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Enquadramento do trabalho

A presente dissertação é apresentada no âmbito do Mestrado em

Engenharia Agronomica, frequentado ao abrigo do Programa 'Vale a Pena ser

Mestre". A mesma havia sido por mim apresentada, como tese final de Licenciatura

em Engenharia Agrícola, concluída na Universidade de Évora.

A presente tese resultou de um trabalho de investigação realizado na

Universidade de Leeds, enquanto estagiário ao abrigo do Programa Erasmus,

tendo no desenvolvimento do mesmo tido como orientadores o Sr. ErnestA. Kirkby,

por parte da Universidade de Leeds, e o Professor Tomaz Moreira, por parte da

Universidade de Évora.

O trabalho que a seguir se apresenta é o mesmo então defendido, com as

devidas correcções e actualizaçâo gráfiea.
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Deficiência de fósforo no milho (Zea mays L.) e no grão-de-bico

(Cicer arietinum L.). Efeitos na absorção, transporte e distribuição

do fósforo, potássio e nitrato considerados em relação à

produção de ácidos orgânicos nas raízes.

Resumo

Plantas de milho (Zea mays L. cv. Earliking) e de grão-de-btco (Cicer

arietinum L. cv. CPS-I) foram cultivadas em solução nutritiva e atmosfera controlada

durante um período de 8 e 16 dias respectivamente, e sujeitas a dois tratamentos:

solução contendo fósforo (P+) e solução da qual o fósforo estava ausente (P-).

A deficiência de fósforo (P) levou a um aumento do peso da raiz

relativamente à parte aérea. Traduziu-se também num aumento do Comprimento

Especifico da Raiz (CER).

A deficiência de P reflectiu-se na absorção e distribuição quer do P quer de

outros nutrientes, como o nitrato (NOs ) e o potássio (K.). Originou uma redução

na concentração de P nas plantas, e uma maior percentagem do P total passou a

estar distribuída nas raízes. A distribuição e transporte do K* foram também

distintamente afectados pelos tratamentos. O NOs- foi o ião mais sensível à

deficiência de P.

A deficiência de P promoveu um acréscimo na quantidade de ácidos

orgânicos presentes nos exsudados radiculares, particularmente no grão-de-bico.

lnduziu igualmente uma acidificação relativa da rizosfera.
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Phosphorus deficiency in maize (Zea mays L.) and chickpea (Cicer

arietinum L.). Effects on acquisition, transport and distribution of

phosphorus, potassium and nitrate considered in relation to

organic acids production in the roots.

Abstract
Plants of maize (Zea mays L. cv. Earliking) and chickpea (Cicer aietinum L.

cv. CPS-I) were cultivated in nutrient solution and controlled atmosphere for a period

of I and 16 days respectively, and two treatments were considered: solution

containing phosphorus (P+; and solution from which phosphorus was absent (P-).

Phosphorus (P) deficiency resulted in an increase in root weight relatively to

the shoot. The Specific Root Length (SRL) also increased.

P deficiency was reflected not only in the absorption of P itself, but also of

other nutrients, such as nitrate (NOs-) and potassium (K). lt originated a reduction

in the concentration of P in plant tissues and a bigger percentage of the total P was

distributed to the roots. The distribution and transport of Kwere also pronouncedly

affected by the treatments. NOs- was the most sensitive to P deficiency

P deficiency promoted an increase in the amounts of organic acids present in

the root exudates, mainly in chickpea. lt also induced a relative acidification of the

rhizosphere.
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"You may depend upon my bare word, reader,

without and further security, that I could wish this

offspring of my brain were as ingenious, sprightly

and accomplished as yourself could desire; but

the mischief of it is, nature will take its course:

every production must resemble it's author, and

my barren and unpolished understanding can

produce nothing but what is very dull, very

impertinent, and extravagant beyond imagination.

(Migue! de Cervantes, Don Quixote)
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General

Genotypical differences, translated into phenotypical, physiological (type,

age and state of the cells) and physic-chemical(water, temperature, pH and the ion

concentration in the nutrient medium) differences have an important influence not

only over the rate of nutrient uptake but also in the efficiency with which plants use

those nutrients in the production of dry matter.

Evolution, driven by the force of natural selection, has furnished plants with

efficient mechanisms that permit them to selectively acquire nutrients from the

medium were they are growing, resulting that the composition of the plants is

different from the composition of the medium were they are developing.

It is quite possible that the most difficult function for early root systems to

perform was the acquisition of non mobile resources, especially phosphate

(Pirozynsky and Malloch, 1975) and, being so, this nutrient can have played a very

important role not only in the evolution of the root systems and the hole plant itself,

but also in the distribution of vegetation throughout the world, so that the origin and

diversity of the root systems of modem plants can be seen as achieving the more

effective performance of these functions.

No wonder that variations among plant species in the ability to absorb soil

and fertilizer phosphate have received ample attention in the literature and continue

to attract the interest of many researchers.

A further stimulus to this field of research was given some years ago.

Because of the increasing problems with pollution caused by the high amounts of

chemical fertilizers used in agriculture (due to an agricultural policy that pointed in

the direction of high productivity per unit area, using high amounts of inputs) lead to

the introduction of the concept of sustainable agriculture. This meant that most of

the inputs should/could be replaced by another input: knowledge. This knowledge

should provide the clear understanding of how plants transform the inputs into

outputs and, of the efficiency with which they do it, so that the ability to manage a

farm in a way as profitable as possible could be increased. lt became clear that this

could only be achieved with the understanding of the mechanisms used by the

plants in the acquisition of those inputs and, in this particular case, mineral

VI



nutrients.

The ability of plants to modify the conditions of the medium that surrounds

them, particularly the conditions of the rhizosphere, as a response to nutrient stress,

is an interesting phenomena surrounded with controversy. The work that is now

presented pretends to give its own contribution to the understanding of the

wonderful and mysterious world of plant nutrition.
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I . INTRODUGTION:

1.1 - Chickpea (Cicer arietinum L) (2n=1 6)

Chickpea, Cicer arietinum L., also known as garbanzo bean, Bengal gram

or gram is a plant that belongs to the family of Fabaceae. !t's an herbaceous,

annual, semi-erect plant, 25-50 cm tall. All parts of the plant are covered with

clavate glandular hairs. Leaves are imparpinnate. Two types of germination,

epigeal and hipogeal, might occur, and the plants are completely self pollinated.

Chickpea is not known in the wild state, but is found as an escape in

Mesopotamia and Palestine. The first certain records of cultivation, from Turkey,

are dated oÍ 7400 years old. The area of origin of the specie is assumed to be the

North East of Africa (Van der Maesen, 1972). The progenitor of the present day C.

arietinum must have been spread by the Aryans, and around 2000 BC the plant

was introduced to lndia, a country which now produces about 79o/o of the word's

crop. Outside lndia cultivation is mainly centred around the Mediterranean

(Greece, Italy, Portugal, Spain, Morocco, Algiers, lraq, lran).

ln lndia, where it is the most important pulse, the whole dried seeds are

eaten cooked or boiled in the form of dhal, a tradicional lndian recepy. Flour

(basin) is made by grinding the seeds and is one of the most important ingredients

of lndian confectionery. Green pods and tender shoots are used as a vegetable.

The dry stems and leaves are fed to the livestock. An acid liquid produced by the

glandular hairs is collected by spreading a cloth over the crop at night, which

absorbs the exudation that contains about 94o/o malic acid and 6% oxalic acid. The

collected exudate has a reputation in lndian folk medicine as being good for

digestive upsets and sunstroke (it's also used as vinegar).

Chickpeas are a nutritious food legume which could well become a much

more important high protein food in the future.
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1.2 - Maize (Zea mays L.) (2n=20)

Maize, (Zea mays L.), also known as"lndian com" and in America simply as

corn is a plant that belongs to the family of Poaceae, subfamily Panicoidea tribe

Maydeae. The name is derived from the arawak-carib word "mahiz".

Maize is a tall annual grass (2-3 m high) with thick, solid stems with clearly

defined nodes and internodes, usually supported by prop roots. The leaves are

broad and smooth with a conspicuous midrib. Very few tillers are produced. The

plant bears separate male and female inflorescences (monoecious plant) which is

a very important characteristic for the production of hybrid maize, that is perhaps

one of the greatest achievements in crop improvement during the past century.

Leaves are born alternately on either side of the stem at the nodes. They are

glabrous or pubescent, usually with hairs along upper margins. Maize is cross

pollinated and exhibits great heterozygosity.

Of the most important modern cereal grains, maize is the most efficient in

converting water and carbon dioxide into foodstuffs (Simpson, 1986), but the

maize grain is deficient in the aminoacids tryptophan and lysine, and it's relatively

low in total protein, but it contains more oil than any other cereals.

