
UNIVERSIDADE DE ÉVORA

Escola de Ciências Exactas

Departamento de Informática

An Abstract Model for
Parallel Execution of Prolog

Pedro José Grilo Lopes Patinho

Informática

Dissertação

Agosto de 2016

To my grandpa José Manuel, who taught me how to read and write,
to my grandpa Manuel, who taught me that family is what matters most

and
to my mom, Cármen, who taught me how to live.

Wherever you are, thank you.

Acknowledgements

First of all, I would like to thank Salvador Abreu for his help, his permanent encour-
agement and his pressing for me to complete this thesis. During all my academic path,
his teachings have been invaluable.

A big thanks to Irene Rodrigues for her slaps on the wrist in order to keep me on track,
and for her invaluable help along my academic course.

To all my colleagues in the Informatics Department of the Universidade de Évora, who
all have helped me, in some phase of my work.

Finally, I would like to thank my family for their constant support and encouragement,
especially my wife, Sónia, who is always there for me, and my children, Ana and Afonso,
for bringing extra joy to my life.

i

Contents

Contents v

List of Figures viii

List of Tables ix

List of Acronyms xi

Abstract xiii

Sumário xv

1 Introduction 1
1.1 Motivation . 5
1.2 Contributions . 6
1.3 Thesis outline . 6

2 Prolog and Parallel Logic Programming 7
2.1 Historical background . 8
2.2 Sequential Prolog implementations . 9
2.3 From sequential to parallel logic programming 10

2.3.1 Committed-choice languages . 11
2.3.2 The Andorra Principle and the Basic Andorra Model 12
2.3.3 Or-parallel Prolog Implementations 13
2.3.4 And-parallel Prolog Implementations 14
2.3.5 Extending the Andorra Model 15

iii

iv CONTENTS

2.4 Parallel programming models . 21
2.5 An Abstract Model for Parallel Execution of Prolog 25
2.6 Concluding remarks . 26

3 Abstract Machines for Prolog 27
3.1 Formal definitions . 28
3.2 The Warren Abstract Machine (WAM) 28

3.2.1 Registers and memory organization 30
3.2.2 WAM instructions . 31
3.2.3 Limitations and relating optimizations 34

3.3 The Extended Andorra Model (EAM) 34

3.3.1 EAM base constructs . 35
3.3.2 Rewriting rules . 35

3.4 An EAM-based scalable model for parallel Prolog 39
3.5 Closing remarks . 40

4 Designing a WAM→EAM translator 43
4.1 The pl2wam translator . 44
4.2 wam2steam - compiling WAM to STEAM 45

4.2.1 STEAM-IL instructions . 45
4.2.2 Abstract analysis of the WAM code 47

4.3 STEAM-IL code generation . 52
4.3.1 Detecting patterns . 53
4.3.2 Optimizing STEAM-IL execution 55

4.4 Preparing for execution . 56
4.5 Closing remarks . 57

5 STEAM - Scalable, Transparent EAM 59
5.1 Introduction . 60
5.2 Definitions . 60
5.3 STEAM base constructs . 61
5.4 Rewriting rules . 62
5.5 Reducing the search space . 66

5.5.1 Simplification . 66
5.5.2 Pruning operators . 67

CONTENTS v

5.6 Termination . 68
5.7 Suspension . 70
5.8 STEAM under the hood . 71

5.8.1 Memory model . 72
5.8.2 Binding and unification . 75
5.8.3 Dealing with extra-logical predicates 76

5.9 Resolution strategy . 77
5.10 Concluding remarks . 78

6 Design for STEAM on a PGAS model 81
6.1 The PGAS programming model . 82
6.2 Partitioned STEAM . 83
6.3 Global memory model . 84
6.4 Executing Prolog with STEAM . 85
6.5 Parallel Unification . 89
6.6 Results propagation . 91
6.7 Concluding remarks . 92

7 Conclusions 93
7.1 Future work . 94

List of Figures

3.1 Example representation of the term f(A, h(A,B), g(B)) 29

3.2 Example WAM memory layout and registers 32
3.3 An example prolog program . 33
3.4 WAM code for the example Prolog program. 33
3.5 Graphical representation for an and-box 35
3.6 Graphical representation of an or-box 35
3.7 EAM local forking rule. 36
3.8 EAM determinate promotion rule. 36
3.9 EAM nondeterminate promotion rule. 36
3.10 EAM handling of cut. 37
3.11 EAM handling of commit. 37
3.12 EAM handling of implicit pruning. 37
3.13 Example of EAM execution, steps 1 and 2. 38
3.14 Example of EAM execution, steps 3 and 4. 39
3.15 Example of EAM execution, step 4. 39

4.1 Example Prolog program with cuts. 50
4.2 Resulting STEAM-IL. 50
4.3 Resulting STEAM-IL. 51
4.4 Example Prolog program ('append.pl'). 53

4.5 Resulting WAM code, generated by pl2wam. 53
4.6 Resulting STEAM-IL code. 53

vii

viii LIST OF FIGURES

4.7 ‘try_me_else … retry_me_else … … trust_me_else_fail’ pattern trans-
lation. 54

4.8 ‘try … retry … … trust’ pattern translation. 54
4.9 ‘conjunctive call/execute’ pattern translation. 55

5.1 Graphical representation of a STEAM and-box 61
5.2 Graphical representation of a STEAM or-box 61
5.3 STEAM expansion rule. 62
5.4 STEAM determinate promotion rule. 63
5.5 STEAM determinate careful promotion rule. 63
5.6 STEAM splitting rule. 64
5.7 STEAM in-loco expansion rule. 65
5.8 STEAM in-loco careful expansion rule. 65
5.9 STEAM or-identity . 66
5.10 STEAM and-annihilator . 67
5.11 STEAM implicit pruning (cut) . 67

5.12 STEAM implicit pruning (neck cut) . 68

5.13 Example Prolog program ('graph.pl'). 69

5.14 EAM non-termination example. 70
5.15 STEAM Queue, before expansion. 72
5.16 STEAM Queue, after expansion of A, B and C. 73
5.17 STEAM Queue, after expansion of A1. 73
5.18 STEAM and-box internal layout . 74
5.19 STEAM or-box internal layout . 75

6.1 Parallel programming models. 83
6.2 Example of a PGAS system with 4 STEAM workers 85
6.3 Revisiting the Prolog program ('graph.pl'). 86
6.4 Initial and-box for the query path(X,Y). 87
6.5 Expansion rule applied on the and-box. 87
6.6 Further expansions on the Tree (left part). 88

6.7 Further expansions on the Tree (continued). 88

6.8 STEAM-IL for ‘graph.pl’. 89
6.9 Binding vectors for S1 and S2. 91

List of Tables

3.1 Types of tags for WAM cells . 29
3.2 Internal WAM registers . 31

4.1 Initial instruction set for STEAM-IL. 47
4.2 STEAM-IL explicit pruning instructions. 50
4.3 STEAM-IL extra-logical handling instructions. 52
4.4 Converting to a fixed number of arguments 55

ix

List of Acronyms

APGAS Asynchronous Partitioned Global Address Space
BAM Basic Andorra Model
BEAM Basic implementation of the Extended Andorra Model
CLP Constraint Logic Programming
DSM Distributed Shared Memory
EAM Extended Andorra Model
ECT Escola de Ciências e Tecnologia
GAS Global Address Space
GPGPU Geral-Purpose computing on Graphics Processing Units
HPC High Performance Computing
IIFA Instituto de Investigação e Formação Avançada
IL Intermediate Language
IR Intermediate Representation
JVM Java Virtual Machine
MIC Intel®’s Many Integrated Core architecture
PGAS Partitioned Global Address Space
SMP Symmetric Multiprocessing
SIMD Single Instruction Multiple Data
SPMD Single Program Multiple Data
STEAM Scalable, Transparent Extended Andorra Model

UE Universidade de Évora
WAM Warren Abstract Machine

xi

Abstract

Logic programming has been used in a broad range of fields, from artifficial intelli-
gence applications to general purpose applications, with great success. Through its
declarative semantics, by making use of logical conjunctions and disjunctions, logic
programming languages present two types of implicit parallelism: and-parallelism and
or-parallelism.

This thesis focuses mainly in Prolog as a logic programming language, bringing out
an abstract model for parallel execution of Prolog programs, leveraging the Extended
Andorra Model (EAM) proposed by David H.D. Warren, which exploits the implicit
parallelism in the programming language. A meta-compiler implementation for an
intermediate language for the proposed model is also presented.

This work also presents a survey on the state of the art relating to implemented Prolog
compilers, either sequential or parallel, along with a walk-through of the current parallel
programming frameworks. The main used model for Prolog compiler implementation,
the Warren Abstract Machine (WAM) is also analyzed, as well as the WAM’s successor
for supporting parallelism, the EAM.

Keywords: Prolog, Logic Programming, Extended Andorra Model, Parallelism

xiii

Sumário

Um Modelo Abstracto para
Execução Paralela de Prolog

A programação em lógica tem sido utilizada em diversas áreas, desde aplicações de
inteligência artificial até aplicações de uso genérico, com grande sucesso. Pela sua
semântica declarativa, fazendo uso de conjunções e disjunções lógicas, as linguagens de
programação em lógica possuem dois tipos de paralelismo implícito: ou-paralelismo e
e-paralelismo.

Esta tese foca-se em particular no Prolog como linguagem de programação em lógica,
apresentando um modelo abstracto para a execução paralela de programas em Prolog,
partindo do Extended Andorra Model (EAM) proposto por David H.D. Warren, que
tira partido do paralelismo implícito na linguagem. É apresentada uma implementação
de um meta-compilador para uma linguagem intermédia para o modelo proposto.

É feita uma revisão sobre o estado da arte em termos de implementações sequenciais
e paralelas de compiladores de Prolog, em conjunto com uma visita pelas linguagens
para implementação de sistemas paralelos. É feita uma análise ao modelo principal
para implementação de compiladores de Prolog, a Warren Abstract Machine (WAM) e
da sua evolução para suportar paralelismo, a EAM.

Palavras chave: Prolog, Programação em Lógica, Extended Andorra Model, Par-
alelismo

xv

xvi SUMÁRIO

1
Introduction

Logic programming languages provide a high-level method of programming, where pro-
grams are based on a set of facts and rules that model the actual problem, instead of
modeling the solution of the problem (as in imperative programming languages, for in-
stance). By using declarative semantics, logic programming languages have been being
used successfully in several applications where logic is intimately involved, such as ar-
tificial intelligence, expert systems, compilers, simulators, natural language processing,
automatic timetable generation and theorem proofing.

Many research efforts have been devoted to implementation of the logic programming
paradigm in modern hardware, which design is more appropriate for imperative-style
programming. The logic approach, by describing the problem instead of describing an

1

2 CHAPTER 1. INTRODUCTION

algorithm to solve it, implies the creation of abstract machines, which, in turn, have to
be emulated in an imperative fashion.

One of the common pitfalls associated with logic programming languages has been their
relative poor performance, when compared to languages using other paradigms (e.g.,
imperative languages). This fact has stimulated research on improving the performance
of logic programs. This research has focused mainly in four distinct (but combinable)
alternatives: coroutining, tabling, parallelism and constraint logic programming.

Coroutining is a means to having logic goals previously scheduled for execution as
certain conditions are met. The most common of those conditions is the binding of
one variable. With coroutining, one can, for instance, only allow certain values to be
bound to a specific variable, thus reducing (sometimes drastically) the search space,
allowing logic programs to run much faster.

We can think of constraint logic programming (CLP, for short) as a specific form of
coroutining. CLP is an extension over traditional logic programming which allows
the programmer to place constraints in the body of clauses. These constraints set the
allowed domain for variables, and can also be used to instantiate variables with allowed
values (labeling).

Tabling deals with saving intermediate solutions for a recursive goal, so that those
solutions can be retrieved later, without recomputing them.

Parallelism is a feature that naturally arises from logic programming languages. Their
declarative syntax, consisting of clauses with alternative rules that have bodies with a
conjunctive set of goals, allows us to observe the inherent possibility of testing those
rules and those goals in parallel. The exploitation of this implicit parallelism is an
attractive field of research, as it means we can have the same logic programs running
at greater speeds, without any added complexity on the program itself.

Some authors argue that in order to get the best outcome from parallelization in logic
programming languages, the programmer have to be provided with mechanisms to
explicitly declare which parts of the program can and shall be executed in parallel.
However, this often comes with a cost of increased complexity in the program’s code,
as well as in the programmer’s effort to create an effective, bug free program. With
this in mind, logic programs can express parallelism in one or both of two different

3

ways:

• explicitly, by adding special constructs to the source language, in order to de-
scribe parallel computations. This means that it’s up to the programmer to
decide if and when the execution of the program is to be performed in parallel. It
may also be necessary for the programmer to provide the mechanisms for proper
synchronization between those parallel tasks;

• implicitly, when the program is provided in it’s normal form, without any extra
information from the programmer. This means that the compiler has to identify
the sub-tasks that can be parallelized, as well as ensuring that parallel running
tasks get their results communicated correctly to each other.

The advantages of implicit parallelism are obvious from the programmer point of view:
there is nothing for him to do, in order to parallelize a program. In contrast, the
compiler has an increased work, by having to correctly split the work in tasks, generate
the parallel execution model for the program and ensure that the results match those
one would get with sequential execution.

There have been many research efforts over implementation of parallel logic pro-
gramming systems, some with explicit parallelism (AKL [JH91], OZ [Smo95], GHC
[Ued86], KL1 [CFS94]) and some with implicit parallelism (Aurora [LBD+90], Andorra-
I [CWY91a] , &-prolog [HG91], Muse [AK94]).

In this thesis the focus gears towards taking advantage of implicit parallelism in Prolog
[CKPR73], as it is arguably the most popular logic programming language and, while
not being fully declarative (by allowing procedural semantics and extra-logical predi-
cates), the language is suitable for a vast number of problems, either logic-based, or
general purpose.

Prolog relies on Horn clauses and SLD resolution [Gal85, Chapter 9]. The search
algorithm is based on a left-to-right selection function and depth-first search. Prolog
programs present two main forms of implicit parallelism:

• or-parallelism: when a rule has two or more alternatives, they can be evaluated
in parallel, instead of sequentially. Thinking in terms of logic programming,

4 CHAPTER 1. INTRODUCTION

executing a goal is the same as finding proof(s). The different ways (alternative
clauses) of finding that proof can be run in parallel. Of course, if we intend
to preserve the same evaluation order (which we normally do), some cautionary
measures have to be applied.

• and-parallelism: most Prolog queries consist in a set of conjunctive goals that
must be satisfied. These goals can be evaluated in parallel, speeding up the
resolution process. And-parallelism can be further divided in two different types:

– dependent and-parallelism: when different goals in a query share vari-
ables (thus depend on each other’s bindings). This form of and-parallelism
can be used in a form that each dependent goal constrains the others’ vari-
ables;

– independent and-parallelism: when the goals don’t share variables, i.e.,
the execution of one goal doesn’t affect the execution of the other one.

The majority of Prolog implementations target the WAM (Warren Abstract Machine)
[War83], designed by David H.D. Warren in 1983. The WAM consists in both a mem-
ory architecture and an instruction set for implementation of Prolog interpreters and
compilers. Being a sequential abstract machine, several efforts have been made to
parallelize the execution of WAM code, aiming to take advantage of the inherent par-
allelism of the Prolog language.

The Basic Andorra Model1 (BAM) [War88] was proposed by David H.D. Warren to
enable the exploitation of dependent and-parallelism between deterministic goals and
or-parallelism between alternatives of non-deterministic goals. Through coroutining,
dependent conjunctive goals can constrain the search space of each other, achieving
and-parallelism. The Andorra-I prototype [CWY91a] showed the applicability of the
BAM over a large set of problems, but it also showed the BAM’s limitations, namely the
need to find deterministic rules to achieve improvements over the sequential execution
of Prolog programs. Those limitations, inherited from the BAM, led Warren to develop
the Extended Andorra Model (EAM) [War89].

The EAM extends the BAM by allowing the parallel execution of non-deterministic
conjunctive goals as long as they don’t need to bind external variables, or, if they do,

1Or simply Andorra Model.

1.1. MOTIVATION 5

performing a split on that goal’s computation process. The EAM proposal is based on
a set of rewriting rules for And/Or trees, the split being one of those rules.

While addressing the former BAM limitations, the EAM further reduces the search
space, by allowing and-parallelism in non-deterministic goals. Research based on the
EAM led to two implementations: a proof-of-concept interpreter by Gopal Gupta
[GW91]; and a sequential interpreter by Ricardo Lopes, the BEAM [Lop01], which
proposes some optimizations over the original EAM proposal, having achieved good
performance results.

1.1 Motivation

Although much research has been made over the parallel execution of logic programs,
there is still work to do in what comes to exploiting simultaneously and- and or-
parallelism with implicit control. In fact, there are already good implementations of
and- and or-parallel Prolog systems, most of them built over the WAM structures,
but it has been proven difficult to integrate both and- and or-parallelism in a single
system. We believe that the EAM establishes a good starting point for achieving good
performances, either at execution speed, or at memory consumption. Based on the
performance results for the sequential implementation of the BEAM, we believe that
there’s room for improvement, in terms of the base EAM model.

The recent developments over parallel programming frameworks give us optimal tools
for developing a model for parallel execution, by taking advantage of the transparency
those frameworks provide. We believe that the EAM provides a stable base for the
implementation of parallel Prolog engines running in the new distributed hardware
paradigms, either multi-core, multi-computer or hybrid systems.

Recently, the bulk of research in parallel logic programming have been leaning towards
explicit parallelism, by adding special constructs to the language, whereas our goal
is to exploit the parallelism that is implicit into the language, by not burdening the
programmer with new operators, constructs or programming methodologies.

6 CHAPTER 1. INTRODUCTION

1.2 Contributions

The main contribution of this thesis is STEAM, a model for transparent parallel ex-
ecution of Prolog programs, taking advantage of the implicit parallelism that Prolog
provides, using the EAM base model as a starting point. Specifically, a design for
running STEAM over a Partitioned Global Address Space (PGAS) model is presented.

A STEAM Intermediate Language (IL) is also proposed, in order to allow the compila-
tion of Prolog code to machine code, using the EAM model. A reference compiler that
translates WAM-IL to STEAM-IL, wam2steam, is also presented in this work.

1.3 Thesis outline

In chapter 2, we present a brief survey over the state of the art of Prolog implementa-
tions, covering both sequential and parallel implementations. Also some other relevant
logic programming languages are covered, as well as parallel programming frameworks
that facilitate the implementation of parallel abstract machines.

Chapter 3 explores the common abstract models for Prolog implementation, namely the
WAM, still the de facto standard in Prolog implementation, and the EAM, arguably
the natural evolution of the WAM to support parallelism.

In chapter 4, a design for a WAM-to-EAM translator is presented, where a Prolog
program passes through a number of intermediate steps until it becomes an EAM-
based executable.

Chapter 5 describes the STEAM model in detail, and a proposal for implementing

STEAM in a PGAS programming model is discussed in chapter 6.

The conclusions and future work are discussed in chapter 7.

2
Prolog and Parallel Logic

Programming

This chapter presents analysis on the current state of the art in terms of Prolog and
related logical programming languages, as well as the most used frameworks for parallel
application development. Any of these frameworks can be used as a backend to an
implementation of a Prolog compiler, with parallelism in mind.

As we look into the state of the art in Prolog and logic programming in general, it is
useful to get acknowledged with the history of Prolog.

7

8 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

2.1 Historical background

Prolog was invented in the early 1970s by Alain Colmerauer and Robert Kowalski, at
the University of Marseille, following the failing attempts to develop a computational
system based on deduction [CR96]. The first Prolog system was an interpreter written
in Algol-W, followed by a much refined interpreter written in Fortran, both developed
under supervision of Colmerauer. This second system was very similar to modern Pro-
log systems in operational semantics, and its reasonable performance has contributed
to the idea that logic programming was indeed viable.

Based on this idea, David H.D. Warren developed the first Prolog compiler, DEC-
10 Prolog [War78], circa 1977. This compiler’s syntax and semantics became the de
facto standard, the “Edinburgh standard”, and defined the main principle in compiling
Prolog, still valid today, which is to increase the efficiency of each occurrence of unifi-
cation and backtracking operations, the core of Prolog engines, and the most expensive
operations.

Further explorations led David H.D. Warren to develop the WAM (Warren Abstract
Machine) in 1983 [War83], which defines a high-level instruction set into which Prolog
source code can be mapped (almost) directly.

Efficient Prolog implementations use one of two main approaches when it comes to
running the Prolog program: emulated or native code. Emulated code is Prolog code
compiled to an abstract machine (bytecode), being interpreted at run time. Native
code is Prolog code compiled to the target machine and is executed directly (natively),
although most compilers use intermediate representations based on the WAM (or other
abstract machine). It is usual for a native code Prolog compiler to also support an em-
ulated mode, to allow either consulting user predicates (via consult/1 or derivatives),
or dynamic predicates (created with assert*/1).

Most modern Prolog compilers use the sequential engine of the WAM or a variation of
it. The WAM is further described in this thesis in 3.2.

