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ABSTRACT

Aim When faced with dichotomous events, such as the presence or absence of a
species, discrimination capacity (the ability to separate the instances of presence
from the instances of absence) is usually the only characteristic that is assessed in
the evaluation of the performance of predictive models. Although neglected, cali-
bration or reliability (how well the estimated probability of presence represents the
observed proportion of presences) is another aspect of the performance of predic-
tive models that provides important information. In this study, we explore how
changes in the distribution of the probability of presence make discrimination
capacity a context-dependent characteristic of models. For the first time, we explain
the implications that ignoring the context dependence of discrimination can have
in the interpretation of species distribution models.

Innovation In this paper we corroborate that, under a uniform distribution of the
estimated probability of presence, a well-calibrated model will not attain high
discrimination power and the value of the area under the curve will be 0.83. Under
non-uniform distributions of the probability of presence, simulations show that a
well-calibrated model can attain a broad range of discrimination values. These
results illustrate that discrimination is a context-dependent property, i.e. it gives
information about the performance of a certain algorithm in a certain data
population.

Main conclusions In species distribution modelling, the discrimination capacity
of a model is only meaningful for a certain species in a given geographic area and
temporal snapshot. This is because the representativeness of the environmental
domain changes with the geographical and temporal context, which unavoidably
entails changes in the distribution of the probability of presence. Comparative
studies that intend to generalize their results only based on the discrimination
capacity of models may not be broadly extrapolated. Assessment of calibration is
especially recommended when the models are intended to be transferred in time
or space.
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INTRODUCTION

Models, as simple representations of a complex world, make

possible the quantification and understanding of natural phe-

nomena and the generation of predictions (Soetaert & Herman,

2009). Predicting dichotomous events is necessary in a variety of

every-day situations ranging from assessment of the quality of a

wine to diagnostic medicine (Swets et al., 2000). In the fields of

ecology, biogeography and evolution, predicting species occur-

rence (species distribution modelling, herein SDM; for recent

reviews see Franklin, 2009; Peterson et al., 2011) has become an

important approach in overcoming what has been called the

Wallacean shortfall, i.e. the general lack of knowledge about the

distribution of species (Whittaker et al., 2005).

For models to be considered useful, they need to be evaluated

(Rykiel, 1996). Usually, predictive performance is the only facet

on which researchers focus their attention, and it is desirable

that the predictions match the observations as closely as possi-

ble. When faced with a dichotomous event, the most common

practice is to assess discrimination capacity, i.e. the effectiveness

of the scoring rule (S; usually called suitability in SDM) for

separating the positive (instances of presence of the species, Y =
1) from the negative (instances of absence of the species, Y = 0)

outcomes (Harrell et al., 1984). The area under the receiver

operating characteristic (ROC) curve (AUC) has been a widely

adopted statistic in measuring discrimination power (Hilden,

1991; Swets et al., 2000; Lobo et al., 2008; for extensive details on

the ROC analysis see Krzanowski & Hand, 2009). The AUC can

be interpreted as the probability P(S|Y = 1 > S|Y = 0), i.e. the

probability that a positive case chosen at random will be

assigned a higher S than a negative case chosen at random.

Therefore, what is important for the AUC is the ranking of the

S-values, not their absolute difference. This simple interpreta-

tion has probably contributed to its widespread use, though it is

not exempt from criticism (Hilden, 1991; Lobo et al., 2008;

Peterson et al., 2008; Jiménez-Valverde, 2012). In this study, the

AUC will be used to account for discrimination as it is a

common statistic and because our results do not depend on the

metric used but are relevant for any discrimination measure.

If S is expressed as probability of presence, then the calibra-

tion of the model is an additional aspect of predictive perform-

ance that should be assessed (note that transformations of S can

be used to recalibrate any kind of scoring rule; see Thomas et al.,

2001). Calibration has different meanings; in statistics, the most

widely used meaning refers to the model fitting process. In this

study, we understand calibration (or reliability) as the degree to

which the observed proportion of positive cases (empirically

estimated probabilities) equates to the model estimated prob-

abilities in any given testing data set (Harrell et al., 1984;

Hosmer & Lemeshow, 2000). In a well-calibrated model, P(Y =
1|S) = S. For instance, in a SDM context, one would want 80% of

the locations predicted with a probability of 0.8 to be occupied

by the focus species. The calibration graph, in which P(Y = 1|S)

is plotted as a function of S, is an easy way to assess calibration

(Harrell et al., 1996); the graph of a perfectly calibrated model

will match the identity (45°) diagonal (for further details see

Sanders, 1963; Pearce & Ferrier, 2000). Calibration and discrimi-

nation are two aspects of a multi-sided general concept, that is,

prediction performance (Sanders, 1963; Miller et al., 1991;

Pearce & Ferrier, 2000). Although they refer to different qualities

of the models, a priori, some constraints and trade-offs exist,

and calibration and discrimination are not entirely independent

from each other (Murphy & Winkler, 1992). For instance, the

reader may have already realized that, at first glance, a perfectly

calibrated model cannot achieve perfect discrimination

(Diamond, 1992).