One of the best records of maize domestication comes from archaeological

records in the Tehuacan Valley of [tíexico. Pollen 80000 years old has been

collected from oldlake beds near Mexico City. Maize was unknown to the New

World until the time of Columbus.

ln terms of yield produced throughout the world maize is at present the third

most important grain crop following wheat and rice (Langerand Hill, 1982). The

USA (particularly the Corn Belt region of the North Central states) produces almost

half of the annual world production, followed by China, Brazil, Mexico, Argentina,

and lndia. (FAOSTAT, 2009)

Over 300 commercial products can be obtained from maize grain. Maize

starch, antibiotics, salad oils, gumlike polymers and animal feed are just some of

the many possible examples. ln South America, maize beer, or chicha, is

produced by fermenting hydrolysed maize starch. ln the United States, maize is

also a major ingredient in the production oÍ Bourbon and industrial alcohol.
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1.3 - Phosphorous, phosphorus deficiency and plants:

Just after nitrogen, phosphorus (P) is considered the second most

important nutrient, not only in plant nutrition but also for people and animals who

feed themselves on those same plants. The relatively high amounts of P required

by plants in association with its extremely low concentration in the nutrient solution

leaves us to consider phosphorus as a major plant nutrient (also called macro

nutrient). Just to give an idea, the concentration of P in soils is at least 10-2 lower

than the concentration of any other major nutrient ions (NO3-, NH4*, SOa2-, Ca2*,

Mg2* and K*). From the point of view of plant nutrition, most of the phosphate in

soils is virtually inaccessible to plants ("non-labile" fraction) and "available" P

represents only a small amount of the total P, which is represented by the

phosphate in the soil solution and in the "labile pool" (solid phosphate which is

held by surfaces so that it is in rapid equilibrium with the soil solution phosphate)

(Kirkby and Le Bot, 1995).

Phosphorus is taken up by plants as HzPO+- or HPO+2- depending on the pH

of the nutrient medium (at physiological pH the dominant form is HzP0a-) and after

its uptake by plants it remains either as inorganic phosphate (Pi), (its esterified

through a hydroxyl group to a carbon chain as a simple phosphate ester (e.9.,

sugar phosphate)) or attached to another phosphate by the energy-rich

pyrophosphate bond P-P (e.9., in ATP). Another type of phosphate bond is the

diester (C-P-C), which mainly occurs in more complex or macromolecular

structures (Marschner, 1 995).

ln plants phosphorus is found in higher concentrations in young leaves and

their petioles.

The main fractions/functions of phosphorus in plants are:

1-Phospholipids (mainly in membranes, important for the separation of

different compartments in the cell);

2-Nucleic acids (carriers of the genetic information);

3-Sugar and nucleoside phosphates (in the cytoplasm, essential in energy

metabolism and active transport);

4-lnorganic phosphate (in the cytoplasm (enzyme regulator, exchange

processes) and in the vacuole (storage pool));

3



S-Phytate (storage form, e.9., in seeds)

Plants differ not only in the ability to compete for phosphorus but also in the

phase of the vegetative cycle when they most need of it. Normally, a young plant

that has produced about 25o/o of its total fresh weight might have already

absorbed/accumulate around 75o/o oÍ its total phosphorus.

The ability of plants to acquire nutrients from a given nutrient medium may

be very different according to genus, species, or even variety and, it's essential for

the plants that the root systems have the ability to react to the heterogeneity of the

root environment, in other words, they should present phenotypic plasticity.

The availability of nutrients is governed by a complex of soil and plant

properties.

This term includes at least two different aspects: availability in a chemical

and in a positional sense. Most of the interactions determining the availability of

nutrients to plants occur in the root-soil interface, conveniently regarded as the

rhizoplane (the root surface). The rhizosphere (for some authors also referred as

the hidden half of the hidden half that are the roots), is considered the zone of soil

influenced by the roots. The interactions that occur between plants and the

nutrient medium make it possible for roots to perform one of their many functions:

the acquisition of soil based resources (principally water and dissolved ions).

Although the chemical properties of the nutrient medium (e.9., the pH) are

very important for root growth and mineral nutrients availability, the conditions in

the rhizosphere and the extent to which roots can modify these conditions playa

very important role in mineral nutrient uptake in general (Marschner et al., 1986).

By depleting the soil solution to a very low level the roots create almost the

maximum possible gradient and thus initiate a strong diffusive flux toward their

surface. Hence it can be stated that it is the plant that affects the availability of soil

nutrients.

Conditions in the rhizosphere are also of importance for the adaptation of

plants to adverse soil chemical conditions, as occur, for example in acid mineral

soils (Marschner, 1991b). Being phosphorus supply to plants a major determinant

of grovúh in many environments efficient uptake mechanisms and accumulation of

P, for instance in vacuoles, serve to maintain plants with deficient and/or variable

P supply.
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Hewinkel (1991) outlined the "strategies" for phosphorus acquisition under

low supply proposed in the literature. He placed them into four categories:

1 - Higher P efficiency in the plant, by

- using less phosphorus per gram of dry matter produced;

- remobilizing phosphorus from other plant parts (i.e., old leaves).

2 - Adaptation of the uptake mechanism, by

-lowering Cmin âhd K, i.e. better uptake from low concentrations;

- rising Vr"r.

3 - Exploitation of a larger soil volume, by

- reducing the shoot root ratio;

- increasing root hair formation;

- profiting from symbiosis with VA-Mycorrhiza;

- forming proteoid roots.

4 - lnfluence on soil chemistry in order to increase the solubility of certain P-

fractions, by

- releasing chelators for Fe and Al;

- increasing root hair formation;

- elevating Ca2* uptake to balance Ca-phosphate solubility;

- increasing the phosphatase activity on the root surface to make organic

phosphorus available;

-lowering the pH (organic acids, protons H*).

These morphological, physiological and metabolic changes that occur in

response to phosphorus deficiency are part of an "adaptation strategy".

The work that is now presented will try to determine how two such different plants

as maize and chickpea respond when in the presence of a P-deficient nutrient

medium, in terms of morphological and physiological adaptations that are

enhanced under phosphate deficiency. This can give us an idea of how efficient

these plants can be when it comes to acquire phosphorus from soils with a low P-

content. A very special attention will be given to the importance of organic acids

not only in maintaining the charge balance in the plant but also to the important

role that they might perform in enhancing the acquisition of mineral nutrients,

particularly phosphorus, by plants.
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II . MATERIALS AND METHODS:

2.1 - Plant Cultivation:

Chickpea (cv. CPS-I) and maize (cv Earliking) seeds were germinated in

plastic trays for a period of 12 days using perlite as germination medium. Daily the

seedlings received about 2 L oÍ water per tray and in the first day each one of the

trays received also 2 g of CaSOa. Research done during the eighties indicates that

calcium is very important to obtain a good development of the root system,

because it acts as a messenger in signal transduction in plants, particularly in

transducting gravity and light signals in plant roots (Pickard, 1985; Poovaiah ef

a|.,1987; Evans et a1.,1991).

Thirty six seedlings of both species were then selected on a weight basis

(Wm=4,26 g, SD=0,233 g ; Wc=3,24 g, SD=0,412 g) and then grown in a growth

room for 4 days as a pre-culture period. The first two days in half and the other

two in full strength nutrient solution, in 50 L polythene tanks (Photo 1 and 2). The

full strength nutrient solution was as follows:

-Calcium nitrate Ca(NO3)2HzO - 1,4 m[\í;

-Potassium sulphate KzSO+ - 0,8 mM;

-Magnesium sulphate MgSOn.THz0 - 0,7 mM;

-Potassium dihidrogen orthophosphate KHzPO+ - 0,5 m[V;

-Fe-EDTA -0,1 mM for chickpea;

-O,25 mM for maize.

ln the case of the nutrient solution without P (-P), 0,5 mM KHzPO+ was

omitted and replaced by 0,5 mM of KzSO+. ln both treatments the micro nutrients

were supplied according to the Long Ashton formula (Hewitt, 1966).

The pH of all the nutrient solutions was adjusted to 6.0 at the beginning of the

experiment using HzSO+ (0,05 M) or a saturated solution of Ca(OH)z (Photo 3).

After the pre-culture period 24 seedlings of both maize and chickpea were

again selected on a weight basis (Wm=5,91 g, SD=1,586 g; Wc=4,06 g, SD=0,340

g). Four 50 L polythene tanks were used, each one containing 12 plants.

