,1,1),(2,2,1),(3.2,1)).

Hence

S(4) = {(4, k14 + 1,kad +2,k34+3) | (ki, ka2, k3) € T(4)}.

The description of §(m) in terms of 7 (m) also allows us to construct all numerical
semigroups with given multiplicity and Frobenius number. We illustrate this with an

example.

EXAMPLE 130. We construct all numerical semigroups with multiplicity 5 and
Frobenius number 13. If S is a numerical semigroup with m(S) =5 and g(S) =13,

then n € S for all n > 13. Besides
Ap(S,5) = {0,k15+ 1, k25 + 2, k35 + 3,ks5 + 4},

and we know that g(S) = max(Ap(S,5)) —5, whence max(Ap(S,5)) = 18 =3(mod 5),
which means that k3 must be equal to 3. From 14,15,16,17 € S we deduce the follow-

ing conditions on k; ko, ka.

1d=4+2x5 ks <2
15=0+3x5
16=1+3x5|k <3
17=243x5k <3
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Hence the set of numerical semigroups with multiplicity 5 and Frobenius number

13 1s

{ (5,k1541,ko5+2,k35 + 3,ks5 +4) (k1,ka, k3, ka) € T(5) }

k1 <3,ky<3,k3=3,ks <2
= {(5,11,7,18,9),(5,11,7,18,14),(5,11,12,18,9), (5, 11, 12,18, 14},

(5,11,17,18,9),(5,11,17,18,14),(5,16,7,18,9), (5, 16,7, 18, 14),

(5,16,12,18,9),(5,16,12,18,14),(5,16,17,18,9),(5,16,17, 18, 14)}.

g

The same procedure can be used to obtain a description of the set of numerical
semigroups with fixed Frobenius number g. One has to look for numerical semigroups

with multiplicity m € {2,...,g— 1,g+ 1} and proceed as in Example 130.

3. MED-semigroups

Recall that a numerical semigroup is a MED-semigroup if its multiplicity equals its
embedding dimension. Denote by M ED(m) the set of MED-semigroups with mul-
tiplicity m. We show that there is a one-to-one correspondence between M ED(m)
and a subsemigroup of N™~! (here is one of the main differences with S(m); actu-
ally 7 (m) is not a semigroup, see for instance in Example 128 that (3,1) € 7(3) but
2(3,1) & T (3)). The following result plays the same role as Lemma 124 did for §(m).

LEMMA 131. Let m be an integer greater than one and let S be a numerical semi-
group of multiplicity m and
Ap(S,m) = {0=w(0),w(1),...,w(m—1)}.

Then S is a MED-semigroup if and only if for all 1 <i < j <m— 1 there exist k €
{0,...,m—1} and t € N\ {0} such that w(i) +w(j) = tm+w(k).
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PROOF. From the definition of MED-semigroup it follows that S is a MED-
semigroup if and only if (Ap(S,m)\ {0})U {m} is a minimal system of genera-
tors for S. If 1 <i< j<m—1, by Lemma 125, we deduce that w(i) + w(j) =
tm+w(k) for some t € Nand k € {0,...,m—1}. Observe that f # 0, since otherwise
(Ap(S,m)\ {0})U{m} would not be a minimal system of generators for S. Conversely,

assume that

w(i) = apm+ayw(1) + ... +aiw(i— 1) +aipw(i+ 1) + ...+ am_1w(m— 1)
for some a; € N. Using the hypothesis several times we obtain that w(i) = Am +
w(q) for some A € N\ {0} and ¢ € {0,...,m — 1}, which is in contradiction with

the definition of the elements in Ap(S,m) (observe also that m cannot be written as

ayw(1) + -+ +am_1w(m— 1), since m < w(i) for all i). O

The proof of the following result is analogous to the one of Lemma 125, but now

using Lemma 131.

LEMMA 132. Let m be an integer greater than one and let S € MED(m) with
Ap(S,m) = {0 = w(0),w(1),...,wim—1)}. Foralli€{l,....m- 1} let kj € N be
such that w(i) = kim+1i. Then

(1) ki > 1forallie {1,...,m—1},
(2) ki+kj—kivj> 1forall1<i<j<m—1withi+j<m— 1,

(3) ki+kj—kitj-m >0forall1<i<j<m—1 withi+ j>m.

In this setting (k1,...,km—1) € N—1 is a nonnegative integer solution of the system

of inequalities

x>1 forallie {1,...,m—1},
Xi+xj—Xipj=>1 forall1<i<j<m-1lji+j<m—1,
Xi+Xj—Xipj-m >0 forall1<i<j<m-1,i+j>m.

Denote by M (m) the set of nonnegative solutions of this system of inequalities, which

is a subsemigroup of N™—1 as the following result (with straightforward proof) shows.
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LEMMA 133. Let by,...,b, € N and a;; € Z. Then the set of nonnegative integer

solutions of the system
ayxi+---+a,xn > by,

anX1+-+apxn 2> by,

is a subsemigroup of N".

Hence Lemma 132 associates to every element in M E2D(m) and element in the
semigroup M (m). The following result, whose proof is analogous to the one of

Lemma 126, gives the correspondence in the other direction.
LEMMA 134. Let m be an integer greater than one. If (ki,...,km—1) € M (m), then
the numerical semigroup
S={mkim+ 1, kam+2 ... kp_iym+m—1)
is a MED-semigroup with Ap(S,m) = {0,kim+1,... . ky_1m+m—1}.

As a consequence of Lemmas 132 and 134 we obtain the correspondence between

M (m) and M ED(m).
THEOREM 135. Let m be an integer greater than one. The map ¥ : M(m) —
M ED(m) defined by
yki,....kn—1) = (mbkim+1,... ky_ym+m—1)
is one-to-one. Furthermore
Ap(y(ky,...,km—1),m) ={0,kim+1,...  kyy_ym+m—1}

and
{meym+1,... kp_ym+m—1}

is a minimal system of generators for y(ky, ... km—_1).



3. MED-SEMIGROUPS 85

The semigroups M (m) are not finitely generated as the following two results show

(except M (2) = N\ {0}).

LEMMA 136. Let S = (s1,...,5,) be a submonoid of NP for some positive integer
p. Assume that there exist v,w € NP such that v+kw € S for all k € N. Then there
exists I € N\ {0} for which Iw € S.

PROOF. For every k € N take (AX,...,A%) € N” such that v+kw = ¥]_; Aks;. The
set {(A%,...,AF) | k € N} has infinitely many elements, and by Dickson’s lemma, it
follows that there exist k1, k; € N such that (?»k‘ yeen ,lfr“) < (lkz, e, ?\.’,‘2). Hence (k; —

ki)weS. g

PROPOSITION 137. Let m be an integer greater than two. The semigroup M (m)

is not finitely generated.

PROOF. We already know by Theorem 121 that M (m) = Minimals<, (M (m)) +

T, where T is the set of nonnegative integer solutions of

x>0 forallic {1,...,m—1},
Xi+xj—xi+; 20 foralll<i<j<m-1lji+j<m-1,
Xi+Xxj—Xigjom =0 forall1 <i<j<m-1l,i+j>m.

Hence v+ kw € M (m) for all v € Minimals<, (M (m)), w € T and k € N. Observe
that the element v= (1,...,1) € Minimals<, (M (m)) and w=v+em_1 €T (as usual,
¢; denotes the element all of whose coordinates are zero except the ith which is equal
to one). Hence v+ kw € M (m) for all k € N. If M (m) is finitely generated, then
by Lemma 136 there must be a positive integer / such that Iw € M(m), but this is

impossible, since this element does not fulfill the equation xy + Xm—2 — Xm—1 = 1. O

Let m be an integer greater than one and let M ED(m) be the set of MED-
semigroups of multiplicity m and with minimal generators greater than 2m (except

of course m). This condition yields k; > 2 forall i € {1,...,m— 1} in the definition of
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k;, whence

M(m) =y Y MED(m)) = {(ki,...,km_1) € M(m) | ki >2forie {1,...,m— 1}}.

Therefore the system of inequalities that defines E{_(m) is

x> 2 forallie {1,...,m—1},
xi+xj—xipj>1 foral1<i<j<m-1,i+j<m—1,
Xi+xj—Xitj-m 20 foral1 <i<j<m-1i+j>m.

By Lemma 133, —ﬂ(m) is a subsemigroup of N™~!, Recall that 7 (m) was the set of

nonnegative integer solutions of the system

xi>1 forallie {1,...,m—1},
Xi+xj—xi1j >0 forall1<i<j<m-1,i+j<m-—1,
Xi+xj—Xiyjm>—1 forall1<i<j<m—1,i+j>m.

From these two systems of inequalities it follows easily that if (ki,...,km—1) €
T(m), then (ki +1,....kpn—1+1) € 5/[_(711) and (ky,...,kn_1) € M(m) implies
(k1 —1,...,ky—1 — 1) € T(m). Hence we obtain the following correspondence be-

tween T (m) and M (m).

PROPOSITION 138. Let m be an integer greater than one. Then

T(m) = {(=1,...,— 1)} + M(m).

Since T(m) is bijective with S(m) and M (m) is bijective with MED(m), we

obtain the following consequence ([32, Theorem 3.5]).

COROLLARY 139. There is a one-to-one correspondence between the set of nu-
merical semigroups with multiplicity m > 1 and the set of MED-semigroups with mul-

tiplicity m and minimal generators different from m greater than 2m.

Proposition 117 and Theorem 121 yield “finite parametrizations” of 7 (m), but now
light is shed there on the structure of .$(m). Nevertheless, Proposition 138 describes

T (m) as a translation of a subsemigroup of N”~!. We use this information to give
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semigroup structure to S(m) and to get a result stronger than Corollary 139. Given
S=(mkm+1,... kpym+m—1),S= (mkim+1,... . kpym+m—1) € S(m),
that is, (k1,...,km—1), (k1,--.,km-1) € T (m), define
Sx8=(m,(kj+ki+D)m+1,...,(kmei+kpo1+1)m+m—1).
The reader can check that (k; +k1 +1,...,km—1 +km—1 + 1) € T (m), whence SxSe
S(m). The pair (S(m), *) is a semigroup and the map
6:5(m) = M(m), () =(1,....1) + 07 '(5)

is a semigroup isomorphism, where @ is the map given in Theorem 127.

COROLLARY 140. The set of numerical semigroups with multiplicity m is a semi-

group isomorphic to a subsemigroup of N1,

4. Symmetric numerical semigroups

In this section we particularize the results obtained in Section 2 for symmetric
numerical semigroups. We see how the defining inequalities of T (m) are reshaped by
the symmetric property.

From Proposition 12, we have that S is symmetric if the set Ap(S,m) has a maxi-
mum with respect to the partial ordering <s induced in S by addition. Given an integer

m>1land p € {1,...,m— 1}, define
SE(m) = {S € $(m) | S is symmetric and g(S) = p(mod m)}.

