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Abstract

The study of the generalized method of moments (GMM) and alternative estimation
methods for models which are defined solely in terms of a set of moment conditions
constitutes a recent and increasingly popular research topic in econometrics. In this
thesis we focus on the analysis of GMM and generalized empirical likelihood (GEL)
estimators and related statistics, providing an up-to-date survey of the existing liter-
ature and performing three major contributions to this subject.

Our first major investigation concerns the examination of the small sample bias
of ten alternative estimators for moment condition models, which may be divided
into two classes. The first includes the first-order asymptotically equivalent GMM,
continuous-updating GMM, empirical likelihood and empirical information estima-
tors. The second contains six GMM bootstrap estimators, three of which are devel-
oped in this thesis. Two extensive Monte Carlo studies reveal that one of the new
bootstrap techniques produces the estimators with less bias in most cases.

Second, we derive several Pearson-type statistics suitable for testing overidenti-
fying moment conditions and parametric restrictions. In a Monte Carlo study con-
cerning the first class of tests, we find that, in small samples, the size behaviour of
one of the new statistics is superior to that of both alternative tests based on their
asymptotic distributions and bootstrap forms of the popular Hansen’s (1982) J test.

The proposal of a number of new non-nested hypothesis tests that integrate and
complement the work of other authors constitute our last major contribution. We
derive generalized statistics that include most of the existing tests as particular cases
and develop GEL parametric and moment encompassing tests that enlarge substan-
tially the number of tests available to the practitioner to assess non-nested moment
condition models. Simulation experiments indicate that GEL-based encompassing
tests using a robust estimator for the variance matrix of the moment indicators are

particularly efficacious.
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Chapter 1

Introduction

1.1 Motivation

For many years, standard econometric modelling practice was based on strong as-
sumptions concerning the underlying data generation process. Such assumptions
were known to be often highly unrealistic but nevertheless they were made since
they allowed the construction of estimators with optimal theoretical properties. The
most important example of this perspective was the maximum likelihood estimation
method, whose utilization requires the complete specification of the model to be es-
timated, including the probability distribution of (at least) the variable of interest.
However, since the seventies important changes have occurred in econometric prac-
tice. Nowadays, making strong distributional assumptions when a prior: knowledge
is insufficient to support them is no longer acceptable and econometricians in general
consider that working under assumed likelihood functions is too restrictive. Thus,
during the last two decades, estimation and hypothesis testing techniques that do
not require the specification of a likelihood have been developed, a wide set of semi-
parametric and nonparametric tools being now available to the practitioner.

One of the new popular model formalizations requires only the specification of a
set of moment conditions, or estimating equations, which the model to be estimated

should satisfy. The analyst need only make mild assumptions on the existence of



certain zero-valued moments, which are defined in terms of the observable variables
and the parameters of interest. The utilization of moment-based estimation dates
back over 100 years to Karl Pearson’s method of moments but only in the last twenty
years has it received renewed interest by econometricians, instigated by Hansen’s
(1982) seminal paper on the generalized method of moments (GMM). Indeed, a com-
plete methodology for estimation and hypothesis testing applicable to a large number
of models was provided in that paper. Therefore, it is no surprise that utilization
of GMM in empirical work has become common in the econometric literature during
the last decade or so.

Despite its popularity, GMM suffers from some important drawbacks, the principal
of them being its finite sample behaviour. In fact, it has been recognized for several
years that the first-order asymptotic distribution of the GMM estimator provides
a poor approximation to its small sample distribution. There is increasing Monte
Carlo evidence indicating that in finite samples GMM estimators may be badly bi-
ased and the associated tests may have actual sizes substantially different from the
nominal ones. For this reason, several authors recently proposed some alternative
estimation methods to deal with these moment condition models. Like GMM, these
new estimation techniques possess the same asymptotic first-order properties. Unlike
GMM, little is known about their small sample behaviour and some issues are still
unexplored.

The main objective of this thesis is the study of the principal estimation meth-
ods for cross-sectional models defined solely in terms of moment conditions. Besides
GMM, we focus on the analysis of Hansen, Heaton and Yaron’s (1996) continuous-
updating GMM (CU-GMM) and, especially, of Qin and Lawless (1994) and Imbens’s
(1997) empirical likelihood (EL) and Kitamura and Stutzer (1997) and Imbens, Spady
and Johnson’s (1998) exponential tilting or empirical information (EI) methods. The
last two methods possess many common features, being particular cases of both the
minimum discrepancy (MD) methods developed by Corcoran (1998) and the gener-
alized empirical likelihood (GEL) method proposed by Smith (1997). Hence, most of



the theoretical discussions concerning EL and EI estimators will be realized via the
general framework provided by the GEL method.

The particular attention devoted to the study of GEL estimators throughout this
thesis is justified by the limited knowledge about their finite sample properties and
by their many attractive theoretical features relative to GMM, which more than com-
pensate for the computational burden required in their estimation. To begin with, as
likelihood-like methods, they allow the utilization of classical-type tests to evaluate
various hypotheses concerning the specification of a particular model, including overi-
dentifying moment conditions. Moreover, Newey and Smith (2000) demonstrated that
GEL estimators have one less source of asymptotic bias than the GMM estimator.
Finally, all moment conditions are imposed on the sample by appropriately reweight-
ing the data, rather than only some linear combinations of them. This is achieved by
employing a more efficient estimator of the distribution of the data than the empiri-
cal distribution implicitly used in the GMM case. This estimator, the so-called GEL
distribution function, and corresponding GEL implied probabilities, has many differ-
ent applications. In fact, all the major contributions of this thesis involve particular
uses of the GEL implied probabilities. Namely, we show how to employ the GEL
probabilities in the construction of three new bootstrap techniques applicable in the
GMM framework, several Pearson-type statistics for assessing overidentifying moment
conditions and parametric restrictions and a number of new non-nested hypothesis
tests.

Throughout this thesis there is a continual comparison between the finite sample
properties of GMM and GEL statistics. Our aim is the production of considerable
evidence showing that, as expected, the latter method leads to more reliable estima-
tion and inference. However, GEL estimation is not the only way to improve the
small sample performance of GMM estimation. Indeed, econometricians can opt for
utilizing techniques such as the bootstrap in order to obtain more accurate approx-
imations to the finite-sample distribution of GMM estimators and related statistics.

Thus, the merits of the employment of bootstrap methods in the GMM context are



also discussed, namely when applied to obtain bias-corrected GMM estimators and to
approximate the small sample distribution of Hansen’s (1982) J test of overidentifying
moment conditions.

In the next sub-section we outline the structure of this thesis.

1.2 Structure of the thesis

This dissertation is organized in six chapters. Below, we give a detailed description
of chapters 2 to 6.

Chapter 2 provides an up-to-date survey of the principal extant literature on esti-
mation methods for moment condition models. We start with a detailed description
of the major characteristics of GMM estimation. Alternative GMM estimators are
analyzed, a special emphasis being given to Hansen’s (1982) two-step efficient GMM
estimator, since this is the GMM estimator that is more often used both throughout
this thesis and in applied work. The main specification tests for efficient GMM es-
timators are reviewed, namely tests of overidentifying moment conditions, tests for
additional moment conditions and tests of parametric restrictions. In an independent
section, by extending Smith’s (1987) work for maximum likelihood estimators to the
GMM framework, we discuss an original way of deriving most GMM tests of para-
metric restrictions and overidentifying moment conditions. In particular, we develop
a test statistic generating equation from which, by evaluation at appropriate estima-
tors, several tests may be obtained as special cases. This review of GMM concludes
with a discussion of its main limitations in order to motivate the use of and the search
for alternative procedures with better finite sample properties.

The second part of chapter 2 is thus dedicated to the study of alternative estima-
tion methods for moment condition models that share the same first-order asymptotic
properties as GMM. First, we briefly review the CU-GMM estimator. Then, we focus
on the utilization of GEL methods, giving special attention, as previously mentioned,

to EI and EL estimation techniques. Computational aspects concerning the calcula-



tion of these estimators are discussed, since this seems to be their most important
drawback. Similarly to GMM, specification tests applicable in this context are pre-
sented.

In chapter 3 we compare the finite sample bias of GMM, CU-GMM, EI and EL
estimators through two Monte Carlo simulation studies.! We examine also the ability
of bootstrap methods to improve the small sample properties of the two-step GMM
estimator. We consider three bootstrap techniques already applied in the moment
condition framework and propose three new ones that employ the GEL implied prob-
abilities to resample the data. Two different settings for which there is previous
evidence of the poor performance of the efficient two-step GMM estimator are simu-
lated using the package S-Plus, which is utilized in all Monte Carlo studies realized
in this thesis.