2.2. SEQUENTIAL PROLOG IMPLEMENTATIONS 9

2.2 Sequential Prolog implementations

The WAM specifies a model to sequentially run interpreted code, stored in a “code area”
in memory. However, there are implementations that successfully translate WAM code
into native code, being full-blown Prolog compilers.

Previous research on improvements over the WAM have led to two different outcomes:
improved or extended WAM designs [gprolog, yap, swi-prolog, sicstus, xsb, binprolog]
and to different abstract machines (e.g., the Berkeley Abstract Machine [VR84] in
Aquarius Prolog [vR92], the TOAM-Jr [Zho07] from B-Prolog [Zho12] , or the Vienna
Abstract Machine [Kra96]]. These sequential implementations still fill the largest share
of Prolog compilers used in real-world applications.

Relatively to WAM-based implementations, existing research led to different paths,
which contributed to various incompatible Prolog implementations. This incompatibil-
ity doesn’t reflect so much on the language itself (most implementations are ISO-Prolog
compatible), but are more visible when it comes to module support or foreign language
interfaces, which means that Prolog programs made for one implementation may not
run in another one. Some efforts have been made to achieve convergence between
implementations [SD08], the most relevant being various compatibility enhancements
between YAP Prolog [CRD12] and SWI-Prolog [WSTL12].

SICStus Prolog [CM12] is a reference commercial Prolog implementation, supporting
both emulated and native code compilation. SICStus’ engine, while based on the WAM,
has been subject to numerous optimizations, mostly related to instruction merging and
specialization [NCS01, Nä01], as well as an efficient coroutining implementation. The
engine has served as the base for various Prolog systems, including parallel systems
(e.g., Aurora [LBD+90], Muse [AK90], both referred in section 2.3.3) and constraint
logic programming systems (for instance, the QD-Janus system [Deb94] is an efficient
sequential implementation of Janus, a flat committed-choice language, on top of SIC-
Stus Prolog).

Tabling [War95] is another optimization over Prolog systems that has been actively
researched. The first well-known implementation came from David S. Warren and
Terrance Swift, on the XSB Prolog system [SW12]. Other current Prolog systems
already support tabling [RSC05, Zho12].

10 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

Recently, research efforts have gathered up around constraint logic programming (CLP)
and extensions for Prolog to support CLP. GNU Prolog [DC00b] has incorporated CLP
as a simple extension to the WAM [DC93]. Other systems have integrated CLP by
leveraging their coroutining implementations or by interfacing with external solvers.

2.3 From sequential to parallel logic programming

A Prolog program is a set of Horn clauses. A Horn clause is a term of the form:

H ← G1 ∧ . . . ∧ Gn

Where H is the head of the clause and G1, . . . , Gn are the goals that form the body of
the clause, which is a logical conjunction of the goals. The head can consist of a single
goal or can be empty. If it’s empty, the clause is called a query. The above query is
represented in Prolog as:

H :− G1, . . . , Gn.

Execution of a query involves using a resolution rule, by which the query is matched
with the head of a clause. Given a clause and a query:

H :− P,Q.

:− H ′, R.

The resolution rule will unify H with H ′, resulting in a new clause: : −P,Q,R.

Prolog extends pure Horn clause logic by incorporating features that are not purely
logic, but are essential to enable a Prolog program to answer real world problems. We
can sum up these features in three categories:

• Meta-logical predicates: these predicates can’t be modeled in first-order logic,
but provide the programmer with extra flexibility, by allowing to inquire about
the state of the computation (var/1, nonvar/1, ground/1, …).

2.3. FROM SEQUENTIAL TO PARALLEL LOGIC PROGRAMMING 11

• Side-effect predicates: these predicates are used to perform I/O or to alter the
program being executed, by adding (assert/1) or removing (retract/1) clauses
from the program database.

• Control operators: these operators allow the programmer to dynamically reduce
the execution tree. The most popular control operator is cut (!), which tells
the program to discard all alternative clauses to the clause being executed (by
discarding backtracking data).

Prolog uses SLD-resolution [Gal85, Chapter 9] with a simple left-to-right, depth-first
selection function, which, by other words, means that the order of the clauses in a
Prolog program influentiates the results of evaluating a query.

This selection function has been the main source of criticism about the Prolog language,
as some point out that it is too restrictive. From another point of view, it may be
hard to parallelize a Prolog program, while keeping the selection function’s order of
evaluation.

A great part of research on parallel logic programming implementation has historically
been driven away from Prolog, into more specific languages which favor some kind of
explicit parallelism, mainly by adding special constructs that allow the programmer to
specify where the parallel evaluation should occur.

2.3.1 Committed-choice languages

Also named concurrent logic programming languages [Sha89], the committed-choice
languages allow the reading of a program as a network of concurrent processes, with
shared logical variables as the interconnection points. The main difference between
committed-choice languages and Prolog is that clauses are guarded. Parlog [CG83] was
one of the first of these languages.

Arguing that Horn clauses weren’t sufficient for describing parallel programs, Ueda
proposed Guarded Horn Clauses (GHC) [Ued86], later simplified to KL1 [UC90].

A guarded Horn clause is a term of the form:

H :− G1, . . . , Gm | B1, . . . , Bn. (m ≥ 0, n ≥ 0)

12 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

Where G1, . . . , Gm define the guard and B1, . . . , Bn define the body of the clause. The
evaluation of a goal involves matching that goal with the head and then the goals on
the guard. If both succeed, the system commits with this clause (discarding all the
others, even if they would also succeed), and then evaluating the body.

Although this kind of languages is well suited for controlled parallelism, they lack the
natural simplicity of Prolog when it comes to describe search problems.

2.3.2 The Andorra Principle and the Basic Andorra Model

Following the need to support (implicit) parallelism in Prolog, while keeping some of
the features of committed-choice languages, David H.D. Warren proposed the Basic
Andorra Model (BAM) [War88], following the directives of his Andorra Principle:

• Determinate goals can be executed in And-parallel;

• When there is no selectable determinate goal, non-determinate goals’ alternatives
can be explored in Or-parallel.

Research over the BAM, mainly pursued at Bristol, led to the implementation of the
Andorra-I prototype [CWY91a], which uses the Andorra Principle to execute Prolog
programs exploiting Or- and And-parallelism. The system uses a preprocessor to detect
determinate goals through abstract analysis. The preprocessor is also responsible for
guaranteeing the correct order of execution for goals with side-effects, cuts and other
order-sensitive Prolog builtins.

Other implementations based on the BAM include Pandora [BG89], which extends
Parlog [CG83] to support non-determinism, and NUA-Prolog [PN91], a parallel version
of NU-Prolog [RSB+89] that includes sophisticated determinacy checking.

Besides work on simultaneous And- and Or-parallelism in Prolog, there are intermediate
approaches, exploiting only one kind of parallelism, either And- or Or-parallelism.

2.3. FROM SEQUENTIAL TO PARALLEL LOGIC PROGRAMMING 13

2.3.3 Or-parallel Prolog Implementations

Preceding the work on the BAM, Warren’s research on parallel Prolog execution led to
the Aurora Or-parallel system [LBD+90]. Based on the SICStus Prolog engine, Aurora
used different schedulers, until it settled with the Bristol Scheduler [BRSW91], which
uses shared memory between workers and a bottom-most dispatching strategy. This
scheduler was later adopted in Andorra-I, previously referred in section 2.3.2.

Aurora uses Warren’s SRI-model [War87b], where binding arrays are used to store
conditional variable bindings across different or-branches. The Bristol scheduler uses a
demand driven approach to scheduling, where each worker asks the scheduler for more
work. The scheduler then tries to find work in the search-tree and, if it finds some,
give it to the worker.

Another approach was followed at SICS, with Muse [AK90]. Instead of sharing the
memory among workers, Muse uses a stack-copying approach, where a processor P1

shares work with (i.e., steals work from) another processor P2 by copying P2’s entire
stack and then backtracks up to the choice-point it’s going to work on, cleaning (un-
doing) the conditional bindings that P1 had already made. This approach guarantees
that parallel execution is completely independent, apart of a mechanism to share the
choice-points. To allow the stack copying to be somewhat transparent, the system
ensures that all processors are working on identical logical memory address spaces.
This way, when a stack is copied to another processor, there is no need to relocate any
pointer. This approach has proved to be efficient and relatively easy to implement over
an existing sequential system (SICStus). Muse is currently integrated into SICStus
Prolog, as an optional way of running Prolog programs, giving the programmer the
ability to execute his program(s) in or-parallel or in the standard sequential method.

Another or-parallel system, YapOr [RSC99], was developed over YAP Prolog and ex-
tends the WAM with new pseudo-instructions and an extended memory organization in
order to have a full, independent WAM in each worker’s private memory space and to
allow incremental stack copying between workers. YapOr has shown good performance
when compared to Muse and has been further extended to support tabling [RSSC00].

An interesting system is Multilog [Smi96], a logic programming system that uses multi-
SLD resolution [SH94], a data-centered or-parallel implementation strategy. In Mul-

14 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

tilog, a single Prolog WAM-based engine solves annotated goals in parallel, saving
each alternative binding in a multi-variable. A multi-variable is like a standard Prolog
variable, but instead of a single binding it contains a disjunction of all the possible
bindings for that variable, in order to constrain the solutions given by the following
goals in a Prolog query. In contrast with control or-parallelism used by Muse or Aurora
(multiple Prolog engines solving disjunctive alternatives in parallel), Multilog uses a
single Prolog engine aided by a (massively-) parallel unification engine, used to per-
form unification between multi-variables and other variables in a goal. In benchmarks
over generate-and-test programs, Multilog has reported impressive speedups [Smi94]
over traditional Prolog engines. One of the drawbacks has to do with the semantic
(multi-variables) and syntactic (user annotations) differences from traditional Prolog.

2.3.4 And-parallel Prolog Implementations

Although Or-parallelism has shown generally good speedups relatively to sequential
execution, there are still highly-deterministic programs that can’t benefit from Or-
parallelism.

Hermenegildo proposed the RAP-WAM [Her86b], an extended WAM which can deal
with parallel execution of conjunctive goals by using Restricted And-Parallelism (RAP),
a technique that combines compile-time analysis of the clauses with simple run-time
checks on the variables. A new memory area, the Goal Stack, stores the goals that are
ready for parallel execution.

Using the RAP-WAM, Hermenegildo implemented &-Prolog [HG91], an and-parallel
Prolog system that exploits independent And-parallelism by doing compile-time analy-
sis on the program to decide which goals to run in parallel. Later efforts by Hermenegildo
and Gupta used the &-Prolog And-parallelism approach joined with a Muse-inspired
refined stack-copying scheme in ACE [GH91].

Further research from Hermenegildo evolved into the Ciao multiparadigm programming
system [HBC+12]. Although the first stages of the Ciao system leaned towards the
Prolog language, it was further developed to support functional, higher-order logic and
object-oriented programming styles, as well as constraint programming.

2.3. FROM SEQUENTIAL TO PARALLEL LOGIC PROGRAMMING 15

Another approach was suggested in Reform Prolog [Mil93], by supporting dependent
And-parallelism across recursive invocations of a procedure [BLM93]. Developed from
scratch, the compiler changes the control-flow of a recursive procedure, in order to take
advantage of parallel evaluation.

Working at Bristol, Shen proposed modifications to the WAM to exploit Dynamic
Dependent And-parallelism (DDA) in his DASWAM prototype [She96]. While having
initial good performance results, there isn’t further available documentation on this
system.

2.3.5 Extending the Andorra Model

In what concerns exploitation of both And- and Or-parallelism, the Andorra Model1

[War88] gathered a meritorious share of research effort. The main advantage of the
Andorra Model was allowing determinate goals to execute in (and-) parallel and before
the other goals in the same clause (i.e., instead of the Prolog’s left-to-right selection
rule). The Andorra Model specifies that a goal is determinate if only one of it’s clauses
matches a goal, being otherwise non-determinate. This reordering gives a direct ad-
vantage over traditional, WAM-based Prolog implementations, as determinate goals
are executed only once, instead of being recomputed when backtracking reaches them.
Another advantage is that the search space of the other goals is also constrained by
this determinate goals, which may lead to:

1. Early failing, avoiding the search for alternatives which would fail later;

2. Reducing the number of alternatives for other goals, allowing, in some cases,
non-determinate goals to become determinate.

Although various implementations of the Andorra Model exist (briefly discussed in
section 2.3.2), Andorra-I was arguably the system at which most research efforts were
targeted, making it the reference BAM implementation for many researchers. The
Andorra-I system is subdivided in three components: the preprocessor, which performs
analysis over the Prolog program in order to detect determinacy and guarantee the

1The Andorra Model is frequently referred as the Basic Andorra Model, to contrast with the
Extended Andorra Model.

16 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

correct order of solutions for the program; the engine, which consists of teams of
(parallel) workers that execute parts of the program; the scheduler, which is responsible
to find tasks and give them to idle workers. It is further subdivided into the and-
scheduler, the or-scheduler and the reconfigurer, which, respectively, distribute and-
work among workers in the same team, distribute or-work between teams and rearrange
the workers in teams according to the available work.

The preprocessor is crucial to allow the correct execution of Prolog programs, being
responsible for ensuring that solutions are presented in the same order as a sequential
Prolog engine, as well as generating the runtime determinacy code which will allow the
engine to detect when a clause is determinate.

Andorra-I relies on binding arrays [War87b] to achieve or-parallelism, using a scheme
very similar to the one used by the or-parallel Aurora system (see section 2.3.3). This
similarity has allowed schedulers developed for Aurora to be easily adapted to work in
Andorra-I.

The Andorra-I system evolved through different versions, being tested with different
schedulers. The initial versions of Andorra-I [CWY91a] used a fixed configuration of
workers. Dutra designed the Andorra-I reconfigurer [dCD95], which could dynamically
adapt the configuration of workers to the available forms of parallelism and obtained
very good results.

Although the Andorra Model allows the parallel execution of standard Prolog pro-
grams, David H.D. Warren continued developing the model in order to allow further
parallelism and address some of the inherent limitations of the BAM, namely the need
for the determinacy check, which can be costly to the system in runtime. Further,
not all determinate goals can be safely executed before the other goals (imagine a
query ?- p(X), write(X), fail. If the determinate goal fail is executed first, the
program will not try to find a solution, nor it will display it. Also, there are cases
when the determinate goal comprises a big load of work that would not be done if
the non-determinate goals that precede the determinate goal would be executed first
(imagine a query ?- …, parent(X,X), …, determinate_but_heavy(…). If parent/2

is not determinate but there are no solutions for parent(X,X), the work done by de-

terminate_but_heavy will have been wasted).

2.3. FROM SEQUENTIAL TO PARALLEL LOGIC PROGRAMMING 17

Andorra-I also suffers from this problem, as it is unable to bind external variables to
detect determinacy. By only allowing determinate goals to execute in and-parallel, one
of the bigger limitations of the Andorra-I system is that the performance depends on
finding determinate work in the program being executed, but several programs don’t
have determinate work, or determinism can’t be found by the preprocessor.

This limitation led David H.D. Warren to develop a model in which dependent and-
parallelism between non-determinate goals could be exploited. To allow non-determinate
goals to also run in parallel, David H.D. Warren proposed the Extended Andorra Model
(EAM) [War89], a model based in representing logical computations in the form of
And-Or trees and providing logically correct rewrite rules over nodes of such trees.
The rewrite rules reflect the properties between logical conjunctions and disjunctions.
Briefly, the EAM rewrite rules are:

• local forking → unfolds an atomic goal into an or-box containing one and-box for
each of the alternatives in its definition.

• determinate promotion → if an or-box contains only one child alternative (and-
box), this child and it’s bindings can be safely promoted to the grandparent
and-box.

• non-determinate promotion → one child of an or-box is chosen to be split from
it’s sibling, by splitting the grandparent and-box into two copies of itself under
an or-box: one containing the split child, the other containing the or-box with
the remaining children.

• explicit pruning → cut and commit operators allow removal of boxes that fall on
the scope of the operator.

• implicit pruning → when an alternative under an or-box succeeds, the other
alternatives can be pruned from the And-Or tree.

As a model, the EAM presents two immediate advantages over traditional Prolog
evaluation, that contribute to reducing the search space:

1. By following the Andorra Principle, determinate goals are executed as soon as
possible;

18 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

2. By using a tree to represent computation, the scope of non-deterministic compu-
tations is reduced.

The EAM extends the BAM parallelism, by allowing non-determinate goals to execute
in parallel as long as they don’t bind external variables. As the EAM presents a base
for this thesis, it will be further dissected in section 3.3.

While the EAM addresses some of the limitations concerning the BAM, regarding
execution of Prolog programs, researchers at SICS argued that the EAM needed a
programming paradigm that could merge traditional Prolog with committed-choice
languages, resulting in the development of the Andorra Kernel Language (AKL) [JH91].

AKL, later renamed to Agents Kernel Language [Jan94b] is a programming language
that tries to merge Prolog and concurrent logic programming languages (committed-
choice languages), based on Kernel Andorra Prolog [HJ90]. AKL leverages the Ex-
tended Andorra Model, but keeps the control explicit, in contrast with [War90], where
the focus gears towards implicit control.

AKL programs are sets of guarded Horn clauses, with three distinct guard operators:
conjunction, cut and commit. The use of guards extends the determinacy test of the
Andorra Model, as a goal is determinate when a single guard check succeeds between
all the alternative clauses for that goal, avoiding the limitation of relying only in head
unification. The guard can, thus, be viewed as a helper test to allow the system to chose
the correct goal to execute. A restriction is that AKL only allows quiet pruning, i.e.,
a pruning guard operator (cut or commit) can only be used if the head and the guard
don’t make any external bindings. Also, all clauses belonging to the same predicate
must use the same guard operator.

AKL makes use of the same concepts as the EAM, by defining a computation as a
set of rewrite rules over an And/Or tree. Nodes in the tree can be one of three types:
and-boxes, or-boxes or choice-boxes. For contextualization purposes, we briefly describe
the concepts behind the rewrite rules of AKL:

1. local forking → unfolds an atomic goal into a choice-box containing all the
alternatives in its definition.

2. failure propagation → an and-box containing a failed goal (or box) is rewritten

2.3. FROM SEQUENTIAL TO PARALLEL LOGIC PROGRAMMING 19

as fail.

3. choice elimination → a failed goal (or box) inside a choice-box is eliminated.

4. environment synchronization → converts an and-box containing one goal into a
failed box, if the goal’s constraints are incompatible with the and-box’s bindings.
Represents unification failure.

5. non-determinate promotion → selects a guarded goal (with a solved guard)
from a non-determinate choice-box and splits the parent box in two copies of the
same configuration, one with the solved goal and the other with the remaining
alternatives. This creates a determinate branch in the parent box.

6. determinate promotion → is similar to the previous rule, but is applied when
the choice-box contains only one goal.

7. choice splitting → is similar to the non-determinate promotion, but focuses on
splitting a choice-box inside an and-box into a choice-box of two and-boxes: one
with the chosen goal and the other with the remaining choices.

8. pruning rules → handle the effect of pruning (cut and commit) guard operators,
by removing the remaining alternatives from the choice-box.

The AKL rewrite rules are described in detail in [JH91]. The rules are classified either
as guessing (non-determinate promotion and pruning) or guess-free (all the other) rules.
Guess-free rules are always applicable, whereas guessing rules can only be applied to
stable goals or, in the case of pruning operators, iff the pruning operator is quiet. The
stability of a goal is an AKL concept that derives from the Andorra Principle, which
states that determinate work is performed before non-determinate work. The stability
concept is somewhat expensive to compute, which led AKL implementations to use
a simplified condition: an and-box is marked as not stable if it suspends on external
variables.

Various implementations of AKL were developed:

• AGENTS [JM92], a sequential AKL implementation that uses a WAM-style stack
to execute programs compiled into a WAM-style abstract machine. The imple-
mentation waived or-boxes, as AKL predicates must have one guard operator.

20 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

• Penny [MA95], a parallel implementation of AKL using a copy-based approach
for parallel bindings.

• ParAKL [MD93], another parallel implementation which differs from Penny (which
uses a sequential copying approach) by using a parallel implementation of the
choice splitting rule (thus with parallel copying) and by using the PEPSys [BdKH+88]
hashing scheme for parallel bindings.

Although they’re members of the logic programming language family, AKL and Prolog
differ both in syntax and semantics. Hermenegildo proposed an automatic translator
from Prolog to AKL [BH92], but this was not enough to gather sufficient interest into
AKL.

While AKL has shown acceptable performance both in sequential and parallel imple-
mentations, the researchers have shifted their research into Oz [Smo95], a system that
merges concurrent logic programming with object oriented features.

At Bristol, David H.D. Warren and other researchers built upon the EAM, insisting
in implicit control [War90], in order to achieve as much compatibility with traditional
Prolog as possible.

A proof-of-concept interpreter was developed by Gupta [GW91], which made experi-
mentation on new ideas for the EAM possible. Some ideas allowed finer control over
search and improved parallelism (e.g., lazy copying, eager producing of bindings in a
producer-consumer environment, etc.).

