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The Covariant Spectator Theory (CST) is used to calculate the mass spectrum and vertex functions of 
heavy–light and heavy mesons in Minkowski space. The covariant kernel contains Lorentz scalar, pseu-
doscalar, and vector contributions. The numerical calculations are performed in momentum space, where 
special care is taken to treat the strong singularities present in the confining kernel. The observed meson 
spectrum is very well reproduced after fitting a small number of model parameters. Remarkably, a fit 
to a few pseudoscalar meson states only, which are insensitive to spin–orbit and tensor forces and do 
not allow to separate the spin–spin from the central interaction, leads to essentially the same model pa-
rameters as a more general fit. This demonstrates that the covariance of the chosen interaction kernel is 
responsible for the very accurate prediction of the spin-dependent quark–antiquark interactions.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
The rigorous calculation of hadronic bound states in QCD is still 
an open problem. It is hoped that, eventually, lattice QCD will ex-
plain all observed hadrons in terms of quark and gluon degrees 
of freedom. Nevertheless, models have played—and will continue 
to do so—an important role in aiding the extrapolations of lattice 
QCD results to physical quark masses, but also in the interpretation 
of the experimental data and in the analysis of different dynamical 
mechanisms.

The physics of mesons, in particular, is a very active area of 
research, especially due to the ample amount of new experimen-
tal data measured at facilities such as the LHC, BaBaR, Belle, CLEO, 
and more exciting results can also be expected from Jefferson Lab 
(GlueX) and FAIR (PANDA) in the near future. Some of the recently 
discovered states (e.g., the X(3872) in charmonium [1]) have sur-
prising properties that seem incompatible with an interpretation 
as qq̄ states, sparking particular interest from theorists.

The purpose of this work is twofold: First, we present results of 
relativistic calculations of qq̄ bound states for systems with at least 
one heavy (b or c) quark using the manifestly covariant framework 
of the Covariant Spectator Theory (CST) [2–4]. Second, we show 
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that our covariant kernel correctly predicts the spin-dependent 
interactions when it is fitted to data that do not contain any in-
dependent information about them. More precisely, when the ker-
nel is fitted exclusively to pseudoscalar meson states, which are 
S-waves and thus insensitive to spin–orbit and tensor forces (and 
which do not allow to isolate the spin–spin interaction because 
here it always acts on singlets), the vector, scalar and axial-vector 
states which do depend on them are correctly described. We be-
lieve that this is an important test, performed here for the first 
time, which confirms the predictive power of covariant kernels.

Most quark models are variations of the nonrelativistic Cornell 
potential [5] which consists of a short-range color-Coulomb and 
a linear confining potential and was surprisingly successful in de-
scribing heavy quarkonia. Because light quarks require a relativistic 
description, in order to be applicable to all qq̄ states these Cornell-
type potentials were “relativized” [6] by including a number of 
relativistic corrections. For a more rigorous treatment of relativ-
ity, a number of relativistic equations related to the Bethe–Salpeter 
equation (BSE) were applied to calculate the meson spectrum [7,8], 
and, more recently, also covariant two-body Dirac equations [9,10]
gave very good results. The Lorentz structure of the confining in-
teraction in these approaches is not quite settled, although in most 
cases a scalar structure dominates.

The influential Dyson–Schwinger–Bethe–Salpeter (DS–BS) ap-
proach [11–14] is also covariant, but confinement emerges through 
the absence of real mass poles, not through a confining interaction. 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Fig. 1. Graphic representations of (a) the BSE for the qq̄ bound state vertex func-
tion �, where V represents the kernel of two-body irreducible Feynman diagrams; 
(b) the BS vertex function approximated as a sum of CST vertex functions (crosses 
on quark lines indicate that a positive-energy pole of the propagator is calculated, 
light crosses in a dark square refer to a negative-energy pole); (c) the complete CST 
equation. The solid rectangle indicates the one-channel equation used in this work, 
the dashed rectangle a two-channel extension with charge-conjugation symmetry.