We prove that there is a one-to-one correspondence between 5% (m) and the set of non-
negative integer solutions of a system of linear Diophantine equations and inequalities.
This set will depend on p=m— 1 or p # m—1, whence we study them separately. The
following lemma collects the necessary extra conditions we have add to the ones given

in Lemma 125 for general numerical semigroups for the specific case of semigroups
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in .5;3”1 (m). Those extra conditions are a direct consequence of Proposition 12 taking
into account that for S € SS';*I(m) with Ap(S§,m) = {0 = w(0),w(1),...,w(m—1)},
we have that g(S) +m = w(m— 1), since g(S) +m = max<(Ap(S,m)) and g(S) = m —
1(mod m). Hence the condition g(S) +m —w € Ap(S,m) for all w € Ap(S,m) trans-

lates to: forall i € {1,...,m—1}, wim—1) —w(i) = w(j) for some j € {1,...,m—1}.

LEMMA 141. Let m be an integer greater than one and let S € SS';',‘I(m) with
Ap(S,m) = {0=w(0),w(l),...,wim—1)}. Foreveryi€ {1,....m—1} letk; € N be
such that w(i) = ksm+i. Then

(1) ki > 1forallic {1,....m—1},

(2) ki+kj—kiy;>0foralll <i<j<m—1withi+j<m-]1,
(3) ki+kj—kp_y =0forall1<i< j<m—1withi+j=m—1,
(4) ki+kj—kiyjm>—-1foralll<i<j<m—1withi+j>m

Thus we obtain that (ki,...,k,—1) is a nonnegative integer solution of the follow-

ing system
x>1 forallie {1,...,m—1},
Xi+xj—xi1;>0 forall 1 <i<j<m-—1withi+j<m—1,
Xi+Xj—Xm—1=0 forall<i<j<m—1lwithi+j=m—1,

Xi+Xxj=Xiyj-m>—1 foralll <i<j<m—1withi+j>m.
We denote by Q;')Z’“l (m) the set of nonnegative solutions of this system of linear Dio-
phantine equations and inequalities.
As for p # m— 1, we obtain the following result similar to Lemma 141, using once

more Lemma 125 and Proposition 12.

LEMMA 142. Let m be an integer greater than two and let p € {1,...,m—2}. Let
S € S5 (m) with Ap(S,m) = {0=w(0),w(1),...,w(m—1)}. Foreveryic {l,...,m—
1} let k; € N be such that w(i) = kim+i. Then

(1) ki> 1forallie {1,....m—1},



4. SYMMETRIC NUMERICAL SEMIGROUPS 89
(2) ki+kj—kiy;>0foralll <i<j<m—1lwithi+j<m—1landi+j#p,
(3) ki+kj—k,=0forall 1 <i<j<m—1withi+j=p,
(4) ki+kj —kiyjom > —1forall 1<i<j<m—1 withi+j>mandi+ j#
m+p,
(5) ki+kj—kp=—1forall1 <i< j<m—1withi+j=m+p.

The element (ki,...,kn—1) belongs to I} (m), the set of nonnegative integer solu-

tions of the system

xi>1 forallie {1,...,m—1},

xi+xj—xip;j >0 forall1<i<j<m—1withi+j<m—1,i+j#p,
xi+xj—xp =0 forall1 <i<j<m-1withi+j=p,
Xi+xj—Xipj—m > —1 foralll <i<j<m-—1withi+j>m,i+j#m+p,
xi+xj—xp=-1 forall1<i<j<m-—1withi+j=m+p.

As in Section 2, we now get the following consequence (we omit the proof since it is

similar to the one given there).
THEOREM 143. Let m be an integer greater than one and let p € {1,...,m— 1}.
Then the map @k, : T (m) — Siy(m) defined by
oF, (k1, . k1) = (mkim+ VLkom+2,.. . kpim+m— 1)
is a one-to-one correspondence. Furthermore,
Ap((pfy(kl,...,km_l),m) ={0,kym+1,....kp_1m+m-— 1}

and g((ng(kla- . -7km—1)) = (kp - 1)m+p.

g(ohy(k1,- .., km-1)) = (kp — 1)m+ p follows from the definition of S&(m) and the

fact that for every numerical semigroup g(S) +m = max(Ap(S,m)).

REMARK 144. (1) It is well known that the Frobenius number of any sym-
metric numerical semigroup is odd. Hence if both m and p are even, then

5 (m) is empty.
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(2) We know by Theorem 121 that ey (m) = {B1,...,Bx} + (¥1,...,%) for some
Bi’s and y;’s in N™~1. We also have procedures for computing them (see the

remark after Theorem 121). Hence
Siy(m) = {{mkeim+1, .. kn_im+m—1) | (k1,...,km-1) € TF(m)}

gives a complete “parametric” description of S& (m).

(3) Set Ssy(m) = {S € S(m) | S is symmetric}. Clearly Ssy(m) = U’I;’;Il S&(m).

EXAMPLE 145. Let us describe Ssy(4). By the remarks given above, it suffices to
compute S} (4) and 53 (4); Siy(4) = SL(4)U Se/(4).

For ‘1;},(4) we obtain the following system of equations and inequalities:

X1 2 la
X2 Z 13
X3 2 17
2x1 —x2 > 0,
xXi+x—x3 > 0,
2x3 —x2 > -1,
xp+x3—x1 = —1,

and using the procedures explained in Section 1 we obtain
(@) ={(3,1,1),(4,2,1),(5,3,1)} + ((1,0,1),(2,1,1),(3,2,1)).

As for ’1;?,(4) we start from the system

X > 1,
X2 Z 17
X3 > 1,
2x1 —x2 > 0,
xi+x—-x3 = 0,
2x3 — X2 > -1,
X2+x3—-x1 > -1,
and obtain
73(4) ={(1,1,2),(1,2,3)} +{(1,0,1),(1,2,3),(1,1,2)).
Hence

Ssy(4) = {(4,k14+ 1,kp4 +2,k34 +3) | (k1,k2,k3,k3) € ‘1;31,(4) U‘Zg’,(4)}
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U

The concept of MEDSY-semigroup among symmetric numerical semigroups is
the analogous to MED-semigroup in numerical semigroups. Actually, by Proposition
12, the embedding dimension of a symmetric numerical semigroup cannot be m for
m > 3 (symmetric numerical semigroups with multiplicity 2 are of the form (2,2k+ 1)
for k # 0), whence a MEDSY-semigroup is a symmetric numerical semigroup with
multiplicity m > 3 and embedding dimension equal to m — 1. If S is a symmetric
semigroup with multiplicity m and Frobenius number g, then S is a MEDSY-semigroup
if and only if the set (Ap(S,m) \ {0,w(p)})U{m} is a minimal system of generators
for § with g = p(mod m), p € {1,...,m— 1}. Using this idea we proof the following

result.

LEMMA 146. Let S be a numerical semigroup with multiplicity m > 3, Ap(S.m) =
{0=w(0),w(1),...,w(im—1)} and Frobenius number g = p(modm), p€ {1,...,m—
1}.

(1) If p=m~— 1, then S is a MEDSY-semigroup ifand only ifforall 1 <i< j <
m—1 such that i+ j # m— 1 there exist 0 < k <m— 1 and t € N\ {0} such
that w(i) + w(j) = tm+w(k) and w(i) +w(j) = w(m— fori+j=m-1

(2) If p# m—1, then S is a MEDSY-semigroup if and only if for all 1 <i <
j < m—1 such that i+ j # p(mod m) there exist 0 < k < m— landt €
N\ {0} such that w(i) +w(j) = tm+w(k) and w(i) +w(j)=w(p) fori+j=

p(mod m).

PROOF. Assume that S is a MEDSY-semigroup. Note that g+m = max(Ap(S,m)),
whence if g = p(mod m), then g+ m = w(p). Since S is is symmetric, Proposition
12, states that w(p) —w(i) = w(j), for some j € {0,...,m— 1}. Thus w(p)=p=

w(i) +w(j) =i+ j(mod m) forces i+ j = p(mod m) (the case p =m— 1 in this setting
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leads to i + j = m— 1). Now for i+ j # p(mod m), in view of Lemma 124 there exist
k€ {0,...,m—1} and t € N such that w(i) + w(j) = tm + w(k). The integer ¢ cannot
be zero when § is a MEDSY-semigroup, because {m,w(1),...,w(m—1)}\ {w(p)}
would not be a minimal system of generators for S.

Conversely, the condition w(i) +w(j) = w(p) for i+ j = p(mod m), by Proposition
12, implies that S is symmetric. Now assume that S is not a MEDSY-semigroup, or
equivalently, that {m,w(1),...,w(m—1)}\ {w(p)} is not a minimal system of gener-
ators for S. Then there exist i # p such that w(i) = ’J?’z‘ll,j 2i pajw(j) for somea; € N.
The reader can check that after using the rules w(i) + w(j) = tm+ w(k) this leads to a

contradiction. O

Let m be an integer greater than two, let p € {1,...,m— 1} and let
MEDSY"(m) = {S € S(m) | S isa MEDSY-semigroup and g(S) = p(mod m)}.

Using last lemma it is easy to proof the next result.

LEMMA 147. Let m be an integer greater than two and let p € {1,...,m — 1}.
Let S € MEDSY?(m) with Ap(S,m) = {0 = w(0),w(1),...,w(m— 1)}. For every
i€{l,...,m—1} let k; € N be such that w(i) = k;m+i. Then

(1) If p=m~—1, then
(a) ki > 1forallie {1,....m—1},
(b) ki+kj—kiy;j>1forall1 <i<j<m—-1withi+j<m-],
(c) ki+kj—kp_1=0forall1<i<j<m-1withi+j=m-1,
(d) ki+kj—kiyj-m>0forall1 <i<j<m—1withi+ j>m.
(2) If p#m—1, then
(a) ki>1forallie {1,....m—1},
(b) ki+kj—kirj>1foralll <i<j<m—1withi+j<m—1landi+j#p,

(c) ki+kj—k,=0foralll <i<j<m-—1withi+ j=p,
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(d) ki+kj—kiyjom >0forall1 <i< j<m—1withi+j>mandi+ j#
m+p,

(e) ki+kj—k,=—1forall 1<i<j<m—1lwithi+j>mandi+j=

m+ p.

In the first case (ki,...,kn—1) belongs to %y’l (m), the set of nonnegative integer

solutions of the system

xi> 1 iE{l,...,m—-l},
Xi+xj—Xxiyj>1 1<i<j<m-—1lwithi+j<m-1,

(3) Xi+Xj—Xpm-1=0 1<i<j<m-1withi+j=m-1,
Xi+xj—Xiyj-m =0 1<i<j<m-1withi+ j>m,
which by Lemma 133 is a subsemigroup of N1 In the second case (ki,...,Kkm—1)

belongs to M (m) determined by the system

x> ie{l,....m—1},
Xi+xj—xp;>1  1<i<j<m=Li+j<m—Li+j#p,
6 < xi+xj-x=0 1<i<j<m-Litj=p,

Xi+xj—Xipjom 20 1<i<j<m—Li+j>mi+j#Fm+p,
Xi+xj—xp=—1 1<i<j<m=1lji+j>mi+j=m+p.