Building on top of the EAM and AKL, Abreu proposed the OAR model and language
[Abr00]. This model uses rewrite rules for And-Or trees to achieve parallelism in
mixed shared- and distributed shared-memory environments, relying on a language
for contextual logic programming (CxLP). The OAR model presents a set of rewrite
rules that are classified either as determinate or non-determinate, as well as whether
they perform forward (expanding the code that makes up the clauses) or backward
execution (transitions that occur as consequence of factors other than code execution).
Previous works by Abreu [APC92, AP93, Abr94] have also contributed to improve the
AKL execution model.

Leaning towards the EAM initial goals, further research at University of Porto by Lopes

2.4. PARALLEL PROGRAMMING MODELS 21

led to the implementation of the “Basic design for Extended Andorra Model” (BEAM)
[Lop01], an EAM sequential interpreter implemented on top of YAP Prolog [CRD12].
Lopes also proposed a parallel model of execution for the BEAM, called the RAINBOW
[LSCA00]. The BEAM proposes various optimizations over the EAM model, namely
simplification rewrite rules derived from the AKL rewrite rules, as well as using concepts
from Gupta’s EAM interpreter, as eager forking and lazy copying, allowing goals that
produce bindings for an external variable to execute, instead of suspending. In the
original EAM specification, all goals that constrain external variables must suspend.
The results presented by the sequential implementation of the BEAM led us to trow
that the EAM is indeed a feasible model for parallel Prolog execution.

Recent breakthroughs in hardware for parallelism (e.g., General Purpose computing
on Graphics Processing Units – GPGPU, Many Integrated Core – MIC, etc.) have
made possible to employ different paradigms to implement parallel engines for logic
programming.

In the next section we analyze parallel programming models and frameworks which
can be used to implement a parallel Prolog engine, based on the EAM.

2.4 Parallel programming models

As single-processor performance becomes nearer to its theoretical maximum, hardware
implementers have been focusing into producing multi-processor alternatives, which
can be effectively harnessed by software that takes advantage of the parallelism in
the hardware. This almost always means that the programmer has to write his code
specifically to run on parallel hardware, or else the software would be limited to run
in a single processor of a multi-processor machine.

As stated earlier, logic programming languages exhibit implicit parallelism, and it’s up
to the execution engine to exploit the presence of hardware parallelism, which allows
older programs, written without parallel hardware concerns, to run efficiently in parallel
hardware.

There are many different types of parallel machines, but we can generally divide them
in three main categories:

22 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

• Symmetric multiprocessing (SMP) machines - This is the most common
type of machine in use today, where multiple identical processors connect to
a single, shared main memory and share access to all I/O devices. A single
operating system is used to control all processors equally. In today’s multi-core
systems, each core is treated like a separate processor. In SMP systems, each
processor can run different programs and work on different data at the same
time, while sharing access to the memory and I/O system. The most common
way of harnessing SMP parallelism is by multi-threading, dividing a program in
multiple threads that can be run in parallel.

• Distributed systems - This category comprises clusters of machines (possibly
and probably SMP machines) connected through a bus (normally network-based).
In this systems, each machine has it’s private memory and I/O resources and is
controlled by an operating system. The sharing of data is usually performed
via message passing. One of the most common frameworks to support software
running on DSM systems is MPI [Pac97]. There has been some effort in making
this distributed memory sharing transparent to the programmer, by the means
of programming frameworks. We’ll visit some of these frameworks in section 2.4.

• Micro-core systems - These systems are based in specialized chips that include
several processor cores, usually performing the same function over large sets of
data, with each core processing a different part of the data. The most well-
known micro-core systems are GPGPU (General Purpose computing on Graphics
Processing Units), which make use of the several cores of a traditional GPU to
process large data volumes; and MIC (Many Integrated Core Architecture), from
Intel, which takes the GPGPU paradigm, incorporating several micro-cpus in a
single expansion board, or co-processor. Also, various frameworks exist (e.g.,
OpenCL, CUDA) in order to harness the parallelism in micro-core systems.

With the rapid growth of hardware power, especially the trend of High Performance
Computing (HPC), there’s an accompanying need for programming models that can
provide implementers a level of abstraction on top of different parallel hardware ar-
chitectures. To allow development for parallel hardware, there are three main pro-
gramming models that provide a logical interface between the application and the
architecture:

2.4. PARALLEL PROGRAMMING MODELS 23

• Message passing - in this model, different processes or threads run with their
private address space, possibly in different machines. The synchronization and
sharing of data between processes/threads occurs explicitly, via a message passing
interface.

• Shared Memory or Global Address Space (GAS) - this model provides
a virtual address space that transparently maps to the private address spaces
of the components of the parallel system. Generally, there’s no distinction be-
tween local and remote memory addresses, making possible to use remote memory
transparently.

• Partitioned Global Address Space (PGAS) - this is a specialized class of
shared memory systems, where the whole memory is shared, but also partitioned,
meaning that there’s a distinction between local and remote addresses. This
allows the programmer to exploit locality and avoid unnecessary overheads in
remote communication.

These models have been materialized in programming frameworks, ranging from the
lower-level to the higher-level languages.

The message passing model has been around for a long time, mostly materialized by
the MPI (Message Passing Interface) standard [Hem94], widely used in multi-computer
systems. As it is a mature standard, many implementations are available, for languages
like C, C++, Java, Python, etc. It is commonly used along with other high- and low-
level frameworks in order to extend their multiprocessing capabilities with distributed
computing capabilities.

Some arguing about MPI’s restrictive message semantics led to the development of al-
ternative message passing interfaces, namely GASNet [BJ], a communication interface
that aims to be high-performance and network-independent, in order to allow trans-
parent access to both local and remote (distributed) memory addresses. GASNet has
been used in the implementation of Unified Parallel C (UPC), an extension to the C
language to provide a PGAS programming model.

For shared memory approaches, OpenMP [DE98] is an standardization API for parallel
computing on shared memory systems. The standard is managed by a consortium of

24 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

manufacturers that includes AMD, Intel, HP, IBM, Nvidia and others. OpenMP is
not really a framework, but rather a specification for compiler directives and library
routines that C, C++ and Fortran compilers should implement in order to support
transparent parallelism. It has been widely used either on academic or commercial
parallel software.

In order to take advantage of locality, the PGAS model has lately gathered a great
deal of research interest. X10 [CGS+05, SBP+11] is a language with a Java-like syntax
augmented with primitives to generate parallel computing tasks. Developed at IBM, it
has been used to support several large scale projects, including city traffic simulation,
graph processing, etc. X10 uses a Asynchronous Partitioned Global Address Space
(APGAS) programming model, which means it can create asynchronous local and
remote tasks and manage synchronization between them. X10 also offers GPGPU
(General-Purpose computing on Graphics Processing Units) backends.

Built on past work in X10 v1.52, Habanero-Java [CZSS11] is a framework that provides
a language, compiler and runtime environment for extreme scale systems. Heavily
linked with Java, it works on top of the JVM. It was developed with educational
purposes, but has been used in real-world scenarios. The Habanero developers at Rice
University have also developed other alternative frameworks, as Habanero-C++ (still
in development), which uses C++ and doesn’t depend on the JVM.

Another novel framework is Chapel [Cha13], developed at Cray Research. It uses a
PGAS model and a language in the family of C++ and Java. Rather than extending
an existing language, Chapel provides a new language designed from first principles
and allows the integration with previously existing code. As X10, Chapel also provides
an asynchronous layer over the PGAS model.

On the low-level side, Cilk [BJK+95], developed at the Massachusetts Institute of Tech-
nology (MIT), presents a C-like language and has show very good performance results,
in comparison with other frameworks [NWSDSM13]. Cilk is a mature framework (de-
velopment started at the 1990s), having been successfully used in a wide area of large
scale systems as protein folding, graphic rendering, etc.

UPC (Unified Parallel C) [CDC+99a] is an extension for the C language to enable par-

2At the time of this writing, the current X10 version is 2.5.3

2.5. AN ABSTRACT MODEL FOR PARALLEL EXECUTION OF PROLOG 25

allelism over a PGAS model. Developed at Berkeley, UPC focuses on a SPMD (Single
Program Multiple Data) model, which means that a single algorithm can perform the
same operation on a large set of data in parallel. Recent efforts have successfully ex-
tended UPC to work over the Nvidia CUDA platform [CLT+10] and over the Intel
Many Integrated Core Architecture (Xeon Phi coprocessor) [LLV+13].

2.5 An Abstract Model for Parallel Execution of
Prolog

This thesis focuses in STEAM, an abstract model for parallel execution of Prolog pro-
grams, focusing in maintaining either the original Prolog syntax, either the expected
output semantics. While several research efforts have been made into the exploitation
of implicit parallelism in Prolog, only a few focus in both forms of parallelism (and-
and or-parallelism), and even fewer focus in the Extended Andorra Model.

We believe that the EAM is the natural successor for the WAM when targeting parallel
hardware, and there is still a gap to be fulfilled in regard to research over the EAM.
The successful results obtained by Lopes in the BEAM [Lop01] have encouraged us to
build upon the EAM in order to accommodate the newer hardware developments and
parallel programming frameworks.

Specifically, STEAM consists in the following key components:

• STEAM uses a tree-rewriting system, based on the EAM;

• STEAM relies on a multi-step compilation scheme, by transforming WAM code
into EAM code, which can then be either interpreted or compiled to native code;

• STEAM takes advantage of current parallel programming paradigms to allow the
parallel execution of the aforementioned EAM code.

26 CHAPTER 2. PROLOG AND PARALLEL LOGIC PROGRAMMING

2.6 Concluding remarks

This chapter brought a survey on logic programming implementations, with emphasis
in the Prolog language, giving focus to parallel implementations and their origins. We
can observe that there hasn’t been recent significant developments regarding parallel
Prolog execution, mainly because the focus has arguably moved to constraint logic
programming (CLP).

Programming models and lower-level frameworks for developing parallel applications
are briefly presented, in order to explore alternatives that allow us to build a prototype
for the model described in this thesis.

Also, the difference between Prolog and the committed-choice (concurrent) logic pro-
gramming languages is noted, showing that it’s no easy task to adapt programs from
one to other of these two approaches.

In the next chapter we describe the main abstract models for executing Prolog pro-
grams.

3
Abstract Machines for Prolog

When Colmerauer and Kowalski invented Prolog in the 1970s there was no abstract
model to support execution of Prolog programs. They supervised the implementation
of the first Prolog compilers, which directly influenced the creation of the WAM by
David H.D. Warren.

Although many derivatives of the WAM exist, the WAM continues to establish the
de facto standard in sequential Prolog implementation. In what concerns parallel
implementation, there is still no standard, but this thesis focuses on the EAM as a
starting point for parallel Prolog implementation.

In this chapter, a more in-depth study of the WAM is presented, as well as an extended
description of the EAM.

27

28 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

3.1 Formal definitions

For the rest of this thesis, the Edinburgh syntax [BBP+81] will be used for terms,
predicates and logical variables:

• A term is either a variable or a function symbol of arity n ≥ 0 applied to n

terms (e.g., p, f(X), g(f(X), Y, c)).

• An atom is a formula of the form p(T1, . . . , Tn), where p is a predicate of arity n

and T1, . . . , Tn are terms.

• A definite clause (or simply clause) is a formula of the form

H ← B1, . . . , Bn (n ≥ 0)

where H is an atom and is called the clause’s head, and B1, . . . , Bn is a sequence
of atoms, called the clause’s body.

3.2 The Warren Abstract Machine (WAM)

As stated earlier, the Warren Abstract Machine was created by David H.D. Warren in
1983. The report where the WAM was introduced [War83] was very abstract, without
many technical or implementation details, so not many people were able to understand
it. This led some authors to write tutorials about the WAM [GLLO85, Kog90, AkF99],
contributing to a widespread growing interest in the WAM implementation and in the
development of optimizations for the WAM, some of which, in turn, led to implemen-
tations somewhat different from the original Warren’s machine [BAM, TOAM-Jr].

Nevertheless, the WAM is still the basis for the most part of the current Prolog im-
plementations, as it can be efficiently implemented in modern computer architectures.
Although the WAM was initially seen as a model for specialized hardware, it has been
proved that there is no need for such hardware, as compilers based on the WAM have
achieved comparable results to imperative lower-level languages (e.g., C).

The WAM organizes the memory as an array of cells. Each cell has a tag that specifies

3.2. THE WARREN ABSTRACT MACHINE (WAM) 29

the type of that cell. The basic WAM tags are shown in table 3.1.

REF Reference contains a variable
STR Structure contains a compound term
CON Constant contains a term with arity=0
LST List contains a (part of) a list
INT Integer contains an integer (constant) value
FLT Float contains a floating point value

Table 3.1: Types of tags for WAM cells

A variable is a reference pointer to an address in the WAM memory, thus containing
a tag of REF and a memory address. Unbound variables are REF cells with their
own address (a REF cell that points to itself). References from other cells to these
cells also represent unbound variables (the last cell in the chain is obtained through
dereferencing), although the cells are efectively bound to each other.

Terms (structures) are represented in the WAM as a consecutive set of cells: a term
of the form f(t1, . . . , tn) will consist of n+2 consecutive memory cells (more precisely,
the first two cells don’t need to be consecutive, and in most cases, they aren’t). Figure
3.1 shows an example representation of the term f(A, h(A,B), g(B)). The term starts
at address 7, which point at address 8 where the name and arity of the term reside,
and the next 3 cells point to the addresses of the argument terms.

Figure 3.1: Example representation of the term f(A, h(A,B), g(B))

30 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

3.2.1 Registers and memory organization

The WAM was mainly designed for emulated execution and comprises six distinct
logical memory areas:

• The heap or global stack is used to store compound terms and lists as they
are created by goal evaluation;

• The local stack (or simply stack) stores choice-points and environment frames.
An environment frame stores values for permanent variables across conjunctive
goals, while a choice-point records variable bindings that can be reset upon goal
failure, to allow other alternative clause to be tested (i.e., to backtrack);

• The trail is another stack used to store the addresses of the variables that must
be unbound upon backtracking. The trail condition dictates if a variable has to
be trailed;

• The push-down list (PDL). A stack used for the unification of nested com-
pound terms. As the PDL doesn’t need to be permanent, in real implementations
it is common the use of the local stack for unification purposes.

• The code area is where the code of the program resides. In native code imple-
mentations, this area contains dynamic predicates (created via assert/1) and
user code (generally inserted via consult/1);

• The symbol table stores information about the symbols used in a Prolog pro-
gram (e.g., atom names, variable printing names, etc.).

As a register-based architecture, the WAM uses a set of internal registers, where the
execution state is stored. The WAM’s registers are shown in table 3.2.

A sample illustration (taken from [AkF99]) of the memory architecture for the WAM
can be seen in figure 3.2 (page 32). Many variations on this scheme have been imple-
mented in current Prolog systems.

3.2. THE WARREN ABSTRACT MACHINE (WAM) 31

P Program counter
CP Continuation pointer (top of return stack)
E Environment pointer (current environment in local stack)
B Most recent choice point
B0 Cut pointer
A Stack pointer
TR Trail pointer
H Heap pointer
HB Heap backtrack pointer
S Structure pointer
mode read or write mode for unification
A1, …, An Argument registers
X1, …, Xn Temporary variables (generally overlap with A registers)
Y1, …, Ym Permanent variables (in the stack)

Table 3.2: Internal WAM registers

3.2.2 WAM instructions

In a WAM-based system, compiling a Prolog program consists in translating that
program to equivalent WAM instructions. As already discussed, the WAM-compiled
Prolog program can be seen as a program written in a WAM language, which, albeit
not a standard language (syntactic differences occur among different compilers), stays
close to an Intermediate Language (IL), to which we generally refer as WAM code.
Following the compilation to WAM code, the resulting set of WAM instructions can
be used in two different forms:

• translated into native code, targeting a specific hardware (or low-level assembly)
in order to be executed directly, or

• maintained in WAM-form, going through some form of compression (byte-code),
in order to be interpreted by an emulator.

Many compilers use both forms, in order to allow the emulated execution of dynamic
and consulted predicates (not available at compilation time). After all, Prolog is meant
to be an interactive language.

WAM instructions can be grouped in different types:

32 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

Figure 3.2: Example WAM memory layout and registers

1. put_* instructions: used to create elements in the heap (or in the stack, when
used on permanent variables), are mainly used to load argument registers before
a call;

2. get_* instructions: used to perform unification, are mainly used in the execution
of a goal;

3. unify_* instructions: used to perform unification with structure arguments;

4. procedural control instructions: used to control the course of the program,
comprise unconditional jumps and allocations in the stack (call, execute, pro-
ceed, allocate, deallocate);

5. switch_* instructions: used for indexing, by making conditional branches re-

3.2. THE WARREN ABSTRACT MACHINE (WAM) 33

garding the type of the (first) argument;

6. try, retry and trust instructions: used for choice-point management, setting
the alternative code to jump to when the current goal fails.

7. search space puning instructions: used to remove choice-points from the search
(cut, neck_cut).

Figure 3.3 shows an example Prolog program. We can see the WAM instructions for
the same program in figure 3.4, as generated by pl2wam [DC00b], the GNU Prolog
component that converts Prolog code to WAM code.

p(X,Y) :- q(X), q(Y).

q(1). q(2).

Figure 3.3: An example prolog program

predicate(p/2,1,static,private,monofile,global,[
allocate(1),
get_variable(y(0),1),
call(q/1),
put_value(y(0),0),
deallocate,
execute(q/1)]).

predicate(q/1,3,static,private,monofile,global,[
switch_on_term(2,fail,1,fail,fail),

label(1),
switch_on_integer([(1,3),(2,5)]),

label(2),
try_me_else(4),

label(3),
get_integer(1,0),
proceed,

label(4),
trust_me_else_fail,

label(5),
get_integer(2,0),
proceed]).

Figure 3.4: WAM code for the example Prolog program.

34 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

3.2.3 Limitations and relating optimizations

There are many issues in the initial Warren’s specification for the WAM. Fortunately,
most of these issues have been object of study and improvement over the years.

• The implementation of cut requires an additional register in the WAM. There
are proposed optimizations on this matter [MD89]

• Unification modes require different paths of execution for different modes (and
thus jumps, which are expensive). This can be optimized by using specialized uni-
fication instructions when we know if the arguments are previously instantiated
or not.

• Memory management is fairly good in the WAM, as it allows fast recovery of
space in the stack on backtracking. However, long computations may require
more space, and then there is a need for space recovery between backtracking
requests. Some algorithms for garbage collection [ACHS88, DET96a] have been
proposed along the years.

3.3 The Extended Andorra Model (EAM)

The Extended Andorra Model (EAM) [War89] was presented by David H.D. Warren as
a set of rewriting rules over nested conjunctions and disjunctions (i.e., And-Or trees),
in order to allow parallel resolution of logic programs. It is extended in the part that the
EAM is an extension to the Andorra Model, allowing parallelism between independent
non-determinate and-goals.

The first proposal for the EAM led researchers to believe there was a need for a new
logical programming language, in order to fully take advantage of the EAM design. In
order to adapt the model to existing languages (e.g., Prolog), Warren then proposed
the Extended Andorra Model with Implicit Control [War90], where the control part is
managed by the implementation of the EAM and not by the programmer.

We focus our research in this implicit control model, and for the remaining of this
thesis, all references to the EAM consider the implicit control model.

3.3. THE EXTENDED ANDORRA MODEL (EAM) 35

Sections 3.3.1 and 3.3.2 describe the EAM in further detail.

3.3.1 EAM base constructs

The EAM defines two base constructs, which form the nodes of the And-Or tree:
the and-box, which represents conjunctions, and the or-box, representing disjunctions
(alternative clauses for the same predicate).

Formally, an and-box (figure 3.5) corresponds to a clause G1, . . . , Gn which creates
variables X1, . . . , Xm and impose constraints (σ) on external variables.

G1 . . . Gn

X σ

∃X1, . . . , Xm : σ ∧ G1 ∧ . . . Gn

Figure 3.5: Graphical representation for an and-box

An or-box (figure 3.6) represents the different alternative clauses C1, . . . , Cn for a
specific goal. Each clause Ci is represented by an and-box.

C1 Cn
.

C1 ∨ . . . ∨ Cn

Figure 3.6: Graphical representation of an or-box

3.3.2 Rewriting rules

The EAM rewriting rules are the engine that allows the computation to advance. We
apply the rules to simplify the tree and propagate results, until a solution is available.

Local forking (figure 3.7) is the substitution of a goal G in an and-box for an or-box
corresponding to the unfolding of G’s alternatives C1, . . . , Cn. Each alternative Ci,
creating variables Yi and generating external constraints σi, is placed in an and-box.

36 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

Figure 3.7: EAM local forking rule.

Determinate promotion (figure 3.8) is the substitution of an or-box with a single
alternative (and-box) for that single alternative. This normally means the end of a
computation, when lower level results are propagated to the upper level.

Figure 3.8: EAM determinate promotion rule.