In chapter 4, Pearson-type statistics suitable for testing overidentifying moment
conditions and parametric restrictions are developed. These new test statistics are
based on the comparison of two consistent estimators, under the corresponding null
hypothesis, of the unknown distribution of the data. For the former class of tests those
estimators are the empirical and the GEL distribution functions, while in the latter
case two GEL distributions estimated under different assumptions are contrasted.
Through a Monte Carlo simulation study based on two of the settings considered by
Imbens, Spady and Johnson (1998), we examine the finite sample properties of several
tests of overidentifying moment conditions, including bootstrap forms of Hansen’s
(1982) J test.

Chapter 5 deals with the issue of testing non-nested hypothesis in the moment
condition framework.? To the best of our knowledge, there are relatively few papers
addressing this subject. Indeed, only Singleton (1985), Ghysels and Hall (1990b)
and Smith (1992), for the GMM case, and Smith (1997), for GEL estimators, have

L A paper containing the main findings of this chapter was presented at the 56th European Meeting
of the Econometric Society, Lausanne, Switzerland, 25-29/08/2001.

2The main findings of this chapter were included in a joint paper with Richard J. Smith, which
is forthcoming in the Journal of Econometrics and was presented by the author of this dissertation
at the 8th World Congress of the Econometric Society, Seattle, U.S.A., 11-16,/08/2000.
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approached this question. In this chapter we derive a number of new tests that com-
plement and integrate those works. With our proposals the number of tests available
for the researcher assessing different non-nested theories is significantly increased. A
Monte Carlo study involving instrumental variable models ends the chapter.
Chapter 6 concludes this thesis by summarizing our major findings and suggesting

potential avenues for future research.



Chapter 2

Estimation methods for moment

condition models

2.1 Introduction

The main goal of this chapter is to provide a general framework for dealing with
moment condition models. The most relevant econometric literature concerning this
kind of models is surveyed, the major characteristics of the main estimation methods
and corresponding specification tests applicable in this context being presented. In
the following we use the expression ‘empirical-based’ (EB) to designate the set of all
techniques that are special cases of the MD and GEL estimation methods. When
considering GMM specification tests, we discuss an original procedure for deriving
most GMM tests of parametric restrictions and overidentifying moment conditions.
This chapter is organized as follows. Section 2.2 introduces some definitions and
notation. Section 2.3 examines GMM estimation and inference. Section 2.4 discusses
the CU-GMM estimator. Section 2.5 is dedicated to the study of EB estimation

methods.



2.2 Definitions and notation

The notation and assumptions introduced in this section are used throughout this
dissertation. Let y;, ¢ = 1,...,n, be independent and identically distributed (i.i.d.)
observations on a data vector y. Consider g (y,#), an s-dimensioned vector of moment
indicators known up to the k-vector of unknown parameters of interest #, and assume
that there are at least as many moment conditions as parameters to be estimated
(s > k). Define the true parameter vector 6, as the unique solution of the system of
moment conditions

Erlg(y,0)] =0, (2.1)

where Er [] denotes expectation taken with respect to the (unknown) distribution
function F of y. We assume that 6, belongs to the interior of a compact k-dimensional
set ©, the moment function g (y, #) is continuous in 6 for all € O, and the expectation
Er[g(y,0)] exists and is finite for all § € ©. Define also the (s x k) matrix G (0) =
Er [%} and the (s x s) positive definite matrix V (6) = Er [g(y,0) g (y,0)'],
where the moment indicators g (y, ) are assumed to be continuously differentiable in
0 for all @ € ©. When these matrices are evaluated at 6y we write G = G (6y) and
V =V (0y), in which case the former matrix is assumed to be full column rank.

The sample counterparts of g(y,@) G (0) and V (#) are denoted by g, (6) =
LS gy 0), G (0) = £ 300 290 and V,, (0) = £ 371, g (3, 0) g (1, 60)', respec-
tively. We assume that G, (/) converges almost surely and uniformly in 6 to G (0)
and, by applying a Central Limit Theorem, that+/ng, (6y) 4N (0,V), i.e. the ran-
dom vector v/ng, (6p) has a limiting distribution N (0, V). When these quantities are
evaluated at 9, a consistent estimator for 0y, we write g, = g, (9), G, =G, (9)
and V,, = V, <é’), which are assumed to be consistent estimators for ¢ (y,6y), G

and V, respectively.! An analogous notational scheme is followed for other variables

ITn time series models Vn calculated in this way would not be a consistent estimator for V. Robust
estimators for V' in this context are discussed inter alia by Newey and West (1987a, 1994), Andrews
(1991) and Den Haan and Levin (1997). Note, however, that Vj, is a heteroskedasticity-robust
consistent estimator for V.



throughout this dissertation.

All estimation methods discussed in the next sections are semi-parametric in the
sense they only require the specification of moment conditions like (2.1) rather than
the full density of the variable of interest. Hence, they are more robust, although
generally less efficient, than parametric methods such as maximum likelihood. As we
will see later on, all these methods are asymptotically first-order equivalent. For this

reason, we adopt the same terminology to denote all of these estimators.

2.3 Generalized method of moments

2.3.1 Introduction

GMM is the conventional way of estimating models when the only information avail-
able about the population of interest is in the form of moment conditions. Since its
formalization by Hansen (1982), GMM has become an important research topic in
the econometric literature, both from theoretical and applied points of view. In the
theoretical literature, the popularity of GMM results from two main facts. On the
one hand, it provides a unifying framework for the analysis of many familiar esti-
mators. Indeed, GMM nests various popular estimation methods such as maximum
likelihood, instrumental variables and least squares, providing a suitable setting for
their comparison. On the other hand, it is a simple alternative to other estimation
techniques, especially when it is difficult to write down the likelihood function. For
a general discussion about GMM, see, for example, Davidson and MacKinnon (1993,
chap. 17), Hall (1993), Newey and McFadden (1994) and the recent book edited by
Miétyés (1999), which is entirely devoted to this method.

With regard to applied work, due to its flexibility and generality, GMM estimation
has been used in certain models which, otherwise, would be computationally very bur-
densome to estimate. Since one of the attractions of GMM estimation is to allow easy
handling of stationary dependent data, this method gained particular importance in

the estimation of time series models, namely asset pricing models, nonlinear dynamic

9



rational expectation models, business-cycle models, stochastic volatility models and
covariance structure models. However, GMM has also been widely applied to cross-
sectional and panel data [see Ogaki (1993, p. 461) for a list of references of empirical
examples].

The basic idea behind GMM is very simple: the vector of parameters of interest, 6,
is estimated in such a way that the sample moment indicators g, (¢) that correspond
to the population moment conditions given by (2.1) are as close as possible to zero.
When the number of moment conditions and unknown parameters is identical (s = k),
the system of equations g, (9) — 0 can be solved directly in order to obtain 6 as
an estimator of . However, in the most common case of overidentifying moment
conditions, where there are more estimator-defining equations than parameters to be
estimated (s > k), solving that system would produce multiple solutions for §. Thus,
the number of estimating equations has to be reduced in some way to k. Hansen
(1982) proposed using k linear combinations of the s initial equations as described
next.

Let S, be a (s x s) symmetric, positive definite weighting matrix that may depend
on the observations and converges almost surely to a nonrandom, positive definite
matrix S. Hansen’s (1982) GMM estimator is obtained by minimizing with respect

to 6 the following quadratic form of the sample moment conditions:

Qn () = gn () Snga (6). (2.2)

Here, S, is used to measure the proximity of the sample moment indicators to zero,
via closeness of the quadratic form (2.2) to zero. Note that @, () > 0,V 0 € O,
being equal to zero only if and only if g, () = 0, that is, as in the just identified case.

The resultant k first-order conditions for this minimization problem are
G Snin = 0. (2.3)

Using standard asymptotic theory, it can be proved [see Hansen (1982)] that the

10



GMM estimator é, under the assumptions made in section 2.2, is consistent and

asymptotically normally distributed:
Jn (@) - 90) <4 N(0,3), (2.4)

where

Y= (G'SG) G'SVSG (G'SG) . (2.5)

Analyzing (2.3), (2.4) and (2.5), we see that for each chosen weighting matrix S,
a different GMM estimator will be obtained, with different asymptotic properties.
Usually, S, is chosen according to either computational convenience, in which case
the identity matrix is frequently employed, or efficiency criteria, the weighting matrix
selected being the one that minimizes the matrix ¥ defined in (2.5). In the next

section we discuss the issue of efficient GMM estimation.