Formulated in Euclidean space, the dynamics in ladder–rainbow 
approximations is driven by a pure Lorentz-vector kernel, essen-
tially a dressed gluon propagator.

The CST belongs to the approaches related to the BSE, but is 
similar in spirit to the DS–BS framework in that it aims to incor-
porate the dynamical origin of the constituent quark masses by 
dressing the bare quark propagators with the interquark kernel in 
a consistent fashion. However, the CST is formulated and solved di-
rectly in Minkowski momentum space. This is advantageous over 
Euclidean formulations (although a number of singularities have 
to be handled numerically) because no analytic continuations are 
needed to calculate, e.g., form factors [15,16], even in the timelike 
region. The reason is that in CST one only needs to determine the 
quark propagator pole positions, which are all located on the real 
axis, both for fixed or running dynamical quark masses. The cho-
sen interaction kernel is a manifestly covariant generalization of 
the Cornell potential, and the full Dirac structure of the quarks is 
taken into account.

The Covariant Spectator Equation (CSE) is obtained from the 
BSE [Fig. 1(a)] by carrying out the loop energy integration such 
that only quark-propagator pole contributions are kept [Figs. 1(b) 
and 1(c)]. This prescription is motivated by partial cancellations 
between higher-order ladder and crossed-ladder kernels, implying 
that a CST ladder series effectively contains crossed-ladder contri-
butions which are necessary for the two-body equation to reach 
the correct one-body limit [3].

In this work we are focussing on systems where one quark 
is typically much heavier than the other, so we are close to the 
one-body limit. The BS ladder approximation does not possess 
this limit, and it would not be a good choice to describe these 
mesons. On the other hand, heavy–light systems are ideal to apply 
a simplified version of the CSE, the so-called one-channel specta-
tor equation (1CSE): the positive-energy pole of the heavier quark 
dominates, such that the other three CST vertex functions can be 
neglected. The 1CSE is shown in Fig. 1(c), inside the solid rectan-
gle.

This equation retains most important properties of the com-
plete CSE, namely manifest covariance, cluster separability, and the 
correct one-body limit. It is also a good approximation for equal-
mass particles, as long as the bound-state mass is not too small 
(this excludes the pion from its range of applicability). In fact, in 
a properly symmetrized form to account for the Pauli principle, it 
has been applied very successfully to the description of the two-
and three-nucleon systems [17–19].

A property the 1CSE does not maintain, in general, is charge-
conjugation symmetry. Therefore, states calculated with the 1CSE 
are not expected to have a definite C-parity. In principle, this prob-
lem is easily remedied by using instead the two-channel extension 
inside the dashed rectangle of Fig. 1(c). However, we decided that 
the considerable increase in computational effort would not be jus-
tified for the purpose of this work: of the quarkonia with J P = 0±
and 1± , only the axial-vector mesons ( J P = 1+) come in both 
C-parities, and these pairs are separated by only a few MeV (5 to 
6 MeV in bottomonium, 14 MeV in charmonium). Thus, as long as 
we do not seek an accuracy better than about 10–20 MeV, the use 
of the 1CSE also for heavy quarkonia is perfectly justified. Consis-
tent with this level of accuracy, we also set mu = md throughout 
this work.

We use a kernel of the general form

V =
[
(1 − y)

(
11 ⊗ 12 + γ 5

1 ⊗ γ 5
2

)
− y γ

μ
1 ⊗ γμ2

]
V L

− γ
μ

1 ⊗ γμ2 [V OGE + V C] ≡
∑

K

V K �
K (μ)

1 ⊗ �K
2(μ) , (1)

where V L, V OGE, and V C are relativistic generalizations of a linear 
confining potential, a short-range one-gluon-exchange (in Feyn-
man gauge in this work), and a constant interaction, respectively. 
The confining interaction has a mixed Lorentz structure, namely 
equally weighted scalar and pseudoscalar structures, and a vec-
tor structure. The parameter y dials continuously between the 
two extremes, y = 1 being pure vector coupling, and y = 0 pure 
scalar+pseudoscalar coupling. The OGE and constant potentials are 
Lorentz-vector interactions. The signs are chosen such that—for 
any value of y—in the static nonrelativistic limit always the same 
Cornell-type potential V (r) = σ r − αs/r − C is recovered.