(This set is not a subsemigroup of N"~1.)
Proceeding as we did in Section 2 we obtain the following result which is the

restriction of Theorem 143 to M EDSY” (m).

THEOREM 148. Let m be an integer greater than two and let p € {1,...,m—1}.
The map Wy : M (m) — MEDSY" (m), defined as

lpfy(kl,...,km_l) = (mkym+ Lkom+2,... .kp_1ym+m— 1)
is a one-to-one correspondence. Furthermore,
Ap(wgy(kl,.. v km—1),m) ={0,kim+1,... . kp_1m+m— 1}

and g(Wy(ky,... km-1)) = (kp—1)m+p.
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Let m be an integer greater than two and let p € {l,...,m — 1}. Define
MEDSY” (m) to be the set of elements S € S&(m) such that the minimal generators
of S different from m are greater than 2m. Let E/[—Z;_l (m) be the set of nonnegative
solutions of the system (5) obtained replacing x; > 1 by x; > 2; —M—fy(m) is obtained
performing the same operation in (6). The following result is a direct consequence of

Theorem 148.
THEOREM 149. Let m be an integer greater than two and let p € {1,...,m— 1}.
The map L, : —ﬂ?fy (m) — MEDSY” (m), defined as
ny(kl,.. vkmo1) = (mkim+ 1, kom+2, .. ky_ym+m—1)
is a one-to-one correspondence. Furthermore,
Ap(Wé’y(kl,.. kme1),m) ={0,kym+1,... kp_im+m—1}
and g2, (k1. k1)) = (kp — 1)m-+ p.

As in Proposition 138, the reader can check, by just comparing the defining systems

for 7§ (m) and M, (m), that the following holds.

PROPOSITION 150. Let m be an integer greater than two and let p € {1,...,m—
1}. Then
—p
'1;5(’") = {(_1" "’—1) _eP}+ Msy(m)'

As a consequence of this result we obtain the following Corollary appearing in

[31].

COROLLARY 151. There is a one-to-one correspondence between the set of
symmetric numerical semigroups with multiplicity m > 2 and the set of MEDSY-
semigroups with multiplicity m and minimal generators different from m greater than

2m.
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—m—1
Observe also that :M:; (m) is a subsemigroup of N"~! by Lemma 138, whence
.S‘s';_l (m) can be endowed with a semigroup structure with the operation  defined as

. . . . - . ——m—1
in Section 3. This semigroup is isomorphic to M, (m).

5. Numerical semigroups with monotonic Apéry set

We say that a numerical semigroup S has monotonic Apéry set if w(1) < w(2) <
.o+ < w(m = 1), with {0,w(1),...,w(m— 1)} = Ap(S,m), w(i) = i(mod m) for all
ic{1,...,m—1}. Our main goal in this section is to study the set C (m) of numerical
semigroups with monotonic Apéry set and multiplicity m. We show that there is a one-
to-one correspondence between C(m) and a finitely generated subsemigroup of N™~1,
and for proving this correspondence we use again Lemma 124. |

The main result is Theorem 154, and for its proof we need two lemmas.

LEMMA 152. Let m be an integer greater that one and let S be in C(m) with
Ap(S,m) = {0 =w(0) <w(l) <--- <w(m—1)}.

Forie {1,...,m—1}, set ki € N 10 be the element such that w(i) = kim+1 (observe
that w(i) > i, since i <m). Then 1 <ky <+ < ki and ki+k; > kiyj foralli,j €

{1,...,m—1} such thati+j<m-—1

PROOF. Since S is a numerical semigroup of multiplicity m and w(1) € S\ {0},
we have that w(1) > m and thus k; > 1. As w(l) < --- <w(m—1), we obtain 1 <
ky <--- < kpm-1. Now for i,j € {1,...,m—1} such that i+ j < m— 1, Lemma 124
states that w(i) +w(j) = tm+ w(l) for some r € Nand [ € {0,...,m — 1}. Observe
that w(i+ j) = i+ j = w(i) +w(j) = w(l)(mod m) and this forces [ to be i + J, whence
ki+kj > kiyj. O
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We deduce that (k1,...,kn—1) € N™~! is determined uniquely for § € C(m) and it

is a nonnegative integer solution of the system of linear Diophantine inequalities

x12>1
Xiy1—x; 20, forallie {1...m—-2}
xi+xj—xi4; >0, foralli,je{l...m—1}, i+ j<m-1.

Denote by A4 (m) the set of nonnegative solutions of this system of inequalities. From
Lemma 133, we have that 4(m) is a subsemigroup of N"~1,

The next result associates to each element of A4 (m) an element in C(m).

LEMMA 153. Let m be an integer greater than one and let (ky,... kp_1) € N1
with 1 <ky < - <kp1 and ki+k;j > kij for all i,j € {1,...,m— 1} such that
i+ j<m—1. Then there exists a numerical semigroup S with multiplicity m and

Ap(S,m) = {0,kym+ 1,kom+2,...,km_1ym+m— 1}.

PROOF. We make use of Lemma 124 with
X={0=w(0),kim+1=w(l),....km_ym+1=w(m—1)}.
Then the monoid § = (X U {m}) is a numerical semigroup of multiplicity m. Now we
have to check that for i, j € {1,...,m— 1} there exist k € {0,...,m— 1} and ¢ € N such
that w(i) +w(j) = w(k) +tm. For given i, j € {1,...,m} we distinguish three cases.
(D) Ifi+j<m—1,thenw(i) +w(j) =tm+w(i+ j)witht =k;+k; —ki.; €N
(here arises the condition k; + k; > k. ;).
(2) If i+ j =m, then w(i) + w(j) = tm+w(0), witht = k; + kj+ 1 € N.
(3) Ifi+j>m,theni> i+ j—m>1, whence km~+i > kit j_mm+i+ j—m and
this leads to km+i+k;m+ j > ki j_mm~+i+ j—m. Since kim+i+k;jm+
J = kiyj_mm+i+ j—m(mod m), we deduce that there exist 7 € N such that

w(i) +w(j) = tm+w(i+ j—m).

With the above lemmas we prove the following result.
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THEOREM 154. Let

ctm = {

S numerical
semigroup

m(S) =m, }

S has monotonic Apéry set

and

A(m) = { (ki,... km_1) € N1

1<k < Shin-t,s
ki+kj > kipjfor2<i+j<m-—1 )

Then the map @ : A(m) — C(m) defined by
Qkyy. .oy km—1) = (mkim+1,... kp—1m+m— 1)
is one-to-one. Moreover,

Ap(@(ki, ..., km—1),m) ={0,kim~+1,... . km_1m+m— 1}.

PROOF. In fact, by Lemma 153, we have that @ is a well defined map with

Ap(Q(ky,. .. km—1),m) = {0, kim—+1,... . kp_1m+m— 1}

and, from Lemma 152, we can conclude that ¢ is a bijective map. O
Assume that A = {ai,...,a,} is a system of generators of A(m), with a; =
(aij,---»ai,_,) forie {1,...,r}. Then

C(m) = {(m,(gk;a,-l)m—k 1,...,(;?\,,-a,-m_l)m+m- 1| (M,...,Ar) € N\ {0} }.

We illustrate this result with an example.

EXAMPLE 155. Let us describe C(5). We have that

x1 > 0,02 > x1,X3 2> X2,X4 2 X3
A(5) =< (x1,%2,%3,%4) € N* | 2x1 > x2,x1 +x2 > X3,X1 +X3 2 Xa
2x3 2 x4

and using the process explained in Section 1, we get that

A(5) = ((],2,2,2),(1,1,1,1),(1,1,1,2),(1,2,2,3),

(1,1,2,2),(1,2,3,3),(1,2,3,4)).
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Hence C(S) consists on all numerical semigroups of the form

(5,k15+ 1, ka5 +2, k35 + 3, ks5 + 4)

such that (k1,k2,k3,ks) € A(5), or in other words,

ki 1 1 1) 1\
ko _ 2 1 1 2
ks | =ML 2 [ TR (TR g | TR
k4 2 1 2 ) 3 )
[ 1 [ 1 1
+as| D laene] 2 ] 2
5 ) 6 3 7 3 3
\ 2 \ 3 5
for some (A1, ..., 7) € N7\ {0}. O

Next we give the minimal systems of generators for A(m) with m € {2,...,8},
which describe the set of numerical semigroups with monotonic Apéry set and multi-
plicity up to 8.

e A(2) is generated by {1},

e 4(3) is generated by {(1,1),(1,2)},

e A(4) is generated by {(1,1,1),(1,1,2),(1,2,2),(1,2,3)},
e a system of generators for 4(5) is given in Example 155,

e 4(6) is generated by

{(1,2,2,2,2),(1,1,1,1,1),(1,2,2,2,3),(1,1,1,1,2),(1,1,1,2,2),
(1,2,2,3,3),(1,2,2,3,4),(1,2,3,3,3),(1,1,2,2,2),(1,1,2,2,3),

(1,2,3,3,4),(1,2,3,4,4),(1,2,3,4,5)},
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e A4(7) is generated by

{(1,2,2,2,2,2),(1,1,1,1,1, 1),(1,2,2,2,2,3),(1,1,1,1, 1,2),(1,2,2,3,3,3),
(1,1,1,1,2,2),(1,2,2,2,3,4),(1,2,2,3,3,3),(1, 1, 1,2,2,2),(1,2,2,3,3,4),
(1,2,2,3,4,4),(1,2,3,3,3,3),(1,1,2,2,2,2),(1,2,3,3,3,4),(l, 1,2,2,2,3),
(1,2,3,3,4,4),(1, 1,2,2,3,3),(1,2,3,3,4,4),(1,2,3,4,4,4),(2,2,3,4,4,5),

(1,2,3,4,4,5), (2,3,4,6,6,8),(2,2,3,4,5,6),(1,2,3,4,5,5), (1,2,3,4,5,6)},
e A(8) is generated by

(1,2,3,3,3,3,3),(1,2,2,2,2,2,2),(1,1,2,2,2,2,2),(1, 1, 1, , 1, 1, 1),
(1,2,2,2,2,2,3),(1,1,1,1,1,1,2),(1,2,3,3,3,3,4),(1,1,2,2,2,2.3),
(1,2,2,2,2,3,3),(1,1,1,1,1,2,2),(1,2,2,2,2,3,4),(1,2,3,3.3,4,4),
(1,1,2,2,2,3,3),(1,2,3,3,3,4,5),(1,2,2,2,3,3,3),(1,1,1,1,2,2,2),
(1,2,2,2,3,3,4),(1,2,2,2,3,4,4),(1,2,3,3,4,4,4),(1,1,2,2,3,3,3),
1,2,3,3,4,4,5),(1,1,2,2,3,3,4),(1,2,3,3,4,5,5),(1,2,3,3,4,5,6),
1,2,3,4,4,4,4),(1,2,2,3,3,3.3),(1,1,1,2,2,2,2),(1,2,2,3,3,3,4),
(1,2,3,4,4,4,5),(2,2,3,4,4,6,6),(1,2,2,3,3,4,4),
(
(

(
1,2,3,4,4,5,5),(1,2,3,4,4,5,6),
(

(

(
(1,1,1,2,2,2,3), (

( (2,3,4,6,6,8,8),
( (

(

)
)
1,2,2,3,3,4,5), ) )
2,3,4,6,6,8,9),(2,2,3,4,5,6,6), 2,2,3,4,5,6,7),(1,2,2,3,4,4,4),
1,2,2,3,4,4,5),(1,2,3,4,5,5,5),(1,2,3,4,5,5,6),(1,2,3,4,5,6,6),

(1,2,3,4,5,6,7)}.