So, at day 0 we had four 50 L tanks inside the grovuth room, each one

containing 12 plants of maize or chickpea, two of them with a "-P" and the other

6



two with a "+P" nutrient solution. The plants were grown over the following g and
16 days, for maize and chickpea respectively, in the same growth room (day
temperature 25 oC; night 16 oC; photoperiod 16 hours.day-,).

ln order to maintain the nutrient concentration throughout the experiment
the nutrient solutions were completely renewed every two days and the induced
change in their pH was registered.

PHOTO í and 2 - The thirty six seedlings of maize and chickpea growing in the nutrient

solutions.

PHOTO 3 - Ajustment of the pH to 6,0
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2.2 - Harvest Procedure:

For both maize and chickpea four replicate plants per treatment were

harvested at every harvest time. Three harvests were made: for chickpea on day

0, 4 and 16; for maize on day 0, 2 and 8.

The shoot was separated from the root about 2 cm above the surface to

allow for the collection of the xylem sap. The fresh weights of roots and shoots

were recorded using a digital balance (Sartorius 1216 MP), and the roots were

then sub sampled for determination of the organic acids content and root length

measurement using the line intercept method (Tennant, 1975). After this, both

roots and shoots were dried in a oven at 80 oC for 24 hours to obtain the

respective dry weights.

2.3 - Collection of the xylem sap:

The xylem sap was collected over a period of one and a half hours in maize

and two hours in chickpea, using a 1 ml syringe. The collected xylem sap was

placed in individual 1,5 mL eppendorfs and was kept at 0 oC using a recipient with

ice. Sap was obtained individually from all plants, on day 0, 4 and 16 except from

some of the chickpea P stressed plants.

2.4 - Acidification of the rhizosphere:

To permit the visualisation of the acidification ofthe rhizosphere the roots of

the plants were first placed over a glass tray.

One L of + P and -P nutrient solution was boiled with plain agar (1o/o) for a

period of 10 minutes. Bromocresol purple was then added to the agar solution to

achieve a concentration of 0.075o/o. The pH ofthe solution was adjusted to 5.8

using NaOH (0.05M), and it was kept liquid at 45oC until it was pored over the

roots. Before covering the roots with the agar solution, small plastic rings were

placed over the roots, in the apical zone and near the root base (3 cm). 0,25 mL of

-P or +P nutrient solution was pipetted inside the plastic rings.

The photographic results and the exudates were obtained after one hour of

incubation at room temperature. Four treatments were considered for each specie:

for chickpea they were:C++ (chickpea plants grown in P sufficient medium in P

sufficient solution); C+- (chickpea plants grown in P sufficient medium in P

defficient solution); Ç-+ (chickpea plants grown in P defficient medium in P

8



sufficient solution) Unfortunately it was not possible to obtain the results from the

ç++ plants; for maize they were: M-( P-stressed plant in P-deficient agar); M-+ (P-

stressed plant in P-sufficient agar); 114++ (P-unstressed plant in P-suficient agar) and M+-

(P-unstressed plant in deficient agar)

2.5 - Determination of Organic Acids:

The determination of the organic acids (malic, citric and aconitic acid)

content was carried out on a HPLC (High Performance Liquid Chromatography:

Chromatography detector - Waters milipore Lambda Max Model 481 LC

Spectrophotometer; Pump - Waters milipore Model 510) operating with a solvent

flow rate of 2 mL/minute, at a pressure of 1500 psi and using a wavelength of 210

nm (electronic absorption band for the carboxylic group). The determination of the

organic acids was made on the roots, on the roots exudates and on the xylem sap.

2.5.1 - Sample PreParation:

After being weighted the fresh plant material was transferred to a blender.

30 mL of 7Oo/o ethanol in distilled water were then added and the plant material

was reduced to very small pieces. The solution was then filtered through a 10mm

Whatman no1 filter paper to a 100 mL volumetric flask and diluted to 100 mL with

70% ethanol.

To make possible the determination of the organic acids content in the plant

material that we want to analyse we first prepared the diluted samples to eliminate

all the anions and cations that are present in the material so that they do not

interfere with the HPLC.

a - Preparation of the SCX column:

1 - Turn on the vacuum pump (AASP VAC-Elut Ana Lytichem lnt.)

2 - Put the column into the vacuum box

3 - Wash the column with 2 mL of methanol

4 - Wash the column with 2 mL of distilled water

5 - Insert a plastic container to collect the sample

6 - Put 2 mL of sample into the column

7 - Wash with 2 mL of distilled water.

b - Preparation of the SAX column:

1 - Put the SAX column into the vacuum box

I



2 - Wash the column with 2 mL of methanol

3 - Wash the column with 2 mL of distilled water

4 - Take 2 mL of the sample obtained from the SCX and put into the SAX column

5 - Wash with 2 mL of distilled water

6 - lnsert a plastic container to collect the sample

7 - Wash with 2 mL of formic acid (8 tt/)

The samples were then dried inside a oven until all the formic acid had

evaporated. A 0,10 mL syringe was then used to inject the standard solution

containing 0.1341,0.1921 and 0,0217 g/L of malic, citric and aconitic acid

respectively. The absorbance values were recorded with the use of a chart

recorder (Kipp and Zonen BDB multi range) adjusted to a velocity of 2 mm.min-1

and a sensitivity of 20 mV. After the readings for the standard solution had been

obtained the samples were injected, after being diluted in 1ml of distilled water.

The amounts of organic acids in the samples were determinated by measuring

and comparing the height of the peaks obtained from the samples with the height

of the peaks obtained with the standard solution (Fig. 1).

FIGURE í- Standard graph for the Organic Acids ( a - Solvent peak; 1 - Malic acid peak;

2 - Citric acid peak; 3 - Aconitic acid peak)

2.6 - Determination of Phosphorus and Potassium in plant

material and in the xylem sap:

2.6.1 - Sample preparation:

To make possible the determination of the content of these nutrients in

plant material (shoots and roots) the organic matter must first be destroyed. This is
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achieved preparing the samples by dry combustion and solubilizing the ash

mineral constituents in hydrochloric acid.

In the case of the xylem sap, the amounts of sap that were collected were

diluted to complete 1 mL using distilled water.

2.6.1.1- Procedure:

After being weighted, the dried plant material was placed inside 30 mL silica

flasks that were then transferred to a muffle furnace and the temperature was

adjusted to 450 oC and maintained over a period of 24 hours, until a whitish-grey

ash remained, indicating that all the organic matter had been destroyed. The

flasks were then removed from the muffle furnace and 10 mL of hydrochloric acid

6 M (equal volumes of hydrochloric acid 36% and destilled water) were added to

each one. These were then placed over a hot plate at 102 oC until all the liquid had

evaporated. The residue was moistened with 2 mL of hydrochloric acid (36%

approx.) and left to boil for 2 minutes.

After this 10 mL of destilled water were added and left to boil again. After

cooling the contents of the flasks were filtered through a 10 mm Whatman no541

filter paper into 50 mL volumetric flasks and diluted to 50 mL.

2.6.2 - Determination of Potassium:

The concentration of potassium in the diluted ashed plant material and in

the xylem sap was determined by flame photometry (CORNING 400). The first

step to make this possible consists on the preparation of the potassium stock and

standard solutions.

2.6.2.1- Reagents:

-Potassium stock solution: To prepare the stock solution 0.19089 of

potassium chloride were dissolved in I L of destilled water. This solution contains

100 ppm

-Potassium standard solutions: 10 mL of the stock solution were diluted to

100 mL. This solution contains 10 ppm of potassium.

To calibrate the flame photometer appropriate dilutions of this standard

solution were made to give a range of concentrations from 0 to 10 ppm of

potassium.
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Before analysing the samples the flame photometer was adjusted until a

steady zero and maximum readings were obtained, using the potassium working

standard solutions. The readings obtained from each concentration were used to

draw the standard/calibration curve for potassium (Fig. 2).

0,0 5,0
Potassium (ppm)

10,0

FIGURE 2- Standard/calibration curve for potassium

2.6.2.2 - Examination of the sample solutions:

1 mL of each sample solution was taken and dilluted with distilled water

until the concentration of potassium felt into the range of 0-10 ppm. ln the case of

the xylem sap the same procedure was used using 0,1 mL of diluted sap.

2.6.3 - Determination of Phosphorus:

The determination of the phosphorus concentration in the diluted sample

solutions was carried out spectrophotometrically as the yellow phospho-vanado-

molybdate complex.

2.6.3.í - Reagents:

-Ammonium-molybdate-ammonium metavanadate reagent: Prepared by

adding 25 g of ammonium molybdate and I ,25 g of ammonium metavanadate to
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approximately 300 mL of distilled water. The solution was then heated to dissolve

and after cooling was diluted to 500 mL.

-Hidrochloric acid 5 M: Prepared by diluting 215 mL of hydrochloric acid

(approx.36o/o mlm HCI) to 500 mL with distilled water.