2.3.2 Efficient estimation

Although the precision of an estimator is always an important matter, in the GMM
framework it gains particular significance as the assumptions made are very weak.
According to (2.5), the asymptotic variance matrix of 0 depends on both the matrix
S and the moment conditions ¢ (y, fy). If we merely wish to obtain consistent, rather
than efficient?, estimates of 6y, we can consider any weighting matrix S and any
moment conditions that satisfy the assumptions discussed earlier. However, if our
aim is to obtain efficient GMM estimators, both S and g (y,6y) must be chosen in
conformity with specific rules, as long as there are more moment conditions available
than parameters to estimate. The choice of the matrix S is obvious, as we will see
below, but the latter is a much more complicated issue, with a few exceptions in some

specific cases. Note that all results presented in this sub-section are asymptotic.

2By efficient estimator, we mean the most efficient estimator within the general class of GMM
estimators, not efficiency in the absolute sense, that is, considering all possible estimators for a
particular model.
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In small samples, the calculation of GMM estimators according to the guidelines
described below may not be the best option (see section 2.3.6 for some Monte Carlo

evidence).

Choice of the weighting matrix

In this sub-section we assume that the moment conditions are given. When their
number is equal to the number of parameters to be estimated, the GMM estimator
does not depend on the choice of the weighting matrix. Indeed, in this situation the
GMM estimator solves the system of equations g, (@) = 0 and the expression of the

covariance matrix given in (2.5) can be simplified to

¥y = ¢'va!
- (a'v'a)™, (2.6)

as the matrix GG is now invertible. This is the covariance matrix of the so-called
efficient GMM estimator. This estimator is the most efficient one within the class
of GMM estimators, in the sense that it always attains the smallest variance of all
possible GMM estimators. To see that (2.6) indeed represents a lower bound for this
class of estimators, that is, (2.5)>(2.6), V.S, in a positive semi-definite sense, note

that this is equivalent to proving that
(('SG) " G'SVE [1 —VEG(QVTG) G'v—%] V3SG (G'SG)™! > 0.

As the matrix in the square brackets is an orthogonal projection matrix and thus
idempotent, the left-hand side of this equation is always positive semi-definite, which
proves immediately the previous statement.

When there are more moment conditions than parameters to be estimated, the
existence of overidentifying restrictions imply that different GMM estimators are ob-

tained for different choices of 5,,. Efficient GMM estimation, as defined above, is now
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achieved only when a specific weighting matrix is used in the estimation procedure,
namely a matrix S, that converges to S* = V!, the inverse of the limiting covariance
matrix of the empirical moments evaluated at the true value of the parameters. As
it is easily seen, substituting S* for S into (2.5) produces (2.6).

The optimal weighting matrix V~! depends on 6, so an initial consistent estimator
for this parameter vector is needed for feasible estimation. Given the availability
of a consistent, although generally inefficient, estimator of 6, (see section 2.3.3 for
details), as long as V,, is a consistent estimator for V, the utilization of the former in
place of the latter does not affect the asymptotic properties of the resultant efficient
GMM estimator. Hence, the GMM estimator obtained from the minimization of the

objective function

Qu () = 9 (0) V" 9a (0)- (2.7)

will have the same first-order asymptotic properties as that obtained from using the
true V in (2.7). However, different V"' matrices will give rise to different GMM
estimators, which can exhibit different behaviour in small samples.

In the econometric literature, a estimator obtained by minimizing an expression
such as (2.7) is often termed a minimum chi-square estimator or an optimal minimum
distance estimator. This is the GMM estimator that we consider throughout this
dissertation, so we call it simply the GMM estimator, usually omitting ‘efficient’.
Whenever we refer to a GMM estimator not based on S* = V=1, we will call it

explicitly a non-efficient GMM estimator.

Choice of the moment conditions

When S = V1, the above GMM estimator is the most efficient one for the given
set of moment conditions. However, econometric models are generally specified in
terms of conditional moments. From one set of conditional moments, we can draw
an extensive set of unconditional moment conditions. For instance, E [u (y,6p)| X]

=0= E[H (X)u(y,0y)] = 0, for any measurable function H. Thus, there is a
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large set of candidates to be used as orthogonality conditions. For each one of these
potential sets, there exists an efficient GMM estimator in the sense discussed in the
previous sub-section. Although throughout this dissertation we consider the moment
conditions as given, we discuss next, briefly, the issue of how to select, for a given
weighting matrix, the set of moment conditions which yields the most asymptotically
efficient estimators.

One might think that the more moment conditions used, the more efficient the
resulting estimator. Actually, although it is true that the inclusion of extra moment
conditions allows an improvement in the efficiency of parameter estimates®, there
seems to be a trade-off between asymptotic efficiency and bias in finite samples. Using
a large number of overidentifying moment conditions may lead to a smaller asymptotic
covariance matrix, but the estimates may be seriously biased in small samples. This
conjecture is confirmed by some Monte Carlo simulation studies undertaken [see,
for example, Kocherlakota (1990) and Ferson and Foerster (1994)], which strongly
suggest that one should be quite parsimonious in the selection of the orthogonality
conditions to be used in estimation.

The question of how to optimally choose the moment conditions has been studied
mainly for the case of instrumental variables (one of the main applications of GMM),
where the moment conditions can be expressed as a set of orthogonality conditions
between a matrix (n X s) of instrumental variables, H (X'), and an n-vector of dis-
turbance terms, u (y, 6p), which is assumed to be known up to the parameter vector
Oo. In this setting, the problem is then how to choose the instrument matrix H (X)
which yields the asymptotically most efficient GMM estimator given the function u (-).
This issue has been extensively studied for some specific cases. Earlier examples are
Amemiya (1974) and Jorgenson and Laffont (1974), who calculated covariance matrix
bounds for instrumental variables estimators in the homoskedastic disturbances case.

The general case (but still in the instrumental variables context) was discussed by

3Provided they are not redundant, contributing additional information to that contained in the
existing moment conditions.

14



Hansen (1985), who suggested a procedure for calculating the greatest lower bound
for the asymptotic covariance matrix of GMM estimators. In fact, although the higher
the number of relevant conditions used, the more efficient the GMM estimator, a lower
bound exists for its covariance matrix. This bound was calculated for some specific
instrumental variable models by Hansen (1985), Hansen, Heaton and Ogaki (1988)
and Heaton and Ogaki (1991). However, even in those cases, the authors did not
calculate an expression for the optimal instruments that would attain that bound.
Actually, although in theory there exists an optimal set of instrumental variables
which allows the GMM bound to be achieved, in applied work it has been proved
difficult to calculate. Exceptions occur in certain models, mainly when independence
among observations can be assumed. For instance, Tauchen (1986a) showed that,
for a model where the disturbance terms are serially uncorrelated, Hansen’s (1985)

bound implies that the optimal instruments matrix is

H(X) = {E[utouloo X)) B |2

= QX)) UX)C, (2.8)

X]C

where C' is any nonsingular, nonrandom (k x k) matrix. This is the same expression
found by Amemiya (1977), using another approach and also assuming homoskedas-
ticity.

It can be proved that the asymptotic covariance matrix attained when we use

H* (X) as instruments,
= (Bx {U(X) 10X U0} (2.9)

constitutes a lower bound for all instrumental variables estimators under the validity
of the assumptions made [see, for example, Newey (1993)]. Furthermore, Chamberlain
(1987), assuming independent and identically distributed observations, demonstrated

that the semi-parametric efficiency bound for conditional moment restriction models,

15



derived in that paper, is attained by the optimal instrumental variables estimator de-
fined in (2.8). Therefore, expression (2.9) represents a lower bound for the asymptotic
covariance matrix of any consistent, asymptotically normal estimator for a model de-
fined by E[u(y,60p)|X] = 0 and not just for the instrumental variable estimator.
Note that H* (X) is an (n X k) matrix which means that the optimal instruments
reduce the s original moment conditions to only k. With as many moment conditions
as unknown parameters, GMM estimation becomes independent of the choice of the
weighting matrix and, thus, estimators based on H* (X) are also efficient in the sense
discussed in the previous section. However, the matrix H* (X) depends on unknown
parameters and functions. The conditional expectations present in (2.8) are generally
not available, so the relevant issue now is how to construct feasible optimal GMM
estimators, which must use as instrumental variable matrix an estimate of H* (X)
that does not affect the asymptotic distribution of the GMM estimator.