We finish this chapter studding the symmetric elements of C (m). If we denote by
Cy(m) = {S € C(m) | S is symmetric}, then we show that Gyy(m) is isomorphic to a

subsemigroup of 4(m) which we denote by Zsy(m).
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Let S be an element of C(m) and Ap(S,m) = {0 <kim+1<--+ < ky_1m+m—1}.
Then, from Lemma 12, we deduce that S is symmetric if and only if k; + kpm—1—; = k-1
forallie {1,...,m—2}. As a consequence of this fact and Theorem 154 wé obtain

the following result.

PROPOSITION 156. Let m be an integer greater than one, Coy(m) be the subset of
symmetric semigroups of C(m) and Asy(m) be the set of elements in A(m) such that
kit+kp_1—i=ky_1forallic{1,....m—2}.

Then the map @ : Asy(m) — Csy(m) defined by

olkt,....km—1) = (mbkim+1,.. kp_ym+m—1)
is one-to-one. Moreover,

Ap((p(kl,...,km_l),m) = {0,k1m+ 1,....kp_im+m— 1}.

Thus the element (ki,...,k,_1) in Asy(m) is the set of nonnegative integer solu-

tions of the system

x> 1
xix1 —x; > 0, forallie{l...m—Z}
Xi+xj—xi4; >0, foralli,je{l...m-1}, i+ j<m—1
Xi+Xm_1—i = Xm_1, foralli e {l,...,m—Z}.



CHAPTER 4

MED, Arf and saturated closure of a numerical semigroup

The purpose of this chapter is the study of the class of numerical semigroups
with maximal embedding dimension (MED-semigroups), and two types of this kind of
semigroups that are of particular interest: the Arf and saturated numerical semigroups.
For describing and working with MED-semigroups (respectively Arf, saturated) one
can use their system of generators, which do not take any advantage of their additional
structure. As a fundamental result of this chapter we will see that every numerical
MED-semigroup (fespectively Arf, saturated) admits a unique minimal MED (respec-
tively Arf, SAT) system of generators, which is in general smaller than its classical
minimal system of generators.

In Section 1, we deduce that the intersection of two MED-semigroups with the
same multiplicity is again a MED-semigroup. This fact allows us introduce the concept
of MED system of generators. We see that the set of MED semigroups with multiplic-
ity m can be arranged in a tree whose root is the semigroup (m,m+1,...m+m—1).
Finally, in this section, from Theorem 170 we can compute the MED closure of
any numerical semigroup that is, the minimum (with respect to set inclusion) MED-
semigroup with the same multiplicity containing it. |

In Section 2, from the concept of Arf semigroup, we deduce that the intersection
of two Arf numerical semigroups is again an Arf numerical semigroup. This again
is used to introduce the concept of Arf system of generators. This study allows us to

arrange the set of all Arf numerical semigroups in a binary tree whose root is N. We
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also present an algorithmic procedure for computing, from a finite subset X of N with
ged(X) = 1, the elements of Arf(X).

In Section 3, we characterize the subsets of N that are saturated numerical semi-
groups. We see that the intersection of two saturated numerical semigroups is again
saturated, from this we introduce the concept of SAT system of generators for a satu-
rated numerical semigroup. This enables us to present a recursive method for comput-
ing the set of all saturated numerical semigroups, and arrange it in a binary tree with
no leaves and rooted in N. Theorem 198, allows us to construct a saturated numerical

semigroup from one of its SAT system of generators.

1. MED systems of generators

In this section we introduce the concept of MED system of generators for MED-
semigroups. From this concept we present a recursive method for computing the set
of all MED-semigroups with fixed multiplicity. Also we compute the MED closure of
a numerical semigroup.

In the bibliography there are many characterizations of MED-semigroups (see for
instance [5, Proposition 1.2.9] were a series of them have been collected). Condi-
tion (v) of the abovementioned proposition tells us that a numerical semigroup S is
a MED-semigroup if and only if (S\ {0}) — m(S) is a semigroup. As an immediate

consequence we obtain the following result.

PROPOSITION 157. If S is a numerical semigroup, then the following conditions
are equivalent:
(1) S is a MED-semigroup,
(2) for every x,y € S such that x > y > m(S), thenx+y—m(S) € S.

The following example shows that the intersection of two MED-semigroups is not

in general a MED-semigroup.
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EXAMPLE 158. Let S; = (3,7,11) and $» = (5,6,7,8,9), which are MED-

semigroups. However, S; NS, = (6,7,9,10,11) is not a MED-semigroup, since
m(S1NS2) =6 %5 =u(S1NSL). '

PROPOSITION 159. Let S; and S» be two MED-semigroups with multiplicity m.

Then S1 NSy is a MED-semigroup of multiplicity m.

PROOF. The result follows easily using the fact that S; NS> has multiplicity m and

then applying Proposition 157. O

Recall that if S is a numerical semigroup, then N\ S has finitely many elements,
whence there are only finitely many numerical semigroups containing S.

For a given subset X of N, set X* = X \ {0}. If gcd(X) = 1, then denote by MED(X )
the smallest MED-semigroup containing X and with multiplicity min(X*). Observe
that the set of MED-semigroups with multiplicity min(X*) containing X is not empty,
since {0, min(X*),min(X*) + 1,—} is in this set. Note also that this set is finite by
the above remark. Hence by Proposition 159, MED(X)) is just the intersection of all
MED-semigroups with multiplicity min(X*) containing X, and we call it the MED
closure of X.

If S is a MED semigroup and X C N is such that ged(X) = 1 and MED(X) = S,
then we will say that X is a MED system of generators of S and it is a minimal
MED system of generators provided that no proper subset of X is a MED system of
generators of §. Trivially, if S = (n1,...,np) is a MED-semigroup, then {ny,...,n,} is
a MED system of generators of S, whence every MED-semigroup admits a MED sys-
tem of generators (another trivial MED system of generators is the semigroup itself).
Our next goal is to prove that every MED-semigroup admits a unique minimal MED

system of generators.
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LEMMA 160. Let S be a nontrivial submonoid of N and let m = min(S*). Then
S={xj+-+x—am|keN\{0,1},ac Z,a<k—1,x,...,x e S*}u {0}

is a submonoid of N, min(S™*) =mand SC §'.

PROOF. Forx e $*, takex; =x,xo=m((k=2)anda=1. Thenx=x; +x —am €
S’, which yields S C §'. Next we prove that S is a semigroup. Let o, € §’*. Then
o =x;+-+x—amand B=y +---+y — bm, with x;,y; € S*, k,] € N\ {0,1},
a<lk-landb<I-1 Clearlya+B=xi1+---+x+y1+--+y—(a+bme§.
Finally observe that since xp,...,x; € §*, we obtain that x; > m,and asa < k— 1, we

have that x; +-- - +x; — am > m. Hence min(S"*) = m. O
LEMMA 161. If S is a numerical semigroup, then S' C MED(S).

PROOF. Let s =x1+---+xx —am € §'. To prove that s € MED(S), use induction

on k (starting with k = 2) and apply Proposition 157 to MED(S). a

As a consequence of Proposition 157 and Lemmas 160 and 161 we obtain the

following result.

PROPOSITION 162. Let S be a numerical semigroup. The following conditions are
equivalent:
(1) S is a MED-semigroup,
(2)5¢Cs,
(3) §=S.

Given S a nontrivial submonoid of N, define recursively S" by

o SO=3¢,
. Sn+1 — (S”)'.
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If S is a numerical semigroup, then by Lemmas 160 and 161, we know that S C S C
MED(S), and that min(S"*) = m(S) = m(MED(S)). Hence MED(S) C MED(S’) C
MED(S), which leads to MED(S) = MED(S"). Consequently, MED(S) = MED(S")
for all n € N, whence §” € MED(S) for all n € N. Therefore we have that

§=8Ccs§ C-..C8"C---CMED(S).

Since there are finitely many numerical semigroups containing S, at a certain step of
this chain, it must happen that S? = $P*!. By definition, S7*' = 57, and in view
of Proposition 162, this implies that S” is a MED-semigroup. Thus SP = MED(S?),
which leads to S” = MED(S), since MED(S”) = MED(S). We have proved the fol-

lowing result.

PROPOSITION 163. Let S be a numerical semigroup, then there exists p € N such

that SP = MED(S).

LEMMA 164. Let S be a MED-semigroup, and let A be a MED system of generators
of S. For every s € S, set
B(s)={acA|a<s}.

For everyn € N, if s € (A", then s € (B(s))".

PROOF. We use induction on n. For n = 0, the result follows trivially. As induction
hypothesis assume that s € (A)" implies s € (B(s))". Lets € (AY**1. Then s =x +
<« x; — am for some x; € (A)"\ {0}, ke N\ {0,1} and a < k—1. By induction
hypothesis we know that x; € (B(x;))" for all i € {1,...,k}. Since for all i, we get
s=x;+( ’J‘.%-xj —am), x; > m (Lemma 160) and a < k— 1, we have that s > x; for all

!

i and thus x; € (B(s))". Therefore s € (B(s))"*". O

THEOREM 165. Let A and B be minimal MED systems of generators of a MED-

semigroup S. Then A = B.
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PROOF. Assume that A = {n; < hz <---}and B={m; <my < ---}. From the
definition of MED system of generators, it follows that n; = m; = m(S) (since both
A and B are minimal systems of generators, they do not contain the zero element).
Suppose that A # B and let r be the least positive integer such that n, # m, (observe
that this integer exists since n; = m;, A Z B and B ¢ A). Without loss of generality,
assume that m, < n,. By Proposition 163, there exists p € N such that m, € (A)?,
and by Lemma 164 we have that m, € (ny,...,n,_)?, which by the definition of r is
equal to (my,...,m,_1)?, whence m, € MED(B\ {m,}). This also implies that § =
MED(B\ {m,}), in contradiction with the fact that B is a minimal MED system of

generators of S. O

The preceding theorem allows us to introduce the concept of MED rank of a
MED-semigroup. Let S be a MED-semigroup. The MED rank of S, denoted
by MED —rank(S), is the cardinality of its minimal MED system of generators.
As we pointed out above, if S = (n,...,n,) and S is a MED semigroup, then
MED({ny,...,n,}) = S, and thus MED — rank(S) < u(S) = m(S).