-Phosphorus stock standard solution: Potassium dihydrogen ortho

phosphate was dried at 102 oC for one hour and left to cool in a desiccator. 0,879

g of the dried salt were dissolved in distilled water and 1 mL of hydrochloric acid

(approx. 36% m/m HCI) was added to the solution that was then diluted to 200 mL

and one drop of toluene was also added to the solution.

This solution contains 1 mg.mL-1 ltOOOppm) of phosphorus.

-Phosphorus standard solutions: These were prepared on the day of use

and contained 0, 10,20,30, 40 and 50 mg.ml-1 of phosphorus.

2.6.3.2 - Preparation of the standard graphic:

10 mL of each phosphorus working standard solutions were pipetted into a

50 mL volumetric flask. To each one 5 mL ol 5 M hydrochloric acid and 5 mL of

ammonium molybdate-ammonium metavanadate reagent were added, after which

they were diluted to 50 mL and allowed to stand for 30 minutes.

The standard graph was drawn by measuring the absorbance for the

different standard solutions in a 10 mm optical cell at 400 nm (LBK Biochrom

Ultrospec ll) (Fig. 3).

1,0
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FIGURE 3 - Standard/calibration curve for phosphorus
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2.6.3.3 - Determination of the phosphorus content in the sample

solution:

10 mL of each sample solution were treated like for the preparation of the

standard graph. The determination of the phosphorus content was made by

reading from the standard graphic the number of mg of phosphorus equivalent to

the absorbances of the samples.

2.7 - Determination of nitrate in plant material and in the xylem

sap:

The nitrate concentration was measured in 0,5 g of dried plant material

using the method of Cataldo eÍ al. (1975).

2.7.1 - Sample preparation:

The preparation of the sample started with the drying of the plant material

(shoots and roots) in a oven at 85 oC over a period of 24 h. After this the plant

material was reduced to very small pieces using a blender and 0,5 g were

weighted into 100 mL volumetric flasks. Boiling distilled water was then added to

complete 100 mL. 0,05 g of activated charcoal were also added to each flasks.

The flasks were then shaked in a hot bath for a period of 15 minutes using an

electric shaker (Gallenkamp) after which the suspensions were filtered through a

10 mm Whatman no 1 filter paper into 50 mL volumetric flasks.

2.7.2 - Reagents:

-salicylic acid in concentrated sulphuric acid: Prepared diluting 5 g of

salicylic acid in sulphuric acid in a 100 mL volumetric flask.

-Sodium hydroxide 2 N: Prepared by diluting 80 g of sodium hydroxide

(NaOH) in distilled water to complete 1 L.

-Nitrate stock standard solution: 0,4077 g of potassium nitrate (KNOa) were

dissolved in distilled water to 1 L. This solution contains 250 mg of NOs-N.cm-3.
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-Nitrate standard solutions: Using the stock solution a serie of standard

solutions were prepared in 100 mL volumetric flasks containing 0, 5, 10,20,30, 40

and 50 mg of NOs-N.cm-3.

2.7.3 - Preparation of the standard graphic:

To prepare the standard curve each one of the standard solutions were

treated as follows:

1 - 0,2 mL of each solution were transferred to a boiling tube;

2 - 0,8 mL of salicylic acid in concentrated sulphuric acid were added and

the tubes were left to cool for 20 minutes;

3 - 19 mL of NaOH were slowly added to each one of the tubes to raise the

pH above 12 (yellow colour);

4 - The tubes were then allowed to cool and the absorbance was measured

at 410 nm using a spectrophotometer (LBK Biochrom Ultrospec ll). The values

obtained from the readings were used to draw the standard/calibration curve for

nitrate (Fig. a).
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FIGURE 4 - Standard/calibration curve for nitrate.
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III I RESULTS

3.1 - Morphological responses to phosphorous stress:

For both maize and chickpea significant differences in plant growth were

observed as a result of phosphorous starvation. The difference in plant growth

between the stressed and the unstressed plants increased with the duration of the

phosphorous starvation period and, considering the last harvest there was a

reduction oÍ 57 and 58% (for maize and chickpea respectively) in the total fresh

weight of the stressed plants when compared with the unstressed ones (Fig. 5 and

6).
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FIGURE 5 - Effect of phosphorous stress on the growth of maize (P+ = unstressed plants,

P- = stressed plants; bars represent the standard errors of means, n=4)

As expected, this reflected itself in the evolution of dry weight of the -P and

+P plants with time (fig. 7 and 8). The distribution of the dry weight between root

and shoot was also very influenced by the treatments (Fig 7, 8, I and 10).
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FIGURE I - Effect of phosphorous stress on the evolution of dry weight in chickpea
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FTGURE 12 - Distribution of dry weight in stressed (-P) chickpea plants

Contrasting with shoot growth, root growth was much less inhibited under

phosphorus deficiency, leading to a decrease in the shoot-root dry weight ratio

(Table 1 and 2).

Looking at the shoot-root ratios we see that when comparing maize with

chickpea at day 0 it can be observed that while in chickpea the root weight was

superior to the shoot weight (shoot-root ratio < 1), in maize happened exactly the

contrary (shoot-root ratio > 1). This was mainly due to the bigger seed weight in

the case of chickPea.

ln both maize and chickpea the value of the shoot-root ratio for the last

harvest was inferior to the value corresponding to day 0 in the case of the plants

suffering from phosphorus deficiency. This was particularly pronounced in

chickpea. The reduction that was observed in the shoot-root ratio was mainly due

to the decrease of the shoot dry weight, as a consequence of a lower Absolute

Growth Rate (AGR).

+SHOOT

-.,r-ROOT

c
o
o-
o)

.C

.g)
o)
B

ào

20



TABLE í - Evolution of fresh weight, dry weight and shooUroot ratio in maiz

TABLE 2 - Evolution of fresh weight, dry weight and shooVroot ratio in chickpea

10,43
16,66

0,14
0,26
0,26
0,69
0,6

2,36
2,46
2,38
3,94
2,15

7,2
10

1,99

3,47
3,24
11,08
6,32

0,47
0,9

0,88
3,4
1,88

0,33
0,64
0,62
2,72
1,29

P+
P-
P+

P-

5,91
11,66
10,94
48,15
20,56

3,66
8,19
7,71

37,07
14,24

0
2

8

0,83
1,28
1,16
1,64

0,8
17,75
15,34

9,34
10,44

2,75
4,6

4,65
33,55
15,69

0,42

0,89
0,81

5,01

2,63

0,19
0,5

0,44
3,11

1,17

0,23
0,39
0,38
1,9

1,47

4,06
7,77
7,28

52,91

21,8

1,31

3,17
2,63
19,36

6,11

0

4

16

P+

P-
P+

P-
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Root Total

P+

Maize

Chickpea

Shoot

0,3680,069

0,1 780,058

P+ 0,2870,1 04

0,1380,061 0,078

P-

0 1 82

P-

0,299

0,12

TABLE 3 - Absolute Growth Rate (g dry matter.day-t) for maize and chickpea

As presented in Table 3, the smaller AGR for the phosphorous stressed

plants was mainly a reflection of the reduction in the shoots AGR.

Looking back at Table 1 and 2 it can also be observed that the root length

was another root morphological characteristic that was significantly affected by the

treatments. When comparing maize with chickpea we can see that while in maize

phosphorous starvation induced the increase in root length in the case of chickpea

it was exactly the contrary and, a decrease in root length could be observed.

Perhaps more important than this is to look at the Specific Root Length

(SRL) which gives us a idea of how efficient plans are when it comes to respond

adaptatively to phosphorous deficiency. As can be seen both maize and chickpea

responded to phosphorus starvation by producing a bigger root length per gram of

root dry weight.

Phosphorus deficiency also reflected itself on the colour of the root system.

Plants growing in a nutrient medium without phosphorus presented darker roots

when compared with the plants that were supplied with phosphorus. This was

particularly visible in the case of the chickpea plants (Photo 8).

The symptoms of phosphorus deficiency were more visible in the shoots

then in the roots. ln maize, the leaves of the phosphorus deprived plants

presented a purplish colour (Photo 9) mainly along the central region and on the

lower stalk of the plant. ln these plants there was also a premature senescence of

the older leaves (Photo 7). ln the phosphorus sufficient plants the leaves

presented inter venial chlorosis (Photo 10).
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In the phosphorus stressed chickpea plants the tips of the older leaves

started by getting chlorotic few days after the withdrawal of phosphorus from the

nutrient medium and by day 16 they were necrotic (Photo 11). ln these plants

there was also a marked inhibition of branching and lateral bud development

(Photo 5).