Pearce & Ferrier (2000) were the first to formally introduce

the calibration concept in the SDM field. These authors dis-

cussed the differences between discrimination and calibration,

explained how to measure and interpret the calibration of

models and illustrated how the two concepts tell us different

things about the performance of models. Recently, Phillips &

Elith (2010), inspired by Hirzel et al. (2006), have suggested a

way to approximate a calibration curve when no absence records

are available, a common situation in biodiversity studies. Under

this scenario of lack of absence data, the empirical probabilities

cannot be estimated, so the calibration plot cannot be built.

Under certain strong assumptions, the presence-only calibration

(POC) plot devised by Phillips & Elith (2010) may be a way to

deal with this shortcoming. Unfortunately, apart from these

commendable efforts, and contrary to what happens in other

scientific domains, few authors in SDM have paid attention

to calibration, while most of them have focused just on

discrimination.

In this study, we describe the basic relationships that exist

between calibration and discrimination and show, using easy-

to-understand simulations, that for these relationships to hold,

uniformity in the distribution of S is a necessary assumption. We

explore in depth how non-uniformity in the distribution of S

indicates that discrimination capacity is a context-dependent

characteristic of models. For the first time, we fully explain the

dramatic implications that ignoring the context-dependence of

discrimination can have in the interpretation of species distri-

bution models.

CALIBRATION AND DISCRIMINATION: BASIC
PATTERNS AND TRADE-OFFS

Two points need to be emphasized before proceeding. First,

throughout this paper it is assumed that there is reliable infor-

mation about the positive as well as the negative cases, at least for

model evaluation. As said before, because of the increasing avail-

ability of presence data in digital biodiversity databases, in the

last few years there has been a notable interest in developing

ways of predicting species distributions without using absence

data. Instead, pseudo-absences (a sample of locations with no

information about the presence or absence of the species) or

background data (a sample of locations representing the envi-

ronmental variation of the study area) are often used together

with presence data for model training and evaluation (see Peter-

son et al., 2011; but see Royle et al., 2012). However, without

absence data for model testing, the application of discrimination
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measures such as the AUC is questionable (Jiménez-Valverde,

2012). In addition, calibration can only be properly assessed if

reliable absence data allow the estimation of the observed prob-

ability P(Y = 1|S). Second, the evaluation of models can be

performed at different levels. On one extreme, the accuracy of

models can be assessed only on the training data, i.e. using

entirely non-independent data. On the other, the interest may lie

in testing the model under completely different circumstances

using independent data (for example, from a different region or

time). In between, there is a continuum in the degree of inde-

pendence of the testing data set, and the researcher has to choose

the level of independence according to the intended application

of the model. Thus, throughout this paper, and unless stated

explicitly, we will not refer to the degree of independence of the

testing data and we will assume that it has been chosen properly

according to the aim of the research; the revealed patterns and

main conclusions are valid for any degree of independence.

That a perfectly calibrated model cannot attain perfect dis-

crimination can be proved with a simple simulation exercise (see

Appendix S1 in Supporting Information). A vector sj of S-values

was generated by picking a sample of n = 10,000 random

numbers from a uniform distribution, j being the iteration

number. A second vector wj, of the same length as sj, was gener-

ated in the same way. To create vector yj with the information

about the outcomes of the binary event (e.g. the presence or

absence of the focal species in SDM) the following condition

was set:

if then elsew s y yij ij ij ij< = =1 0, ,

where i denotes the cases (in SDM, the spatial locations) and

ranges from 1 to 10,000. In this way, sj is a well-calibrated scoring

rule with respect to yj. The prevalence (i.e. the proportion of

positive outcomes in the sample) equals 0.5 because, given a

perfectly calibrated model,

P Y P Y S f S S( ) ( ) ( ) ,= = = =
−∞

∞

∫1 1
1

2
d

where f(S) is the probability density function of S.