Now our goal is to arrange the set of MED-semigroups with multiplicity m in a
tree rooted by (m,m+1,...,m+m—1). The purpose of the following results will be
to show how to construct this tree. First we describe how to construct the father of any
vertex (not being of course the root) in the tree; by repeating the process we get the

path from the given vertex to the root.

LEMMA 166. Let S be a MED-semigroup with g(S) > m(S). Then SU{g(S)} is
also a MED-semigroup and m(S) = m(SU{g(S)}).

PROOF. We already know that SU {g(S)} is a numerical semigroup and as g(S§) >
m(S), we have that m(S) = m(SuU{g(S)}).

e If x,y € S, then as § is MED, we obtain that x+y —m(S) € S C SU{g(5)}.



1. MED SYSTEMS OF GENERATORS 107
o If g(S) € {x,y}, then x+y—m(S) > g(S) and thus x+y—m(S) € SU{g(S)}.

ad

Observe that the only numerical semigroup with multiplicity m and Frobenius
number less than m is (m,m+1,...,m+m— 1). Given a numerical semigroup S we

define S, recurrently by

® So=S5,
o if g(S,) > m(Sy), then Sp1 = SpU{g(Sn)}; Snt1 = Sn, otherwise.
Clearly, there exists n € N such that S, = (m,m+1,...,m+m—1). If § is a MED-

semigroup, then Lemma 166 states that
SoCSC-CS={0,mm+1,—}

is a chain of MED-semigroups. Moreover, S; = Si4+1 \ {a} for some a € Siy1. This
gives rise to the question: if Sis a MED-semigroup, which a € S can be chosen so that

S\ {a} is a MED-semigroup?

LEMMA 167. Let S be a MED-semigroup with multiplicity m and let a € S\ {m}.

The following conditions are equivalent:

(1) a belongs to the minimal MED system of generators of S,

(2) S\ {a} is a MED-semigroup with multiplicity m.

PROOF. (1) implies (2). MED(S \ {a}) is properly contained in S, since otherwise
the minimal MED system of generators of S would not contain a. Hence § \{a} C
MED(S\ {a}) C S and thus MED(S\ {a}) = S\ {a}, which implies that S\ {a} isa
MED-semigroup.

(2) implies (1). If a does not belong to the minimal MED system of generators of

S, then MED(S \ {a}) = S and therefore S\ {a} is not a MED-semigroup. O
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Recall that for every MED-semigroup S we have a sequence (path) S= Sy C --- C
Sn = {0,m,m+1,—} such that S;U {g(S:)} = Si+1. Thus S; is obtained by removing
a certain element of S;, 1, which actually becomes its Frobenius number. Next result
describes this construction and tells us how to build up the sons of a given vertex in

the tree (if there are any).

PROPOSITION 168. Let S be a MED-semigroup with multiplicity m. The following

conditions are equivalent:

(1) S=Su{g(S)} with S a MED-semigroup of multiplicity m,
(2) the minimal MED system of generators of S contains an element a such that

a#manda> g(s).

PROOF. (1) implies (2). Let S = SU{g(S)}. Then § =S\ {g(5)} and since S is
a MED-semigroup, Lemma 167 ensures that g(S) belongs to a minimal MED system
of generators of S. As S C S and g(S) € S, we deduce that g(5) > g(5) and clearly
&(S) # m=m(S) = m(S).

(2) implies (1). Let a # m be an element of the minimal MED system of genera-
tors of S such that a > g(S). By Lemma 167, S = S\ {a} is a MED-semigroup with

multiplicity m. Since a > g(S), we have that a = g(5). Hence S = SU {g(S5)}. a

The results presented so far in this section allow us to construct from (m,m +
I,...,m+m—1) the set of all MED-semigroups with multiplicity m (see the figure).
This construction arranges this set in a tree, and as one gets farther ffom the root, the
obtained MED-semigroups have larger Frobenius numbers. The father of any vertex S
in the tree is SU {g(S)} provided that S # {0,m,m + 1,—}, and the possible sons are
S\ {a}, with a > g(S) an element in the minimal MED system of generators of S other

than m. By Proposition 168 a vertex has no sons (it is a leaf) if and only if its minimal
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FIGURE 1. The tree of MED numerical semigroups with multiplicity 4
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MED system of generators has no elements different from its multiplicity and greater
than its Frobenius number.

Next we present an algorithmic procedure for computing the MED closure of a
given numerical semigroup. Observe that if S is a numerical semigroup generated by
A, then MED(S) = MED(A) and gcd(A) = 1. Thus we focus our attention on finding
a procedure for computing MED(X) for a given finite set X with ged(X) = 1.

LEMMA 169. Let S be a numerical semigroup and let m € S*. Then (m+ Syu{o}

is a MED-semigroup with multiplicity m.

PROOF. Clearly, (m+S)U {0} is a numerical semigroup with multiplicity m. Let
51,52 € S. Then (m+s1) + (m+s2) —m=m+s; +s2 € m+S, which by Proposition
157 implies that (m+ S) U {0} is a MED-semigroup. O

THEOREM 170. Let m,r1,...,rp € N* be such that gcd{m,ri,. ..,rpy=1.Then

MED(m,m+r1,...,m~+rp) = (m+(m,ri,. ., rpy) U{0}.

PROOF. By Lemma 169, (m+ (m.ry,...,rp)) U{0} is a MED-semigroup. Fur-

thermore, m,m + ry,...,m+r, € (m+ (m,ry,....rp)) U {0}, which implies that
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MED(m,m+r1,...,m+rp,) C (m+(m,r,...,r,)) U{0}. For the other inclusion, take
i,je€{l,...,p}. Thenas m,m+r;,m+r; € MED(m,m+r,...,m+r,), by Proposi-
tion 157, we have that m+r;+r; = (m+r;) + (m+r;) —m e MED(m,m+ry,....m+
rp). Now take k € {1,...,p}. Since mm+r;+rjm+r, € MED(mm+ry,...,m+
rp), we have that m+r;+rj +rir € MED(m,m+ry,...,m+rp). Using this idea one

gets that m+ Y7, ajr; € MED(m,m+ry,...,m+r,) forallay,...,a, € N. O

EXAMPLE 171.

MED(5,8,9) = (5+(5,3,4)) U{0} = (5+{0,3,4,5,6,~}) u{0}
={0,5,8,9,10,11,—} = (5,8,9,11,12). O

EXAMPLE 172. Let m be a positive integer.
MED(m,m+1) = (m+(m,1)) U{0} = (m+N) U {0}
={mm+1,....m+m—1).
Ifm>2,

MED(m,m+2,m+3) = (m+ (m,2,3)) U{0} = (m+ {0,2,3,—})U{0}
={mm+2,m+3,... m+m—1m+m+1).

O

The following result describes the set of MED-semigroups with MED-rank two.
COROLLARY 173. Let m,r be two positive integers such that gcd{m,r} = 1. Then
MED(m,m+r) = (m,m+rm+2r,....m+(m—1)r).

PROOF. Applying Theorem 170 we obtain that MED(m,m+r) = (m+ (m,r)) U
{0}. Clearly (m,m+r,...,m+(m—1)r) C (m+ {m,r))U{0}. For the other inclusion,
take a € m+ (m,r). Then a = (A+ 1)m+ ur for some A,u € N. There exist g,d € N
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such that y=gm+d,d < m. Hencea= (A+q+ 1)m+dr € (mm+r,m+2r,....m+
(m—1)r). O

2. Arf systems of generators

In this section we introduce the concept of Arf system of generators for an Arf
semigroup. This concept allows us to arrange the set of all Arf numerical semigroup in
a binary tree. We also describe an algorithmic method to compute, from a finite subset
X of N with gcd(X) = 1, the elements of Arf(X).

A numerical semigroup S is an Arf numerical semigroup if for every x,y,z € S
such that x > y > z, we have that x+y—z € § (see [5, Theorem 1.3.4] for fifteen
alternative characterizations of this property).

For A C N with ged(A) = 1, if T is an Arf numerical semigroup containing A, then
clearly T must contain S = (A). A candidate for the smallest (with respect to set in-
clusion) Arf numerical semigroup containing A is the intersection of all Arf numerical
semigroups containing S, provided that the intersection of a finite set of Arf numerical
semigroups is Arf. Actually this is ensured by the next result, which follows easily

from the definition.

PROPOSITION 174. If Sy, ...,Sn are Arf numerical semigroups, then S=S51N---N

Sy is also Arf.

This enables us to define the Arf numerical semigroup generated by A (ged(4) =
1) as the intersection of all Arf numerical semigroups containing A (and thus (A4)),
and will be denoted by Arf(A). Observe that in view of Proposition 174, Arf(A) is
the smallest Arf numerical semigroup containing A. Note also that if § is an Arf
semigroup, then clearly Arf(S) = S. If S = Arf(A), we say that A is an Arf system

of generators of S, and we will say that A is minimal if no proper subset of A is an
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Arf system of generators of S. For a numerical semigroup S, Arf(S) will be also called
the Arf closure of S.

Next we show that every Arf numerical semigroup has a unique minimal system of
generators (Theorem 179). First we give a description of Arf(A). Observe that if we
are given A C N with gcd(A) = 1, then Arf(A) must contain the set of all the elements
of the form x+y — z with x,y,z € (A) and x > y > z. It must also contain the set of
elements that are derived from those obtained above using the same rule and so on.

This motivates the following results and definitions.

LEMMA 175. Let S be a submonoid of N. Then
S'={x+y-z|xyz€85x2y>2}

is a submonoid of Nand S C §'.

PROOF. Let x € S. Then x+x—x € S, whence S C §'. Clearly § C N. Now
take a,b € §' and let us prove that a+b € §'. By the definition of ', there exist
X1,X2,Y1,¥2,21,22 € S, such that x; > y; > z;, i € {1,2}, anda=x1+y1— 21, b =
x2+y2 —z2. Hence, a+b = (x; +x2) + (y1 +2) — (21 +22). Clearly x1 +x2,y1 +
y2,21 +22 € Sand x1 +x3 > y1 +y2 > 71 +22. Thereforea+b € §'. ]

For a given submonoid S of N and n € N, define S” recurrently as follows:

[ ] SO= S,
° Sn-+—1 — (Sn)/_

LEMMA 176. Let S be a numerical semigroup. Then there exists k € N such that

Sk = Arf(S).