Nondeterminate promotion (figure 3.9) is the promotion of an and-box that has
alternatives (siblings) to its (grand) parent and-box, by creating an or-box with two
alternatives: one is the original parent and-box with the promoted alternative; the
other is the original parent and-box with the remaining alternatives (which remain
unpromoted under the or-box). As this rule creates two copies of the parent and-box,
it is sometimes referred as the splitting rule.

Figure 3.9: EAM nondeterminate promotion rule.

Besides this rules, Warren also provides rules for simplifying the And-Or tree when
pruning operators are present. These rules facilitate reducing the search space under

3.3. THE EXTENDED ANDORRA MODEL (EAM) 37

special conditions, namely when the and-box containing the pruning operator doesn’t
contain constraints on external variables.

Figure 3.10: EAM handling of cut.

Figure 3.11: EAM handling of commit.

Figure 3.12: EAM handling of implicit pruning.

Although the latter two rules are more appropriate for committed-choice languages,
they can be used in Prolog, when extended with annotations for when the programmer
wants to explicitly control parallelism. They are, however, optional.

Through simple, logically correct rewriting rules, the EAM makes possible the parallel
execution of Prolog goals. Along with these rules, Warren also proposed some guidelines
to control the execution on the EAM. Warren proposed the following execution strategy
for the EAM:

1. Perform evaluation (by applying all rules except non-determinate promotion), as
long as there is no production of non-determinate bindings.

38 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

2. Suspend evaluation of any and-box containing a test goal over an external variable.

3. When execution of an and-box can’t proceed, allow non-determinate promotion,
but only on one selected goal, for instance, the leftmost goal (in order to mimic
Prolog traditional execution behavior).

4. In non-determinate promotion, use lazy copying of suspended evaluations, i.e.,
always complete the evaluation in the higher environment, before copying to the
lower environment.

In order to better understand the inner workings of the EAM, figures 3.13 to 3.15 show
an example of EAM execution for a simple Prolog program. Consider the program

p(1). p(2). r(2). r(3).

q(X) :- p(X), r(X).

and the query

?- q(X,X).

To prepare for the resolution of the query, the EAM creates an and-box for the query.
The only internal variable is X (figure 3.13, step 1). The second step is to perform a
local fork, unfolding the alternatives for the predicate q (figure 3.13, step 2).

Figure 3.13: Example of EAM execution, steps 1 and 2.

As there’s only one alternative clause for q (i.e., the or-box has only one child), the
EAM proceeds with the determinate promotion rule (figure 3.14, step 3), followed by
a local fork for each call in the and-box (figure 3.14, step 4). As the newer and-boxes
all try to bind an external variable (X), the EAM suspends them.

3.4. AN EAM-BASED SCALABLE MODEL FOR PARALLEL PROLOG 39

Figure 3.14: Example of EAM execution, steps 3 and 4.

As there’s no other applicable rule, the next step is to perform a nondeterminate
promotion. To keep the semantics of Prolog, the leftmost or-box is chosen to be split
(figure 3.15). The suspended and-boxes are then awakened, and the ones that try to
bind X with incompatible values fail, leaving only one possible solution.

Figure 3.15: Example of EAM execution, step 4.

Although very simple, this example shows how the EAM works with pure logic Prolog
programs. The EAM specification doesn’t consider how to deal with meta-logical
predicates and, although there are rules to deal with pruning operators, caution has to
be made in order to keep Prolog semantics intact, especially when dealing with parallel
execution.

3.4 An EAM-based scalable model for parallel Pro-
log

The main object of this thesis is STEAM, the Scalable, Transparent Extended Andorra
Model, a model for parallel execution of Prolog programs which can take advantage
of the PGAS programming model. STEAM aims to exploit the implicit parallelism in

40 CHAPTER 3. ABSTRACT MACHINES FOR PROLOG

the Prolog language, without relying in user annotations or semantic differences from
standard Prolog.

STEAMuses a pluggable compilation scheme:

• Using a WAM → STEAM translator, we can perform abstract analysis and pre-
optimize the code with parallelization in mind, as well as being able to support
WAM code from different Prolog-to-WAM compilers;

• Producing STEAM Intermediate Language code, it’s possible to implement differ-
ent runtimes to explore alternative programming models (e.g., PGAS, GPGPU,
SMP) or even to decide if the code is to be compiled or interpreted;

Although based on the EAM, STEAM diverges in some significant parts, in order to
allow the exploitation of parallelism in recent programming models. When there’s a
conflict between maximum parallelism or minimum inference, STEAM favors maximum
parallelism.

As the next chapter focuses in the translation of WAM code to STEAM code, this
section is meant as a form of introductory context to the model. The STEAM model
will be presented in detail in chapter 5.

3.5 Closing remarks

The WAM is still the most used model when compiling Prolog programs. By providing
an almost direct-mapping of Prolog code to WAM instructions, it’s both an efficient and
effective model to execute Prolog programs. Over the years, several optimizations over
the original model of the WAM were proposed and implemented in real-world compilers,
making the WAM the de facto standard in Prolog compiler implementation. In fact,
many of the existing Prolog compilers use the WAM as the basis for an intermediate
language, which is frequently referred as WAM-code, used in intermediate phases of
the compilation. Although there’s no universal WAM-code specification, the WAM
instructions used by most of these compilers can be thought as a “WAM programming
language” by itself.

3.5. CLOSING REMARKS 41

The EAM can be seen as an evolution of the WAM, in the way that it provides a model
that enables the parallel execution of Prolog programs. With this model, it is possible
to achieve minimum inference, by never repeating the same inference in distinct
branches of the And-Or tree1 and maximum parallelism, by allowing to perform
parallel search on each goal, before making a global choice.

The STEAM model aims to extend the EAM in order to take advantage of novel
parallel programming models, by using a pluggable compilation scheme and focusing
in maximum parallelism, by making use of an Intermediate Language (IL), STEAM-IL,
which well be further discussed in the next chapter.

1To be strictly correct, the nondeterminate promotion rule can produce repeated inferences in the
And/Or-Tree

4
Designing a WAM→EAM

translator

We can argue that the biggest drawback of the EAM (with implicit control) is the lack
of real implementations. The BEAM [Lop01] was the first and only implementation
of the EAM and, while being a sequential implementation, it showed that the EAM is
indeed a feasible model for Prolog compiler implementation.

The BEAM showed us that by leveraging the EAM constructs and rules, it is possible
to achieve both performance and parallelism.

43

44 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

Drawing over the BEAM’s encouraging results, Andre proposed wam2eam [AA, AA10],
a translator from WAM IL1 to C, by using the EAM And-Or Tree as a base for Prolog
execution in a parallel engine. While translation from WAM code to executable code
using the EAM as a base for the runtime seems like a good starting point, we think
that an intermediate approach can be more flexible, by translating WAM code to EAM
code. This intermediate approach allows us to introduce optimizations in two phases:

1. By performing abstract analysis over the WAM code, generate EAM code opti-
mized for parallel execution;

2. By running EAM specific code, the runtime can be focused on the underlying
target architecture and be optimized accordingly.

Although there is already a “pseudo”-standard WAM language, there isn’t a coun-
terpart for the EAM. This chapter presents a WAM-to-EAM compiler, ‘wam2steam’,
further introducing the STEAM-IL, an Intermediate Language that reflects the EAM
machinery, just as the WAM language reflects the WAM’s.

Most of the current Prolog compilers use the approach of precompiling the Prolog code
to WAM code, which will then be compiled either to bytecode or to native code. Some
of them enable the developer to export that WAM code to a file, a feature we will
leverage in order to build our translator to EAM code. The current implementation of
wam2steam uses the WAM code generated by pl2wam as input, producing STEAM-IL
code as output.

4.1 The pl2wam translator

The GNU Prolog [DC00b] compiler uses an interesting approach to the compilation
of Prolog programs. By using a multi-step compilation scheme, a Prolog program is
sequentially processed by a chain of independent translating programs:

1. pl2wam, entirely written in Prolog, compiles a Prolog source file into WAM code.
This compiler uses many of the standard WAM optimizations, like indexing, last

1Intermediate Language

4.2. WAM2STEAM - COMPILING WAM TO STEAM 45

call optimization, as well as some optimizations that are specific to the GNU
Prolog system internals.

2. wam2ma then translates the WAM code to mini-assembly (MA) [DC00a], a low-
level language designed by Diaz specifically for GNU Prolog. The main purpose
of the MA language is to be as much low-level as possible, while being simple to
translate to assembly languages for different architectures (e.g., Intel 386, Intel
64bit, PowerPC, etc.).

3. The mini-assembly is then translated to architecture-specific assembly language
by the ma2asm program.

Having obtained the target architecture assembly code, the remaining of the process is
achieved by the standard GNU assembler and linker (i.e., as and ld).

Before using this compilation scheme, Diaz used a different compilation scheme, where
the WAM code was directly translated to C code, via the wamcc compiler [CD95]. The
change from compiling directly to C code to the current approach led to a performance
increase of GNU Prolog compiled code.

4.2 wam2steam - compiling WAM to STEAM

The flexibility achieved by this multi-step model of compilation, allied to Andre’s work
led us to develop a multi-step model of compilation, using WAM code as a starting
point, but diverging to EAM intermediate code afterwards.

In this multi-step model, the pl2wam compiler is used to transform a Prolog program
into WAM code, which we will further process, in order to obtain STEAM-IL code.
With that in mind, we started by defining the base STEAM-IL instructions.

4.2.1 STEAM-IL instructions

The EAM proposes a very different model of execution from the WAM. By using or-
boxes instead of choice-point frames in the stack, the EAM doesn’t indeed need a

46 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

stack. It does, still, need a heap, in order to allow the building of composite terms.
The execution on the EAM is done inside the and-boxes, possibly in parallel, while
execution in the WAM is done sequentially, using the stack to store temporary results
that possibly will be discarded later.

Despite these structural differences, the execution of a specific goal is very similar
across the two approaches:

• Argument terms must be built before a call (put_* instructions);

• Unification is the standard mechanism for resolving Prolog goals (get_* and
unify_* instructions);

• Indexing is useful, as it allows to reduce the search space (switch_* instructions).

• Also, explicit pruning gives us opportunities to reduce the search space (cut,
neck_cut).

With this being said, STEAM-IL can reuse most of the WAM instructions, providing
we take care of the cases where variables were stored on the WAM stack (i.e., in Y

registers). The try*, retry* and trust* instructions don’t have any meaning in the
EAM, as choice-point management is ensured by the creation of or-boxes. However, in
the context of translating WAM to STEAM, those instructions will be useful to identify
the alternatives which will be put under an or-box.

Following the WAM definitions in section 3.2.2 (chapter 3), we propose the following
base instruction set for the STEAM-IL:

Our main goal is to provide a set of instructions that will be executed in an EAM
context, while producing the same results that the original WAM code would produce
(in a WAM context). The STEAM-IL code, when executed, will produce the and- and
or-boxes that will form the And-Or Tree. It will be up to the runtime, though, to
decide where and when to use parallelism.

In order to translate the original WAM code to STEAM-IL code, the wam2steam com-
piler starts by performing an abstract analysis over the WAM code. In the current
prototype implementation, we used the traditional compiler construction flex+bison
pair.

4.2. WAM2STEAM - COMPILING WAM TO STEAM 47

put_* instructions used to create elements on the heap or in the and-
box

get_* and unify_*
instructions

used to perform binding of variables, by means of
unification

call triggers the execution of a goal, or the creation of
its or-box with children and-boxes

proceed indicates the successful end of a computation
fail indicates that the computation has failed
allocate_or L1, ..., Ln creates an or-box with n alternatives, each with

code starting at label Li

allocate_and L1, ..., Ln creates an and-box with n conjunctive goals, each
with code tarting at label Li

Table 4.1: Initial instruction set for STEAM-IL.

4.2.2 Abstract analysis of the WAM code

The wam2steam compiler starts by constructing an APT (Abstract Parse Tree) that
represents the original WAM code. This APT is the used to perform abstract analysis,
from which we firstly get the following (almost) direct translations:

• choice-point instructions (try_*, retry_*, trust_*) determine how many
alternatives an or-box will have. We can then use the labels associated with the
different choice-points as arguments to the allocate_or instructions, signaling
where the code for each alternative is located.

• call and execute instructions are used to determine the conjunctive goals be-
longing to a single and-box, as well as the location of their respective code. They
provide the locations of the code for allocate_and instructions, but have no
labels, which means we have to create those labels. Also, as the difference be-
tween call and execute is based on the existence of the WAM stack, which
doesn’t exist in the EAM, we can merge both instructions into the STEAM-IL
call instruction.

• put_* instructions allow us to determine the arguments, the local and external
variables of an and-box, by looking at the argument registers and the arity of the
predicate.

• switch_* instructions generate indexing information, which will later be used
to reduce the search space (e.g., by allocating smaller or-boxes).

48 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

Besides these translations, there is some more information that we can obtain from the
abstract analysis, which can later be useful for the runtime to make decisions regarding
the execution of the code. The information we are retrieving is the following:

• Determinate predicates - As determinate predicates can be promoted in the

STEAM execution context, we’ll take note of determinacy in order to allow the
early promotion of such predicates. This is accomplished by annotating as deter-
minate a predicate that has only one alternative.

• Facts - Facts are simple predicates that don’t implicate further calls and are
usually the source for variable bindings. We may want these predicates to execute
earlier (or later, for that matter) than others, so we also annotate facts.

• Rules with a single goal in the body - These are also useful to differentiate,
as they don’t require and-parallelism.

• Control predicates - Control predicates (e.g., cut (!), repeat) change the
flow of the program, by adding or removing alternatives from the search space.
Parallel execution of these predicates, when possible, must be performed with
extra care.

• Non-logical predicates - Here we include extra-logical and meta-logical pred-
icates, which can trigger side-effects or can perform functions that must be exe-
cuted at a specific time, thus not able to be run in parallel with other dependent
goals.

• Independent variables - Although not always possible, in some cases we can
detect if a variable is independent. By annotating it, we can allow the STEAM
runtime to execute goals that use independent variables in and-parallel, without
restrictions.

• All-solution predicates - This kind of predicates ask for all the solutions avail-
able, allowing us to search for solutions in parallel, without concerns over specu-
lative work, maximizing the potential parallelism.

4.2. WAM2STEAM - COMPILING WAM TO STEAM 49

Control predicates

In the current implementation of wam2eam, we are only handling the cut operator (!),
but we have plans to implement others (e.g., the controversial repeat, ..., fail

loops).

Cut instructions are very important in an EAM context, as they can effectively reduce
the search space. Consider the query a(X), b(X), !, . . .: the cut means that we only
want the first value for X that satisfies both a(X) and b(X), which means we can
delete all non-solved or-alternatives for a(X) and b(X) as soon as we find one that
succeeds. Further, if the previous query is the body of a clause in our Prolog program,
we can also delete the other alternative clauses.

In a WAM context, the cut is executed as soon as a valid X is found. In an EAM
context, though, it’s possible that when the cut is performed, all the or-alternatives
for a(X) and b(X) have already been calculated. However, we may in part be able to
prevent this if we annotate the code that calls a/2 and b/2, letting the runtime know
that only one solution is needed.

A special case of the cut operator is when it appears as the first goal in the body of a
clause. This is generally called a neck cut, and represents a good opportunity to early
pruning of unneeded nodes in the STEAM tree. In short, neck cuts allow us to ignore
all alternative clauses for a predicate as soon as the clause’s head is matched.

By looking into the generated WAM code, we can easily detect each form of cut:

• A cut instruction appearing before all call and execute instructions is a neck
cut and we can safely remove other alternative clauses from the And-Or Tree as
soon as the execution reaches this cut operator;

• A cut instruction appearing after a call instruction has already been executed
can be signaled beforehand, so that the runtime knows that only one solution is
to be found and, as soon as that happens, the other alternatives can be pruned.

For this we will include three more instructions in the STEAM-IL:
2Previous alternatives are kept, as we’re mimicking sequential Prolog.

50 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

cut_scope i Initiates scope i for a cut instruction
neck_cut Performs a neck cut, removing the remaining alterna-

tives2 from the And-Or Tree
cut i Performs a cut in scope i, i.e., discards all alternatives

but the first that produces a valid binding.

Table 4.2: STEAM-IL explicit pruning instructions.

Figures 4.1 and 4.2 show an example of how wam2steam deals with cut instructions.

1 p(X,Y) :- q(X),r(Y) ,!.
2 p(X,Y) :- !, r(X), r(Y).

Figure 4.1: Example Prolog program with cuts.

1 nondetpredicate p/2:
2 get_current_choice x2
3 allocate_or (2) L000001 L000003
4 L000001:
5 cut_scope C001
6 allocate_and (3) LA1 LA2 LA3
7 LA1:
8 get_variable y0 , 1
9 get_variable y1 , 2

10 call q/1
11 LA2:
12 put_value y0 , 0
13 call r/1
14 LA3:
15 cut C001
16 proceed
17 L000002:
18 L000003:
19 allocate_and (3) LA4 LA5 LA6
20 LA4:
21 get_variable y0 , 1
22 neck_cut
23 LA5:
24 call r/1
25 LA6:
26 put_value y0 , 0
27 call r/1
28 proceed

Figure 4.2: Resulting STEAM-IL.

4.2. WAM2STEAM - COMPILING WAM TO STEAM 51

Meta- and extra-logical predicates

In presence of an extra-logical predicate, we must be very cautious, as either early or
late evaluation of side-effects can be disastrous, albeit we don’t want to lose parallelism
in the presence of such predicate. Meta-logical predicates are also of concern, as they
generally require that the execution has already reached a specific state when they are
called. Although we leave the execution worries to the runtime, we can identify these
predicates (and predicates that call them) and advert the runtime that those predicates
are to be handled carefully.

To identify predicates which can trigger side-effects, we perform a sweep test on all
the predicates that call side-effects builtins (e.g., assert, retract, etc.) and the ones
that call them. To allow the runtime to distinguish between calls to predicates with
side-effects and predicates that haven’t side-effects but (can) call those predicates,
we mark the former in “red” and the latter in “yellow”. Meta-logical predicates are
marked “orange”, and the predicates that call them are also “yellow”. We then generate
different instructions for “red”, “orange” and “yellow” calls. Figure 4.3 shows a simple
algorithm that shows the concept behind this “coloring” of the calls.

1 do:
2 marked = false
3 for pred in not_marked_preds:
4 for call in pred.calls:
5 if call in {'assert ', 'retract ', ...}:
6 mark_red(call)
7 mark_yellow(pred)
8 marked = true
9 else if call in {'var', 'nonvar ', ...}:
10 mark_orange(call)
11 mark_yellow(pred)
12 marked = true
13 else if call is marked:
14 mark_yellow(call)
15 mark_yellow(pred)
16 marked = true
17 break
18 while marked

Figure 4.3: Resulting STEAM-IL.

We mark both the predicate and the call, so that we can still allow the not marked calls
within a predicate to run without concerns of triggering side-effects. After marking all
the “dangerous” predicates, we can then generate appropriate code that effectively

52 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

adverts the runtime that those predicates are fragile and must be handled with care.
Thus, we added five new instructions to STEAM-IL to handle predicates with side-
effects:

call_fragile Calls a predicate which include calls to (calls to…) meta-
or extra-logical predicates

call_sidefx Calls a extra-logical predicate
call_meta Calls a meta-logical predicate
wait i n Waits (suspends) until semaphore i reaches level n
signal i If the current call succeeds, increase semaphore i

Table 4.3: STEAM-IL extra-logical handling instructions.

To cope with left-to-right evaluation needs, we simulate a n-level semaphore, with n

corresponding to the number of calls before the side-effects call. Each (succeeding)
call preceding the side-effects call will increase the semaphore level by one, using the
signal instruction. The side-effects call will have a wait instruction which forces it to
suspend until the semaphore reaches level n and, as soon as that level is reached, the
side-effects call can be executed.

The wait and signal instructions work in the following way: the wait instruction
creates a semaphore with n states, and waits for the semaphore to reach zero. Each
signal instruction decreases the semaphore by one. Once the semaphore reaches the
level zero, the wait instruction let the control pass for the next instruction, as it means
that the side effects have been executed.

After the generation of the APT, the system performs an analysis of the program,
focusing on finding the blocks which will later generate and- and or-boxes.

After the abstract analysis, the system proceeds to the generation of STEAM-IL code.

4.3 STEAM-IL code generation

As soon as the semantic information is deducted, we can now generate STEAM-IL
instructions that correspond to the initial Prolog source code.

Figure 4.4 shows an example Prolog program, 'append.pl'. This example is translated
to WAM code by pl2wam (figure 4.5), which is then translated to STEAM-IL code (figure

4.3. STEAM-IL CODE GENERATION 53

4.6).

1 append(X, [], X).
2 append ([H|T], X, [H|T2]) :- append(T, X, T2).

Figure 4.4: Example Prolog program ('append.pl').

1 predicate(append/3,1,static ,private ,monofile ,global ,[
2 try_me_else (1),
3 get_nil (1),
4 get_value(x(2) ,0),
5 proceed ,
6

7 label (1),
8 trust_me_else_fail ,
9 get_list (0),
10 unify_variable(x(3)),
11 unify_variable(x(0)),
12 get_list (2),
13 unify_value(x(3)),
14 unify_variable(x(2)),
15 execute(append /3)]).