The reason for the presence of a pseudoscalar component is 
chiral symmetry. Although in general scalar interactions break chi-
ral symmetry, it was shown in [20] that the CSE with our rel-
ativistic linear confining kernel satisfies the axial-vector Ward–
Takahashi identity when it is accompanied by an equal-weight 
pseudoscalar interaction. It has also been shown [21,22] that, in 
the chiral limit of vanishing bare quark mass, a massless pion so-
lution of the CSE emerges, while a finite dressed quark mass is 
dynamically generated by the interaction kernel through a NJL-
type mechanism.

For simplicity, and to establish a reference calculation, we use 
fixed instead of dynamical, momentum-dependent quark masses 
in this work. For the same reason, we postpone the inclusion of a 
running coupling in V OGE and use a fixed value of αs instead.

The 1CSE with quark 1 on its positive-energy mass shell can be 
written in manifestly covariant form
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∫
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Fig. 2. Masses of heavy–light and heavy mesons with J P = 0± and 1± . Circles are 1CSE results with model P1, squares of model PSV1. Solid symbols represent states used in 
the model fits, open symbols are predictions. Solid horizontal lines are the measured meson masses [26]. The two dashed levels are estimates taken from Ref. [27]. There is 
weak evidence (at 1.8σ ) that the ϒ(1D) has been seen [28,29]. Both models predict a so far unobserved ϒ(2D) between ϒ(3S) and ϒ(4S). Dashed horizontal lines across 
the figure indicate open flavor thresholds. The axial-vector quarkonia are shaded because the 1CSE does not define a specific C-parity for these states.
where �K (μ)

i = 1i, γ 5
i , or γ μ

i , V K (p̂1, ̂k1) describes the momen-
tum dependence of the kernel K , mi is the mass of quark i, and 
Eik ≡

√
m2

i + k2. A “ ˆ ” over a momentum indicates that it is on its 
positive-energy mass shell.

The kernel functions V K (p̂1, ̂k1) in (2) are

V L(p̂1, k̂1) = −8σπ

[
1

(p̂1 − k̂1)4
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, (3)

V OGE(p̂1, k̂1) = − 4παs

(p̂1 − k̂1)2
, (4)

V C(p̂1, k̂1) = (2π)3 E1k1

m1
Cδ3(p1 − k1) . (5)

Instead of solving (2) directly for the vertex functions, we in-
troduce relativistic “wave functions” with definite orbital angular 
momentum, defined as rather complicated combinations of spinor 
matrix elements of the vertex function multiplied by the off-shell 
quark propagator [23]. They enable us to determine the spectro-
scopic identity of our solutions, which is indispensable when com-
paring to the measured states. In the nonrelativistic limit, they 
reduce to the familiar Schrödinger wave functions. However, our 
relativistic wave functions contain components not present in non-
relativistic solutions. For example, the S-waves of our pseudoscalar 
states couple to small P -waves (with opposite intrinsic parity) that 
vanish in the nonrelativistic limit, whereas, for vector mesons, cou-
pled S- and D-waves are accompanied by relativistic singlet and 
triplet P -waves.

The 1CSE for the relativistic wave functions can be written as 
a generalized linear eigenvalue problem for the total bound-state 
mass. We solve this system by expanding the wave functions in 
a basis of B-splines, as described in [23,24]. Special attention is 
needed to treat the singularities in the kernel at (p̂1 − k̂1)

2 = 0. 
We apply techniques similar to the ones described in [25] to obtain 
stable results. A standard Pauli–Villars regularization is applied to 
divergent loop integrations, at the expense of a momentum cut-off 
parameter �. Our results are quite insensitive to the exact value 
of �, and we simply fix it at twice the heavier quark mass.