PROOF. Using induction on n, it can be easily proved that S C Arf(S) foralln € N.
By Lemma 175, " C §**! and S C §” for all n € N. As we pointed out before, the

number of numerical semigroups containing S is finite, whence Sk = Sk+1 for some
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k € N. Clearly S* is an Arf numerical semigroup and Sk C Arf(S), and since Arf(S) is

the smallest Arf numerical semigroup containing S, we obtain Sk = Arf(S). g

For proving that minimal Arf systems of generators are unique, we first show that every

Arf system of generators must contain the multiplicity of the semigroup.

LEMMA 177. Let S be an Arf numerical semigroup and let A be an Arf system of

generators of S. Then m(S) € A.

PROOF. For x,y,z € S\ {m(S)} with x > y > z, we get that x+y —z € S\ {m($)},
whence S\ {m(S)} is an Arf numerical semigroup. If m(S) ¢ A, then Arf(A) C Arf(S\
{m(S)}) = S\ {m(S)} # S, which contradicts Arf(A) =S. O

We already know that for a given numerical semigroup S = (A), there exists k € N
such that S¥ = Arf(A). This in particular implies that every element in Arf(A) can be
expressed as a linear combination with integer coefficients of the elements in A. What
we basically prove next is that for s € Arf(A) the generators that appear in any of the

expressions of s must be smaller than s.

LEMMA 178. Let S be an Arf numerical semigroup and let A be an Arf system
of generators of S. For every s € §, set B(s)={a€A|a<s} Ifs€(A)", then
s € (B(s))™ '

PROOF. We use induction on n. For n = 0, the result is clear by the definition of
B(s). Now assume that the result is true for n € N and let us prove it for n+ 1. Take
s € (A)"*1. Then there exist x,y,z € ()" with x > y > zand such thats =x+y—z. By
induction hypothesis x € (B(x))",y € (B(y))" and z € (B(z))". Since s =x+y—zand
x >y >z, we have that z < y < x < s, whence B(z) € B(y) € B(x) € B(s). It follows

that x,y,z € (B(s))" and this leadsto s =x+y—z € (B(s))"t1. a
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THEOREM 179. Let A and B be to minimal Arf systems of generators of an Arf

numerical semigroup S. Then A = B.

PROOF. Assume that A={n; <---<np<---}andB={m; <---<my <---}.
By Lemma 177, we have that n; = m; = m(S). If A # B, then let r be the leastvinteger
such that n, # m,. Assume without loss of generality that m, < n,. As m, € S, we can
apply Lemma 176 and obtain that m, € (A)" for some nonnegative integer n. Using
Lemma 178 We deduce that m, € (ny,...,n,_1)". Since my = ny for all k < r, we
have that m, € (my,...,m,_1)", whence m, € Arf(B\ {m,}) and S = Arf(B\ {m,}),

contradicting that B is a minimal Arf system of generators. El

This result allows us to define the Arf rank of an Arf numerical semigroup S as
the cardinality of its minimal Arf system of generators. This amount will be denoted
by Arf —rank(S). Hence Arf—rank(S) < u(S), that is, the Arf rank of S is smaller
than or equal to its embedding dimension. Clearly, every Arf numerical semigroup has
maximal embedding dimension, that is, u(S) = m(S) (MED-semigroup). It follows

that for an Arf numerical semigroup S
Arf — rank(S) < u(S) = m(S) = min< (S\ {0}).

A binary tree is a rooted tree in which every vertex has 0, 1 or 2 sons (see [23]).
Now we describe a recursive procedure that arranges the set of all Arf numerical semi-
groups in a binary tree whose root is N. The idea is to learn how to construct new Arf
numerical semigroups by adding or removing an element from a given Arf numerical
semigroup. We will show first that adding the Frobenius number to an Arf numerical
semigroup yields a new Arf numerical semigroup, and this operation will enable us to
move from one vertex in the tree to its parent. The process of generating the sons of a
vertex will be by removing certain elements from the minimal Arf system of generators

of the semigroup.



2. ARF SYSTEMS OF GENERATORS 115
LEMMA 180. Let S be an Arf numerical semigroup, S # N. Then SU{g(S)} is

again an Arf numerical semigroup.

PROOF. We already know that SU {g(S)} is a numerical semigroup. Take x.y,z €

SuU{g(S)} such that x >y >z, and let us prove thatx+y—z € SU {g(S)}.

e If x,y,z € S, then as S is Arf, we obtain thatx+y—z € S C SU{g(S)}-
o If g(S) € {x,y,z}, then x+y—z > g(§) and thus x+ y—z € SU{g(5)}.

O

Given a numerical semigroup S, for n € N, define recursively the semigroup S, as:

e So=3S,
o Spp1=5,U{gSn)} ifSn #FN; Spi =N, otherwise.

Clearly for every numerical semigroup there exists k € N such that S; = N. Note also
that if S is an Arf numerical semigroup, then by Lemma 180, the chain S = §p © S C
... C S; = N is a chain of Arf numerical semigroups, and S; = Si+1\ {a} for some
a € Si4+1. The following result studies the condition that we must impose to an element

a in an Arf numerical semigroup S for S\ {a} to be Arf.

LEMMA 181. Let S be an Arf numerical semigroup and let a € S. The following

conditions are equivalent:

(1) a belongs to the minimal Arf system of generators of S,

(2) S\ {a} is an Arf numerical semigroup.

PROOF. (1) implies (2). Since a belongs to the minimal Arf system of generators of
S, we have that Arf(S\ {a}) is strictly contained in §. Hence S\ {a} C Arf(S\ {a}) C S,
and S # Arf(S\ {a}) yields Arf(S\ {a}) = S\ {a}, which means that S\ {a} is an Arf

numerical semigroup.
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(2) implies (1). If a does not belong to the minimal Arf system of generators of S,
then Arf(S\ {a}) = S, and this in particular implies that S\ {a} does not have the Arf
property. O

With the following result we can detect when an Arf numerical semigroup has been

constructed by using the procedure described in Lemma 180.

PROPOSITION 182. Let S be an Arf numerical semigroup. The following condi-

tions are equivalent:

(1) S=Su{g(S)}, with S an Arf numerical semigroup,
(2) the minimal Arf system of generators of S contains at least one element

greater than g(S).

PROOF. (1) implies (2). Clearly, if S=SU {g(S5)}, then S = S\ {g(S)}. Using
Lemma 181, we obtain that g(5) must belong to the minimal Arf system of generators
of S, and since § C S and g(S) € S, we get that g(5) > g(S).

(2) implies (1). If a is an element of the minimal Arf system of generators of S,
then by Lemma 181 we know that S = S\ {a} is an Arf numerical semigroup. If in
addition a > g(S), then a = g(5), whence S = SU {g(5)} with S an Arf numerical

semigroup. O

Proposition 182 together with the remark given just after Lemma 180 allow us to
construct recursively from the Arf numerical semigroup N the set of all Arf numerical
semigroups (see the figure). This construction arranges them all in a tree ordering
shape. It is also clear that as we move “downwards” the branches of this tree, we
encounter semigroups with larger Frobenius numbers.

An Arf numerical semigroup having no sons is a leaf. As a consequence of Propo-

sition 182 we get the following result.
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FIGURE 2. The binary tree of Arf numerical semigroups

N = Arf(1),
g=—
v
Arf(2,3),
g=1
e N
Arf(3,4), Arf(2,5),
g=2 g=3
e N '
Arf(4,5), Arf(3,5), Arf(2,7),
g=3 g=4 g=>5
e N ¢ v
Arf(5,6), Arf(4,6,7), Arf(3,7), Arf(2,9),
g=4 g=>5 g=>5 g=17

COROLLARY 183. Let S be an Arf numerical semigroup. Then S is a leaf if and
only if the minimal Arf system of generators of S does not contain elements greater

than g(S).

Finally we show that the tree of Arf numerical semigroups is binary. To this end we
need a couple of technical lemmas. The idea is to prove that in a minimal Arf system
of generators there are at most two elements greater than the Frobenius number and

then use Proposition 182.

LEMMA 184. Let x € Nand X C N with {x,x+1} CX. Then {a€ N |a >x} C
Arf(X).

PROOF. We use induction to prove that x+n € Arf(X) foralln € N. Forn =0, we
get x € X C Arf(X). Now assume that x4-n € Arf(X). Thenx+n+1¢€ Arf(X), since
x+n+l=(@x+n)+x+1)—xx+nx+lxeAf(X)andx+n2x+12x O
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LEMMA 185. Let S be an Arf numerical semigroup and let A be its minimal Arf

system of generators. Then {a € A | g(S) < a} has at most two elements.

PROOF. Let {ay,...,a,} ={a€A|a<g(S)}. Using Lemmas 178 and 184, we de-
duce that Arf(ay,...,a,,g(S)+1,g(S)+2) =S, whence {ay,...,a,,g(S)+1,g(5)+2}
is an Arf system of generators of S. Applying now Theorem 179 we get that
{ae |g(S) <a}C{g(S)+1,8(5)+2}. O

PROPOSITION 186. The tree of Arf numerical semigroups is binary.

PROOF. It suffices to observe, by Lemma 185 and Proposition 182, that if T is a
son of S, then either T = S\ {g(S)+ 1} or T = §\ {g(S) + 2}. Therefore every vertex

in the tree has at most two sons. O

Next we present an algorithmic procedure for computing, from a finite subset X of
N with gcd(X) = 1, the elements of Arf(X) (Arf closure of a numerical semigroup).
The reader will find a similitude between the algorithm described here and Euclid’s
algorithm for computing gcd’s. It turns out that finding the elements of Arf(X) is

much easier than computing (X).

LEMMA 187. Let S be an Arf numerical semigroup and take m € S. Then (m+

S)U {0} is also an Arf numerical semigroup.

PROOF. It is clear that (m+ S) U {0} is a numerical semigroup. Now take m +
S1,m~+s2,m+s3 € m+ S with m+ sy > m+s2 > m+s3. Then s; > 52 > 53 and since
S is Arf, we get s + 52 —s3 € S. It follows that (m+s1) + (m+s2) — (m+53) =
m+ (s +s2 — §3) € m+ S. The reader can check that this proves that (m +S) U {0} is
Arf. O

LEMMA 188. Let m,ry,...,rp € N such that gcd({m,ry,...,rp}) = 1. Then

m+{(m,ry,...,rp)" C Atf(m,m+ry,...,m+rp).
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PROOF. We use once more induction on n. For n = 0 we have to prove that
m+{m,ry,...,rp) C Arf(m,m+ry,...,m+rp). Leti,j€ {l,...,p}. Then m,m+
riom+rj € Af(mm+ry,...,m+r,), whence m+ri+r; = (m+r;)+ (m+r;) —
m € Arf(mym+ry,...,m+rp). Now for k € {1,...,p}, mm-+ri+rim+r, €
Arf(m,m+ry,...,m+r) and therefore m+ri+rj+ry = (m+ri+r;)+(m+r)—me
Arf(m,m+ry,...,m+r). Using this idea we obtain that for every a,ai,...,ap € N,
we have that (a+ )m+airi + -+ + aprp, € Arf(m,m +r1,...,m+r,) and thus
m+{m,ri,...,rp) C Af(m,m+ry,...,m+rp).