Figure 4.5: Resulting WAM code, generated by pl2wam.

1 nondetpredicate append /3: || L3:
2 || alocate_and L4
3 || L4:
4 allocate_or L1, L3 || get_list 0
5 L1: || unify_variable x3
6 allocate_and L2 || unify_variable x0
7 L2: || get_list 2
8 get_nil 1 || unify_value x3
9 get_value x2, 0 || unify_variable x2
10 proceed || call append /3
11 || proceed

Figure 4.6: Resulting STEAM-IL code.

4.3.1 Detecting patterns

While analyzing the WAM source code, we can observe recurring patterns, which can
be translated to equivalent STEAM-IL code:

• ‘try_me_else … retry_me_else … … trust_me_else_fail’ patterns are con-
verted to allocate_or instructions (figure 4.7). As the pl2wam translator (al-
most) always sets a label for the instruction following the try*/retry*/trust*

54 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

instruction, we can use that labels in the allocate_or instruction. When the
following instruction doesn’t have a label, we simply add a new one.

Figure 4.7: ‘try_me_else … retry_me_else … … trust_me_else_fail’ pattern trans-
lation.

• ‘try … retry … … trust’ patterns are also translated to allocate_or instruc-
tions (figure 4.8). However, these WAM instructions differ from the previous
ones, as they simply jump to the label and set the continuation pointer to the
next instruction, instead of continuing with the execution of that next instruc-
tion. This makes our job easier, as we simply need to generate an allocate_or

instruction with the same labels that the original instructions were jumping to.

Figure 4.8: ‘try … retry … … trust’ pattern translation.

• call and execute instructions are always preceded by a group of instructions
that build the argument terms on the heap. We can then put a label before each
of those instruction groups, defining an and-node or call inside an and-box (figure
4.9).

4.3. STEAM-IL CODE GENERATION 55

Figure 4.9: ‘conjunctive call/execute’ pattern translation.

4.3.2 Optimizing STEAM-IL execution

One of the issues with STEAM-IL is the fact that some instructions have a variable
number of arguments, which makes it difficult to, for instance, generate bytecode for
a STEAM interpreter to run, as we cannot easily detect the number of arguments
associated with the instruction. One solution that would work would be passing the
arguments on a stack, as shown in the example in table 4.4.

Old form New form
allocate_or L1, ..., Ln push Ln

push ...
push L1

allocate_or n
switch_on_integer (1, L1), (2, L2), (3, L3) switch_on_integer 1, L1

switch_on_integer 2, L2
switch_on_integer 3, L3

Table 4.4: Converting to a fixed number of arguments

This will allow to have a predefined size for each instruction, making it easier to generate
a compatible bytecode for the runtime, either an interpreter or a compiler3. Also, this
scheme can also be a base for adding foreign predicates, by allowing the arguments to
be passed on the stack.

Dealing with repeat, ..., fail loops can also be achieved in STEAM-IL by adding,
3Although the code is compiled, we still need support for dynamic predicates, which will generally

be pre-compiled to bytecode.

56 CHAPTER 4. DESIGNING A WAM→EAM TRANSLATOR

for instance, an instruction that generates a special or-box that has unlimited alterna-
tives. Adding support for this type of predicates to STEAM and STEAM-IL, as well as
calls to foreign predicates are features we have plans to implement in future work.

Anther current limitation of the wam2steam compiler relates to the WAM code pro-
duced by pl2wam being very specific to the GNU Prolog compiler and its internals (by
being dependent of many specific built-in, non-standard, predicates and automatically
applying WAM-specific optimizations), making it difficult to translate some Prolog
programs. Its a matter of future study if we will modify the behavior of pl2wam or rely
on a specifically built Prolog-to-WAM compiler.

4.4 Preparing for execution

The main purpose of translating a Prolog program to STEAM-IL is to enable the
execution of that program in a EAM-based runtime. This can be achieved in various
ways:

• By compiling STEAM-IL directly to a low level language: like Andre’s wam2eam

[AA], one possibility is to compile STEAM-IL directly to C code

• By compiling STEAM-IL to native code, like Diaz’s GNU Prolog [DC00a], us-
ing an intermediate, platform-independent assembly language which will later
be compiled to native assembly, while relying on a runtime which is compiled
separately and linked with the generated native code.

• By compiling STEAM-IL to bytecode, which will be executed by an interpreter.
This alternative is in part similar to the previous one, as the runtime is separated
from the STEAM-IL program.

In our view, the approach of compiling STEAM-IL to executable code would result
in a loss of flexibility, as we would be hard-coding the runtime into the generated
program. Also, as we are aiming to a pluggable system, it seems more logical to have
a runtime that is logically detached from the program we’re going to compile. In the
next chapters, we will propose a model that copes with of the two latter alternatives,
either by the means of an STEAM-IL interpreter or a compiler.

4.5. CLOSING REMARKS 57

One interesting alternative we have considered was the use of the LLVM framework
[LA04], as compilation from STEAM-IL to the LLVM IR4 would provide portability to
all the LLVM supported architectures. However, the LLVM framework doesn’t (yet)
support parallel programming models natively, so we will revisit this alternative in the
future.

4.5 Closing remarks

This chapter presented the STEAM Intermediate Language, as well as the wam2steam

compiler and its internal implementation details, focusing in the abstract analysis of
the WAM code, in order to obtain the information needed to correctly execute Prolog
programs.

By using an intermediate language that reflects the EAM, we can previously perform
some optimizations to the source code, while also providing useful predicate annotations
that can be posteriorly exploited by the runtime, either to make decisions in regards
to the execution order, either to handle special predicates with special care.

As we are aiming at a pluggable system, the following step is to perform the effective
execution of the STEAM-IL code, by means of an EAM runtime. In the next chapters
we will propose a base model for the execution of STEAM-IL programs, which we’ll
call STEAM.

4Intermediate Representation

5
STEAM - Scalable, Transparent

EAM

Nowadays it’s hard to find a computer with less than two processing cores. The de-
mand for more and more processing power has led to a situation where it’s difficult
to improve single-processor performance, which made the hardware industry focus in
parallel, multi-processor (or multi-core) machines.

In what concerns Prolog, with the advent of stagnancy of single-core performance, the
need for parallel compilers has increased, as the only way to exploit the full speed of
multi-processor machines is by implementing parallel strategies for executing Prolog
programs. The EAM provides a strong base for running Prolog programs in paral-
lel hardware, as it allows to better express parallelism than the widely used WAM
approach.

59

60 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

This chapter introduces STEAM, a model that leverages the base constructs of the
Extended Andorra Model to achieve implicit, parallel execution of Prolog programs.

5.1 Introduction

STEAM aims to provide a base model for implementation of Prolog compilers, using
the EAM as reference and relying on two base requirements:

1. Scalability - STEAM must be scalable in distributed environments.

2. Transparency - As a Prolog engine, it must be transparent to the user, e.g. its
percepted behaviour shall be the same as a traditional, sequential Prolog engine’s.

STEAM relies on the STEAM-IL presented in the previous chapter, in order to provide
a flexible, pluggable system for executing Prolog programs in parallel, while keeping
the traditional Prolog syntax and semantics.

While STEAM is based on the Extended Andorra Model, it contains some new con-
cepts, in order to provide adaptability to contemporary parallel architectures. The
following sections describe the STEAM model in detail, whilst referring the similarities
and differences from the EAM.

5.2 Definitions

The main component of the STEAM is the And-Or Tree, henceforth Tree, which is
comprised by and-boxes (figure 5.1), that represent a logical conjunction of Prolog
goals, and or-boxes (figure 5.2), that represent alternative clauses for a Prolog rule.

We use the term configuration to describe a state of a computation, by means of a
Tree. The initial configuration comprises a single and-box that contains one or more
and-nodes, corresponding to the initial conjunction of goals that form the initial query.

A computation is the process by which the initial configuration passes, by means of
successive application of the rewrite rules, until it becomes a final configuration, which

5.3. STEAM BASE CONSTRUCTS 61

can consist either in an and-box with an answer (or set of answers) that comprises the
successful binding(s) of the variables in the query, or in a failure to get a valid solution.

A computation can be applied to a branch of the Tree. When a computation ends, the
final and-box will have either succeeded or failed. We call these and-boxes true-boxes
or fail-boxes.

5.3 STEAM base constructs

Following Warren’s EAM specification [War90], STEAM uses a Tree of and-boxes (figure
5.1) and or-boxes (figure 5.2), that will be subject to transformations, according to
logically correct rewriting rules. Further, in STEAM, and-box’s children have to be
or-boxes and or-boxes can only have and-boxes as children.

σ∧
X

(G1, ..., Gn)

Figure 5.1: Graphical representation of a STEAM and-box

∨
(C1, ..., Cn)

Figure 5.2: Graphical representation of a STEAM or-box

62 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

5.4 Rewriting rules

Let us describe the STEAM’s rules formally. We’ll represent an and-box with local

variables X = {X1, ..., Xn} and constraints σ as
σ∧
X

, an or-box as
∨

. The rewrites are

shown in the form:

(Previous configuration) (vars or boxes)−−−−−−−−→
(rule)

(Rewritten configuration)

• Expansion (figure 5.3) consists in expanding a goal G in an and-box into an
or-box corresponding to all the alternative clauses that make the definition of
the G predicate. Let A, B and G be atomic goals and C1, ..., Cn and-boxes
corresponding to each alternative clause in G’s definition.

σ∧
X

(A,G,B)
G−−−−−−→

expansion

σ∧
X

(
A,
∨

(C1, . . . , Cn) , B

)
(5.1)

Figure 5.3: STEAM expansion rule.

The expansion rule mimics the EAM local forking rule.

• Determinate promotion (figure 5.4): when an or-box has only one child and-
box (i.e., has a single alternative), this and-box can be merged with the (grand)
parent and-box.

σ∧
X

(
A,
∨(

θ∧
W

(G)

)
, B

)
G−−−−−→

det_prom

σθ∧
X,W

(A,G,B) (5.2)

5.4. REWRITING RULES 63

Figure 5.4: STEAM determinate promotion rule.

This rule is equivalent to the EAM determinate promotion rule, usually meaning
the end of a computation. Further, this rule allows us to recover memory when
a computation finalizes. There is, however, a case in which merging the child
and the parent and-boxes may result in an invalid behavior: if the child and-box
contains pruning operators (e.g., cut), the merging must be avoided. With this
situation in mind, we have a specific promotion rule which can be applied only
if the child and-box doesn’t include pruning operators.

• Determinate careful promotion (figure 5.5): when standard determinate pro-
motion can result in incorrect behavior, the child box is not merged into the
parent, instead its constraints and bindings are merged with the ones in the par-
ent. An example when this rule must be applied is the case where the box to be
promoted contains pruning operators (e.g., cut), which can’t be promoted to the
parent box, as it would alter the scope of the pruning operator.

σ∧
X

(
A,
∨(

θ∧
W

(G)

)
, B

)
G−−−−−−→

det_cprom

σθ∧
X,W

(
A,
∨(∧

(G)

)
, B

)
(5.3)

Figure 5.5: STEAM determinate careful promotion rule.

• Splitting or non-determinate promotion (figure 5.6): occurs when no deter-
minate or-box exists that can be promoted. Consists in placing two copies of the

64 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

parent and-box under a new or-box. One of the copies has the promoted and-box
and the other has the remaining children of the original or-box.

σ∧
X

(
A,
∨(∧

(C1) , ...,
θ∧
W

(Ci) , ...,
∧

(Cn)

)
, B

)
Ci−−→
split∨(

σθ∧
X,W

(A,Ci, B) ,
σ∧
X

(
A,
∨(∧

(C1) , ...,
∧

(Cn)

)
, B

)) (5.4)

Figure 5.6: STEAM splitting rule.

This rule is the same as the EAM non-determinate promotion, and should be used
only when there’s no other applicable rule, as it’s the most (computationally)
expensive rule, and generates duplicate work, as all the goals that are to be
solved after the splitting point must be recomputed for each of the new branches
generated by the split.

• In-loco expansion (figure 5.7): if a goal to be expanded is deterministic, the
application of the expansion rule can be readily followed by the application of
the promotion rule. Lopes proposed a combined rule called deterministic-reduce-
and-promote in the BEAM [LCC99], which we will also adopt.

Let C1, ..., Cn be the calls in the unfolded clause G, with local variables Y =

{Y1, ..., Ym}, imposing constraints θ.

σ∧
X

(A,G,B)
G−−−−→

in−loco

σθ∧
X,Y

(A,C1, ..., Cn, B) (5.5)

• In-loco careful expansion (figure 5.8): this rule is analogous to the previous

5.4. REWRITING RULES 65

Figure 5.7: STEAM in-loco expansion rule.

one, but it uses the determinate careful promotion instead, when the expanded
(and-) box to be promoted includes pruning operators. In this case, only the
bindings and constraints are promoted.

σ∧
X

(A,G,B)
G−−−−−−→

c_in−loco

σθ∧
X,Y

(
A,
∨

(C1, ..., Cm) , B

)
(5.6)

Figure 5.8: STEAM in-loco careful expansion rule.

66 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

5.5 Reducing the search space

Reducing the size of the Tree provides two outcomes: on the one hand we can release
the memory allocated to the data structures that contain the removed branch; on the
other hand, we also reduce the search space for the computation being performed.
With this in mind, it makes sense that we implement rewriting rules that will allow
early reducing of the size of the Tree. This pruning of the Tree can occur implicitly
(simplification) or explicitly (activated by pruning operators).

5.5.1 Simplification

STEAM uses two rewriting rules that represent the logical properties of conjunctions
and disjunctions, thus achieving implicit pruning and subsequent reduction of the
search space:

• or-identity (figure 5.9): if an and-box fails under an or-box, we can simply
remove it from the Tree (and, consequently, its whole branch).

∨
(C1, ..., fail, ..., Cn) −−−→

or−id

∨
(C1, ..., Cn) (5.7)

Figure 5.9: STEAM or-identity

• and-annihilator (figure 5.10): when a goal inside an and-box fails, the whole
and-box (and its children or-boxes) also fails.

∧
(G1, ..., fail, ..., Gn) −−−−→

and−an
fail (5.8)

5.5. REDUCING THE SEARCH SPACE 67

Figure 5.10: STEAM and-annihilator

5.5.2 Pruning operators

Standard Prolog has only one pruning operator, ! (cut), which essentially removes
all untested alternatives for a clause from the search space, as soon as one clause’s
bindings succeed. In the WAM, this corresponds to deleting the choice points stored
in the stack, in order to disable backtracking. In STEAM we adopt the analogous
behaviour, by removing untested alternatives under an or box that are right-siblings
of the alternative containing the cut operator, as soon as the goals in the and-box
containing the cut operator (the ones at the left of the operator) succeed.

Assuming we have an or-box with one of its children and-boxes having a cut operator
between goals C1 and C2, we can discard all the right siblings of that and-box as soon as
C1 succeeds. Figure 5.11 shows a graphical representation of the STEAM cut operation.

σ∧
X

(
A,
∨(

L,
θ∧
W

(C1, !, C2) , R

)
, B

)
C1−→
cut

σ∧
X

(
A,
∨(

L,
θ∧
W

(C1, C2)

)
, B

)
(5.9)

Figure 5.11: STEAM implicit pruning (cut)

A special case of the cut operator, which is also subject to optimizations in WAM
implementations, is the neck cut. A neck cut is a cut operator that is the first goal
of a clause, thus removing future alternatives as soon as the head of the clause unifies
whith the query. The neck cut can be applied as soon as the head of the alternative

68 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

containing it matches the query (or the goal that expands to this alternative).

σ∧
X

(
A,
∨(

P,
θ∧
W

(!, C) , Q

)
, B

)
C−−−−−→

neck_cut

σ∧
X

(
A,
∨(

P,
θ∧
W

(C)

)
, B

)
(5.10)

Figure 5.12: STEAM implicit pruning (neck cut)

5.6 Termination

In [Lop01], Lopes pointed out that the default EAM strategy of suspending every
computation that tries to perform external bindings can lead to non-termination, espe-
cially in the presence of recursive predicates. Gupta, in his prototype EAM interpreter
[GW91], proposed an optimization to tackle this problem: by using eager nondetermi-
nate promotion, one can split the Tree in order to get the (split) suspended boxes to
continue their computation. One drawback of Gupta’s approach is that variables must
be classified as guessable or non-guessable, either by abstract analysis of the source
code or by annotations provided by the programmer. This classification of variables
can be very hard to perform automatically at compile-time in some programs, so this
means we would have to rely on programmer annotations, which breaks our purpose
to achieve implicit parallelism in already existing Prolog programs.

In the BEAM, Lopes adopted a similar but simpler strategy: by using AKL’s stability
concept [Jan94a], stable and-boxes can be split eagerly. By definition, an and-box A

as stable relatively to it’s (grand) parent and-box if two conditions are met:

1. There’s no determinate rule to be applied to A or its children;

5.6. TERMINATION 69

2. None of the future rewrites that can be applied to other parts of the Tree would
cause condition 1 to no longer be valid.

This definition of stability, although effective, can’t be implemented efficiently, as we
must know what goals share variables with the goals in A, which is a NP-Complete
problem [DK89].

AKL marks a box as unstable when it suspends on external variables. An unstable box
will never become stable in AKL. The BEAM tries to overcome this by using special
markers in and-boxes, in order to detect stability. The and-boxes marked as stable can
then be split eagerly, in order to defect the aforementioned non-termination problem.

In order to exemplify the non-termination risk in the EAM, let’s consider the example
program ‘graph.pl’ in figure 5.13 and the initial query

?- path(X,Y).

1 edge (1,2). edge (1,3).
2

3 path(X,Y,[X,Y]) :- edge(X,Y).
4 path(X,Y,[X|T]) :- edge(X,Z), path(Z,Y,T).

Figure 5.13: Example Prolog program ('graph.pl').

We can observe the execution of the query in an EAM environment in figure 5.14. In
step (1:), an and-box is created with the initial query path(X,Y). This and-box has two
internal variables, X and Y, and will be subject to the local forking rule, which unfolds
the predicate path/2 into it’s both alternative clauses (step (2:). These alternatives
are then subject to the same local forking rule (step (3:)), where different situations
occur: in the leftmost boxes, respective to the unfolding of the call edge(X,Y), the
unfolding leads to the instantiation of the external variables X and Y, which, in the
EAM, cause the suspension of the boxes (as we can’t bind external variables). The
other alternative follows the same process, leading to the suspension of the children
boxes of the edge(X,Z) goal and the local forking of the path(Z,Y) goal. This process
will continue indefinitely, as the variables to be bound will always be external to the
boxes, leading to infinite suspensions and, consequently, non-termination.

70 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

Figure 5.14: EAM non-termination example.

In a WAM context, the first bindings would be allowed, with success. In case of
failure (or search for alternative results), backtracking would revert the variables to
the unbound state, allowing to search for alternative bindings.

In STEAM, we want to achieve the same behavior as in the WAM, but taking advantage
of parallelism. In the case discussed above, we could have found several solutions for
the query, in advance, if it weren’t for the suspension of boxes.

5.7 Suspension

Although suspension is an essential mechanism for the EAM, as discussed above, sus-
pension of computations can lead to non-termination and, in consequence, no advantage
in exploiting parallelism.

STEAM approaches suspension in a different form from the EAM specification, by
“violating” the main Warren’s principle in the design of the EAM: to minimize inference
and maximize parallelism.

The main purpose of STEAM is to allow the exploitation of implicit parallelism in Pro-
log programs in parallel hardware, while keeping the sequential semantics intact. In
order to do that, work that would normally be suspended (in order to favor determin-

5.8. STEAM UNDER THE HOOD 71

istic computations) should be allowed to proceed in parallel with other, non suspended
work, which, in turn, would lead to more inference. This gives rise to the first base
principle in STEAM:

Favor maximum parallelism over minimum inference.

By favoring maximum parallelism, STEAM can take advantage of, for instance, SPMD1

programming models, that allow to perform the same computation over different parts
of a large amount of data simultaneously.

Suspension is used in STEAM sparingly, by not forcibly suspend every goal that tries to
bind an external variable, suspending only boxes that are not essential to the first solu-
tions of the problem, and then only when there aren’t hardware resources to compute
them (delaying non-essential computations).

In fact, STEAM doesn’t suspend in the above example, by allowing each and-box to
have it’s private copy of the variables, thus making them internal to the and-box.
When successful bindings occur, STEAM tries to merge them with the constraints of
the parent box, allowing one of the two following situations:

• Compatible bindings mean that the computation has succeeded, and one (part
of the) solution was found;

• Incompatible bindings mean that the computation has failed in the current branch,
which can be discarded from the tree.

In the following sections, we’ll further discuss how to enable STEAM to achieve maxi-
mum parallelism.

5.8 STEAM under the hood

This section describes how STEAM’s base constructs fit in memory, as well as the extra
information needed to allow the correct2, parallel execution of Prolog programs.