The estimation of H* (X) can be a hard task, so these optimal instruments may
be difficult to implement in practice. However, when U (X) is known up to some
parameters, then estimating the optimal instruments is much easier. For instance, in
linear models, U (X) = —X because % depends only on the set of conditioning

variables, so, with C'= —1,
H* (X) = [Q(X)] X, (2.10)

which yields the Generalized Least Squares (GLS) estimator. Even so, unless ho-
moskedasticity and serial independence [ (X) = I] may be assumed, we need an
estimate of €2, that is, we need to use feasible GLS. As it is known, feasible GLS
produces estimators asymptotically equivalent to those from infeasible GLS estima-
tion as long as €2 is a known function of X and depends on a vector of parameters
that can be consistently estimated by an auxiliary procedure. Otherwise, GLS based
on a nonparametric estimation of the variance can be implemented along the lines

described in Carroll (1982) and Robinson (1987).
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As mentioned above, a detailed study of this issue lies outside the scope of this
dissertation. Therefore, from now on and in all circumstances, we assume that the

moment conditions are given.

2.3.3 Alternative computing procedures

In this sub-section, we discuss how to obtain GMM estimators in practice. When a
weighting matrix .S,, not dependent on 6, is chosen, for example the identity matrix,
then a one-step estimation procedure may be employed: the set of equations (2.3)
is solved employing a standard numerical optimization routine. If an efficient GMM
estimator is the aim, then an initial consistent estimate of the matrix V' is needed,
which in turn requires the availability of an initial consistent estimator for 6. As
solution to this “circular” problem, a two-step procedure is generally utilized, which

can be described as follows:

1. Find a consistent estimator for 6, for instance by using a non-efficient GMM
estimator based on a matrix S, that does not depend on 6y (although this

preliminary estimate need not be obtained by GMM),

G, (é1>/ Soin (él) — 0, (2.11)

~1 ~1

where 6 denotes the resultant one-step estimator of 6y; 6 will generally be
- ~1

inefficient but consistent, so it can used to construct V,, =V, (6’ >, a consistent

estimator of V;

2. Solve again the set of equations (2.11) but now using S, = V!,
N/ - R
G, (9) Vg, (9) —0, (2.12)

in order to obtain «9, an efficient estimator of 6.

Usually, the resultant efficient GMM estimator is called a two-step GMM esti-

mator. Although in theory one iteration in the second step is enough for achieving
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asymptotic efficiency, it is now much more common to iterate the two-step GMM
estimator until full convergence is reached again, keeping V,, fixed in all iterations.
All two-step GMM estimators referred to later in our Monte Carlo simulation studies
were calculated using the latter technique.

Recently, Hansen, Heaton and Yaron (1996) proposed another computational pro-
cedure to estimate efficiently moment condition models by GMM. Their estimator,
called the repeatedly-iterated GMM estimator, can be obtained by an analogous
process to the one described above for the two-step GMM estimator but in the sec-
ond step, instead of using the initial weighting matrix V.=V, (91) in all iterations,
this matrix is re-estimated in each iteration in such a way that V, (9%1) is used
to estimate 9j in iteration j. Note that, although the weighting matrix continues

to be treated as given in each iteration, this estimator can be characterized by the

Gy (é)' [Vn (9)} s (9) ~0. (2.13)

2.3.4 Specification tests

first-order conditions:

Several specification tests for models estimated by the efficient GMM have been pro-
posed. In this section, we present the main existing tests for overidentifying moment
conditions, additional moment conditions and parametric restrictions. Non-nested
hypothesis will be discussed later, in chapter 5, where some alternative tests are

developed.

Tests of overidentifying moment conditions

Hansen (1982) proposed the J test for assessing the specification of a model estimated
by GMM, which is probably the most frequently applied test in the moment condition
framework. The construction of this test and the idea behind it is very simple. If there
are s estimator-defining equations and k parameters to be estimated, with s > k, only
k moments are needed to identify the k parameters, so there are s — k overidentifying

moment conditions. One way to test whether all moment conditions are satisfied is
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to check if their sample versions are as close to zero as would be expected in that
case. Hence, Hansen (1982) suggested using n times the minimized value of the GMM

criterion function (2.7),

~

J=ng V. an, (2.14)

which he showed to possess a limiting chi-squared distribution with s — k degrees of
freedom under the hypothesis that all moment conditions are valid.

The J test may be adapted to test the correctness of only a subset of moment con-
ditions. Following Eichenbaum, Hansen and Singleton (1988), partition the sample
moments vector g, ()" as [ gin (0) gon (0 ], where the population moment condi-
tions corresponding to the second sub-vector are presumed to hold only under the null
hypothesis and the ones concerning the first are assumed also to be valid under the al-

ternative hypothesis. Let s; and s, be the dimension of each sub-vector, respectively,

. .. ) Vit Vio
with s = 51 + s and s; > k. Partition the matrix V as conformably

Vor Vao
with the two subsets of moment conditions. Consider two optimizations, one based

on the full set of moment conditions, the other using only the first s; moments. Under
these assumptions, we can then assess the validity of the second subset of moment

conditions through the test statistic
h=n [Qn (é) — Qun (@)1)] , (2.15)

where ()1, (91) = J1n (@1)/ Vﬁigln (@1> and 91 is the vector of parameter estimates
from the second minimization. Under the null hypothesis, the asymptotic distribution
of Jp is chi-square with so degrees of freedom. Note that J5 is equal to the difference
between the J statistic, given by (2.14), and J;, the statistic that would be used to

test the validity of the moment conditions based on ¢ (y,0p).
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Tests for additional moment conditions

The J> test may also be applied to examine whether an additional s;-dimensional
vector of moments has mean zero and, thus, may be incorporated in the moment
conditions (2.1) in order to improve inference on 6y. For this purpose, assume that an
initial GMM estimation based only on the vector gy, (6) defined above was performed,
with the estimate 6, being obtained, and interpret gs,, (6) as the sample counterpart
of the set of additional moment conditions Er [g2 (y,600)] = 0. It is easily seen that
the statistic .J, may be used to assess this hypothesis.

Alternatively, we may follow the approach due to Newey (1985b) and Tauchen
(1985) and employ the test statistic

N1
OM = ngl, (AnvnA;) Gom, (2.16)
where * means evaluation at 91, An is a consistent estimator for

A

[ —Gy (GYVi'G) GVt I, ] : (2.17)

G = [ G, G, ] and [, is an sy-dimensional identity matrix. This statistic has also
a chi-squared distribution with s, degrees of freedom. In contrast to the .J; test, only

one model estimation is required.

Tests of parametric restrictions

As with any other estimation procedure, we may wish to test whether some specific
restrictions concerning the vector of parameters of interest may be entertained in
the model. To this end, in the GMM context it is possible to employ the usual Wald
(W), Lagrange multiplier (LM ), distance metric (DM ), minimum chi-squared (MC'),
Hausman (H ) and Neyman’s (1959) C'(«) statistics. The first four tests were proposed
by Newey and West (1987b) and the last two in Newey and McFadden (1994) and
Davidson and MacKinnon (1993), respectively. See those papers for the proofs of the
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results given below.

Consider the null hypothesis Hy : r (6g) = 0, where 7 (-) is a known, possibly non-
linear, continuously differentiable ¢g-vector representing certain parametric restrictions
expressed in constraint equation form and ¢ is the number of restrictions (¢ < k), and
denote 65—? by R (), a full row rank (¢ x k) matrix. All statistics presented below

have a limiting chi-squared distribution with ¢ degrees of freedom under H,.

The Wald statistic for testing Hy is
P a1
W, = ni’ (REHR’) 7, (2.18)

where © denotes evaluation at the unconstrained GMM estimator @ and f]n is a con-
sistent estimator for the matrix 3 defined in (2.6). As usual for Wald statistics, this
test has the disadvantage of not being invariant under reparametrization of the re-
strictions. On the other hand, it does not require optimization of the constrained
model.