PHOTO 4 - View of a phosphorus unstressed chickpea plant (P+) on day 16
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PHOTO 5- View of a phosphorus stressed chickpea plant (P-) on day 16
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PHOTO 6 - View of a phosphorus unstressed maize plant (P+) on day 8
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PHOTO 7- View of a phosphorus stressed maize plant (P-) on day 8.
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PHOTO I - View of the roots from the stressed (left) and unstressed (right) chickpea

plants.

PHOTO 9 - Leaf of a phosphorus deficient (P-) maize plant.

PHOTO 10 - Leaf of a phosphorus sufficient (P+) maize plant
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PHOTO 1í - View of the older leaves of a P-defficient chickpea plant, showing the

necrotic tips.

3.2 - Physiological responses to phosphorus stress:

As presented in figures 13 and 14 one of the most important and noted

responses of plants growing in a phosphorus deficient medium and supplied with

nitrate-N is the induced relative acidification of the nutrient medium, due to a

decrease in OH- release, when compared with the unstressed plants.

4r
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Day 0 Day 2 Day 4 DaY 6 DaY 8

Time

FIGURE 13 - Cumulative release of OH-in P-stressed (P-) and P-sufficient (P+) maize

plants growing in nutrient solution.
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FIGURE í4 - Cumulative release of OH- in P-stressed (P-) and P-sufficient chickpea

plants growing in nutrient solution.

The cumulative amounts of OH- released by the roots of the unstressed

plants were nearly the same for maize and chickpea but, in the phosphorus

deficient chickpea plants the induced relative acidification of the nutrient medium

was bigger when compared with the P-deficient maize plants (this can be due to

the diference in the duration of the experiment).

PHOTO í2 - Visualization of the induced change in the pH of the rhizosphere by a P-

sufficient chickpea plant treated with agar prepared from a P-sufficient solution (C++1
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PHOTO l3 - Visualization of the induced change in the pH of the rhizosphere by a P-

stressed chickpea plant treated with agar prepared from a P-deficient solution (C--).

PHOTOS í4 and í 5 - Visualization of the induced change in the pH of the rhizosphere in

maize

photos j2, 13,14 and 15 confirm the results presented in figures 9 and 10.

ln the plants treated with P-deficient agar it was visible a yellow colour
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(acidification) along almost the entire roots, and this was particularly noted in the

P,stressed chickpea plants. ln the plants treated agar prepared using a P-

sufficient solution the acidification was only visible around the root tips.

Looking now at Table 4 we can see that, as expected the amount of

phosphorus in the phosphorus deficient plants was significantly lower than in the

sufficient ones and, about ten times bigger in chickpea when compared with

maize.

TABLE 4 - Differences in the amount of phosphorus (as H2P04 ) between shoots and roots

of p-stressed (p-) and P-unstressed (P+) maize and chickpea plants in meq.planfl (the

values between parenthesis represent the % of phosphorus in shoots and roots).

Maize

Day 0 Day 2 Day 8

Shoot 0.04í (71,6)

P+

0,098(6í,3)

P.

0,048(73,5)

P+

0,364(75,2)

P.

0,036(60,5)

Root 0.061(28,4) 0,052(38,7) o,ozg(20,s) 0,12(24,8) 0,024(39,5)

Chickpea

Day 0

Shoot 0,37(64,6)

Day 4 Day 16

P+

0,573(55,7)

P.

0,262(44,9)

P+

2,729(44,9)

P.

0,31(44,1)

Root 0,203(35,4) 0,456(44,3) 0,348(57,1) 3,349(55,1) 0,393(55,9)

In maize, the amount of phosphorus in the shoots was always bigger then

in the roots and, while on day 2 the P-stressed plants had a bigger percentage of

phosphorus in the shoots, on day I happened exactly the contrary'

ln chickpea the same only happened on day 0 and on day 4 in the

phosphorus unstressed plants. on day 16 there was no difference in the

distribution of phosphorus between shoots and roots of the P-stressed plants

when compared with the unstressed plants, although there were large differences

in the amount of phosphorus present in the shoots and roots'
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From the results presented it can also be taken that, as a result of

phosphorus deficiency, a bigger percentage of phosphorus was allocated to the

roots, and this increase in the distribution of phosphorus to the roots was mainly

visible in maize plants.

The data presented in Table 5 show us that contrary to the amount of

phosphorus found in the tissues, the concentration of this element was bigger in

maize, particularly in the shoots (with exception of day 0). These results also show

decrease in the concentration of phosphorus was particularly noted in the shoots.

TABLE 5 - Effect of phosphorus stress in the concentration of phosphorus (as HzP0a-) in

shoots and roots of stressed (P-) and unstressed (P+) maize and chickpea plants in

meq.100 g dry weight-1.

Maize

Day 0 Day 2 Day 8

Shoot 13,15

P+

12,62

P-

10,18

P+

13,8

P.

2,88

Root 12,08 19,83 8,44 16,95 4,06

Ghickpea

Day 0

20,15

Day 4 Day í6

Shoot

P+

11,35

P.

5,93

P.

2,7

P+

8,62

Root 9,07 11,67 9,24 17,63 2,75

ln Table 6 the amounts of potassium in shoots and roots are are presented

as a function of the treatments. ln maize the amount of potassium was always

bigger in the shoots. Phosphorus deficiency reduced the amount of potassium in

plant material. Phosphorus stressed plants also allocated a bigger percentage of

their total potassium into the roots. This reflected itself over the concentration of

potassium in both shoots and roots according to the treatments (Table 7). This

concentration was always smaller in the roots, and this was particularly
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pronounced in the P-stressed plants on day 8. These values have to be

considered in relation to the change in the shoot-root ratio.

TABLE 6 - Effect of phosphorus deficiency on the evolution of the potassium content in

shoots and roots of maize and chickpea in meq K.plant-1 (the values between parenthesis

represent the % of phosphorus in shoots and roots)'

Maize

Day 0 Day 2 Day 8

Shoot 0,473(83,9)

P+

0,81(7e,e)

P.

0,767(78,e)

P+

3,073(83,5)

P-

1,413(79,1)

Root 0,092(16,2) 0,204(20,1) 0,204(21,1) 0,606(16,5) 0,373(20,9)

Chickpea

Day 0

Shoot 0,134(53,3)

Day 4 Day í6

P+

0,36(46,4)

P.

0,246(36,2)

P+

2,018(44,4)

P.

0,547(18,78)

Root 0,117(46,7) 0,416(53,6) 0,433(63,8) 2,525(s5,6) 2,363(81,22)

By the contrary, in chickpea, with the exception of day 0, the amount of

potassium was always bigger in the roots. This increase in the allocation of

potassium into the roots was more pronounced in the plants suffering from

phosphorus deficiency (81,22 % in the P-stressed plants against 55,6 % in the P-

unstressed plants on day 16). Looking at Table 7 we can also see that during the

time of the experiment the concentration of potassium was decreased in shoots

and increased in roots, particularly in the stressed plants'

The results presented above in Table I show us that between day 0 and

day 2 maize plants growing in a P-deficient nutrient medium not only produced a

bigger amount of organic acids but also had a bigger concentration of organic

acids in the roots, particularly malic and aconitic acid. By day 8 while the amounts

of citric and aconitic were increased in the P-stressed plants the amount of malic

acid was depressed with the concentrations having a similar behaviour.
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TABLE 7 - Effect of phosphorus deficiency on the evolution of the potassium

concentration in shoots and roots of P-stressed (P-) and P-unstressed (P-) maize and

chickpea plants (values in meq.100g dry weight-1)'

Maize

Day 0

148,5

Day 2 Day 8

Shoot

P+

126,5

P.

124,75

P+

115,5

P.

113,25

Root 67,75 78,5 86,5 61,2579

Chickpea

Day 0

71,23

Day 4 Day í6

Shoot

P+

71,6

P.

56,8

P+

66,2s

P.

46,5

Root 52,63 106,93 115,75 134,5 160

TABLE I - The effect of phosphorus deficiency on the amount and concentration of

organic acids in the roots of maize stressed (P-) and unstressed (P+) plants'

Maize

Day 0

16

13,9

8,7

Day 2 Day I
P+

8,43

3,75

1,84

P- P+

(pmol.plant.1)

20 111,75

5,14 24,25

6,32 11,16

P.

Malic

Citric

Aconitic

55,05

33,98

16,78

Malic

Gitric

Aconitic

11,45

9,92

6,22

3,24

1,44

0,71

(mmol.100 g-' dw)

7,67 16,43

1,98 3,62

2,43 1,67

9,47

5,69

2,81
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TABLE 9 - Effect of phosphorus deficiency on the amount and concentration of

organic acids in the roots of chickpea.

Chickpea

Day 0

93,4

19,7

0,62

Day 4 Day í6

P+

50,6

10,7

2,86

P.