1Single Program Multiple Data
2By correct, we mean equivalent to that of sequential Prolog

72 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

The first directive we’ll use is to reuse WAM instructions as much as possible, which
means we have to replicate (at least some of) the WAM memory areas (e.g., the Heap),
while others will make no sense in a Tree-based system (e.g., the Stack), as we no longer
rely on backtracking to explore alternative solutions, by exploring them in parallel. As
we are aiming at parallel resolution, some of these memory areas must be private to
and- and or-boxes.

5.8.1 Memory model

STEAM divides the memory in two separate areas:

• the Queue or Tree memory - This is the area where the And-Or Tree nodes and
their associated data structures are created. The name Queue is used because
this area also serves as a queue from where work is fetched.

• the Code Area - This area is where the STEAM code is located. Implementation-
wise, it can have the abstract STEAM-IL code to be interpreted, or point directly
to the executable code segment (if we chose to compile the STEAM-IL to native
code).

The Queue naming is merely an abstraction, as we may look at the Tree as if it was
a queue of goals to be solved. Using this perspective, we can maintain Prolog’s left-
to-right evaluation semantics, by assuring that goals at the front of the Queue are
preferred over goals at the end of the Queue. This also works for solution ordering, as
the first solutions (by the Prolog standard evaluation order) will be located closer to
the front of the Queue and later solutions will be closer to the end of the Queue.

Figures 5.15 to 5.17 show how STEAM’s Queue abstraction works.

Figure 5.15: STEAM Queue, before expansion.

Parallelism implies some independence between memory areas and data structures
that we want to process in parallel. With that in mind, STEAM allows nodes to have a

5.8. STEAM UNDER THE HOOD 73

Figure 5.16: STEAM Queue, after expansion of A, B and C.

Figure 5.17: STEAM Queue, after expansion of A1.

private Heap, where compound terms will be built. Like WAM-based implementations
that use the Stack to perform the Push-Down-List (PDL) role3, STEAM lets the private
Heap play the PDL role in unification operations.

Other memory needs come directly from the STEAM-IL code generated by wam2steam.

An and-box is the place where variable bindings are stored. Variables are seen by

STEAM as in the WAM, as a set of machine registers that will have memory addresses
of:

• Other variables (by unification); or

• Addresses on the Heap.

This means that and-boxes must have a Heap and a set of registers that mimic the
WAM registers (X-registers and Y -registers, as well as other Heap-registers. Stack-
registers aren’t needed in STEAM). Pointers to it’s parent and children or-boxes are
also needed, in order to allow access to external data structures.

We can see a detailed graphical representation of an STEAM and-box in figure 5.18

Furthermore, Y -registers are shared between every goal inside an and-box, while X-registers
are to be private to each called goal.

3This was previously discussed in chapter 3

74 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

Figure 5.18: STEAM and-box internal layout

In the EAM specification, Warren distinguishes between local and external variables:
variables are local to an and-box if they are defined in that and-box, and are external
otherwise. This distinction is necessary in order to prevent conflicting bindings on the
same variable.

STEAM takes a different approach: in STEAM, all variables are local and can therefore
be bound at any node of the Tree. This means we must have a method to detect
conflicting bindings a posteriori, between parent and children and-boxes, in order to
allow us to prune invalid solutions from the Tree. This method is presented in detail
in section 5.8.2.

Or-boxes in the EAM serve only as placeholders for and-boxes that represent alternative
clauses to a predicate. STEAM looks at or-boxes as the source for the alternative
bindings that each alternative clause can produce. In order to have those alternative
bindings, STEAM enhances or-boxes with Binding Vectors. A Binding Vector is
similar to a Binding Array [War87b] in the sense that it keeps alternate bindings for
variables.

In STEAM, each or-box has one Binding Vector with as many slots as alternatives
under that or-box. When an alternative and-box finishes its computation, the bindings
produced are stored in the Binding Vector at the slot corresponding to that alternative.

As each alternative can produce more than one binding for a variable, each slot in a
Binding Vector can be a pointer to the or-box’s grandchildren Binding Vectors. Further,
each alternative may produce bindings for more than one variable, which makes the

5.8. STEAM UNDER THE HOOD 75

Binding Vector more like a multi-dimensional array of Binding Vectors, but we’ll keep
the nomenclature for brevity purposes. Also, as an or-box is always linked to a specific
goal inside an and-box, for context purposes sometimes we may refer to a Binding
Vector as the Binding Vector for the goal, without losing the initial meaning.

Figure 5.19 shows the internal layout of a STEAM or-box.

Figure 5.19: STEAM or-box internal layout

In the next section, we’ll discuss how unification between conjunctive goals is per-
formed, by using the Binding Vector.

5.8.2 Binding and unification

The main part of a computation is dealing with variable binding and unification. In
contrast with the EAM proposal, the STEAM allows all variables to be bound, by
allowing each (and-) box to have it’s own set of variables.

In a standard, sequential Prolog engine, solutions are found by performing a left-to-
right evaluation of the goals in a query. This left-to-right evaluation consists mostly in
finding bindings for the goal at the left, then finding compatible bindings for the second
goal, an so forth. In STEAM, we try to leverage parallelism by allowing this search for
compatible bindings to occur in parallel. We call this method Parallel Unification.

Parallel Unification between two goals A and B, appearing in sequence inside an and-
box, occurs when sufficient4 bindings are available on the Binding Vector for goal A
(represented as BVA) and at least one binding is available on the Binding Vector for

4The notion of sufficient bindings can be set by a threshold on the number of bindings or on time
spent searching for them

76 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

goal B (represented as BVB), consisting in unifying all the bindings in BVA with all the
bindings in BVB. In particular, if all the possible bindings for A and B are available,
we can keep the unified Binding Vectors BVA ·BVB in the parent and-box, augmenting
the formerly existing constraints σ. Formally,

σ∧
X

(
BVA∨

(...) ,

BVB∨
(...) , G1, ..., Gn

)
−−−−−−→
par_unify

σ(BVA·BVB)∧
X

(G1, ..., Gn) (5.11)

An immediate drawback of using Binding Vectors that can grow in dimensions is the
exponential growth that it can achieve when we don’t proceed with caution. However,

STEAM has to store only the possible bindings that don’t fail and, even then, sometimes
only the first alternative. For instance, in the query p(X), q(X), !, ... as soon as
one binding of X succeeds for both p/1 and q/1, the whole Binding Vector can be
discarded. The annotations provided by the STEAM-IL make possible to know in
advance that only one alternative is to be found. In the case of search for all solutions,
the size of the vector can be constrained, either by looking for a subset of solutions at
a time, either by performing the splitting rule. A successful implementation of parallel
unification has already been achieved in Smith and Hickey’s Multi-SLD [SH94].

5.8.3 Dealing with extra-logical predicates

One of the difficulties in parallelizing Prolog execution has to do with extra-logical
predicates (see section 2.3), which impose order to the execution of the computation.
Many existing parallel implementations only consider Prolog programs without these
kind of predicates, as they generally mean loss of parallelism, imposing a sequential
evaluation of the goal that contains the extra-logical predicate and, therefore, the goals
for which this goal is descendent in the Tree.

In STEAM we have the extra-logical predicates previously annotated in the STEAM-IL,
as well as the goals that call these predicates. This allows to proceed carefully with
the branch that contains the extra-logical predicate, while allowing sibling branches to
continue executing in parallel.

5.9. RESOLUTION STRATEGY 77

The extra-logical predicate will be executed as soon as one solution is found for the
goals at its left. The goals at the right can be processed in two different ways, depending
of the nature of the extra-logical predicate:

1. If the predicate has side-effects (assert or retract), all the goals at the right
must wait for the side-effects to execute if they depend of the side effect;

2. If the predicate doesn’t have side-effects, the goals at the right side may execute
in parallel, if there are sufficient resources to process them.

In the first case, we may not be able to detect if the predicate’s side-effects affect the
goals, and we must chose one of two options:

1. Let the goals execute in parallel normally, possibly having to re-execute them
later, if the side-effects would alter the results in some form;

2. Suspend all the goals at the right, until the side-effects are performed.

In [GHC93], Gupta discusses some advantages of recomputation in the presence of
extra-logical predicates. STEAM leaves this choice open for the implementation.

5.9 Resolution strategy

Although STEAM is a model intended for parallel execution, at some point choices
have to be made in order to keep resource usage (i.e., memory and cpu(s)) below the
reasonable limits. If resources were unlimited, one would desire to expand the whole
tree and try to execute all the branches simultaneously, in parallel. As limits always
exist, in order to solve an arbitrary Prolog query, when a decision has to be made in
order to chose which goal to execute, STEAM uses the following strategy:

1. Solve determinate goals first - If there are determinate goals in the query,
solve them first. Determinate goals can be immediately promoted, regardless
of the order of execution. Moreover, these goals’ search spaces are frequently
smaller in nature. By solving determinate goals first, STEAM reduces the search
space, while possibly constraining the other goals in the query.

78 CHAPTER 5. STEAM - SCALABLE, TRANSPARENT EAM

2. Solve facts before rules - The search space for facts is strictly “horizontal”
in terms of the EAM: a fact is always unfolded (by the expansion rule) into an
or-box with one and-box for each alternative clause, and all of those and-boxes
will be leafs in the Tree, as none of them can be further expanded. Also, facts
are frequently helpful in constraining the search space.

3. Process goals inside an and-box left-to-right - We want to preserve the
sequential Prolog semantics, which means giving preference to goals on the left
over goals on the right. As in a sequential Prolog engine, the goals on the left
will constrain the search space for the following goals.

STEAM leaves up to the runtime to follow this exact order of preference, or change it
as needed, perhaps relying upon annotations from the STEAM-IL code. Nevertheless,
when dealing with parallel execution, we should always try to find sets of solutions
instead of trying to find all solutions at a time. This order of resolution is meant to
preserve resources when we have, for instance, a limited number of parallel workers, by
choosing which branches of the Tree to send the workers to.

5.10 Concluding remarks

This chapter presented the details about STEAM, a model that extends the EAM
to allow parallel execution of Prolog programs while keeping the standard semantics.

STEAM allows the exploitation of both and-parallelism and or-parallelism, while taking
care of the special cases brought by extra-logical predicates.

The Binding Vector and Parallel Unification are the basis for STEAM to find solu-
tions to a goal, by performing a join between different goals’ bindings when they are
available. While comparing all possible solutions in a multi-dimensional matrix would
seem impracticable when single-processor machines were the default, nowadays we have
at our disposal hardware whose main purpose is doing this kind of work in parallel.
However, STEAM also allows the splitting of the Tree, in order to allow resolution in
hardware that has not mass-parallelism built-in. The model can always be improved,
in order to provide increased performance or decreased memory usage. Also, STEAM
is wittingly open, in order to accommodate specific adaptations to different parallel

5.10. CONCLUDING REMARKS 79

programming models.

In the next chapter we’ll discuss those adaptations to a specific parallel programming
model, the PGAS (Partitioned Global Address Space) model.

6
Design for STEAM on a PGAS

model

As the single-processor performance evolves, it becomes more and more difficult to
increase the processing power of a single chip, either by physical reasons (e.g. heat
vs size) or economic reasons (the hardware becomes too expensive to produce in a
profitable way), so it becomes likely that single-processor performance will reach its
limit someday.

The DSM (Distributed Shared Memory) programming model establishes a layer of
abstraction where local and remote memory addresses are seen as living in the same
address space. As a further extension tho the standard DSM model, the PGAS model
defines partitions over that shared memory, allowing to use the notion of affinity, which

81

82 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

enables the distributed algorithm to perform operations over the data that is local, thus
running the algorithm where the data is located, preventing the overhead of moving
the data to the physical machine where the code is running.

In a PGAS programming model, we can generally use a SPMD approach, which let us
run the same algorithm over the same set of data, which is exactly what we need in
order to perform Parallel Unification.

As previously discussed, STEAM allows the exploitation of both and- and or-parallelism,
relying on Parallel Unification of bindings provided by conjunctive goals in the same
and-box. In the next section we’ll discuss how Parallel Unification can be performed
in a PGAS programming model.

6.1 The PGAS programming model

In what concerns distributed programming models, the PGAS model provides a higher
level abstraction over the benefits of other well-known programming models. By par-
titioning the memory space, we have access to exploiting locality as in the Message
Passing model, but without the need to do explicit message passing. By allowing
threads to access non-local data transparently, we have the benefits of the Shared
Memory model, while still having the ability to prefer local addresses. One can argue
that this transparency comes with a price to pay in performance, but the frameworks
that support the PGAS model are being improved at a fast rate. As the PGAS frame-
works get more and more mature, they present as a way of enhancing programmers
productivity when dealing with High Performance Computing (HPC) projects.

UPC and X10 are two languages/frameworks that are actively being the target of
research and improvements, and were the ones we chose to test our ideas. We tried to
keep close to the capabilities of both UPC and X10 while developing the STEAM over
PGAS model.

UPC is a syntactic extension to the C programming language, allowing the program-
mer to use the PGAS principles (e.g., shared memory, locality) easily, without having
to worry about low-level communication or message passing. X10 is a higher-level lan-
guage, based on Scala, that extends the PGAS model with asynchronous task-based

6.2. PARTITIONED STEAM 83

parallelism (which makes X10 an APGAS1 language).

Figure 6.1: Parallel programming models.

6.2 Partitioned STEAM

As previously stated, the PGAS model divides the memory in partitions spread among
different threads of execution. Generally, each thread executes the same algorithm,
having affinity with their own memory partition. However, it can access the memory
partitions of the other threads transparently, even if the other threads are running in
a different machine. The ability to exploit data locality is one of the advantages of the
PGAS model, but having transparent access to remote data is also very useful.

In a PGAS context, we can define a worker as the algorithm that each thread executes,
which means that all the workers must perform exactly the same function (although
not necessarily at the same time). In STEAM there are various tasks to be performed
that can be split into equal parts, and those are the ones that we will focus into:

• Perform rewrite rules on the Tree;

• Execute calls;

• Unify arguments.

1Asynchronous Partitioned Global Address Space

84 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

Thus, we define a worker as a thread that performs three different operations: applying
rewriting rules, executing calls and unifying. This implies that each worker has to have
specific storage to deal with each of those operations.

In what concerns and- and or-parallel work, STEAM-PGAS workers are agnostic, which
means that any worker can do either and- or or-parallel work.

In a PGAS system, each worker or thread has it’s own memory slot, corresponding to
a part of the global memory. This means that the sum of all workers’ memory slots
represents the whole memory.

STEAM-PGAS uses this partitioning to give each worker an and- or or-box, which we’ll
further refer as the worker’s local box. Nevertheless, each worker has also access to
all of the remaining boxes, albeit not local. This allows a worker to send or receive
bindings from parent (or grandparent) boxes.

Figure 6.2 shows a graphical representation of the building blocks that give form to a
worker.

Each worker will have a private Heap, used to build compound terms and help with
unification tasks (doubling as a PDL2). Also, there must be space for the current and-
or or-box that is being processed.

6.3 Global memory model

As previously discussed, the PGAS memory model partitions the memory in equal parts
and “gives” one partition to each thread or worker, which can then take advantage of
address locality. In STEAM-PGAS, besides the components described above, each
worker has also locality over a part of the global box memory, as well as over a part of
the global heap.

The global memory model of STEAM-PGAS consists of the following components:

• The global heap is where compound terms created in succeeding and-boxes are
copied, in order to be available to the higher levels of the Tree. These terms can

2The Push Down List, used in the WAM, was introduced in chapter 3

6.4. EXECUTING PROLOG WITH STEAM 85

Figure 6.2: Example of a PGAS system with 4 STEAM workers

either be part of the solution or part of the object of parallel unification.

• The global binding vectors - there are two global binding vectors, where pos-
sible bindings for variables are put, in order to allow parallel unification.

• The global box memory or Queue is the area where the and- and or-boxes
are created at runtime, by the execution of the STEAM-IL code.

6.4 Executing Prolog with STEAM

In this section, we’ll describe the process of executing a Prolog program in the STEAM-
PGAS model.

The initial configuration consists in a single and-box, corresponding to the initial query.
This and-box is created in the global box memory, which, because we are using a PGAS
model, will be local to one of the workers. This worker takes the and-box and performs
a rewriting rule on the tree, generating (possibly) new boxes, which, in turn, will be
local to other (or the same) workers. This process is straightforward, until one of these
situations occur:

86 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

1. There are no more boxes to execute;

2. All the workers are busy.

In the first scenario, the work is probably done, and a solution (or no solution) was
found. In the second scenario, a decision must be made: as there are more boxes than
workers, what box will be executed next? The first worker to become available will
have to choose a box to work on, according to the following criteria:

1. Prefer boxes that are placed on the left side of the Tree, in order to preserve
Prolog left-to-right evaluation semantics;

2. Follow the resolution strategy defined in section 5.9;

3. If there are suspended boxes (waiting for a semaphore), check if the semaphore
has reached zero, if so, remove the box from the waiting queue;

If there are available boxes, but none of them resides in the local memory of the worker,
the worker can choose a remote box, lock it and copy it to its local memory, in order
to work in that box.

As a working example, let’s revisit the graph program from the previous chapter,
‘graph.pl’ (figure 6.3), representing graphs: edges and paths. The corresponding

STEAM-IL code can be seen in figure 6.8. Consider the initial query:

?- path(X,Y).

1 edge (1,2). edge (1,3).
2

3 path(X,Y,[X,Y]) :- edge(X,Y).
4 path(X,Y,[X|T]) :- edge(X,Z), path(Z,Y,T).

Figure 6.3: Revisiting the Prolog program ('graph.pl').

the computation starts by creating an and-box with the initial goal path(X,Y) (figure
6.4). This and-box will be located in the local area of a specific worker, Wx, which
locks the box and performs the expansion rule on it, resulting into one new or-box with
two children and-boxes (figure 6.5).

6.4. EXECUTING PROLOG WITH STEAM 87

Figure 6.4: Initial and-box for the query path(X,Y).

Figure 6.5: Expansion rule applied on the and-box.

The newly created or-box will contain a binding vector BV1 for the variables X and Y

with two cells, one for each alternative binding produced for each alternative unfolded
clause. This vector won’t be used in parallel unification, as it’s parent goal doesn’t
have any conjunctive siblings. However, as it represents the leftmost alternative node
for the initial and-box, it already contains two solutions to the query.

Suppose we want to keep searching for alternative results.

In figure 6.6, we can see a part of the next step: each of three workers grabs one of the
new boxes and processes it. The worker that gets part a) binds the variables X and Y,
placing this (possible) bindings in the binding vector BV2; the same goes for the worker
that gets part b), placing the bindings into BV3, however, this binding vector will be
used for parallel unification with BV4, as they’re siblings; The worker with the part c)
will further expand the Tree, which can be seen in figure ??.

As soon as both BV3 and BV4 have results (either full or hitting the threshold), a
worker locks the or-boxes containing those binding vectors and copies the bindings to
the global binding vectors. Then, the worker sends an interrupt, which makes the other
workers (and itself) change their operation mode to parallel unification mode, which
will match the bindings for variable Z in both vectors (as Z is the only common variable
to both binding vectors).

88 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

Figure 6.6: Further expansions on the Tree (left part).

Figure 6.7: Further expansions on the Tree (continued).

6.5. PARALLEL UNIFICATION 89

1 predicate edge /2:
2 switch_on_term L000003 , FAIL , L000001 , FAIL , FAIL
3 L000001:
4 switch_on_integer 1 L000002
5 L000002:
6 allocate_or (2) L000004 L000006
7 L000003:
8 allocate_or (2) L000004 L000006
9 L000004:
10 get_integer 1, 0
11 get_integer 2, 1
12 proceed
13 L000006:
14 get_integer 1, 0
15 get_integer 3, 1
16 proceed
17

18 predicate path /3:
19 allocate_or (2) L000007 L000009
20 L000007:
21 get_list 2
22 unify_local_value x0
23 unify_list
24 unify_local_value x1
25 unify_nil
26 call edge/2
27 proceed
28 L000009:
29 allocate_and LA1 LA2
30 LA1:
31 get_variable y0, 1
32 get_list 2
33 unify_local_value x0
34 unify_variable y1
35 put_variable y2, 1
36 call edge/2
37 proceed
38 LA2:
39 put_unsafe_value y2, 0
40 put_value y0, 1
41 put_value y1, 2
42 call path/3
43 proceed

Figure 6.8: STEAM-IL for ‘graph.pl’.

6.5 Parallel Unification

Parallel unification is the task that better fits a PGAS programming model. To ex-
emplify, suppose we have a Prolog program with a large number of clauses for facts
p/1 and q/1. Say we have n alternative clauses for p/1 and m alternative clauses for

90 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

q/1. For the query ?- p(X), q(X), we have to find an X that satisfies both p(X) and
q(X). In a standard, sequential Prolog engine, the system would instantiate X with
each clause of p/1 and then try to unify with each clause of q/1, resulting in a worst
case of n×m sequential unifications.

With STEAM, parallel unification occurs when the binding vectors for p/1 and q/1

have bindings for X, and the workers are interrupted to start testing the compatibility
between all of the bindings of the two conjunctive goals.