With regard to the LM or score test, it is only necessary to estimate the restricted
model. Let A be the constrained GMM estimator obtained by minimizing Q, (6)
subject to the restrictions 7 (6) = 0. The test statistic for Hy is:

LM, =ng. V., 'G,2.G V. g, (2.19)

If there are as many moment conditions as parameters, then G, is a square matrix
and, thus, (2.19) can be written as LM = nQ, (5’), that is, this test turns to be
numerically identical to the J test based on 6, provided that the same estimate of V
is used in both statistics.

As for the distance metric or likelihood ratio-type test, the test statistic for Hy is:
DM, =n [Qn (9) —Q, (9)] . (2.20)
Note that the same estimator of V must be used for both restricted and unrestricted
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estimation to guarantee that DM,, is non-negative [Newey and West (1987b)]. The
main disadvantage of this test is that it requires two optimizations. If s = k, then
@n <9) =0and DM = nQ, (9), and, consequently, this test turns to be numerically
equal to the J and LM tests.

The minimum chi-squared test statistic for Hy is given by
MC, =n (E) - ?))/ ! (@) - é) (2.21)
and the Hausman test by:
H,=n (Z) - E))' R (RS, R)'R (é - é) . (2.22)

Like the distance metric test, two optimizations are needed to perform these tests.
Estimation for the matrices R and ¥ may be evaluated at either 0 or 6.

Finally, Davidson and MacKinnon (1993) derived a C'(a) test. Let @ be any root-n
consistent estimator of #y that satisfies the null hypothesis, that is, r (9) = 0. The

test statistic for Hy is:
N R
C, (@) = ng. VLGS R (Ran') RE,GV g, (2.23)
This statistic only requires 6 rather than the GMM estimator.

2.3.5 Generating GMM test statistics

Before continuing our survey on estimation methods for moment condition models,
we present in this section an original way of deriving some of the tests discussed in
the previous section. Furthermore, we consider a more general setting of implicit
parametric restrictions, which allows us to generalize those tests for other kind of
constraints. Essentially, we extend Smith’s (1987) results for maximum likelihood

estimators to the GMM framework.
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A linearized GMM statistic for testing implicit parametric restrictions

Suppose that we aim to test whether some specific restrictions, involving not only
the vector of parameters of interest § but also a p-dimensional vector a of auxiliary
parameters, may be entertained in a model estimated by GMM. We assume that the

null hypothesis to be assessed can be expressed as
H() T (90, OZ()) = 0, (224)

where « is the true value of « and, as before, r (-) is a g-vector of restrictions and ¢ is

the number of restrictions. The function r (-) satisfies the implicit function theorem,

_ ar(6,a)

= 5 and the

that is, 7 (-) = 0 has a unique solution and the (¢ x k) matrix Ry

. _ or(8,a)
(¢ x p) matrix R, = =5

are of rank ¢ and p, respectively, for values of (0, o) near
to the true values (0, ag), with p < ¢ < k. The specification of the restrictions in
the very general implicit form (2.24) includes the more common cases of constraint
[ (6p) = 0] and freedom [0y = 14 (c0)] equation restrictions as special cases.

The standard approach for constructing Wald statistics to test the null hypothesis
(2.24) against Hy : r(6y,a0) # 0 is not directly applicable here, since « is only
identified under the null hypothesis. To circumvent this difficulty, Szroeter (1983)
suggested using as an estimate of o the solution & to the program

min A (o) =r (é, oz)l D, r (é’, oz) , (2.25)

«

where ®,, is a (¢ X q) positive semi-definite matrix that converges almost surely to a
nonrandom, positive definite matrix ®. The estimator & thus obtained is function of
the unrestricted estimator 0 given the matrix ®,: & = f («9‘ <I>n). The function f (-)
can be defined for each value of #, which allows the reformulation of the restrictions

(2.24) into a constraint equation form,

7‘(00,&0) :r[é’o,f(é’g\fb)] :h@(eo‘q)) = 0. (226)
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Using the reformulated restrictions (2.26), which now omit «, we may construct a

standard Wald statistic for testing H, against H,

where izq> = hs (9
I—R, (Rfl@nRa)fl R, ®, is a (¢ X q) idempotent matrix of rank ¢ — p, (-)” denotes

<I>n) =r (9,&), Hs = %% = MgRy is a (¢ x k) matrix, Mg =

a generalized inverse and * denotes evaluation at (é, d). This statistic has a limiting
chi-squared distribution with ¢ — p degrees of freedom under Hy. For a full discussion
of the derivation of this test statistic see Szroeter (1983).

In the maximum likelihood context, Smith (1987) developed a linearized classical
statistic, which shares the same first-order properties as . In a similar manner,
a linearized GMM (LGM M) statistic may also be constructed. To that end, the
first point to note is that the unconstrained efficient GMM estimator 6 can be ob-
tained from the first-step of, for instance, the Newton-Raphson algorithm based on

an consistent and asymptotically normal unconstrained estimator 6 for 6y,
0=0—%,G V" G (2.28)

a single iteration is enough to assure the asymptotic efficiency of 8. Then, linearizing

the constraints he around 6 produces:

~

he = he+ He (é - {9') + o0, (n‘%)
= e — HeSuG V4G, + 0, (n—%> . (2.29)

Finally, substituting (2.29) into (2.27) yields the LGM M statistic
LGMM =n (hq, - Hq,znG;Vn—lgn) (Hq,ang,) (hq, - H@znG;Vn—lgn> . (2.30)
which has a limiting chi-square distribution with ¢ — p degrees of freedom under H,
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and can be used to test the hypothesis (2.24) in the GMM framework. Note that

“ denotes evaluation at (6’, d), where & = f (0 <I>n), that is ¢& solves (2.25) with 0

replaced by 0.

For the statistic LGM M to be operational, the matrix ®,, in (2.25) and the
generalized inverse present in (2.30) must be chosen. The asymptotic power of the test
based on W, and thus that of the LG M M statistic, is independent of those choices,
as shown by Szroeter (1983). However, in finite samples, the statistical properties of
both W and LG M M tests will depend on the matrices selected. For any given choice
of the matrix ®,,, a generalized inverse for Hg X, HY is MHQ M, with Q = (RySR;) ™
and Mg = I — R, (R.QR,)”" R\,Q.* On the other hand, a choice for ®, that allows
certain simplifications to these and other statistics presented below is a consistent
estimator €, for €, in which case qy is efficiently estimated.’ In this case, the matrix
Q is a generalized inverse for IfI@Enﬁ&) = MQQ;lMé and, since r (9,@) = 719, the
W statistic is numerically equal to nA (&).

We can define similar statistics to (2.30) appropriate for the more familiar con-
straint and freedom equation restrictions. In the former case, Hy : 7 (6y) = 0, so

R, = 0, which implies Ms = I, and Hs = Ry. Hence, it follows that
. . Iy .\ -1 . .
LGMM, =n (r - ReznG;v,;lgn) (Reang) (7’ - ReznG;V,;lgn) . (2.31)

which has an asymptotic chi-squared distribution with ¢ degrees of freedom.
For freedom equation restrictions, as Hy : g = 74 (), we have ¢ = k and Ry = I,

which gives Hy = Mg and Q = X1, Let 6 = r,, (&), with & solving:

min A (a) = [6 —Tq (a)} / D, [6 —Tq (a)] ; (2.32)

«

‘Note that HeXHGFMLQMoHsYHy = MeQ ' MLMLQMoMeQ 1My = MeQ 1My, for
MoMe = Mq and Q_lMéQMQQ_l = MéQ_lMQ.

5Note that in this case an initial consistent estimator of « is needed to evaluate ®,, = 2, in
(2.25). It can be obtained solving also (2.25) but considering a matrix ®,,, such as the identity
matrix, not dependent on unknown parameter values.
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cf. (2.25). The first-order conditions corresponding to (2.32) are given by R/, ®,, ((9 — é)
=0, so Mo (9 — é) = (9 — é) Using M{QMq = M{, X *Mx-1 as generalized in-

verse and expression (2.28) for 0, we obtain

LGMM; = (60~ znégvn—lgn)' Wy W (60— 2.6V, )

v

Y .
- n (9 - 9) ML\ S My ( - 9) . (2.33)
The degrees of freedom are now k — p.

Besides being suitable for testing parametric restrictions in models estimated by
GMM, the three LGM M statistics derived, when evaluated at certain estimators,

give rise to various well known tests, as is emphasized next.