The AUC was computed using the ROCR (Sing et al., 2009)

package for R (R Development Core Team, 2009). The proce-

dure was repeated 100 times (j = {1, . . . , 100}) and the mean

AUC was calculated (the simulation can be repeated by readers

by copying and pasting the code of Appendix S1 in the R

console). In Fig. 1 the results of the simulation are shown. The

calibration plot shows that s is an almost perfectly calibrated

prediction (it is not perfect because of the random sampling

variation). To generate this plot, sj was divided into 10 intervals

(bins, t = {1, . . . , 10}) of fixed cutpoints (following Lemeshow &

Hosmer, 1982) so nt ª 1000. Mean P(Y = 1|St) was plotted as a

function of mean st for the 100 iterations (note that in the R

script provided in Appendix S1 only the last iteration is plotted

as an example). A mean AUC value of 0.83 (SD � 0.004) was

obtained. Our simulation thus corroborates the result of

Diamond (1992), who obtained the same AUC value for a per-

fectly calibrated model via formal mathematical demonstration.

It is worth noting that a value of 0.83 does not represent ‘out-

standing’ or ‘very good’ discrimination according to Hosmer &

Lemeshow (2000) and Pearce & Ferrier (2000), respectively.

Extreme cases – note that these are not simulations but theo-

retical constructs – are idealized in Fig. 2. When the calibration

departs from perfection and the model overestimates P(Y = 1|St)

for the bins below certain t and underestimates P(Y = 1|St)

for the bins above that t (Fig. 2a), then discrimination cap-

acity increases and the AUC exceeds the base 0.83 value

(0.83 < AUC < 1). In the reverse situation, when the model

underestimates P(Y = 1|St) for the bins below certain t and

overestimates P(Y = 1|St) for the bins above that t (Fig. 2b),

discrimination capacity decreases and the AUC falls behind the

base 0.83 value (0.5 < AUC < 0.83). Note that a global calibra-

tion index based on squared errors would yield the same value

for both scenarios depicted in Fig. 2(a) and (b). If P(Y = 1|St) =
1 for every bin above certain t and P(Y = 1|St) = 0 for every bin

below that t (Fig. 2c), then discrimination is perfect and AUC =
1. In the reverse situation, when P(Y = 1|St) = 0 for every bin

above certain t and P(Y = 1|St) = 1 for every bin below that t

(Fig. 2d), then AUC = 0. Note that AUC values below 0.5 mean

that the model is useful for discrimination but not for ranking,

i.e. it is using the information in the inverse way (Fawcett, 2006),

so an AUC of 0 also means perfect discrimination. If P(Y = 1|St)

is constant for every t (Fig. 2e), then discrimination is no better

than chance and AUC = 0.5. The last situation refers to the

scenario in which P(Y = 1|St) = 1 for some bins and P(Y = 1|St)

= 0 for the others but, contrary to the cases shown in Fig. 2(c)

and (d), the bins show an alternating pattern (Fig. 2f). In this
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Figure 1 Calibration plot of the simulations showing the mean
model estimated probability (x-axis) against the mean observed
proportion of positive cases (y-axis) for 10 equal-size probability
intervals (bins) and 100 iterations (see text for details). The graph
shows that the simulated scoring rules are almost perfectly
calibrated, whereas the mean area under the receiver operating
characteristic (ROC) curve (AUC) is 0.83 (SD � 0.004). Solid line:
identity line indicating perfect calibration; whiskers: standard
deviation.
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case, the AUC can have any value between 0 and 1. For instance,

in a forecast with a calibration plot like the one shown in

Fig. 2(f), where P(Y = 1|St) = 0 and P(Y = 1|St) = 1 alternate one

at a time and P(Y = 1|S1) = 0, the AUC equals 0.6. The interesting

point to highlight here is that, although the AUC is always lower

than 1 (i.e. ranking is not perfect), this sort of scoring rules

perfectly resolves the classification task of separating the positive

from the negative outcomes (Hilden, 1991; Flach, 2010).

Although these scenarios may not be common (especially in

cases in which S has a natural order such as in probabilistic

models), spotting them may help to detect and understand

the effect of new interactive factors that condition the outcome

of the event (see Appendix S2).