We calculated the pseudoscalar, scalar, vector, and axial-vector 
meson states that contain at least one heavy (bottom or charm) 
quark, and whose mass falls below the corresponding open-flavor 
threshold. As exceptions, a few states slightly above threshold but 
with very small widths are considered as well.

The model parameters are the four constituent quark masses 
mu = md , ms , mc , and mb , the two coupling strengths σ and αs , 
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Table 1
Kernel parameters of models P1 and PSV1. Both models use the quark masses mb =
4.892 GeV, mc = 1.600 GeV, ms = 0.448 GeV, and mu = md = 0.346 GeV.

Model σ [GeV2] αs C [GeV]

P1 0.2493 0.3643 0.3491
PSV1 0.2247 0.3614 0.3377

the constant C , and the mixing parameter y. Early results clearly 
favored pure scalar+pseudoscalar confinement, so throughout this 
work we set y = 0.

Fig. 2 shows the results of two different model calculations with 
the 1CSE in comparison to the observed meson masses. Model P1 
was fitted to 9 pseudoscalar states only, whereas model PSV1 was 
fitted to the masses of 25 pseudoscalar, scalar, and vector mesons. 
A solid circle (square) in Fig. 2 indicates a mass calculated with 
model P1 (PSV1) that was used in the fit to the measured masses 
(solid lines), whereas the open symbols show predictions of the 
respective models. The parameters of the models are listed in Ta-
ble 1. Fitting the quark masses is much more time-consuming than 
fitting the other parameters. Therefore, we first determined them 
in preliminary calculations and then held them fixed in the final 
fits of σ , αs and C . This procedure is certainly good enough for 
the purpose of this work.

Fig. 2 clearly shows that both models give results in very good 
agreement with the experimental meson spectrum. It is remark-
able that a simple unified model with global parameters σ , αs , and 
C can describe heavy–light and heavy mesons over such a large 
range of masses (calculations in the literature often vary model 
parameters from sector to sector).

The rms differences to the measured masses are 0.036 GeV for 
P1 and 0.030 GeV for PSV1, which is comparable to the typical rms 
deviations reported in [8]. The axial-vector states in the shaded 
area of Fig. 2 are not considered in these numbers because, as 
explained above, the predicted states cannot be uniquely identi-
fied with the observed C-parity eigenstates. Nevertheless, it is very 
pleasing that both models predict two tightly-spaced states (the 
symbols overlap in the figure) in close proximity to the experi-
mental C-parity pairs, both in charmonium (χc1(1P ) and hc(1P )) 
and in bottomonium (χb1(1P ) and hb(1P ), as well as χb1(2P ) and 
hb(2P )).

The fact that the fit exclusively to pseudoscalar mesons of 
model P1 yields almost the same result as the more general fit 
of model PSV1 allows us to draw a more fundamental conclusion: 
the covariant form of the kernel (1) is responsible for a correct pre-
diction of the spin-dependent interactions.

It is of course very well known that the Lorentz structure of a 
kernel determines the spin-dependent interactions (see, e.g., [30]), 
and it is certainly one of the many attractive features of a covariant 
formalism that they are not treated perturbatively but on an equal 
footing with the spin-independent interactions. But in a general fit 
to all types of mesons one cannot really test the predictive power 
of the covariant kernels in this regard because all interactions are 
fitted simultaneously.
However, pseudoscalar states are nearly pure S-waves (the tiny 
relativistic P -wave admixture has almost no effect), such that 
spin–orbit and tensor forces are exactly zero, whereas the spin–
spin interaction is probed only in singlet states and cannot be 
separated from the central force. A fit in which the spin-dependent 
interactions are completely unconstraint is therefore the ideal case 
to test their prediction.

To summarize, from our results one can conclude not only that 
our covariant kernel is a very efficient way to derive the spectrum 
and wave functions of heavy–light and heavy mesons, but also that 
it correctly predicts the spin-dependent interactions solely based 
on their relation to the spin-independent interactions as dictated 
by covariance.
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