A test statistic generating equation

Consider again the LGM M statistic given in (2.30) but permitting any consistent

asymptotically normal estimator of fy (and, hence, ag) to be used:

TSGE (0,a) = n (he — HeX,GL Vb g,) (HaXn Hy) ™ (ha — HeZ,GLVitg,) -
(2.34)
This equation may be viewed as a test statistic generating equation (T'SGE) for im-
plicit parametric restrictions in the GMM framework. Accordingly to the estimators
(0, ) at which TSGE is evaluated, several different test statistics may be obtained.
Note that all results presented below are exact.
First of all, evaluating TSGE at (9, d), where & = f (9’ <I>n>, gives, obviously,
the LGM M statistic.
@n),

Second, using (9, éz), where 6 is the efficient GMM estimator and & = f (9

implies that G/, V" §, = 0, so

TSGE (é, a) = ni, (ﬁ@ﬂ&,) e, (2.35)
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the generalized Wald statistic (2.27).
Third, let (6’, d) be any consistent estimator of #y and g which satisfy r (0, d) =

0. Then, since H{i, <H¢EnH&,>_ Hp = H&QnHQ, it follows that
TSGE (é), a) — g VS L Ho S GV G (2.36)

Neyman’s C' (a) statistic.’

Finally, consider the efficient constrained GMM estimator 0 that results from

min @, (0) subject to r (6, a) = 0. (2.37)

,Q

Solving this optimization problem using a Lagrangian function yields as first-order
conditions he =r (é,&) =0, GV g, + R;,{p = 0 and R;{p — 0, where 1 is the
Lagrange multiplier associated with the restrictions. Substituting G’ Vg, for Rg{p

into (2.36) and noting that 'IL/MQ = 1), we see that evaluation of TSGE at (é, d)

produces

TSGE (é,@) — 10 ReS, Ry (2.38)
= ng VG S,G VG, (2.39)

the two usual forms of a Score test based on GMM estimation.

Test statistics for constraint and freedom equation restrictions may be obtained
defining a similar test generating equation to (2.34) but from (2.31) and (2.33), re-
spectively. Alternatively, we can derive them directly from (2.35), (2.36) or (2.39), in
the same way as (2.31) and (2.33) were deduced from (2.30). For the case of constraint
equation restrictions, versions of the above Wald and Score statistics were presented

by Newey and West (1987b) and of the C' («) statistic by Davidson and MacKinnon

6Remember that « is not identified under the alternative hypothesis. Thus, as this statistic is
evaluated under Hy, & # f (9

same happens with the Score test presented next.

Sn>, as we do not need to use program (2.25) to estimate . The
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(1993), as discussed in section 2.3.4.

We now demonstrate that the TSGE given in (2.34) may be adapted to another
type of hypothesis. Indeed, it is straightforward to show that the statistic J given in
(2.14) may also be obtained from the test generating equation described above. Now,

defining 7 (0, ) as g, (f) and, hence, Ry as G, equation (2.34) can be simplified to

TSGE () = n(gn — GuZnGLVi 1 00) (GuZnGl) ™ (gn — GuXnGLVi b gy)
= ng, M.V, My-1g,, (2.40)

where we have used V! as generalized inverse for G,%,G!. As rank (My-1) =
s — k, the two tests of overidentifying moment conditions we next generate from
equation (2.40) have, under Hy, a limiting chi-squared distribution with s — k degrees

of freedom. First, evaluating (2.40) at 0 implies My-1§, = g, which yields
TSGE (9) = ng. Vg, (2.41)

the J test. Second, evaluation of (2.40) at # produces

TSGE (9) = gl M Vo My, (2.42)
which we designate as a linearized J statistic because it could be deduced by lineariz-
ing g, around 0 of (2.28) and substituting the consequent result into the expression
for the J test. While (2.41) can only be evaluated at efficient GMM estimators, (2.42)

may be used to assess any model estimated by GMM, irrespective of the weighting

matrix employed in GMM estimation.

2.3.6 Limitations

To complete our survey of the GMM estimator and motivate the following discus-
sion of alternative estimation methods for moment condition models, we now discuss

some important drawbacks of this estimator, the principal of them being their finite
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sample behaviour. In fact, it has long been recognized that the first-order asymp-
totic distribution of the GMM estimator provides a poor approximation to its small
sample distribution. There is increasing Monte Carlo evidence indicating that in
finite samples GMM estimators may be badly biased and the associated tests may
have actual sizes substantially different from the nominal ones. One of the first stud-
ies of this issue was Tauchen (1986b), using data generated from artificial nonlinear
consumption-based asset pricing models. He concluded that the two-step GMM esti-
mator performed reasonably well but was very sensitive to the choice of instruments:
the more lags (instruments), the lower the variance of the estimators, but, at the same
time, the higher their bias. Kocherlakota (1990) conducted a similar study confirming
the results obtained in Tauchen (1986b) and also finding evidence on the tendency
of the J test to reject the true hypothesis too often. Ferson and Foerster (1994)
considered another example, estimating a seemgly unrelated regression model with
cross equation restrictions for asset returns using real financial data. They concluded
that, in simple models, with few assets, the biases of the estimators were relatively
small but their standard errors were underestimated, mainly for smaller sample sizes
and where more instruments were utilized. In more complex models, with more as-
sets, they found that both the coefficient estimates and the estimated standard errors
could be severely biased.

The level of the concern about the small-sample properties of GMM estimators has
been sufficient great that, recently (in 1996), the Journal of Business €& Economic
Statistics dedicated a special issue to studies investigating this question. Among
other articles published there, Andersen and Sorensen (1996), considering stochastic
volatility models, confirmed previous results about the deleterious effect of the number
of instruments on the performance of GMM estimators in small samples and Altonji
and Segal (1996), simulating covariance structure models, reported that, at least in
some circumstances, the two-step GMM estimator displays worse behaviour than a
non-efficient GMM estimator obtained using the identity matrix as weighting matrix.

Hansen, Heaton and Yaron (1996), also in that issue, undertook an extensive

29



Monte Carlo study comparing the performance of, among others, the two-step and
the repeatedly-iterated GMM estimators. In their experiments, both methods per-
formed very poorly in many cases, producing heavy biases in the parameter estimates.
Moreover, the J test led to over-rejection of the null hypothesis and Wald tests of para-
metric restrictions were unreliable. Surprisingly, the repeatedly-iterated estimator in
some cases behaved the worst, whereas originally it had been proposed as alternative
to the two-step estimator with the objective of improving its finite-sample proper-
ties. Hansen, Heaton and Yaron (1996) also noticed that the poorest performances
occurred when more moment conditions were used.

To summarize, most of these investigations suggest that the finite sample perfor-
mance of GMM is sensitive to both the number of moment conditions and the sample
size. When the former increases or the latter decreases, the finite sample properties of
the GMM estimator and related statistics deviate more from the nominal asymptotic
properties, no matter which kind of GMM estimator is used. In this dissertation, we
provide additional evidence on this subject and investigate the behaviour of alterna-
tive methods.

With regard to the J test, there is an additional problem. Newey (1985a) argued
that the J test may fail to detect a misspecified model, showing that there exist
local alternatives for which the assumed population moment conditions are invalid
but the statistic J will still converge to a x?_, random variable. Therefore, the .J
test may be inconsistent in some circumstances, failing to reject the null hypothesis
of no misspecification when the model is incorrect. An example of such a situation
occurs when the sample is characterized by structural instability [see Ghysels and
Hall (1990a)].

A final problem associated with GMM is that the use of a consistent estimate of the
optimal weighting matrix, instead of estimating it jointly with the model parameters,
can lead to the sensitivity of GMM estimators to the choice of the initial weighting
matrix. Indeed, GMM estimation, by holding that matrix fixed, fails to account for

the dependence of the weighting matrix on the parameter vector. Hence, unless we
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have as many parameters as moment conditions, GMM estimators are not invariant

to linear transformations of the original moment functions.

2.4 The continuous-updating GMM estimator

As some of the problems of the standard GMM estimator seem to arise from the
necessity of utilizing a consistent estimate of V' in an initial step, alternative one-step
methods have recently been suggested. One of those alternatives is the CU-GMM
estimator, proposed by Hansen, Heaton and Yaron (1996). This estimator is obtained

by minimizing the function

Qn (0) = 9. (8) [Vi (9)] " 9 (6), (2.43)

N /
1< oV
GVl + =) Gjn (—") Gn =0, (2.44)
1

where §;,, corresponds to the j sample moment condition, f/,f is the j* s-dimensional
row of the matrix Vn_l and 88—%{ is a (s x k) matrix. As the weighting matrix and the
parameters are now estimated simultaneously, the CU-GMM estimator is invariant to
parameter-dependent transformations of the moment indicators. The weighting ma-
trix used in (2.43) can no longer be viewed as a nonrandom matrix but, nevertheless,
according to Hansen, Heaton and Yaron (1996), the extra term present in the first-
order conditions (2.44) does not distort the limiting distribution of the CU-GMM
estimator relative to the standard GMM estimator. Therefore, the two estimators
are asymptotically first-order equivalent and, hence, all specification tests discussed
in the previous section could also be evaluated at the CU-GMM estimator.