BREAKING DOWN THE TRADE-OFFS:
DISCRIMINATION DEPENDS ON THE
DISTRIBUTION OF S

The AUC value equals 0.83 in a perfectly calibrated model if

and only if nt is constant for every bin. To show the implica-

tions of the violation of this condition, we ran simulations (see

pseudocode in Appendix S3) in which, starting from an almost

Figure 2 Different idealized calibration
plots of scoring rules that deviate from
perfect calibration, and their relationship
with discrimination (the sample size is
the same for every bin). (a) Better
discrimination than a perfectly calibrated
model [area under the receiver operating
characteristic curve (AUC) higher than
the base value of 0.83]. (b) Worse
discrimination than a perfectly calibrated
model (AUC lower than the base value of
0.83). (c) Perfect discrimination (AUC =
1). (d) Perfect discrimination, but the
scoring rule is using the information in
the wrong way (low values correspond to
positive outcomes and high values
correspond to negative outcomes,
AUC = 0). (e) Discrimination is no
better than chance (AUC = 0.5).
(f) Perfect discrimination, but the AUC
is lower than 1.

Discrimination is context dependent
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perfectly calibrated scoring rule (n = 10,000), nt was progres-

sively reduced (see Fig. 3). First, sj and yj were created as out-

lined in the previous section. Second, nt was decreased in

certain bins to n ª 15 [nt was maintained (nt ª 1000) in the

remaining bins], as 15 seems to be the minimum sample size

necessary to estimate P(Y = 1) with admissible accuracy

(Jovani & Tella, 2006). A first ‘set A’ of simulations was run in

which the bins that were reduced followed the scheme: t = 5

and t = 6 (level 1); t = 4, t = 5, t = 6 and t = 7 (level 2); t = 3,

t = 4, t = 5, t = 6, t = 7 and t = 8 (level 3); t = 2, t = 3, t = 4,

t = 5, t = 6, t = 7, t = 8 and t = 9 (level 4). In a second ‘set B’,

the reduction pattern was as follows: t = 1 and t = 10 (level 1);

t = 1, t = 2, t = 9 and t = 10 (level 2); t = 1, t = 2, t = 3, t = 8,

t = 9 and t = 10 (level 3); t = 1, t = 2, t = 3, t = 4, t = 7, t = 8,

t = 9 and t = 10 (level 4). In total, 800 simulations were run

(100 iterations ¥ 2 sets ¥ 4 levels). The AUC was computed for

each iteration and a mean AUC value was obtained for each

level on each set. To assess calibration, the Hosmer–Lemeshow

goodness-of-fit statistic (H-L; Lemeshow & Hosmer, 1982) was

calculated for each iteration and a mean H-L was obtained for

each level on each set.

The results showed that, although calibration did not change

(Fig. 4a), the AUC significantly varied from level to level

(Fig. 4b), ranging from 0.59 (� 0.012) to 0.96 (� 0.005). The

AUC increased as sample size was reduced in the intermediate

bins (set A); in contrast, it decreased as sample size was reduced

in the outermost bins (set B).

GENERAL DISCUSSION

The existence of a trade-off between calibration and discrimi-

nation is not a new point (Murphy & Winkler, 1992). Under

ideal conditions, increasing calibration compromises discrimi-

nation in the sense that it is impossible to achieve perfect cali-

bration and perfect discrimination if the sample size is constant

for every bin (Diamond, 1992). Thus, under a uniform distri-

bution of S, a perfectly calibrated model will yield an AUC of

0.83 (Fig. 1). Considering this base discrimination value, multi-

ple discrimination–calibration combinations are possible and

only deviations from perfect calibration will yield AUC values

closer to 1 (Fig. 2). However, as we have shown in this study, the

relationship between calibration and discrimination becomes

complicated if the sample size differs among probability inter-

vals (i.e. non-uniform distributions of S), which is commonly

the case. In fact, if S = 0 for every negative case and S = 1 for

every positive case, then the scoring rule will be perfectly cali-

brated and will have a perfect discrimination capacity (AUC =
1). However, the predictions of such a model would be highly

uncertain (Murphy & Winkler, 1992) aside from the fact that

this is a very unlikely situation in real-world SDM scenarios.

Complete separation of the outcomes is a well-known problem

in statistical model fitting, as it avoids the correct estimation of

the parameters (Lesaffre & Albert, 1989), producing uninforma-

tive models.

In the second edition of their seminal work on logistic regres-

sion, Hosmer & Lemeshow (2000) already noted that discrimi-

nation depends on the distribution of the probabilities, and

warned that discrimination measures coming from a 2 ¥ 2 con-

tingency matrix (e.g. sensitivity, commission rate and others; for

a review see Fielding & Bell, 1997) cannot be used to compare

model performance (Hosmer & Lemeshow, 2000, pp. 158–160).

