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Abstract

We consider a class of nonlinear dissipative-dispersive perturbations of the scalar
conservation law ∂tu + div f (u) = 01 and we study the convergence of the
approximated solutions to its entropy solution. In particular, we obtain conditions
under which the balance between dissipation and dispersion gives rise to the
convergence (by DiPerna’s measure-valued solution technique).

Do ε, δ ↘ 0 in

∂tu + div
(
f (u)− εB(u,∇u) + δ C(u,∇u,∇2u)

)
= 0,

u(x , 0) = uε,δ0 (x).

Example. The 1-dimensional Körteweg-de Vries-Burguers’ equation (shortly:
KdV-B eq.), where f (u) = u2/2, B(u,∇u) = ux and C(u,∇u,∇2u) = uxx :

ut + (u2/2)x = εuxx − δuxxx .

1Possibly non-convex transport f and non-linear viscosity B or capillarity C.
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Nonlinear hyperbolic conservation laws

Cauchy Problem (1st order nonlin. pde’s) ⇒ hyperb. (real eigenvalues ≡
finite velocity) ⇒ discontinuities (characteristic lines meet) ⇒ weak sol.
(global in time) ⇒ non uniqueness

Entropy Methods from Gas Dynamics and 2nd Law of Thermodynamics (for
Euler Equations ≡ inviscid and compressible Navier-Stokes Equations)

Equivalence to the Vanishing Viscosity Method selection: “classical” entropy
weak solutions or Kružkov solutions
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Traffic Burgers’ Inviscid Equation or
Arnold’s particle/wave duality

In a straight line particles move freely and u(x , t) is the velocity of the particle
which is in position x at time t.

Let x = x(t; 0, x0) be the position at time t of the particle in x0 at initial time
t0 = 0, which we abbreviate as x = x(t).

By Newton’s law (particles are moving freely) x ′′(t) = 0, then x(t) = x0 + ~vt
where ~v = u(x0, 0).

‘Particle description’: the physical system is described by an infinite set of ODEs,
one for each x0 ∈ R, {

x ′(t) = u(x0, 0), t ≥ 0

x(0) = x0.
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Now, ~v = x ′(t) = u(x(t), t), then

0 = x ′′(t) = ut(x(t), t) + x ′(t)ux(x(t), t) = ut + uux .

‘Wave description’: the physical system is described by a single PDE{
ut + uux = 0, x ∈ R, t ≥ 0

u(x , 0) = u0(x).

Rk. if we reverse that computation, we are solving the PDE by the ’characteristics
method’.
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A convergence result

Correia [2, 2016??] “Zero Limit for Multi-D Conservation Laws with Nonlinear
Diffusion and Dispersion”: we have (formal)2 convergence, if r ≥ ρ+ 1 + ϑ and
δ = o(εγ) with γ = ρ+2

r+1−ϑ (≤ 1), when

∂tu + div f (u) = div

(
ε bj
(
u,∇u

)
+ δ g(u)

d∑
k=1

∂xk cjk
(
g(u)∇u

))
1≤j≤d

(A1) for some m > 1, |f ′(u)| = O
(
|u|m−1

)
as |u| → ∞,

(A2) for some µ ≥ 0, r > 2, |b(u, λ)| = O (|u|µ) O (|λ|r )
as |u|, |λ| → ∞,

(A3) for some ϕ ≥ 0, ϑ < r , D > 0, λ · b(u, λ) ≥ D |u|µϕ |λ|r+1−ϑ

∀u ∈ IR, λ ∈ IRd .

(A4) for some ρ > 0, ‖[cjk(λ)]‖ = O(|λ|ρ)
as |λ| → ∞.

2Cf. Bedjaoui-Correia-Mammeri [3, 2015] “Well-Posedness of the Generalized Körteweg-de
Vries-Burgers Equation with Nonlinear Dispersion and Nonlinear Dissipation”.
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Singular limits

(ε = 0, Lax-Levermore [3, 1983]) The solutions of KdV equation

ut + (u2/2)x = −δ uxxx

do not converge as δ ↘ 0 in a strong topology (oscillatory effect of
capillarity; “zero-dispersion limit”. Failure).

(δ = 0, Kružkov [2, 1970]) The solutions of Burgers’ equation

ut + (u2/2)x = ε uxx

converge as ε↘ 0 in a strong topology (“vanishing viscosity method”).

(δ = Kεγ) In the phase transition regime, we can converge to physical
solutions different from the entropy solutions. (Reliability.)
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Breaking paradigmas

Truskinovsky [4, 1993]: physical nonclassical solutions (considering dispersive
terms; phase transition problems)

Brenier-Levy [1, 1999]: dissipative KdV-type equations (3rd order equations
without the 2nd order viscosity term (ε = 0); conjecture)

Perthame-Ryzhik [1, 2007]: δ/ε balance in KdV-B equation δ = o(ε1)
(Riemann problem; travelling waves ε, δ-limit)
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Applied analysis

From the point of view of ‘applications’, as ε, δ << 1, the equations are simplified
by neglecting small scale mechanisms: “B and C are spurious terms”.
We are then concerned with the Cauchy problem for the hyperbolic (first order)
conservation laws

∂tu + div f (u) = 0,

u(x , 0) = u0(x),

which have non-unique solution.