(pmol.plant-í)

26,9

11,4

0,37

P+

392,4

81,3

6,66

206

138,08

11,01

P.

Malic

Citric

Aconitic

Malic

Citric

Aconitic

40,6

8,59

o,27

12,97

2,74

0,73

mmol.100 g-'dw)

7,09 23,16

2,99 4,17

0,09 0,3

14,09

9,55

0,45

The results presented for chickpea (Table 9) show us a pattern of organic

acid production that is different from the one we could see for maize. At day 4 only

the amount and concentration of citric acid was bigger in the roots of the P-

stressed plants and, the same could be observed at day 16'

Comparing maize with chickpea we can see that in both plants malic acid

was the organic acid that was present in the bigger amount and concentration and

that the concentrations of malic and citric acid were always bigger in chickpea,

with the biggest difference occurring in the P-stressed plants. The amounts and

concentration of aconitic acid were always bigger in maize.

Table 10 shows us the volume flux of the xylem sap exudate. We can see

that the volume collected per plant and per hour was always bigger for maize and,

with exception of day 2 in maize the volumes were always bigger in the P-

unstressed plants.

ln Tables 1 1 and 12 are presented the results of the phosphorus deficiency

in the amounts of phosphorus, nitrate and potassium in the xylem sap exudate of

maize and chickpea respectively. Of the three ions we can see that, with some

exceptions in the case of chickpea, potassium was the ion that was present in the

bigger amounts and concentrations.
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TABLE í0 - Volume flux of the xylem sap exudate in P-stressed (P-) and P-unstressed

(P+) maize and chickpea plants (ml'plant-1.hourí).

Maize

Day 0

0,17

Day 2 Day 8

P+

o,23

P.

0,3

P+

0,47

P.

o,12

Chickpea

Day 0 Day 4 Day 16

P+

0,06

P.

0,006

P+

0,24

P.

0,0080,006

ln maize both the amounts and concentrations were noticeably higher in the

p-unstressed plants when compared with controls. The amounts of both

potassium and nitrate changed quite similarly to one another, and while on day 2

they were bigger in the P-stressed plants on day 8 happened exactly the contrary'

This was not reflected in the evolution of the concentration of these two ions'

ln chickpea the reduction in the amounts and concentration of phosphorus

in the xilem sap exudate was followed by a similar behaviour of nitrate and

potassium.

TABLE 11 - The effect of phosphorus deficiency in the amounts and concentrations of

phosphorus, nitrate and potassium in the xylem sap exudate of maize.

Maize

Day 0 Day 2 Day 8

P+ P.

(pmol.plant-í.hour 1)

P. P+

Phosphorous

Nitrate

Potassium

1,3

2,1

6,2

í,8

1,6

I

0,4

3,3

9,5

2,8

3,4

10,5

0,3

0,6

0,6

Phosphorous

Nitrate

Potassium

7,6

12,3

36,6

7,8

6,9
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1,3

10,8

30,9

5,9

7,2

37,8

2,7

4,8

51,5
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TABLE l2 - The effect of phosphorus deficiency in the amounts and concentrations of

phosphorus, nitrate and potassium in the xylem sap exudate of chickpea.

Chickpea

Day 0 Day 4 Day í6

P+ P. P+ P.

(pmol.planfl.hourl)

Phosphorous

Nitrate

Potassium

0,4

0,04

0,4

0,2

0,07

7,7

0,03

n.d.

0,3

1,3

0,05

23,9

0,08

0,05

0,4

(mM)

Phosphorous

Nitrate

Potassium

6,4

6

6

3,3

1,2

25,5

5,1

n.d

10,2

5,41

0,8

21,1

10

0,6

10,2

ln Tables 13 for maize and 14 for chickpea are presented the results of the

effect of phosphorus starvation in the amount and concentration of malic citric and

aconitic acid in the xylem sap exudate. These values were always higher in maize

when compared with chickpea, and in both species malic acid was the organic

acid that was in bigger amounts and higher concentrations in the xilem sap

exudate.

ln maize on day 2 the amounts and concentrations of all organic acids were

bigger in the P-stressed plants when compared with controls. The reverse

situation was found on day 8, due to a general increase in the sufficient plants and

a decrease in the deficient ones.

ln chickpea, as a consequence of the withdrawal of phosphorus from the

nutrient medium both the amounts and concentrations of all organic acids were

lower in the phosphorus deficient plants (P-)'
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TABLE i3 - The effect of phosphorus deficiency in the amounts and concentrations of

malic, citric and aconitic acid in the xylem sap exudate of maize.

Maize

Day 0 Day 2 Day 8

P+ P+ P.

(pmol. plant-1.hour-í ;

P.

Malic

Gitric

Aconitic

0,138

0,011

0,015

0,058

o,012

0,015

0,150

0,020

0,029

0,1 93

0,032

0,066

0,049

0,008

0,015

(mM)

Malic

Citric

Aconitic

0,810

0,065

0,087

0,250

0,050

0,065

0,500

0,067

0,097

0,410

0,069

0,141

0,410

0,066

0,123

TABLE l4 - The effect of phosphorus deficiency in the amounts and concentrations of

malic, citric and aconitic acid in the xylem sap exudate of chickpea (n.d.: not detected).

Chickpea

Day 0

1,62

0,19

0,19

Day 4 Day í6

P+

18

1,5

2,1

P+P. P.

(pmol.planrl.houri)

Malic

Citric

Aconitic

0,70

0,01

0,2

86

7,44

13

0,62

0,06

n.d.

(mM)

Malic

Gitric

Aconitic

0,270

0,032

0,031

0,300

0,025

0,034

0,115

0,009

0,031

0,360

0,031

0,055

0,077

0,008

n.d.

ln figures 15 and 16 are presented the amounts of organic acids released

by the roots of chickpea and maize respectively. The exudates were collected in

two sites along the root axis: in the tip (apical) and about 3 cm above the tip (3
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cm). As can be seen there were large differences not only in the type but also in

the amounts of organic acids that were identified. While in chickpea it was possible

to detect the presence of both malic, citric and aconitic in maize only malic acid

was present in a detectable amount, and this was much smaller when compared

with chickpea.

ln chickpea malic acid was the main organic acid that was exudated with

the amounts being higher 3 cm above the tip (3 cm). The contrary happened with

malic and citric. The results that were obtained show us that when a plant that has

been deprived of phosphorus is transferred to agar containing phosphorus there is

a decrease in the exudation of citric and aconitic acid while the exudation of malic

shows a small increase in the tip. lt can also be taken from these results that when

a plant that has been growing in a P-sufficient nutrient medium is transferred to a

p-deficient agar the amounts of namely citric and aconitic acid are increased and

are bigger then the ones of the C-- plant. Unfortunately it was not possible to

obtain the results from the e++ plants.

0,8

0,7

0,6

0,5

0,4

0,3

0,2

0,1

0

Apical 3cm Apical 3cm Apical 3cm

c-- Ç-+ C+-

FIGURE 15 - Organic acids in the root exudates of chickpea at day 16'

(C--: p-stressed plant in P-deficient agar; C-+: P-stressed plant in P-sufficient agar; C++

p-unstressed plant in P-suficient agar; C+-: P-unstressed plant in defficient agar)

r Malic

r Citric

nu Aconitic
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0,16

0,14

0,12

0,1

0,08

0,06

0,04

0,02

0

r l\Ialic

Apical 3cm Apical 3cm Apical 3cm Apical 3cm

M-- M-+ M++ M+-

FIGURE í6 - Organic acids in the root exudates of maize at day 8.