As soon as we have sufficient solutions for both or-boxes, either by having all the
solutions available, either by hitting a predefined threshold on the number of solutions
available, a worker detects it and copies both of the binding vectors’ bindings to the
global binding vectors and then sends an interrupt signal to all the workers, which then
switch to parallel unification mode.

The allocate_or L1 ... Ln instruction will create an or-box with a binding vector
with n slots for possible bindings. As soon as the threshold is hit, we can start to
perform parallel unification between the binding vector and it’s sibling binding vector.

Supposing we have to perform parallel unification between two conjunctive sets of
possible bindings:

S1 = {(X = 1, Y = 2), (X = 1, Y = 3), (X = 3, Y = 4)}

and
S2 = {(A = 2, X = 1), (A = 0, X = 2), (A = 1, X = 3)}

Figure 6.9 shows how the binding vectors would look like before the workers start
performing the parallel unification. As each worker has locality to a part of the global
binding vectors, the sets can be distributed homogeneously among the global binding
vectors, allowing each worker to process an equal amount of data.

The results of the parallel unification can be stored in a double-bit array, where each
comparison sets the first bit to 1 and if there is a match the second bit is also set to 1.
In the example provided, we would have a set Ssol of valid bindings:

6.6. RESULTS PROPAGATION 91

Ssol = {(A = 2, X = 1, Y = 2), (A = 1, X = 3, Y = 4)}

Where the solutions would be found by workers 1 and 3, as worker 2 couldn’t match
any of the bindings.

Generalizing and comparing this with the sequential alternative, if we have a set of n
alternative bindings to unify with another set of m alternative bindings, we can say
that we have to perform the same (n ×m) unifications, but the time spent is in the
order of 1/w of the sequential version, where w is the number of available workers.

Figure 6.9: Binding vectors for S1 and S2.

6.6 Results propagation

As results become available, they have to be propagated up in the Tree. Two different
situations may arise:

1. The parent box and the branch with available solutions belong in the same

92 CHAPTER 6. DESIGN FOR STEAM ON A PGAS MODEL

worker’s local memory space;

2. The parent box is in a different worker’s memory space from the branch with
available solutions.

In the first case, we may just extend the parent’s binding vector with the new bindings,
as a worker is guaranteed to have privileged access to it’s local memory.

In the second case, the worker with the new data must get a lock on the parent box,
extend it’s binding vector and then release the lock.

6.7 Concluding remarks

This chapter presents a design for implementing STEAM in a PGAS programming
model. A prototype implementation is being developed, in order to allow us to compare
the results of this design with other parallel and sequential implementations of Prolog.

We strongly believe that the EAM, with the STEAM model in particular, is well suited
for taking advantage of the novel distributed programming models, with special em-
phasis in the PGAS model.

7
Conclusions

This thesis presents the design of STEAM, a parallel system for executing Prolog
programs efficiently, by resorting to David H.D. Warren’s Extended Andorra Model
(EAM) with implicit control and it’s further exploration by Ricardo Lopes on the
BEAM.

Although recent research efforts into declarative parallelism has been gearing towards
CLP, we feel that there’s still a space for research into the exploitation of implicit
parallelism in Prolog programs. There are still legacy systems written in pure Prolog
which would benefit from the possibility of being run in recent parallel hardware.

Albeit some focus have been given to the EAM, we feel that the model hasn’t been
sufficiently explored and, with the emergence of newer distributed programming mod-
els, namely the Partitioned Global Address Space (PGAS), the EAM provides a solid

93

94 CHAPTER 7. CONCLUSIONS

base for parallel execution of Prolog, and this work shows that exploiting both and-
and or-parallelism is feasible through the use of the Extended Andorra Model.

Our main goal was to research into the implicit parallel execution of Prolog programs,
without interfering with the programming task. By taking advantage of the implicit
parallelism that exists in Prolog, existing, unmodified Prolog programs can be executed
in parallel without any effort from the programmer. There are other parallel models
which require the modification of the original source code, in order to take advantage of
parallelism, and others that fully explore the implicit parallelism of Prolog, by chosing
only one of the forms (either and- or or-parallelism, but not both).

STEAM presents a set of novelties over the EAM, namely:

• The compilation of WAM-code to STEAM-code, allowing the runtime to execute
the code in an EAM-based context;

• Avoiding suspension of boxes, in order to maximize parallelism;

• Using binding vectors to allow parallel unification.

These features allow the implementation of a Prolog engine over distributed program-
ming paradigms, taking advantage of the new parallel hardware platforms (e.g., GPG-
PUs, Xeon-Phi, etc.).

By using an approach of compiling WAM code directly to EAM code, STEAM provides
a pluggable system to existing Prolog compilers, by offering an alternative compilation
scheme, targeted at parallel environments.

7.1 Future work

There are still many improvements to be made over this work. Some we wish to
accomplish in the near future are:

• Finalize the implementation of the STEAM-PGAS prototype, in order to allow us
to perform benchmarks in multi-core and hybrid machines, as well as to compare
results with other parallel and sequential Prolog engines;

7.1. FUTURE WORK 95

• Augment the abstract analysis core of wam2steam, in order to obtain more helpful
information about the Prolog predicates, to improve execution time and reduce
the search space;

• As we are using the pl2wam tool from GNU Prolog, we intend to enable the use
of GNU Prolog built-ins, albeit some have to be modified to accomodate the new
structures.

As always, in this kind of work, the ideas presented here can (and certainly will) be
improved during the evolution of the research, either by observing the results found in
the implementations, either by contributions from other researchers.

96 CHAPTER 7. CONCLUSIONS

Bibliography

[AA] Paulo André and Salvador Abreu. Producing EAM code from the WAM.

[AA10] Paulo André and Salvador Abreu. Casting of the WAM as an EAM.
arXiv preprint arXiv:1009.3806, 2010.

[Abr94] Salvador Pinto Abreu. Improving the Parallel Execution of Logic Pro-
grams. PhD thesis, PhD thesis, Universidade Nova de Lisboa, 1994.

[Abr00] Salvador Abreu. Towards the oar language and computational model.
Implementation Technologies for (Constraint) Logic Programming Lan-
guages, page 89, 2000.

[ACHS88] Karen Appleby, M Carllson, Seif Haridi, and D Sawhlin. Garbarge
collection for prolog based on wam. Communications of the ACM,
31(6):719–741, 1988.

[AK90] Khayri AM Ali and Roland Karlsson. The Muse approach to OR-
parallel Prolog. International Journal of Parallel Programming,
19(2):129–162, 1990.

[AK94] Khayri A. M. Ali and Roland Karlsson. The Muse Approach to Or-
Parallel Prolog. International Journal of Parallel Programming, 19,
1994.

[AkF99] Hassan Aït-kaci and Forêt Des Flambertins. Warren’s Abstract Machine
ATUTORIAL RECONSTRUCTION. 1999.

[AMTW12] Krzysztof Apt, Victor W. Marek, Mirek Truszczynski, and David S.
Warren. The Logic Programming Paradigm: A 25-Year Perspective.
2012.

97

98 BIBLIOGRAPHY

[AP] Salvador Abreu and Luıs Moniz Pereira. Towards akl with intelligent
pruning.

[AP93] Salvador Abreu and Luís Moniz Pereira. Design for akl with intelligent
pruning. In Extensions of Logic Programming, pages 3–10. Springer,
1993.

[APC92] Salvador Abreu, Luís Moniz Pereira, and Philippe Codognet. Improving
backward execution in the andorra family of languages. In JICSLP,
pages 384–398. Citeseer, 1992.

[AR97] Lourdes Araujo and Jose J. Ruz. A parallel Prolog system for dis-
tributed memory. The Journal of Logic Programming, 33(1):49–79,
1997.

[Ara97] Lourdes Araujo. Correctness proof of a distributed implementation of
Prolog by means of Abstract State Machines. Journal of Universal
Computer Science, 3(5):568–602, 1997.

[BBP+81] David L Bowen, Lawrence Byrd, Luıs M Pereira, Fernando CN Pereira,
and David HD Warren. Prolog on the decsystem-10 user’s manual. In
Technical Report. Department of Artificial Intelligence, University of
Edinburgh, 1981.

[BCHP96] Francisco Bueno, D. Cabeza, M. Hermenegildo, and German Puebla.
Global analysis of standard Prolog programs. Programming Languages
and Systems—ESOP’96, pages 108–124, 1996.

[BdCD00] Ricardo Bianchini and Inês de Castro Dutra. Parallel logic programming
systems on scalable architectures. Journal of Parallel and Distributed
Computing, 60(7):835–852, 2000.

[BdKH+88] Uri Baron, Jacques Chassin de Kergommeaux, Max Hailperin, Michael
Ratcliffe, Philippe Robert, Jean-Claude Syre, and Harald Westphal.
The parallel ecrc prolog system pepsys: An overview and evaluation
results. In FGCS, volume 88, pages 841–850, 1988.

[BDL+88] Ralph Butler, Terry Disz, Ewing L Lusk, Robert Olson, Ross A Over-
beek, and Rick L Stevens. Scheduling or-parallelism: An argonne per-
spective. In ICLP/SLP, pages 1590–1605, 1988.

[BG89] Reem Bahgat and Steve Gregory. Pandora: Non-deterministic parallel
logic programming. In ICLP, pages 471–486, 1989.

[BH92] Francisco Bueno and Manuel V Hermenegildo. An automatic trans-
lation scheme from prolog to the andorra kernel language. In FGCS,
pages 759–769, 1992.

BIBLIOGRAPHY 99

[BJ] Dan Bonachea and Jaein Jeong. Gasnet: A portable high-performance
communication layer for global address-space languages.

[BJK+95] Robert D Blumofe, Christopher F Joerg, Bradley C Kuszmaul,
Charles E Leiserson, Keith H Randall, and Yuli Zhou. Cilk: An ef-
ficient multithreaded runtime system, volume 30. ACM, 1995.

[BLM93] Johan Bevemyr, Thomas Lindgren, and Håkan Millroth. Exploiting
recursion-parallelism in prolog. In PARLE’93 Parallel Architectures
and Languages Europe, pages 279–290. Springer, 1993.

[BLOO86] Ralph Butler, EL Lusk, Robert Olson, and RA Overbeek. Anlwam: A
parallel implementation of the warren abstract machine. Mathematics
and Computer Science Division, Argonne National Lab, 1986.

[BRSW91] Anthony Beaumont, S Muthu Raman, Péter Szeredi, and David HD
Warren. Flexible scheduling of or-parallelism in aurora: The bristol
scheduler. In Parle’91 Parallel Architectures and Languages Europe,
pages 825–842. Springer, 1991.

[CCF86] Christian Codognet, Philippe Codognet, and Gilberto Filé. A very
intelligent backtracking method for Logic Programs. In ESOP 86, pages
315–326. Springer, 1986.

[CCS96] V Santos Costa, Manuel Eduardo Correia, and Fernando Silva. Per-
formance of sparse binding arrays for or-parallelism. In Proceedings
of the VIII Brazilian Symposium on Computer Architecture and High
Performance Processing–SBAC-PAD, 1996.

[CD95] Philippe Codognet and Daniel Diaz. WAMCC: Compiling Prolog to C.
In ICLP, volume 95, pages 317–331, 1995.

[CD96] Philippe Codognet and Daniel Diaz. Compiling constraints in clp (FD).
The Journal of Logic Programming, 27(3):185–226, 1996.

[CDC+99a] William W Carlson, Jesse M Draper, David E Culler, Kathy Yelick,
Eugene Brooks, and Karen Warren. Introduction to UPC and lan-
guage specification. Center for Computing Sciences, Institute for De-
fense Analyses, 1999.

[CDC+99b] William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick,
Eugene Brooks, and Karen Warren. Introduction to UPC and lan-
guage specification. Center for Computing Sciences, Institute for De-
fense Analyses, 1999.

100 BIBLIOGRAPHY

[CFS94] Takashi Chikayama, Tetsuro Fujise, and Daigo Sekita. A portable and
efficient implementation of KL1. In Programming Language Implemen-
tation and Logic Programming, pages 25–39. Springer Berlin Heidelberg,
1994.

[CG83] Keith L Clark and Steve Gregory. Parlog: A parallel logic programming
language. Imperial College of Science and Technology Department of
Computing, 1983.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Don-
awa, Allan Kielstra, Kemal Ebcioglu, Christoph Von Praun, and Vivek
Sarkar. X10: an object-oriented approach to non-uniform cluster com-
puting. Acm Sigplan Notices, 40(10):519–538, 2005.

[Cha13] Brad Chamberlain. Chapel: A next-generation pgas language. In UW
Applied Math 483/583 Lecture, 2013.

[Cia92] Paolo Ciancarini. Parallel programming with logic languages: A survey.
Computer Languages, 17(4):213–239, 1992.

[CKPR73] A Colmeraner, Henri Kanoui, Robert Pasero, and Philippe Roussel. Un
systeme de communication homme-machine en francais. Luminy, 1973.

[CLT+10] Li Chen, Lei Liu, Shenglin Tang, Lei Huang, Zheng Jing, Shixiong Xu,
Dingfei Zhang, and Baojiang Shou. Unified parallel c for gpu clusters:
Language extensions and compiler implementation. In Languages and
Compilers for Parallel Computing, pages 151–165. Springer, 2010.

[CM12] Mats Carlsson and Per Mildner. Sicstus Prolog-the First 25 Years.
Theory Pract. Log. Program., 12(1-2):35–66, January 2012.

[Co05] U. P. C. Consortium and others. UPC language specifications v1. 2.
Lawrence Berkeley National Laboratory, 2005.

[Con12] John S. Conery. Parallel execution of logic programs. 2012.

[Cos] Vıtor Santos Costa. Parallelism and Implementation Technology for
Logic Programming Languages.

[Cos99] Vítor Santos Costa. Optimising bytecode emulation for Prolog. Prin-
ciples and Practice of Declarative Programming, pages 261–277, 1999.

[CR96] Alain Colmerauer and Philippe Roussel. The birth of prolog. In History
of programming languages—II, pages 331–367. ACM, 1996.

[CRD12] Vítor Santos Costa, Ricardo Rocha, and Luís Damas. The yap prolog
system. Theory and Practice of Logic Programming, 12(1-2):5–34, 2012.

BIBLIOGRAPHY 101

[CRS00] Vỳtor Santos Costa, Ricardo Rocha, and Fernando Silva. Novel models
for or-parallel logic programs: A performance analysis. In Euro-Par
2000 Parallel Processing, pages 744–753. Springer Berlin Heidelberg,
2000.

[CSP88] Chien Chen, Ashok Singhal, and Yale N Patt. PUP: An Architecture
to Exploit Parallel Unification in Prolog. Technical report, DTIC Doc-
ument, 1988.

[CSW95] W Chen, T Swift, and DS Warren. Efficient implementation of general
logical queries. J. Logic Prog, 1995.

[CWY91a] Vitor Santos Costa, David HD Warren, and Rong Yang. Andorra I:
a parallel Prolog system that transparently exploits both And-and or-
parallelism. ACM SIGPLAN Notices, 26(7):83–93, 1991.

[CWY91b] Vitor Santos Costa, David HD Warren, and Rong Yang. The Andorra-I
engine: A parallel implementation of the Basic Andorra model. 1991.

[CWY91c] Vitor Santos Costa, David HD Warren, and Rong Yang. The Andorra-I
preprocessor: Supporting full Prolog on the basic Andorra model. In
ICLP, volume 91, pages 443–456, 1991.

[CZSS11] Vincent Cavé, Jisheng Zhao, Jun Shirako, and Vivek Sarkar. Habanero-
java: the new adventures of old x10. In Proceedings of the 9th Interna-
tional Conference on Principles and Practice of Programming in Java,
pages 51–61. ACM, 2011.

[DAC12] Daniel Diaz, Salvador Abreu, and Philippe Codognet. On the imple-
mentation of GNU Prolog. Theory and Practice of Logic Programming,
12(1-2):253–282, 2012.

[DC93] Daniel Diaz and Philippe Codognet. A minimal extension of the wam
for clp (fd). In ICLP, pages 774–790, 1993.

[DC00a] Daniel Diaz and Philippe Codognet. GNU Prolog: beyond compiling
Prolog to C. Practical Aspects of Declarative Languages, pages 81–92,
2000.

[DC00b] Daniel Diaz and Philippe Codognet. The GNU prolog system and its
implementation. In Proceedings of the 2000 ACM symposium on Applied
computing-Volume 2, pages 728–732. ACM, 2000.

[DC01] Daniel Diaz and Philippe Codognet. Design and Implementation of the
GNU Prolog System. Journal of Functional and Logic Programming,
2001:2001, 2001.

102 BIBLIOGRAPHY

[dCD94] Inês de Castro Dutra. Strategies for scheduling and-and or-work in
parallel logic programming systems. Department of Computer Science,
University of Bristol, 1994.

[dCD95] Inês de Castro Dutra. Distributing And-and Or-Work in the Andorra-I
Parallel Logic Programming System. PhD thesis, Citeseer, 1995.

[DE98] Leonardo Dagum and Rameshm Enon. Openmp: an industry stan-
dard api for shared-memory programming. Computational Science &
Engineering, IEEE, 5(1):46–55, 1998.

[Deb94] Saumya K Debray. Implementing logic programming systems: The
quiche-eating approach. In Implementations of Logic Programming Sys-
tems, pages 65–75. Springer, 1994.

[DET96a] Bart Demoen, Geert Engels, and Paul Tarau. Segment order preserving
copying garbage collection for wam based prolog. In Proceedings of the
1996 ACM symposium on Applied Computing, pages 380–386. ACM,
1996.

[DET96b] Bart Demoen, Geert Engels, and Paul Tarau. Segment order preserving
copying garbage collection for WAM based Prolog. In Proceedings of
the 1996 ACM symposium on Applied Computing, pages 380–386. ACM,
1996.

[DHS00] Stephan Diehl, Pieter Hartel, and Peter Sestoft. Abstract machines for
programming language implementation. Future Generation Computer
Systems, 16(7):739–751, 2000.

[DK89] Arthur Delcher and Simon Kasif. Some results on the complexity of
exploiting data dependency in parallel logic programs. The Journal of
Logic Programming, 6(3):229–241, 1989.

[DKC94] Jacques Chassin De Kergommeaux and Philippe Codognet. Paral-
lel logic programming systems. ACM Computing Surveys (CSUR),
26(3):295–336, 1994.

[DN00] Bart Demoen and Phuong-Lan Nguyen. On the impact of argument
passing on the performance of the WAM and B-Prolog. 2000.

[DN08] Bart Demoen and Phuong-Lan Nguyen. Environment Reuse in the
WAM. Logic Programming, pages 698–702, 2008.

[DP85] Alvin M. Despain and Yale N. Patt. Aquarius-A High Performance
Computing System for Symbolic/Numeric Applications. In COMP-
CON, pages 376–382, 1985.

BIBLIOGRAPHY 103

[EC98] Jesper Eskilson and Mats Carlsson. SICStus MT—a multithreaded
execution environment for SICStus Prolog. In Principles of Declarative
Programming, pages 36–53. Springer, 1998.

[Gal85] Jean H. Gallier. Logic for Computer Science: Foundations of Automatic
Theorem Proving. Harper & Row Publishers, Inc., New York, NY, USA,
1985.

[GC94] Gopal Gupta and Vítor Santos Costa. Optimal implementation of and-
or parallel prolog. Future Generation Computer Systems, 10(1):71–92,
1994.

[GC96] Gopal Gupta and Vitor Santos Costa. Cuts and side-effects in and-or
parallel prolog. The Journal of logic programming, 27(1):45–71, 1996.

[GCP94] Gopal Gupta, Vítor Santos Costa, and Enrico Pontelli. Shared Paged
Binding Array: A Universal Datastructure for Parallel Logic Program-
ming. UNIVERSITY OF OREGON, 1994.

[GG01] Hai-Feng Guo and Gopal Gupta. A simple scheme for implementing
tabled logic programming systems based on dynamic reordering of al-
ternatives. In Logic Programming, pages 181–196. Springer, 2001.

[GH91] Gopal Gupta and Manuel Hermenegildo. Ace: and/or-parallel copying-
based execution of logic programs. In Parallel Execution of Logic Pro-
grams, pages 146–158. Springer, 1991.

[GHC93] Gopal Gupta, Manuel V Hermenegildo, and Vítor Santos Costa. And-
or parallel prolog: A recomputation based approach. New Generation
Computing, 11(3-4):297–321, 1993.

[GLLO85] John Gabriel, Tim Lindholm, EL Lusk, and Ross A Overbeek. A tuto-
rial on the warren abstract machine for computational logic. Argonne
National Laboratory, 1985.

[GLS99] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI:
portable parallel programming with the message-passing interface, vol-
ume 1. MIT press, 1999.

[GW91] Gopal Gupta and David HD Warren. An interpreter for the extended
andorra model. Preliminary report, Department of Computer Science,
University of Bristol, 1991.

[Hay89] Ralph Haygood. A prolog benchmark suite for aquarius. 1989.