Because of ’singular limits’ and of ’nonuniqueness’,

the classification is a practical problem (of practical interest: failure,
reliability and integrity);

the theoretical/applied points of view of approaching/approached equations
conduct us to a dilemma, paradoxical situation.
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Conclusion

Thus, we are concerned

with a proof of a “vanishing viscosity-capillarity method” relying on

I the well-posedness of the genKdV-B equations (dispersive techniques),
I the convergence of their solutions (DiPerna’s measure-valued solution

techniques),

with the behaviour and selection of the

I right models,
I right solutions.

N.B. In most real phenomena we handle together viscosity and capillarity like
mechanisms. Then, we expect reliability if the dissipation effects dominate the
dispersion ones and this is given by a δ/ε balance and a ratio of viscosity and
capillarity growths. Moreover, according this balance we can select different
mathematical solutions: what about the physical solution (Integrity3)?

3Correia [1, 2010] and Correia-Sasportes [2, 2009]
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Shocks
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‘Confidential’, 1938!?
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“Springer” (Interscience Publ., N.Y, 1948)
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In use...

Modelling on continuum physics, chemistry, biology, environment, etc.

Areas as gas dynamics, nonlinear elasticity, shallow water theory, geometric optics,
magneto-fluid dynamics, kinetic theory, combustion theory, cancer medicine,
petroleum engineering, irrigation systems, etc.

Applications as optimal shape design (aeronautics, automobiles), noise reduction
in cavities and vehicles, flexible structures, seismic waves (earthquakes, tsunamis),
laser control in quantum mechanical and molecular systems, chromatography,
chemostasis, oil prospection and recovery, cardiovascular system, traffic flow, the
Thames barrier, etc.
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Optimal design and active control in structures: bridges, the Thames barrier,
wind towers, aeroplanes or the shuttle and the orbital spatial station...

... shocks and oscillations are fundamental issues:
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The transonic regime issues:

control of vibrations and

shocks strength magnitude
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”for the engineer working... in the wind tunnel, design and control problems
are much harder as they become inverse problems”, see lecture by E. Zuazua
at the ”1st Porto Meeting on Mathematics for Industry”, Porto, 2009).

Joaquim Correia Applied Analysis Seminar Glasgow, April 22, 2016 19 / 33



Our general issues concern:

the behaviour and selection of the right models and solutions;

the proof and criteria for a “vanishing viscosity-capillarity method”.

Rk: Numerics is hopeless.
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Schonbek [2, 1982]

The (generalised) Körteweg-de Vries-Burgers equation

ut + f (u)x = ε uxx − δ uxxx

with linear viscosity and linear capillarity;

Kružkov solutions only for convex fluxes;

δ = o(ε2) for f (u) = u2/2 (and O(ε3) for general quadratic flux).

Rk.1: Sharp condition should be δ = o(ε1)? (Perthame-Ryzhic [1, 2007]).

Rk.2: Too many technical restrictions (1-D, specific Lp and m growth flux ).
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LeFloch-Natalini [4, 1997]

Körteweg-de Vries-Burgers type equations

ut + f (u)x = ε β(ux)x − δ uxxx

with nonlinear viscosity and linear capillarity;

Kružkov solutions for possibly non-convex fluxes.

Rk. still with the same technical restrictions of Schonbek [2, 1982].
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Correia-LeFloch [4, 1998]

Körteweg-de Vries-Burgers type equations

∂tu + div f (u) = div
(
ε bj(∇u) + δ ∂2

xju
)

1≤j≤d

multi-D equation with general flux;

nonlinear viscosity but diagonal linear capillarity;

Kružkov solutions in general Lp spaces;

new estimates;

convergence if δ = o(εγ) with r ≥ 2 and γ = 3
r+1 ≤ 1.

N.B. Here ρ+ 2 = 3 and γ is better than the previous, but is it sharp?

Rk. c(∇u) or c(∇2u)?4

4cf. Correia-LeFloch [3, 1999]
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Brenier-Levy [1, 1999]

Lax-Levermore [3, 1983]) showed that for the Körteweg-de Vries equation

ut + (u2/2)x = −δ uxxx

their solutions do not converge in a strong topology.

This should not be the paradigma: Brenier-Levy considered the “pure-dispersive
equation” with nonlinear capillarity

ut + (u2/2)x = −δ(u2
xx)x

and showed through numerical evidence a dissipative behaviour5.

5See their Conjecture and Bedjaoui-Correia [5, 2012].
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“Unexpected” regime 6

with r = 1 and ρ = 2 (δ = o(ε5/2)), we proved the well-posedness of the initial
value problem

ut + f (u)x = εuxx − δ(u2
xx)x ,

u(x , 0) = uε,δ0 (x),

and as ε, δ ↘ 0 the convergence of the previous solutions to the entropy weak
solution of the initial value problem

ut + f (u)x = 0,

u(x , 0) = u0(x).

6Bedjaoui-Correia-Mammeri [1, 4, 2016, 2014]: “On a Limit of Perturbed Conservation Laws
with Diffusion and Non-positive Dispersion” and “On vanishing dissipative-dispersive
perturbations of hyperbolic conservation laws”.
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Slemrod’s PDEs Seminar, IST, September 16, 2014
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Hilbert’s 6th problem (from Boltzmann to Euler)
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Have you some suggestions?

Thank you very much!
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