(M--: p-stressed plant in P-deficient agar; M-+: P-stressed plant in P-sufficient agar; M++

p-unstressed plant in P-suficient agar; M+-: P-unstressed plant in deficient agar)

ln maize the amounts of malic acid in the exudates were always higher in

the tips (apical) and a decrease in the amount that was exudated could be

observed when a plant tha was growing in a P-deficient medium was transferred to

a P-sufficient agar, and were increased when a plant growing in a P-sufficient

medium was transferred to a P-deficient agar'

40



IV. DISCUSSION
The results presented in this work confirm that plants exhibit numerous

morphological and physiological adaptations to phosphorous starvation. One of

the most pronounced effects of phosphorus deficiency is the reduction in shoot

grovúh while root growth is unaffected or even stimulated. The results show that

plant growing under phosphorus deficiency, tend to present a smaller shoot/root

ratio. According to Pilbeam et al. (1993) this is probably because of a stronger sink

competition by roots for photosynthates and possibly by changes in the

phytohormone balance between shoots and roots. However Quiu and lsrael

(1992) defended that this decrease in the shooUroot ratio is not caused by higher

export of photosynthates to roots, but by a more efficient utilization of

carbohydrates in the roots of P-deficient plants. lt is also possible that a

combination of these two mechanisms might function together as part of an

adaptative "strategy". Low phosphate plants allocate more of their photosynthates

to roots and use them more efficiently, at the expense of shoot grovúh so as to

maximize their capacity to absorb phosphate (Fredeen et al., 1989) and this

optimization is dependent on plant species, environmental conditions and time in

the growing season (Klepper, 1991). The capacity to distribute a higher proportion

of the photosynthates to the roots is obviously under genetic control and is an

important aspect or phosphorus efficiency for plants grown in deficient soils

(Marschner, 1995). This partionizing of photosynthates, the source sink

relationships and its controlling mechanisms are therefore of crucial importance in

crop production.

ln chickpea, the fact that the reduction in shoot grovúh affected mainly the

development of primary and secondary branches seems to indicate that roots

were the main sinks. This reduction in the development of lateral branches can

have important implications in terms of final seed production because collectively

these produce about 83 to 89% or the total flowers ill the plant (ZaiÍer and Bakarat,

1ees).

ln maize the shooUroot ratio was not so depressed and this was perhaps

related with the fact that the young leaves might have also acted as sinks, wich

might also be associated with the duration of the experiment (8 days compared

with 16 days for chickpea). The fact that the old leaves behaved as sources
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explains the premature senescence (in maize) and tip necrosis (in chickpea) that

was observed in these leaves. In maize was also noted the purpling of the leaves

wich is known to be associated with the formation of anthocianin pigments.

Another consequence of the reduction in shoot growth is that by decreasing

the expansion of the photosynthetic/leaf surface (due to an insufficient supply of

phosphorus for the expansion of epidermal cells) phosphorus deficiency

decreases plant photosynthetic products, which is further pronounced by a

reduction in the photosynthetic rate per unit area as found by Quiu and lsrael

(1994). The small size and dark green colour of the leaf blades in phosphorus

deficient plants are the result of impaired cell expansion and a correspondingly

larger number of cells per unit surface area (Hecht-Buchholz,1967).

Relatively to root growth the increase in the SRL (Specific Root Length) that was

observed under phosphorus deficiency (particularly in maize) can be related not

only with the increase in the root surface area but also with the possibility that

plants have to explore deeper horizons in the soil and/or a bigger soil volume.

Root systems are characterized by a very high adaptability and their growth and

development involves complex interactions between both the soil environment and

the shoots. Since the environment in wich root systems develop is highly

heterogeneous, both in space and time, the root system has to have the ability to

react to heterogeneity and, thus, must posses high phenotipic plasticity (Fitter,

1gg1). This might contribute to an improvement of the phosphorus acquisition by

the plants because it is known that when the roots of plants that are growing in

media deficient of phosphate are exposed to ample concentrations of this nutrient

the rate of uptake of the ion previously in short supply is much increased

compared with control plants maintained with an adequate provision of this ion

(Hoffman, 1968; Cartwright, 1972; Clarkson and Scategood, 1982). Because

maize plants developed a bigger SRL we may speculate that they were more

efficient than chickpea in determining the spatial availability of phosphorus.

Roots not only act as sinks for mineral nutrients supplied by the soil via

mass flow or diffusion but they can also change the rhizhosphere in a variety of

ways (Marschner et a1.,1986; Marschner and Cakmark, 1987). When nutrients are

strongly bound to the soil the exposure of large root surfaces to the soil may not

be enough to absorb nutrients from very low concentrations. Nutrient acquisition in

these cases depends on a variety of "strategies" that increase the solubility of
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nutrients by changing the chemical environment of roots. lt was observed that

phosphorus stress induced a relative acidification of the rhizosphere. Other studies

have reported a net acidification of the rhizosphere in response to P-stress, and

this is associated with a shift from excess anion over cation uptake by the P-

sufficient plants to an excess cation uptake by the P-deficient plants (Nye ef a/.,

1982; Moorby et a1.,1988; Hoffiand et a1.,1989; Le Bot et al., 1990). This highly

localized acidification might enable the roots to decrease the rhizosphere pH in

apical zones even in calcareous soils to enhance phosphorus mobilization. The

form of nitrogen supply (ie, NOs-, NHa* or symbiotic Nz fixation) is a major

determinant of the rhizosphere pH (Marschner and Romheld, 1983). However

there is increasing evidence that in many instances phosphorus deficiency-

induced acidification is either exclusively, or at least to a high extent caused by

excretion of organic acids (Marschner, 1995). Striking differences in the

rhizosphere pH exist between plant species growing in the same soil and supplied

with nitrate nitrogen. Buckweath (Raij and van Diest, 1979) and chickpea

(Marschner and Romheld, 1983) have a very low rhizosphere pH compared, for

example, with that of weath and maize. These genotipical differences reflect

differences in cation/anion uptake ratio (Bekele et al., 1983).

Phosphorus deficiency not only reflected itself in the uptake but also in the

distribution of, not only phosphorus but also other nutrients such as nitrogen (NOs-

-N in this case), and potassium.

TABLE í5 - lonic balance in the roots of P-stressed and P-unstressed maize and

chickpea plants on day I and 16 respectively (in mmol).(*values from Le Bot ef a/.,199011).

K* H2P04 NOs- (c-A)
Total Org.

Acids

Maize

P+

P-

86,5

61,25

17

4,1

64,42

33,87

21,74,18

23,28

Chickpea

17,7

P+

P.

134

160

17,63

2,75

14* 102,4

154,25

27,6

24,1
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FIGURE 17 - Model for the recirculation of potassium between root and shoot in relation

to nitrate and malate transport (PEP-Phosphoenol Piruvate).

(BasedonBen-Zionietal,lgTlandKirkbyandKnight'1977).

The concentrations of P (as HzPOa-) in the shoot and root of P-stressed

plants were noticeably lower than controls. Phosphorus deficiency resulted in an

increase in the percentage of the total phosphorus being allocatted in to the root

system, and this difference was particularly visible in maize. The fact that the

concentration of phosphorus was smaller in the roots of the P-stressed plants can

be related not only with the phosphorus deficiency itself but also with the

decrease in the shoovroot ratio. These results are consistent with the theoretical

generalization (chapin, 1983) that plants allocatte resources optimally when all

processes are equaly limiting to growth. For phosphorus higher use efficiency in

certain genotypes may be related to better use of stored Pi (Caradus and

Snaydon,1g87; Hart and Colville,1988) either within a given tissue or by better

retranslocation between shoot organs (Youngdahl, 1990)'

The concentration of potassium in both maize and chickpea roots was quite
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differenly affected by the two treatments. The results that were found can be

discussed in relation to Figure 18. Potassium plays an important role as

counterion for nitrate transport in the xylem (Van Beusichem et a\.,1988). ln maize

the lower concentration of K* can be related with the decline in the concentration

of organic acids (namely malate), and can explain the higher accumulation of

NOg- in the roots of the maize P-deficient plants. According to Keltjens (1986) the

reduced concentration of K* in the roots of P-deficient maize plants can also be

due to a lack of a K*-recirculation in the maize plant'

By the contrary, in chickpea the higher concentration of K* in the roots of

the pstressed plants can not be related with the need to maintain electroneutrality

in plant tissues. After prolonged periods of phosphorus deficiency plants are

thought to produce large amounts of oxalic acid (Ramadam. pers. com.), and the

presence of this organic acid migth explain this high K* concentration'

Nitrate however seems to be the most sensitive ion to P-stress probably

because it is most readily affected by influx and efflux processes (Le Bot et al.,

lggg). The results resumed in Table 15 show indirectly that P-deficiency has a

large influence over the rates of NOs- uptake and assimilation, and these results

are in agreement with the ones of Rufty et al. (1993)'

ln maize the fact that the concentration of nitrate was bigger in the P-

stressed plants seems to indicate that the assimilation of nitrate was proportionaly

more affected than uptake. Working with tomato plants Pilbeam et al. (1993) have

reported a depression in the rate of nitrate reductase activity (NRA) after 3-5 days

of withdrawal of P from the nutrient solution while PEPcarboxilase showed a

marked increase over the same period.

ln chickpea the concentration of nitrate was smaller in the roots of the P-

stressed plants. By reducing the assimilation of nitrate into proteins phosphorus

deficiency might have a negative feed-back on NOg- influx and/or stimulate NOg-

efflux. One obvious possibility for the decreased uptake is the decreased

availability of energy (metabolic Pi and ATP), required for active uptake of NOs-

across the plasma membrane of root cells (Glass, 1988)'

It is well known that assimilation of nitrate leads to organic acid

accumulation (Mengel and Kirkby, 1982). ln Table 15 we can also see that

phosphorus deficiency by inducing a limitation in the assimilation of nitrate lead to

a reduction in the concentration of organic acids in the roots, so that the
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electrochemichal balance could be maintained.