In fact, the presence of the additional term in (2.44) implies that the CU-GMM es-

timator should have smaller bias in finite samples than the standard GMM estimator,
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as both Donald and Newey (2000) and Newey and Smith (2000) argue. The former
authors gave a jackknife interpretation of the CU-GMM estimator, demonstrating
that, in (2.44), own observation terms are automatically deleted, which eliminates
one known important source of bias for GMM estimators. On the other hand, Newey
and Smith (2000) derived stochastic expansions for both estimators, providing asymp-
totic expressions for their biases. They find that the asymptotic bias of the CU-GMM

estimator is given by

1 1 1

where ¢; = g (y;,0), G; = ggé, H=XG'VY, P=V!1-V1IGEG'V~! and a is

an s-vector such that a; = %tr {EEF [82576"3(00,")} }, gi; denotes the jth element of g;,
j =1,...;s. The bias (2.45) is composed by three terms, each of which has its own
interpretation. Following Newey and Smith (2000), the sum of the two first terms
is the bias for the (infeasible) optimal GMM estimator based on the moment vector
G'V~1g(y,0), where the optimal linear combination matrix G’V ! does not need to
be estimated. The first term arises from nonlinearity of the moments, while the second
is generally nonzero whenever there is endogeneity but it should tend to be not very
large. The third term is due to estimation of V' in the optimal linear combination of
moments. For the two-step GMM estimator Newey and Smith (2000) demonstrated
that .

bas = bew — %EEF (G} Pg;) + %H ; Vo, (Hs — H)'e;, (2.46)
where Vy, = E (8ag—$£), Hg = (G'S7'G)G'S™! and ¢, is an s-vector whose j-element
is one and the others are zero. Hence, the two-step GMM estimator has two further
and important sources of bias. The first arises from the necessity of estimating G in
the linear combination matrix G’V ~! for the infeasible optimal GMM estimator. The
second arises from the choice of the first-step estimator, being zero if S is a scalar

multiple of V. Note that for the repeatedly-iterated GMM estimator the last source
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of bias is not present.

There is relatively little Monte Carlo evidence on the small sample properties of
the CU-GMM estimator. To the best of our knowledge, only Hansen, Heaton and
Yaron (1996) and Stock and Wright (2000) have undertaken simulation studies of this
estimator, obtaining similar conclusions, which indicate that the CU-GMM estimator
is effectively approximately median unbiased but has a finite sample distribution with
very fat tails, exhibiting sometimes extreme outlier behaviour. We investigate this

question further in the next chapter.

2.5 Empirical-based estimation methods

2.5.1 Introduction

The CU-GMM is just one of several methods that can be used as an alternative
to GMM for the estimation of moment condition models. Indeed, a number of other
alternative estimation procedures have been recently suggested. Like CU-GMM, these
new techniques produce estimators that are insensitive to how the moment conditions
are scaled but, in addition, possess the advantages of not requiring a weighting matrix
and of ensuring that all moment conditions, rather than only £ linear combinations,
are satisfied in the sample. Furthermore, as likelihood-like methods, they allow the
use of classical tests to evaluate various hypotheses concerning the specification of
a particular model, including overidentifying moment conditions. Conversely, their
main disadvantage is computational: the system of equations requiring solution is at
least twice as large as that of GMM.

In this dissertation, we concentrate on the study of two of these new EB estimation
procedures, namely the EL and EI methods. Both are particular cases of the MD
methods discussed by Corcoran (1998) and of the GEL method proposed by Smith
(1997). Here, we follow the former approach to motivate the utilization of EB methods
but employ the analytical framework provided by the latter author to present the main

results concerning them.
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2.5.2 Minimum discrepancy estimators

Consider again the moment conditions given in (2.1), Er[g (y,60)] = 0, where the
distribution F = F (y) is unknown. Implicitly, by giving the same weight () to
each observation, GMM uses the empirical distribution function F), (y) = %Z?:l
1(y; < y) as an estimate for F'(y), where the indicator function 1 (y; < y) is equal to
1 if y; <y and 0 otherwise. The distribution F,, (y) is the nonparametric maximum
likelihood estimator of F'(y), being the best estimator when no information about
the population of interest is available. However, because the moment conditions
(2.1) are assumed to be satisfied in the population, this information can be exploited
in order to obtain a more efficient estimator of F'(y). Thus, the idea behind MD
estimation is the following: to estimate 6y, we may select, as suggested firstly by
Back and Brown (1993), the estimator # that minimizes the distance, relatively to
some metric, between F), (y) and a distribution function F,,4 (y) satisfying the moment

conditions (2.1). The distribution F,,; (y) is, hence, the member of the class F () of
all distribution functions that satisfy (2.1),

f(e) = {Fmd : EFmd [g (y, ‘90)] = 0}7 (247)

that is closest to F, (y). As we will see below, the MD estimators 0 and ),y (y) are
calculated simultaneously.

In the selection of a particular probability measure in F (6), different metrics for
the closeness between F,,q = F,,4(y) and F,, = F, (y) may be used, which gives rise
to different estimation methods. Let M (F,,, F,,q) be the distance metric used in each

method. Then, the MD estimator 0 can be described as the solution to the program
i ' md > md — g (g, 0) = .
min M (F,, Fna) subject to pj* > 0, 219@ 1 and Epz 9 (yi,0) =0, (2.48)

where p"" = dF,,;(y) denotes the probability assigned to (functions of) the i-th

sample outcome, ¢+ = 1,...,n. Note that the last restriction is an empirical measure
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counterpart to the moment conditions (2.1). Thus, all moment restrictions assumed to
hold in the population are imposed numerically by appropriately reweighting the data,
unlike the GMM context, where only k linear combinations of the sample moment
conditions are set equal to zero.

Several estimation methods based on the program (2.48), differing only in the
choice of metric M (-), have been proposed. The most common choices for M (-)
are particular cases of the Cressie-Read power-divergence statistic [Cressie and Read
(1984)].7 In the moment condition framework, the employment of this statistic as
discrepancy metric in (2.48) was suggested firstly by Imbens, Spady and Johnson

(1998). The Cressie-Read statistic measures the proximity between two distribution

r - 1}, (2.49)

where ) is a fixed scalar. The most well known special cases of this measure are the

empirical likelihood (A — 0), Kullback-Leibler (A — —1), Euclidean (A = —2) and

functions F' and G by

1 n dF (y;
M, (F,G) = SYEESY] ;dF (y:) { {dG 8@;

Hellinger (A = —1) discrepancies. We present next only the first two, which are the
subject of analysis throughout this dissertation and are the most widely applied in
the moment condition context. In fact, the study of the estimation methods that are
based on those two discrepancy metrics is now being introduced in textbooks, such
as that of Mittelhammer, Judge and Miller (2000), who dedicate two autonomous
chapters (12 and 13) to their analysis.

Empirical likelihood

The utilization of EL as a general statistical tool was first suggested by Owen (1988,
1990, 1991), who demonstrated that EL criterion-based statistics parallel many prop-

erties of parametric likelihood ratios; see also his recent survey textbook [Owen

"For a more general specification of M (+), which includes the Cressie-Read family as a particular
case, see Corcoran (1998).
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(2001)]. Namely, he proved that an asymptotic chi-square distribution holds for the
EL ratio, which implies that this empirical version of the likelihood ratio can be used
in the same fashion as the parametric form, both for constructing confidence regions
and performing hypothesis tests. Later, Qin and Lawless (1994) and Imbens (1997)
extended these results to the case in which there is information available about the
parameters of interest in the form of a set of moment conditions. They showed how
to combine this information with the EL ratio in order to obtain consistent, asymp-
totically normal and efficient estimators for both the parameters and the underlying
distribution of moment condition models.