Here, using simulations and the AUC as a threshold-

independent measure, we have demonstrated this point, a fact

that is far from trivial. The same model can be unsoundly quali-

fied as ‘bad’, ‘good’ or ‘excellent’ – from a discrimination capacity

point of view – depending on the distribution of the S-values.

Discrimination is thus context specific, i.e. it depends on the

configuration of the testing data set. This will happen even if the

model is equally well (or badly) calibrated in the different con-

texts. In the field of SDM this has two very important implica-

tions, which we discuss below.

First, it explains the devilish effect of the geographic extent

(or geographic background) raised by Lobo et al. (2008) and

Jiménez-Valverde et al. (2008), which results in a negative rela-

tionship between the relative occurrence area (the extent of the

area occupied by the species relative to the total extent of the

study area) and discrimination capacity. For the same total geo-

graphic extent, and due to the frequent spatial autocorrelation

among environmental variables (Legendre, 1993), the size of the

species’ occurrence area conditions the distribution of the

S-values in such a way that small areas bias S towards extreme

values. This is the main reason why rare species usually yield

higher discrimination values than widespread species, even

though the models may be equally well (or ill) calibrated for
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Figure 3 Scheme of the simulations performed to show the
dependence of discrimination on the distribution of the
probabilities. A first ‘set A’ of simulations was run in which the
bins that were reduced followed the scheme: • (level 1);

• and � (level 2); •, � and � (level 3); •, �, � and �

(level 4). In a second ‘set B’, the reduction pattern was as follows:
� (level 1); � and � (level 2); �, � and � (level 3); �, �, �

and � (level 4).
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both types of species. Precisely because discrimination is a

context-dependent property, Jiménez-Valverde et al. (2008)

concluded that the AUC should not be the only performance

indicator used to compare distribution models between species,

as the results may just be trivial (note that the same applies to

any other discrimination measure). Most importantly, these

authors stressed that higher discrimination values can be

obtained simply by increasing the geographic extent of analysis

(see also Barve et al., 2011; Acevedo et al., 2012), a fact that

compromises the robustness of many SDM studies.

A second and less apparent consequence is that discrimina-

tion may not be used to compare different modelling techniques

for the same data population and to draw general conclusions

beyond that population. Different techniques will be parameter-

ized in different ways, yielding different distributions of S and,

therefore, different discrimination values. A priori, there is no

reason to assume that these differences in the distributions of S

between techniques will be consistent among case studies/data

populations. Discrimination capacity is an entirely context-

dependent property; therefore, generalizations based on any dis-

crimination statistic are unfounded. A ‘good’ or ‘bad’ model –

from a discrimination point of view – can be qualified as ‘good’

or ‘bad’ only in the specific situation in which it was evaluated.

In SDM, this means that discrimination is only informative in a

concrete spatial, temporal and taxonomic context. This happens

because the representativeness of the environmental domain

changes with the geographical and temporal context, which

unavoidably entails changes in the distribution of S. Broad com-

parisons of models based only on discrimination statistics that

aim to find the ‘best’ algorithm for every situation and taxon are

flawed (see also Terribile et al., 2010). Statisticians know that no

classification method can be universally advocated, and that the

improved performance of new complex techniques may not be

as relevant or useful as it may seem at first (Hand, 2006, and

references therein). So, the weight given to the modelling tech-

nique in SDM may be, on most occasions, unjustified. As

pointed out by some authors, data quality is probably the most

important factor influencing general model performance, an

aspect to which much more effort and resources should be

devoted (Lobo, 2008; Jiménez-Valverde et al., 2010; Feeley &

Silman, 2011; Rocchini et al., 2011).

The relevance of discrimination or calibration will depend on

the intended application of the model (Pearce & Ferrier, 2000;

Vaughan & Ormerod, 2005). If the ranking or the classification

of the cases in a specific context (i.e. in a concrete data popula-

tion) is the main interest, then discrimination capacity is impor-

tant and may be an appropriate criterion for selecting the best

model. But if the quantitative value of S is of interest, then

calibration should be preferred. The probability values contain

information about the uncertainty of the predictions (Keren,

1991; Murphy & Winkler, 1992). A well-calibrated model will

give the probability that a certain case has to show the event, i.e.

in an SDM study, it will tell us the probability of a location

containing the focal species. It has been argued that, for some

applications in SDM, it could be useful to convert probability

maps into categorical (presence/absence) maps (Jiménez-

Valverde & Lobo, 2007). Whether this is useful or not, this con-

version implies the loss of information about the uncertainty of

the predictions; this fact suggests the adequacy of publishing the

probability maps at least as online supplementary material.