The composition and concentration of mineral elements and organic solutes

in the xylem sap depends on a various factors such as plant species, mineral

element supply to the roots, assimilation of mineral elements in the roots and

nitrogen recycling (Marschner, 1995). As can be taken from the tables showed

bellow p stress induced a reduction in the concentration of phosphorus in the

xylem sap of maize while in chickpea the concentration was bigger in the P-

stressed plants. This can be explained by differences in the in the xylem sap

volume fluxes for both plant species. The concentration of K* in the xylem sap

exudate was smaller in the chickpea stressed plants and bigger in the maize

stressed plants. Nitrate concentration was also reduced but in maize that only

happened after day 2, showing an inverse relation with the concentration of K+ in

the roots.

TABLE í6 - lonic balance in the xylem sap exudate of P-stressed (P-) and P-

unstressed (P+) maize plants (in mM).

K* HzPoa' Nos- (c-A) ,rn]i§l"
P+

P.

33 7,8 6,9 18,3 0,365

Day 2
30,9 1,3 10,8 18,8 0,664

37,8 5,9 7,2 24,7 0,62

Day 8
51,5 2,7 4,8 44 0,599

TABLE 17- lonic balance in the xylem sap exudate of P-stressed (P-) and P-unstressed

(P+) chickpea plants (in mM).

K* HzPor' Nor- (c-A) ,rn]i}l"
P+ 25,5 3,3 1,2 21 0,359

Day 4
P. 10,2 5,1 n.d 5,1 0,155

P+

P.

P+ 21,2 5,4 0,8 14,9 0,466

Day í6
P. 10,2 10
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As in ion accumulation in root cells, maintenance of cation-anion balance is

necessary in the xylem exudate (Allen et a1.,1988; Findenegg et a1.,1989). The

corresponding difference in negative charges in the exudate is aproximately

compensated by the elevated concentrations of organic acid anions. Once again

the concentration of organic acids was a function of the necessity of plants to

maintain this ionic balance between cations and anions. There was an exception

to this in maize at day 8 were in the P-stressed plants a bigger proportion of the K*

relativelly to nitrate and phosphorus was not balanced with the production of

organic acids. This can mean that in the late stages of phosphorus deficiency

other organic acids (such as oxalic acid) might also play an important role in

maintainig the ionic balance in these plants'

On average 30-60% of the net photosynthetic carbon is allocated to the

roots and of this carbon an apreciable proportion is released as organic carbon

into the rhizosphere. This release of carbon, also named rhizodeposition, is highly

variable (Lynch and Whipps, 1990). For a given plant species rates of

rhizodeposition vary much and can be, for example, 2-4 times higher for soil-

grown plants than for plants grown in nutrient solution (Trofymow et a1.,1987).

Organic acids are part of the Low Molecular Weight Root Exudates and enhanced

root exudation of organic acids is often observed under phosphorus deficiency in

dicots in general and in legumes in particular, and in some plants like white lupin

they can be accounted for 23% of the net photosynthesis after 13 weeks grovúh

(Dinkelaker et a|.,1989). Once again it is of great importance the high adaptability

("phenotipic plasticity") of plants and root systems in particular to the heterogeneity

of the rhizosphere environment, a dinamic microenviromnent continually renewed

by root growth and the substances relleased by the root. Organic acids may also

be produced by microbial activity stimulated by the release of organic carbon from

roots (Marschner, 1995), and certain constituents of the LMW root exudates migth

also be transformed by rhizosphere microorganisms to highly physiologicaly active

compounds (e.g. phytohormones). The results presented in this work allow us to

conclude that the increased exsudation of organic acids may be an important

component in the strategies of plant adaptation to acid mineral soils for both

increasing efficiency in phosphorus acquisition and avoidance of alluminium

toxicity.

Marschner (1991a) has drawn attention to the fact that organic acid release
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from roots may be an efficient alternative to V A-ttlycorrhiza in the acquisition of

phosphorus from the soil.

Citric and malic acid form relatively stable chelates with Fe(lll) and Al,

thereby increasing the solubility and rate of phosphorus uptake and due to this

they can have an important role in bringing inorganic phosphates into solution.

Citric acid is the dominant compound in the proteoid root exudates of white lupin

(Gardner et a1.,1983) and effective in the mobilization of phosphorus from both

acid and calcareous soils. The highly local citric acid exudation acidifies the

rhizosphere even in calcareous soils and mobilizes sparingly soluble calcium

phosphates by dissolution and subsequent formation of sparingly soluble calcium

citrate in the rhizosphere.

RO

( Fe/O H /H 2 Poa/Citrate)
+ polyrner

Citrate

Citrate
Fe - Citrate

+

H+
H2POa

SOIL SOLID PHASE

FIGURE 18 - lllustration of the possible reaction sequence between citrate iron and

phosphate in soil (From Gardner eÍ a/., í983)

The model presented in figure 18 is an adaptation of the one presented by

Gardner et al. (1983) and is a representation of the reaction of citrate after it has

been exudated in the rhizosphere. According to this model after citrate has been

exudated from the roots it reacts with Fe and P leading to the formation of
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polymerised (Fe/OHPOy'Citrate) particles that diffuse towards the root surface

were, due to the reducing activity of roots, they are degradated and phosphate is

absorbed by the plants. This also explains the reported change in the colour of the

root system in the P-stressed plants (particularly in chickpea) that is though to be

related with the accumulation and/or precipitation of Fe in the root system.

The results obtained and presented in Fig. 15 and 16 seem to be in

agreement with this mode! and with the possibility that citric acid has a very

important role in phosphorus acquisition under conditions of low supply. The fact

that the plants that were growing in a P-deficient nutrient solution seem to produce

less citrate when transferred to a P-sufficient nutrient solution seems to be a

confirmation of this. Furthermore when a P-sufficient plant is transferred to a P-

deficient medium there seems to be an increase in the exudation of this organic

acid. The higher rates of organic acid exudation in chickpea plants can mean that

chickpea plants are more efficient than maize plants in affecting the chemichal

availability of phosphorus in the nutrient medium were its supply is limited. On acid

soils the release of organic acids offers a number of advantages to the plant for it

allows the mobilization of P from sparingly soluble Fe and Al compounds wich can

then be absorbed by the root. The chelation of Fe and Al by the organic acids also

prevents the phytotoxic effects of these elements. !t is therefore likely that the

secretion of citrate by the roots will result in the formation of ferric hidroxil

phosphate polycation kept in solution by a coating of citrate molecules. Thus, the

action of citrate would be to effectivelly increase the concentration of phosphorus

in solution around the root by formation of the polymeric (Fe/OH/POy'Citrate)

particles wich (in addition to the phosphate ions in solution) can diffuse towards

the root surface were, due to the reducing activity of the root), they will be

degradated and phosphate will be made available for absorption by the plant.

But in both maize and chickpea it was malic acid the main organic acid to

be exudated from the roots, with bigger amounts in chickpea, and if in chickpea

there seemed to exist no relation between the rate of its exudation and

phosphorus stress the same can not be said for maize, were the behaviour of

malic acid was equal to the one reported for citric acid in chickpea. Malic acid is

thought to stimulate the microbial activity in the rhizosphere (Sanders, per. com.),

which may affect the acquisition of mineral nutrients by roots either directly via

effects on mobilisation and/or immobilisation or indirectly via effects on root
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morphology and/or physiology (Marschner, 1991a). The excretion of organic acids

in the rhizosphere is probably coupled with H cotransport, and Ratnayake et al.

(1978) suggests that the main factor responsible for the stimulation of exudation

under P deficiency is the increase in membrane permeability. Since phospholipids

are essential components of the plasma membrane it may be supposed that if

phosphate is witheld from the nutrient medium, membrane function should be

impaired and permeability increased, as observed by Ratnayake et al. (1978),

wich results in a net release not only of organic acids but also of other metabolites

wich are supposed to promote the infection of the roots by V A-Mycorrhiza

(Graham et al., 1981).

The nitrogen fixing microorganism Azospirillum has been isolated from

maize roots (von Bullow and Dobereiner, 1975) and has been found to use malic

acid preferentially as carbon source (von Berkum and Bohool, 1980), and it is
possible that some other microorganisms which might present a important role in

phosphorus balance in soil can also be stimulated by the presence of malic acid.

The effects of aconitic acid are unknown and further research is necessary

not only to understand the effects of and the mechanisms ("strategies") that are

enhanced under phosphorus deficiency but also to permit the selection of species

or even cultivars according to their ability to respond adaptativelly to nutrient

mediums with a low supply of phosphorus.
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