Now assume that m+ (m,r1,...,rp)" C Arf(m,m+ri,...,m-+rp) and let us prove
that m+(m,r1,...,rp)" 7V C Atf(m,m~+ry,...,m+rp). Letaem+{m,r,...,r,y"" .
Then a = m+ b with b € (m,ry,...,r,)""!. Hence there exist x,y,z € (m,ri,....rp)"
suchthat x>y >zand x+y—z=b. Inthiswaya=m+b=m+x+y—2z=
(m+x)+ (m-+y) — (m+2z) € Arf(m,m+r1,...,m+rp), since by induction hypothesis

m+x,m+y,m+z€m+{mry,...,rp)" C Atf(mm+ry,...,m+rp). O

THEOREM 189. Let m,ry,...,r, be nonnegative integers with greatest common

divisor one. Then

Arf(m,m+r1,...,m+r,) = (m+ Arf(m,ry,...,rp)) U{0}.

PROOF. Using Lemmas 176 and 188 we obtain that (m+ Arf(m,r1,...,7p)) U
{0} C Arf(m,m+ri,...,m+r,). For the other inclusion observe that m,m +
riy...,m+ry, € (m+ Arf(m,ry,...,r;)) U {0}, and since by Lemma 187, (m+
Arf(m,ry,...,rp)) U {0} is an Arf numerical semigroup, we get that Arf(m,m +

Tlyeroym+rp) € (m+ Arf(m,ry,...,rp)) U{0}. O

As an immediate consequence of Theorem 189 we obtain the following result.
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COROLLARY 190. Let m,r1,...,r, be nonnegative integers with greatest common

divisor one. Then

g(Arf(m,m+ry,...,m+rp)) =m+g(Arf(m,r,...,1p)).

Let S be an Arf numerical semigroup. Since every system of generators of S is one
of its Arf systems of generators, the above corollary can be applied to any system of
generators of S. This in particular yields Proposition I.1.11 a) with i = 1 in [5]. Let
X C N\ {0} be such that gcd(X) = 1. Define recursively the following sequence of
subsets of N:

e A1 =X,
e Ap1 = ({x—mincA, | x € A} \ {0}) U {min<A,}.
As a consequence of Euclid’s algorithm for the computation of gcd(X), we obtain that

there exists g = minc{k € N | 1 € A¢}.

THEOREM 191. Under the standing notation, we have that
0,mincA;, mincA; + mincAy,...,mincA; +---+mincA,_;

are the elements in Arf(X) that are less than or equal to g(Arf(X)) + 1.

PROOF. Since 1 € A,, Arf(A;) = N. Hence applying Theorem 189, we get that
Arf(A,-1) = (mincA,_1 +N)U {0}. This implies that the elements 0, min<A,_; are
the elements that are less than or equal to g(Arf(A,—1)) + 1. Assume as induction hy-
pothesis that 0, min<A,_;, mincA,_; + min<A,_;1,...,mincAd,_; + -+ mincA,_|
are the elements of Arf(A,_;) less than or equal to g(Arf(A,—;)) + 1. We must prove
now that 0, mincA,_;_1,mincA,_; 1 +mincA,_;,...,mincA, ;1 +---+mincA,
are the elements of Arf(A,—;_1) less than or equal to g(Arf(4,—;_1)) + 1. By Theorem
189, we know that Arf(A,_;_1) = (min<A,_;_1 + Arf(4,_;)) U{0}. Using now the

induction hypothesis and Corollary 190, we obtain the desired result. g
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EXAMPLE 192. Let us compute Arf(7,24,33).

A1 ={7,24,33}, min<A; =7,

Ay ={7,17,26}, mincA; =7,

A3 = {7,10,19}, min<cA3 =7,

As = {7,3,12}, mincAq = 3,

As = {4,3,9}, mincAs = 3,

Ag = {1,3,6},

whence Arf(7,24,33) = {0,7,14,21,24,27,—}. 0

3. SAT systems of generators

In this Section we characterize the subsets of N that are saturated numerical semi-
groups. From the concept of SAT system of generators, for a saturated numerical
semigroup, we arrange the set of all saturated numerical semigroup in binary tree with
no leaves.

A numerical semigroup S is saturated if the following condition holds: if
$,51,...,8- € S are such that s; < s forall i € {1,...,r} and z1,...,2 € Z are such

thatz;s1+---+ 2,8, > 0, then s+ zy51 + -+ 2,5, € S. For A C N and a € A, denote by

da(a) = ged{xe A |x < a}.

LEMMA 193. Let S be a saturated numerical semigroup and let s € S. Then s+

ds(s) € S.

PROOF. Let {si,...,5,} = {x € S | x < s}. By Bezout’s identity, there exists
Z1,-..,2r € Z such that zys1 + - + 2,8, = ds(s). Using now that S is saturated, we

get s+dg(s) € S. O

LEMMA 194. Let A be a nonempty subset of N such that gcd(A) =1 and a +
da(a) € Aforalla € A. Then a+kda(a) € A forallk e N.
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PROOF. For the sake of simplicity, and since there is no possible misunderstand-
ing, we denote d4(a) by d(a). We use induction on d(a).

If d(a) = 0, then the result follows trivially. Next we see that if d(a) = 1, then
a-+k € A for all k € N. To this end we use induction on k. For k = 0, the result is trivial.

" Assume thata+k € A. Since 0# d(a+k) <d(a) = 1, we have that d(a+k) = 1. Hence
at+k+1=a+k+d(a+k)€A.

By induction hypothesis we assume that if &’ € A and d(a’) < d(a), then o’ +
kd(a’) € A for all k € N. Thus, suppose that d(a) > 2 and let us prove that a+kd(a) € A
for all k£ € N. Note that since gcd(A) = 1, there exists b € A such that d(b) = 1 and that
if d(a + kd(a)) = d(a) and a+ kd(a) € A, then a+ (k+ 1)d(a) = a+ kd(a) + d(a +
kd(a)) € A. From these two remarks we deduce that there exists the least positive
integer ¢ such that a +rd(a) € A and d(a +1td(a)) < d(a). As d(a+1d(a)) < d(a),
applying induction hypothesis, we obtain that (a+td(a)) +kd(a+td(a)) € Aforall k €
N. Clearly, d(a +td(a)) divides d(a), whence d(a) = Id(a +td(a)) for some positive
integer . Consequently a + td(a) + ki/ld(a+td(a)) € A for all k € N, and thus a +
(t+n)d(a) € A for all n € N. From the definition of 7, it follows that a + kd(a) € A for
all k € {0,...,7}. We conclude that a +kd(a) €Aforallke N. O

LEMMA 195. Let A be a nonempty subset of N such that gcd(A) = 1 and a +

da(a) € A foralla € A. Then AU {0} is a numerical semigroup.

PROOF. Since gcd(A) = 1, it suffices to prove that for any a,b € A, one getsa+b €
A. Assume that g < b. Then d4(b) divides d4(a) and thus there exits A € N such that
da(a) = Ada(b). Note also that d(a) divides a, whence a = pds(a) for some u € N.
Therefore a + b = pda(a) + b = pAda(b) + b, which by Lemma 194 is in A. O

THEOREM 196. Let A be a nonempty subset of N such that 0 € A and gcd(A) = 1.

The following conditions are equivalent:
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(1) A is a saturated numerical semigroup.
(2) a+da(a) € A foralla € A.
(3) a+kda(a) e Aforallac Aandk € N.

PROOF. (1) implies (2). Follows from Lemma 193.

(2) implies (3). Follows from Lemma 194.

(3) implies (1). By Lemma 195 we already know that A is a numerical semigroup.
We see that it is saturated. Leta,ay,...,a, € A witha; <aforallie {1,...,r} and let
z1,...,2- be integers such that zja; +- - - +a,z- > 0. Since a; < g, it follows that d4(a)
divides g; for all i € {1,...,r}. Hence there exists k € N such that zia; +---+zrar =

kda(a) and thus a+za1+---+za-=a+kds(a) €A O

Next we introduce the concept of SAT system of generators for a saturated nu-
merical semigroup. In order to do this we first need to prove that for a given X C N
with gcd(X) = 1, there exists the least (with respect to set inclusion) saturated numer-
ical semigroup that contains X. The best candidate as usual is the intersection of all

saturated numerical semigroups that contain X.

PROPOSITION 197. Let S1 and S be two saturated numerical semigroups. Then

S = 81 NS, is a saturated numerical semigroup.

PROOF. We make use of Theorem 196 (note that 0 € S and that gcd(S) = 1). It
suffices to prove that s+ ds(s) € S for all s € S. For a given s € S, we have that s € 5;
and that dg,(s) divides dg(s) for i € {1,2}. Hence there exits nonnegative integers ki
and k, such that dg(s) = kids, (s) = k2ds, (s). By Theorem 196, s+ kids,(s) € S; for
i € {1,2}, whence s+ ds(s) € S. » O

As we already now, the set of numerical semigroups containing S is finite, since N\

S is finite. Let X be a subset of N such that gcd(X) = 1. Then every saturated numerical

semigroup containing X must also contain (X), and thus there are finitely many of
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them. We denote by Sat(X) the intersection of all saturated numerical semigroups
containing X, and call it the saturated closure of X. Observe that Sat(X) = Sat((X)).
As a consequence of Proposition 197 and the above remark, we have that Sat(X) is the
smallest saturated semigroup containing X. If S is a saturated numerical semigroup
and X is a subset of N such that ged(X) = 1 and Sat(X) = S, then we will say that
X is a SAT system of generators of S. We say that X is a minimal SAT system of
generators if in addition no proper subset of X is a SAT system of generators of S.
Every numerical semigroup is finitely generated (as a semigroup). Hence for a given
numerical semigroup S, there exists {ni,...,np} C Nsuchthat S = (ny,...,np,). If Sis
a saturated numerical semigroup, then clearly Sat(ny,...,n,) = Sat(S) = S, and thus

every saturated numerical semigroup admits a finite SAT system of generators.

THEOREM 198. Let ny < n2 < --- < n, be positive integers such that
ged(ny,...,np) = 1. For every i € {1,...,p}, set d;i = ged(ni,...,n;) and for all
je{l,...,p—1} definekj=max{k € N|nj+kdj <nji1}. Then

Sat(ny,...,np) = {0,n1,n1 +dy,...,ny +kidy,no,n2+da, ... ,n2 + kada,

. .,np_l,np—] +d ,_1, cee ,np_l +kp_1dp_l,np,np+ 1’-+}.
PROOF. Let

A= {O,I’l],nl +dla"'7n1 +k1d1,n2,n2+dz,...,n2+k2d2,
weyRp1,p—1 +dp_1,.. < Mp—1 -I—k,,_ld,,_l,np,np—!— 1,—>}.