Given a case with the event and another case without the event,

the AUC will tell us the probability that both cases have of being

correctly classified, but it will say nothing about the concrete

cases or about the uncertainty of their predicted values (Hilden,

1991; Matheny et al., 2005). For two pairs of cases (0, 1), one

with S-values (0.49, 0.51) and the other with S-values (0.2, 0.8),

discrimination is perfect in both instances (for a threshold value

of 0.5); yet, the uncertainty in the classification of these cases is

not the same and the information that the S-values contain is of

much more worth than that yielded by the binary classification.

Following this line of thinking, some authors have questioned

the expediency of discrimination to evaluate models in a

decision-making context (e.g. Coppus et al., 2009). In environ-

mental management and assessment, ignoring the uncertainty

in the predictions may compromise decision processes, with

potentially negative consequences for both the focal species and

the optimization of managing resources. In temporal and/or

spatial transference situations (e.g. under a climate change sce-

Figure 4 (a) Mean Hosmer–Lemeshow
goodness-of-fit statistic (H-L) values and
(b) mean area under the area under the
receiver operating characteristic curve
(AUC) values of the simulated scoring
rules. In ‘set A’, sample size is reduced
from the midmost to the outermost
probability intervals (bins); in ‘set B’,
sample size is reduced from the outer-
most to the midmost bins. Sample size is
progressively reduced in four increasing
depletion levels (see Fig. 3). Grey solid
lines, mean value of the H-L statistic
(a) and the AUC (b) for an almost per-
fectly calibrated scoring rule; grey dashed
lines and whiskers, standard deviations.

Discrimination is context dependent
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nario), and because discrimination is context specific, calibra-

tion may provide more information about the potential

performance of the models.

CONCLUSIONS

Model discrimination capacity depends on the distribution of

the scoring values. Therefore, it is a context-dependent charac-

teristic and must be interpreted as such. Although we have

focused on scoring values of a probabilistic nature, it is impor-

tant to realize that this context dependence is also true for non-

probabilistic S-values. This means that first, discrimination

capacity says little about the general performance of the models,

and second, the comparison of models based on discrimination

capacity cannot be extended beyond a particular data popula-

tion. Discrimination may be a property of interest if the mod-

eller is interested in maximizing the capacity to separate the

instances of presence from the instances of absence in a certain

spatio-temporal context and data population. Calibration may

be of more interest if the researcher is interested in transferring

the model and producing more general conclusions.

Relying on a single summary discrimination measure to assess

model performance may result in a loss of valuable information

and lead to misleading conclusions. Discrimination measures

should not be reported alone, but should always be accompanied

with information about the distribution of the scoring values.

Ideally, the ROC curve as well as the model calibration plots

should be shown, explicitly indicating the sample size of each bin

in the plot. Relatively small or large sample sizes in certain bins

could explain the discrimination values obtained, and very low

sample sizes could pinpoint uncertainty in the calibration assess-

ment. Instead of using bins, smooth nonparametric calibration

curves might be a better screening option (Harrell et al., 1996;

Phillips & Elith, 2010). In this study we have used the H-L statistic

to quantitatively assess calibration because it is a classical test and

because our results do not depend on which statistic is applied.

However, this statistic has well-known drawbacks (see, for

instance, Lemeshow & Hosmer, 1982; Hosmer et al., 1997;

Kramer & Zimmerman, 2007) that may discourage its use for

assessing calibration. Other measures such as the unweighted-

sum-of-squares statistic (Copas, 1989), Miller’s calibration sta-

tistics (Miller et al., 1991; Pearce & Ferrier, 2000) or the

coefficient of determination R2 using the unity line (intercept = 0

and slope = 1) instead of the regression line (Poole, 1974, cited by

Romdal et al., 2005, p. 238) may be preferred.

Finally, we would like to emphasize that our position is not to

deny or demonize the use of discrimination measures for the

assessment of model performance, but just to bring awareness of

their limitations. The results presented here are of broad interest

for any research(er) dealing with classification of dichotomous

events. Taking into account the significance of the areas of

research in which SDM is applied (see Peterson et al., 2011) and

the widespread use of discrimination as the only way to assess

model quality, the implications of our simulation study are

noteworthy.
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