[Hay94] Ralph Clarke Haygood. Native Code Compilation in SICStus Prolog.
In ICLP, pages 190–204, 1994.

104 BIBLIOGRAPHY

[HBC+12] Manuel V Hermenegildo, Francisco Bueno, Manuel Carro, Pedro López-
García, Edison Mera, José F Morales, and German Puebla. An overview
of ciao and its design philosophy. Theory and Practice of Logic Pro-
gramming, 12(1-2):219–252, 2012.

[Hem94] Rolf Hempel. The mpi standard for message passing. In High-
Performance Computing and Networking, pages 247–252. Springer,
1994.

[Her86a] Manuel V. Hermenegildo. Abstract machine based execution model
for computer architecture design and efficient implementation of logic
programs in parallel. 1986.

[Her86b] Manuel V. Hermenegildo. An abstract machine for restricted AND-
parallel execution of logic programs. In Third International Conference
on Logic Programming, pages 25–39. Springer Berlin Heidelberg, 1986.

[HG91] Manuel V. Hermenegildo and KJ Greene. The &-prolog system: Ex-
ploiting independent and-parallelism. New Generation Computing, 9(3-
4):233–256, 1991.

[HH89] Zhiyi Hwang and Shouren Hu. A compiling approach for exploiting And-
parallelism in parallel logic programming systems. PARLE’89 Parallel
Architectures and Languages Europe, pages 335–345, 1989.

[HJ90] Seif Haridi and Sverker Janson. Kernel andorra prolog and its compu-
tational model. SICS Research Report, 1990.

[HJP92] Seif Haridi, Sverker Janson, and Catuscia Palamidessi. Structural op-
erational semantics for AKL. Future Generation Computer Systems,
8(4):409–421, 1992.

[Jan94a] Sverker Janson. AKL-a multiparadigm programming language. Uppsala
University, SICS, 1994.

[Jan94b] Sverker Janson. AKL, a multiparadigm programming language: based
on a concurrent constraint framework. Number 19 in Uppsala theses
in computing science. Computing Science Dept., Uppsala University ;
Swedish Institute of Computer Science, Uppsala : Kista, Sweden, 1994.

[JH91] Sverker Janson and Seif Haridi. Programming paradigms of the Andorra
kernel language. SICS Research Report, 1991.

[JM92] Sverker Janson and Johan Montelius. Design of a sequential prototype
implementation of the andorra kernel language. In SICS research report.
Swedish Institute of Computer Science, 1992.

BIBLIOGRAPHY 105

[Kan86] Paris C. Kanellakis. Logic programming and parallel complexity.
ICDT’86, pages 1–30, 1986.

[KB95] Andreas Krall and Thomas Berger. Incremental Global Compilation of
Prolog with the Vienna Abstract Machine. In ICLP, pages 333–347,
1995.

[Kog90] Peter M Kogge. The architecture of symbolic computers. McGraw-Hill,
Inc., 1990.

[Kra94] Andreas Krall. Implementation techniques for Prolog. In WLP, pages
1–15, 1994.

[Kra96] Andreas Krall. The vienna abstract machine. The Journal of logic
programming, 29(1):85–106, 1996.

[KWm12] David B Kirk and W Hwu Wen-mei. Programming massively parallel
processors: a hands-on approach. Newnes, 2012.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
2004 International Symposium on Code Generation and Optimization
(CGO’04), Palo Alto, California, Mar 2004.

[LBD+90] Ewing Lusk, Ralph Butler, Terrence Disz, Robert Olson, Ross Over-
beek, Rick Stevens, David HD Warren, Alan Calderwood, Péter Sz-
eredi, Seif Haridi, and others. The Aurora or-parallel Prolog system.
New Generation Computing, 7(2-3):243–271, 1990.

[LC00] Ricardo Lopes and V Santos Costa. Memory Management for the
BEAM. In CL2000 First Workshop on Memory Management in Logic
Programs, 2000.

[LCC99] Ricardo Lopes, Vítor Santos Costa, and V’itor Santos Costa. The beam:
A first eam implementation. In In 1999 Joint Conference on Declarative
Programming (APPIA-GULP-PRODE) proceedings, L’Aquila. Citeseer,
1999.

[LCS04] Ricardo Lopes, Vítor Santos Costa, and Fernando Silva. Pruning in the
extended Andorra model. In Practical Aspects of Declarative Languages,
pages 120–134. Springer, 2004.

[LH93] M. R. Levy and R. N. Horspool. Translating Prolog to C: a WAM-
based approach. In Proceedings of the Compulog Network Area Meeting
on Programming Languages, 1993.

106 BIBLIOGRAPHY

[Lin94] Thomas Lindgren. A Continuation-Passing Style for Prolog. In ILPS,
volume 94, pages 603–617, 1994.

[Llo12] John W. Lloyd. Foundations of logic programming. 2012.

[LLV+13] Miao Luo, Mingzhe Li, Akshay Venkatesh, Xiaoyi Lu, and Dhabaleswar
K DK Panda. Upc on mic: early experiences with native and symmetric
modes. In 7th International Conference on PGAS Programming Models,
page 198, 2013.

[LO89] Ewing L. Lusk and Ross A. Overbeek, editors. Logic Programming,
Proceedings of the North American Conference 1989, Cleveland, Ohio,
USA, October 16-20, 1989. 2 Volumes. MIT Press, 1989.

[Lop96] Ricardo Nuno Lopes. Execução de Prolog com Alto Desempenho. Mas-
ter’s thesis, Universidade do Minho-Departamento de Inform atica,
1996.

[Lop01] Ricardo Lopes. An Implementation of the Extended Andorra Model.
PhD thesis, PhD thesis, Universidade do Porto, 2001.

[LSCA00] Ricardo Lopes, Fernando Silva, Vıtor Santos Costa, and Salvador
Abreu. The RAINBOW: Towards a Parallel Beam. In Workshop on
Parallelism and Implementation Technology for (Constraint) Logic Lan-
guages, CL, pages 38–54. Citeseer, 2000.

[MA95] Johan Montelius and Khayri AM Ali. An and/or-parallel implementa-
tion of akl. New Generation Computing, 14(1):31–52, 1995.

[MA96] Johan Montelius and Khayri AM Ali. An And/Or-parallel implemen-
tation of AKL. New Generation Computing, 14(1):31–52, 1996.

[MAD13] Rui Machado, Salvador Abreu, and Daniel Diaz. Parallel Performance
of Declarative Programming Using a PGAS Model. In Practical Aspects
of Declarative Languages, pages 244–260. Springer, 2013.

[MCH04] J. Morales, Manuel Carro, and Manuel Hermenegildo. Improved compi-
lation of Prolog to C using moded types and determinism information.
Practical Aspects of Declarative Languages, pages 86–103, 2004.

[MD89] André Mariën and Bart Demoen. On the management of choicepoint
and environment frames in the WAM. In Lusk and Overbeek [LO89],
pages 1030–1047.

[MD93] Remco Moolenaar and Bart Demoen. A parallel implementation for
akl. In Progamming Language Implementation and Logic Programming,
pages 246–261. Springer, 1993.

BIBLIOGRAPHY 107

[Mil93] Johan Bevemyr Thomas Lindgren Hakan Millroth. Reform prolog: the
language and its implementation. In Logic Programming: Proceedings
of the Tenth International Conference on Logic Programming, page 283.
MIT Press, 1993.

[Mon94] Johan Montelius. Penny, a Parallel Implementation of AKL. In Work-
shop on Design and Impl. of Parallel Logic Programming Systems, pages
4–8, 1994.

[Mon97] Johan Montelius. The Computation Model. 1997.

[MZ88] Tadao Murata and Du Zhang. A predicate-transition net model for
parallel interpretation of logic programs. Software Engineering, IEEE
Transactions on, 14(4):481–497, 1988.

[NCS01] Henrik Nässén, Mats Carlsson, and Konstantinos Sagonas. Instruction
Merging and Specialization in the SICStus Prolog Virtual Machine. In
Proceedings of the 3rd ACM SIGPLAN International Conference on
Principles and Practice of Declarative Programming, PPDP ’01, pages
49–60, New York, NY, USA, 2001. ACM.

[Neu95] Ulrich Neumerkel. Continuation Prolog: A new intermediary language
for WAM and BinWAM code generation. In Post-ILPS’95 Workshop
on Implementation of Logic Programming Languages. F16G, 1995.

[New87] Michael O Newton. A High Performance Implementation of Prolog.
1987.

[NWSDSM13] Sebastian Nanz, Sam West, Kaue Soares Da Silveira, and Bertrand
Meyer. Benchmarking usability and performance of multicore lan-
guages. In Empirical Software Engineering and Measurement, 2013
ACM/IEEE International Symposium on, pages 183–192. IEEE, 2013.

[Nä01] Henrik Nässén. Optimizing the SICStus Prolog virtual machine instruc-
tion set. SICS Research Report, 2001.

[Pac97] Peter S. Pacheco. Parallel programming with MPI. 1997.

[PGH95] Enrico Pontelli, Gopal Gupta, and Manuel Hermenegildo. &ACE: a
high-performance parallel Prolog system. In Parallel Processing Sym-
posium, 1995. Proceedings., 9th International, pages 564–571. IEEE,
1995.

[PGT+96] Enrico Pontelli, Gopal Gupta, Dongxing Tang, Manuel Carro, and
Manuel V. Hermenegildo. Improving the efficiency of nondeterministic
independent and-parallel systems. Computer Languages, 22(2):115–142,
1996.

108 BIBLIOGRAPHY

[Phe08] Chuck Pheatt. Intel® threading building blocks. Journal of Computing
Sciences in Colleges, 23(4):298–298, 2008.

[PN91] Doug Palmer and Lee Naish. Nua-prolog: An extension to the wam for
parallel andorra. In ICLP, pages 429–442, 1991.

[RD92] Peter Van Roy and Alvin M. Despain. High-performance logic pro-
gramming with the Aquarius Prolog compiler. Computer, 25(1):54–68,
1992.

[Riv97] CarIos B. Rivera. DWAM: An Or-parallel Wam Implementation of
Prolog. PhD thesis, University of Regina, 1997.

[RSB+89] Kotagiri Ramamohanarao, John Shepherd, Isaac Balbin, Graeme Port,
Lee Naish, James Thom, Justin Zobel, and Philip Dart. The nu-prolog
deductive database system. In Prolog and databases: implementations
and new directions, pages 212–250. Halsted Press, 1989.

[RSC99] Ricardo Rocha, Fernando Silva, and Vítor Santos Costa. Yapor: an
or-parallel prolog system based on environment copying. Progress in
Artificial Intelligence, pages 178–192, 1999.

[RSC00] Ricardo Rocha, Fernando Silva, and Vıtor Santos Costa. A tabling
engine for the Yap Prolog system. In Proceedings of the 2000
APPIA-GULP-PRODE Joint Conference on Declarative Programming
(AGP’00), La Habana, Cuba, 2000.

[RSC05] Ricardo Rocha, Fernando Silva, and Vítor Santos Costa. On applying
or-parallelism and tabling to logic programs. Theory and Practice of
Logic Programming, 5(1-2):161–205, 2005.

[RSSC00] Ricardo Rocha, Fernando Silva, and V. Santos Costa. YapTab: A
tabling engine designed to support parallelism. In Conference on Tab-
ulation in Parsing and Deduction, volume 7787, 2000.

[SB99] Luis Moura Silva and Rajkumar Buyya. Parallel programming models
and paradigms. High Performance Cluster Computing: Architectures
and Systems, 2:4–27, 1999.

[SBP+11] Vijay Saraswat, Bard Bloom, Igor Peshansky, Olivier Tardieu, and
David Grove. X10 language specification, 2011.

[SD08] Tom Schrijvers and Bart Demoen. Uniting the prolog community. In
Logic Programming, pages 7–8. Springer, 2008.

[SH94] Donald A Smith and Timothy J Hickey. Multi-sld resolution. In Logic
Programming and Automated Reasoning, pages 260–274. Springer, 1994.

BIBLIOGRAPHY 109

[Sha89] Ehud Shapiro. The family of concurrent logic programming languages.
ACM Computing Surveys (CSUR), 21(3):413–510, 1989.

[SHC95] Zoltan Somogyi, Fergus J. Henderson, and Thomas Charles Conway.
Mercury, an efficient purely declarative logic programming language.
Australian Computer Science Communications, 17:499–512, 1995.

[SHC96] Zoltan Somogyi, Fergus Henderson, and Thomas Conway. The exe-
cution algorithm of Mercury, an efficient purely declarative logic pro-
gramming language. The Journal of Logic Programming, 29(1):17–64,
1996.

[She96] Kish Shen. Overview of DASWAM: exploitation of dependent AND-
parallelism. The Journal of logic programming, 29(1):245–293, 1996.

[Smi94] Donald A Smith. Why multi-sld beats sld (even on a uniprocessor). In
Programming Language Implementation and Logic Programming, pages
40–56. Springer, 1994.

[Smi96] Donald A Smith. Multilog and data or-parallelism. The Journal of logic
programming, 29(1):195–244, 1996.

[Smo95] Gert Smolka. The Oz programming model. Computer science today,
pages 324–343, 1995.

[SS93] Dan Sahlin and Thomas Sjöland. Demonstration: static analysis of
AKL. Static Analysis, pages 282–283, 1993.

[SSW93] Konstantinos Sagonas, Terrance Swift, and David Scott Warren. Xsb:
An overview of its use and implementation. SUNY at Stony Brook,
1993.

[SSW+03] Konstantinos Sagonas, Terrance Swift, David S. Warren, Juliana Freire,
Prasad Rao, Baoqiu Cui, Ernie Johnson, G. de Castro, and Rui F.
Marques. The XSB System. Web page: http://xsb. sourceforge. net,
2003.

[SW94] Terrance Swift and David S. Warren. An Abstract Machine for SLG
Resolution: Definite Programs. In In Proceedings of the Symposium on
Logic Programming, pages 633–654, 1994.

[SW10] Terrance Swift and David Scott Warren. XSB: Extending Prolog with
Tabled Logic Programming. CoRR, abs/1012.5123, 2010.

[SW12] Terrance Swift and David S. Warren. XSB: Extending Prolog with
tabled logic programming. Theory and Practice of Logic Programming,
12(1-2):157–187, 2012.

110 BIBLIOGRAPHY

[Tar] Paul Tarau. Architecture and Implementation Aspects of the Lean
Prolog System.

[Tar92] Paul Tarau. BinProlog: a continuation passing style Prolog engine. In
Programming Language Implementation and Logic Programming, pages
479–480. Springer Berlin Heidelberg, 1992.

[Tar06] Paul Tarau. The Jinni 2004 Prolog Compiler: a High Performance
Java and .NET based Prolog for Object and Agent Oriented Internet
Programming. BinNet Corp, 2006.

[Tar11] Paul Tarau. Coordination and concurrency in multi-engine prolog. In
Coordination Models and Languages, pages 157–171. Springer Berlin
Heidelberg, 2011.

[TF86] Akikazu Takeuchi and Koichi Furukawa. Parallel logic programming
languages. In Third International Conference on Logic Programming,
pages 242–254. Springer Berlin Heidelberg, 1986.

[Tic89a] Evan Tick. Comparing two parallel logic-programming architectures.
Software, IEEE, 6(4):71–80, 1989.

[Tic89b] Evan Tick. A Performance Comparison of AND-and OR-Parallel Logic
Programming Architectures. In ICLP, pages 452–467, 1989.

[Tic90] Evan Tick. Compile-time granularity analysis for parallel logic program-
ming languages. New Generation Computing, 7(2-3):325–337, 1990.

[Tin88] Peter A. Tinker. Performance of an OR-parallel logic programming
system. International Journal of Parallel Programming, 17(1):59–92,
1988.

[UC90] Kazunori Ueda and Takashi Chikayama. Design of the kernel language
for the parallel inference machine. The Computer Journal, 33(6):494–
500, 1990.

[Ued86] Kazunori Ueda. Guarded horn clauses. Springer, 1986.

[Ued89] Kazunori Ueda. Parallelism in logic programming. In In Informa-
tion Processing 89, Proc. IFIP 11th World Computer Congress, North-
Holland/IFIP, 1989.

[Var94] Konstantinos Varsamos. Automatic Transformation of Deterministic
Prolog Programs to KL1. 1994.

[VR84] Peter Lodewijk Van Roy. Can logic programming execute as fast as im-
perative programming? PhD thesis, University of California at Berkeley,
1984.

BIBLIOGRAPHY 111

[vR92] P. van Roy. Aquarius Prolog. IEEE Computer, 1992.

[VR94] Peter Van Roy. 1983–1993: The wonder years of sequential Prolog
implementation. The Journal of Logic Programming, 19:385–441, 1994.

[VXDRS91] André Véron, Jiyang Xu, S. A. Delgado-Rannauro, and K. Schuerman.
Virtual memory support for OR-parallel logic programming systems. In
Parle’91 Parallel Architectures and Languages Europe, pages 843–860.
Springer Berlin Heidelberg, 1991.

[W+81] David HD Warren et al. Higher-order extensions to Prolog-are they
needed. Department of Artificial Intelligence, University of Edinburgh,
1981.

[War78] David HD Warren. Applied logic: its use and implementation as a
programming tool. 1978.

[War83] David H. D. Warren. An Abstract Prolog Instruction Set. Technical
Report 309, AI Center, SRI International, 333 Ravenswood Ave., Menlo
Park, CA 94025, October 1983.

[War87a] David HD Warren. Or-parallel execution models of prolog. In TAP-
SOFT’87, pages 243–259. Springer, 1987.

[War87b] David HD Warren. The sri model for or-parallel execution of prolog:
Abstract design and implementation issues. In SLP, volume 87, pages
92–102, 1987.

[War88] David HD Warren. The andorra model. In Gigalips Project workshop.
U. of Manchester, volume 1124, 1988.

[War89] David HD Warren. Extended andorra model. In PEPMA Project work-
shop, University of Bristol, 1989.

[War90] David HD Warren. The extended andorra model with implicit control.
In Parallel Logic Programming Workshop, Box, volume 1263, 1990.

[War95] David S Warren. Programming in tabled prolog. 1995.

[War99] David S. Warren. Programming in Tabled Prolog. 1999.

[Wie03] Jan Wielemaker. Native preemptive threads in SWI-Prolog. In Logic
Programming, pages 331–345. Springer, 2003.

[Wie14] Jan Wielemaker. SWI-Prolog version 7 extensions. In Workshop on Im-
plementation of Constraint and Logic Programming Systems and Logic-
based Methods in Programming Environments 2014, page 109, 2014.

112 BIBLIOGRAPHY

[WSTL12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
Swi-prolog. Theory and Practice of Logic Programming, 12(1-2):67–96,
2012.

[Zho00] Neng-Fa Zhou. Garbage collection in B-Prolog. In In Proceedings of
the First Workshop on Memory Management in Logic Programming
Implementations, 2000.

[Zho07] Neng-Fa Zhou. A register-free abstract prolog machine with jumbo
instructions. In ICLP, volume 4670, pages 455–457, 2007.

[Zho12] Neng-Fa Zhou. The language features and architecture of B-Prolog.
Theory and Practice of Logic Programming, 12(1-2):189–218, 2012.

[ZSYY00] Neng-Fa Zhou, Yi-Dong Shen, Li-Yan Yuan, and Jia-Huai You. Im-
plementation of a linear tabling mechanism. In Practical Aspects of
Declarative Languages, pages 109–123. Springer, 2000.

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Abstract
	Sumário
	Introduction
	Motivation
	Contributions
	Thesis outline

	Prolog and Parallel Logic Programming
	Historical background
	Sequential Prolog implementations
	From sequential to parallel logic programming
	Committed-choice languages
	The Andorra Principle and the Basic Andorra Model
	Or-parallel Prolog Implementations
	And-parallel Prolog Implementations
	Extending the Andorra Model

	Parallel programming models
	An Abstract Model for Parallel Execution of Prolog
	Concluding remarks

	Abstract Machines for Prolog
	Formal definitions
	The Warren Abstract Machine (WAM)
	Registers and memory organization
	WAM instructions
	Limitations and relating optimizations

	The Extended Andorra Model (EAM)
	EAM base constructs
	Rewriting rules

	An EAM-based scalable model for parallel Prolog
	Closing remarks

	Designing a WAM->EAM translator
	The pl2wam translator
	wam2steam - compiling WAM to STEAM
	STEAM-IL instructions
	Abstract analysis of the WAM code

	STEAM-IL code generation
	Detecting patterns
	Optimizing STEAM-IL execution

	Preparing for execution
	Closing remarks

	STEAM - Scalable, Transparent EAM
	Introduction
	Definitions
	STEAM base constructs
	Rewriting rules
	Reducing the search space
	Simplification
	Pruning operators

	Termination
	Suspension
	STEAM under the hood
	Memory model
	Binding and unification
	Dealing with extra-logical predicates

	Resolution strategy
	Concluding remarks

	Design for STEAM on a PGAS model
	The PGAS programming model
	Partitioned STEAM
	Global memory model
	Executing Prolog with STEAM
	Parallel Unification
	Results propagation
	Concluding remarks

	Conclusions
	Future work