Clearly A is not empty, 0 € A, gcd(A) = 1 and a+da(a) € A for all a € A. By
Theorem 196, A is a saturated numerical semigroup, and as {ni,...,n,} C A, we
get that Sat(ny,...,n,) C A. For the other inclusion, take a € A. Then there ex-
ists i € {1,...,p} and k € N such that a = n; + kd; (note that d, = 1). Since

{n1,...,np} C Sat(ny,...,n,), we have that dsat(ny,...,n,) (1) divides d;, whence there
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exists / € N such that d; = Idgyp,,...n,) (). Using Theorem 196, we know that
n + tdsan,,...n,) (n) € Sat(ni,...,np) for all 7 € N and thus a = n; + kdi = n; +

kldsag(ny ...n,) (1) € Sat(ni, ..., np). -

EXAMPLE 199. Let {n1,n2,n3} = {4,10,23}. Thend; =4,d2=2,d3 =1, k1 =1
and k> = 6. Hence
Sat(4,10,23) = {0,4,8,10,12,14,16, 18,20, 22,23,24,—-}.

U

It may happen that one is interested in the fninimai system of generators (as a semi-
group) of Sat(X). It is well known (see for instance [18]) that any saturated numerical
semigroup has the Arf property, whence it is of maximal embedding dimension (see
[5]). From [32] one can deduce that if m = min(X \ {0})(= min(Sat(X) \ {0})), then

the minimal system of generators of § = Sat(X) is
A={m}u({seS|s—mgSI\{0}).
Since we know that the cardinality of A is m, once we have computed Sat(X) as ex-

plained in Theorem 198, in order to calculate {s € S | s —m ¢ S} it suffices to find the

first m elements in the list such that subtracting m to them the result is not in the list.
In the preceding example, S = Sat(4,10,23), m =4 and
{seS|s—m¢gS}=1{0,10,23,25},
and thus Sat(4,10,23) = (4,10,23,25).
Next we show that every saturated numerical semigroup has a unique minimal SAT

system of generators.

LEMMA 200. Let S be a saturated numerical semigroup and let s € S\ {0}. The
following conditions are equivalent:

(1) S =S\ {s} is a saturated numerical semigroup,
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(2) ds(s) # ds(s') forall s’ € Swiths' <.

PROOF. (1) implies (2). Assume that dg(s) = dg(s) for some s’ € S such that s’ < s.
Since 5’ < s, there exists a € N\ {0} such that s = 5" +qa, and as ds(s) = ds(s), we
have that ds(s’) divides both s and s', whence it also divides a. Thus, a = kdg(s')
for some k € N. From S = S\ {s} and 5’ < s, we deduce that ds(s') = dz(s’). Using
now Theorem 196 for S, we get that s = s’ +a = 5’ + kdg(s') € S = S\ {s}, which is
impossible.

(2) implies (1). By Theorem 196, it suffices to show that if a € S and a # s, then
a-+dg(a) # s. Note that ds(a) divides dg(a), whence a + dg(a) = a + kds(a) for some
k € N. If a+kdg(a) = s, then a < s. But this leads to ds(s) = dg(s') with s’ = max{x €

S| x < s}, in contradiction with the hypothesis. O

LEMMA 201. Let S be a saturated numerical semigroup and let s € S\ {0} be such
that dg(s) # ds(s’) for all ' < s. Then s belongs to every SAT system of generators of
S.

PROOF. Let X be a SAT system of generators of S and assume that s ¢ X. Then
Sat(X) C Sat(S\ {s}) = S\ {s} by Lemma 200. Hence Sat(X) # S, contradicting that
X is a SAT system of generators of S. O

Let S be a saturated numerical semigroup. Since N\ S has finitely many elements,
there exists s € S such that dg(s) = 1, and dg(s') = 1 for all s' € S, s’ > 5. Hence the

set {s € §\ {0} | ds(s) # ds(s') forall s’ < s,s’ € S} is finite.

LEMMA 202. Let S be a saturated numerical semigroup and let {si,...,s,} ={s €

S\{0} | ds(s) # ds(s') for all s’ < s,s’ € S}. Then Sat(s1,...,s,) =S.

PROOF. Since s1,...,s, € S, we have that Sat(s;,...,s,) C S. Let s € S and assume

that s; < -+ < s <5 < Sgyp < -+- < 8. It follows that ds(s) = ds(s) and s = s +a
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for some a € N, which implies that ds(s;) divides a. Hence s = s + tds(sx) for some
t € N. As Sat(sy,...,s,) C S, we have that dg(sz) divides dguys,,...5,) (k) and thus
§ = 8k + ldgay(s,,... 5 (S%) for some ! € N. Using now Theorem 196 we get that s €
Sat(s1,...,5r). 0

As an immediate consequence of Lemmas 201 and 202, we obtain the following

result.

THEOREM 203. Let S be a saturated numerical semigroup. Then
{s1,...,5:} = {s € S\ {0} | ds(s) # ds(s") forall s’ < 5,5' € S}

is the minimal SAT system of generators of S.

EXAMPLE 204. Let S be the saturated numerical semigroup

S = {0,4,8,10,12,14,16,18,20,22,23,24, -}

It follows that dg(4) = 4 = ds(8), ds(10) =--- = dg(22) = 2 and d5(23) = 1 = ds(23+
n) for all n € N. By Theorem 203 the minimal SAT system of generators is {4, 10, 23}
O

Using Theorem 203 it makes sense to define the SAT rank of a saturated numerical
semigroup S by the cardinality of its minimal SAT system of generators, which we will
denote by SAT —rank(S). Note that SAT — rank(S) < p(S) = m(S) = min(S\ {0}).
The following result describing those saturated numerical semigroups of SAT rank

two is a direct consequence of Theorem 198,

COROLLARY 205. Let nj,ny be two integers such that ny < np and ged(ny,np) = 1.

Then

Sat(ny,np) = {ny,n2,n2+ 1,n2+2,—)

= {0,n1,n +n1,...,n +kny,nz,np+1,—}
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with k= max{l € N | n; +In; < n}.

~ Next result gives us a sharper upper bound for the SAT rank of a saturated numer-

ical semigroup in terms of its multiplicity.

COROLLARY 206. Let nj < ny < --- < np be positive integers such that its great-
est common divisor is one. Then {ny,...,np} is a minimal SAT system of gener-
ators of Sat(ny,...,np) if and only if ged(ny,...,n;) # ged(ny, ... ni,nip1) for all

ie{l,...,p—1}

PROOF. Use Theorem 198 for the description of Sat(ny,...,n,) and Theorem 203.
g

PROPOSITION 207. Let m be a positive integer and m = pi' - - p% be its decom-
position into primes. If S is a saturated numerical semigroup with multiplicity m, then

SAT —rank(S) <a;+---+a,+ 1.

PROOF. If {m=n; < --- < n,} is the minimal SAT system of generators of S (by
Lemma 201, m = n;) be and set d; = gcd(ny,...,n;) foralli € {1,...,p}. Corollary
206 states that m = d| > dy > --- > d, = | and as d;; divides d;, the proof follows

easily. O

COROLLARY 208. Every saturated numerical semigroup with multiplicity a prime

number has SAT rank two.

We finish this section by showing that the set of saturated numerical semigroups is
a binary tree with no leaves and rooted in N. We first show how to construct the father
of any non root vertex (actually, repeating the process yields the path connecting the

given vertex to the root; compare with the binary tree of Arf numerical semigroups).

PROPOSITION 209. Let S # N be a saturated numerical semigroup. Then § =

SU{g(S)} is also saturated.
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PROOF. In view of Theorem 196 it suffices to show that if s € S, then s+ dg(s) € S.

If s < g(S), then s € S and ds(s) = dg(s), whence s +dz(s) = s+ds(s) €S C S. If
s > g(S), then s+ dg(s) > g(S), and thus s+ dg(s) € S. O

For a given numerical semigroup S, define recursively S, by

[ ] SO = S,
e If S, = N, then Sy41 = Sn; Sn+1 = SnU{g(Sn)}, otherwise.

Clearly, there exists k € N such that S; = N. If in addition § is a saturated numerical
semigroup, Proposition 209 states that S=S0 C $1 C -~ € Si = S is a chain of saturated
numerical semigroups. Moreover, S; = Sit1 \ {a} for a some a € Si;1 (a becomes the
Frobenius number of S;). This idea motivates the next result, which explains how the

sons of a vertex in the tree are constructed.

PROPOSITION 210. Let S be a saturated numerical semigroup. The following

conditions are equivalent.

(1) §=S'U{g(S")} with S’ a saturated numerical semigroup,

(2) the minimal SAT system of generators of S contains an element greater than

g(S).

PROOF. (1) implies (2). If $ = §'U{g(S")} with §' a saturated numerical semi-
group, then &' = S\ {g(5')}, which by Lemma 200 and Theorem 203, implies that
g(S') belongs to the minimal SAT system of generators of S. As &' C Sand g(5') € S,
we get that g(5') > g(S).

(2) implies (1). By Lemma 200 and Theorem 203, if a belongs to the minimal
SAT system of generators of S, then §' = S\ {a} is a saturated numerical semigroup.
If in addition a > g(S), then a = g($§"), whence S = §'U{g(5")}, with S’ a saturated

numerical semigroup. ]
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This proposition allows us to construct recursively (starting from N) the set of all
saturated numerical semigroups. This construction arranges this set in a tree. It is
clear that once we move downwards along the branches of the tree, the semigroups we

encounter have greater Frobenius numbers.

FIGURE 3. The tree of saturated numerical semigroups

Sat(1),
g=-1
A4

Sat(2,3),

g=1
¥ N
Sat(3,4), Sat(2,5),
g=2 g=3
¥ ~N N
Sat(4,5), Sat(3,5), Sat(2,7),
g=3 g=4 g=>5
¥ ~N N N
Sat(5,6), Sat(4,6,7), Sat(3,7), Sat(2,9),
g=4 g=>5 g=>5 g=7
¥ N N . N

PROPOSITION 211. The tree of saturated numerical semigroups is a binary tree

with no leaves.

PROOF. Let A = {n) < :-- < n,} be the minimal SAT system of generators of a
saturated numerical semigroup S. By Theorem 198, we know that {n,,n,+1,—} CS,
whence n, > g(5), and thus S cannot be a leaf by Proposition 210. Now consider the
set {s1,...,8,} = {s € S\ {0} | s < g(S)}. By Theorem 198, Sat(si,...,s,,&(S) +
1,8(S)+2) =S, whence A C {s1,...,5,8(S) + 1,2(S) +2}. Using Proposition 210,
we get that if S’ is a son of S, then either §' = S\ {g(S)+ 1} or &' = S\ {g(S) +2}.
Therefore S has at most two sons, and the tree of saturated numerical semigroups is

binary. O
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