The EL estimator is obtained by solving the problem (2.48) using as distance

metric the EL ratio

ELR=-2Y % (2.50)

or, equivalently, the Cressie-Read statistic Mg (F},, Finq)
. dF,
Mo (Fy, Fna) =lim My (F,, Fua) = ZdF ln => dF,ln—=.  (251)
4 p;
In both cases, since dF;,, = %, the EL estimator may be defined as the solution to:

md : md > . = . .
max ZlnpZ subject to pI** > 0, Zpl =1 and Zp g(y;,0) =0. (2.52)

=1

The problem (2.52) can be solved by optimizing the Lagrangian function®

L y,6,0) =Y np -~ (Zp”“l - 1) —ng' Zp 9(i0),  (2.53)
=1

where v and the normalized s-vector ¢ are Lagrange multipliers. Apparently, there
are (n+ k + s+ 1) elements to be estimated but, as explained next, this difficulty

can be circumvented. Indeed, solving the first-order conditions from (2.53), it follows

8In order to simplify the computational estimation procedures, we do not impose explicitly the
restrictions pf® > 0, i = 1,...,n. See section 2.5.5 for an explanation of the method adopted.
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that ¥ = n and

o [4F0 ()] 1
i = — = = —~> (2.54)
S 1[1—|—¢g<yz, )] [1+¢g(yi,9)]
i = 1,..,n. Using the latter result to concentrate out p"¢ from Y  Inp"? and

dropping irrelevant terms, we obtain the so-called EL criterion function,

Qu (0 Zln g (4, 0)], (2.55)

whose optimization produces the same estimates as in (2.53) but where only (k + s)
parameters need to be estimated, namely the k parameters of interest # and the s-
vector of Lagrange multipliers ¢. Note that each one of the elements of ¢ is associated
with a moment indicator. Hence, a value for ¢ statistically close to zero implies that

the moment conditions hold in the population.

Empirical information

Another distance metric widely used in the moment condition framework is the
Kullback-Leibler information criterion (KLIC). The KLIC measures the proximity
between the distribution functions F,, (y) and F,4 (y) by:

K (Fmd ‘Fn) EF |: :| ZPZ —)\1111}1 ./\/l)\ (Fn, Fmd) = Mfl (Fn, Fmd) .

(2.56)
Note that this measure is not a distance in the usual sense because it is not symmetric,
that is, K (F'|G) # K (G|F). However, the KLIC can be used as a discrepancy
measure between two distributions because it is always nonnegative, being equal to

zero if and only if F' = G.
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The estimator obtained by using (2.56) as metric in (2.48),

nbin ;p;”d In p7"* subject to pi"* > 0, Zz_l:p;"d =1 and ;pgndg (y:,0) =0, (2.57)
excluding irrelevant terms, is usually called the exponential tilting or EI estimator. It
was firstly proposed by Kitamura and Stutzer (1997) and Imbens, Spady and Johnson
(1998). Note that switching the roles of F,,; and F), in (2.56) yields K (F),|F.q),
which is equal to My (F,,, Fi,q). Hence, in this sense, the EL estimator may also
be interpreted as minimizing a KLIC. As observed by Imbens, Spady and Johnson
(1998), the principal difference between EL and EI estimators is that the discrepancy
between F,, (y) and F,,4 (y) is weighted by dF,, (y) in the former case and by dF,.4 (v)
in the latter. For this reason, these authors advocate the use of the EI estimator,
as Fina (y) is a more efficient estimator of the true distribution of the data, since it
takes into account of the information provided by the moment conditions. However,
as we will see later on, these estimators are asymptotically first-order equivalent and,
furthermore, the EL estimator seems to have more desirable higher-order properties.

The Lagrangian function for the constrained minimization of (2.57) is:

L(pyy.6,0) => piIn (p"!) — v (Zpi"d - 1) — ¢y g (v, 0) . (2.58)
=1 =1 =1

Again, the dimension of this optimization problem can be reduced. Solving the first-
order conditions from (2.58), it results that y =1 —1In) " | e?9(v:0) and
o%'9(vi.0)

~md __

P = (2.59)

27} e&;g(yi,@) ’

=1

i = 1,...,n. Concentrating out p/¢ from S p"1n (p;”d) and omitting irrelevant

terms yields the EI objective function
Qei (0,0) = > ol (2.60)
i=1
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which is maximized and minimized with respect to # and ¢, respectively.
Before discussing the asymptotic properties of EL and EI estimators, we introduce
in the next sub-section the GEL method that enables us to deal with both estimators

simultaneously.

2.5.3 Generalized empirical likelihood estimation

Smith (1997) proposed alternative criteria for the estimation of moment condition
models which, among others, includes as particular cases both the EL and EI methods.
His approach is based on Chesher and Smith’s (1997) paper, which is concerned
with generating likelihood ratio test statistics for implied moment conditions in a
fully parametric likelihood context by augmenting the null parametric density for
the observations, dF (y; 6), by a multiplicative factor that carries a weighted sample
version of the information contained in the implied moment conditions, i [¢'g (v, 0)],
where ¢ is an s-vector of auxiliary parameters. Apart normalizing constants, the

augmented density is

r(0.9) =dF (y;0) h[¢'g (y.0)], (2.61)

where the carrier function h (-) is chosen such that, when ¢ = 0, r (0, ¢) = dF (y; 0).

In the GMM context, however, there is no explicit knowledge of the underlying
density function for the data, the only parametric information being contained in
the moment conditions (2.1). Hence, Smith (1997) suggested using the empirical

distribution function F,, (y) and the consequent augmented function

r(0,0) = dF, (y) h[¢'g (y.0)], (2.62)

from where we can form the semi-parametric quasi-likelihood function @ (6,¢) =
—nlnn+> "  Inh[¢'g(y;,0)]. Excluding irrelevant terms and dropping the operator

‘In” in order to simplify some of the expressions to be presented later, we obtain the

39



equivalent criterion function

n

Qe (0,0) = > 1 [¢'g (i, 9)], (2.63)
i=1

optimization of which yields the so-called GEL estimators.” As we can see imme-
diately, this formulation includes as special cases the criterion functions (2.55) and
(2.60): h () is equal to —In[1+ ¢'g (y;,0)] for EL estimation and to e?'9%9 for the
EI method. Thus, from now on, we adopt the analytical framework provided by the
optimization of (2.63) to present in an integrated way the main results concerning EL
and EI estimators. Therefore, these results will be expressed in a very general form,
being valid not only for those two estimators but for any GEL estimator, unless we
explicitly mention that they were specialized for the EL and EI cases.

Before proceeding our discussion, we emphasize that GEL estimators are not al-
ways identical to MD estimators. For the chosen h (-) functions above, GEL estima-
tors are indeed equal to MD estimators based on the minimization of the EL and
Kullback-Leibler discrepancies. However, as discussed by Newey and Smith (2000),
this equivalence occurs only when ~, the Lagrange multiplier associated with the last
restriction of (2.48), can be factored out of the first-order conditions corresponding to
that problem. This is possible when h (-) is a member of the Cressie-Read family but,
for other cases, it appears impossible to do so and, hence, MD and GEL estimators
are different in general. Notice that, in those cases, the MD problem will have a much

larger dimension, with a (n + k + s + 1)-vector of parameters to estimate.

9 All derivations and results presented throughout this thesis assume this specification for the GEL
criterion function. Note that Smith (1997, 1998) uses the equivalent quasi-likelihood function above

defined and Newey and Smith (2000) the normalized function Q (6,¢) =>"" | h {VVQAMOOL) ¢'g(y;,0)|,

where Vh (0) and V?h (0) are defined in sub-section 2.5.4. These different specifications must be
taken into account when comparing the expressions derived in this dissertation with those presented
in those papers.

40



2.5.4 Asymptotic properties of GEL estimators

In this sub-section, we discuss the asymptotic properties of GEL estimators. Taking
the first derivatives of (2.63) with respect to 6 and ¢, we find that GEL estimators

satisfy the conditions

Zn:m (9,&) g‘(yf’é) —0, (2.64)

. (é, é) =Vh [{b/g (y 9)} : (2.65)

where Vh (v) = ag—gj). In EL estimation m; (9, gAb) =— [1 + élg (yi, @)} - and for the
EI method m; (9, gES) = eéﬁ,g (¥:9) | Below we denote the second and third derivatives of
h (v) by V2h (v) and V3h (v), respectively.

The estimating equations (2.64) form a just-identified system of (k + s) equations.
Thus, while the efficient GMM estimator needs a two-step procedure due to the
estimation of the optimal weighting matrix, thereby having its finite sample properties
depending on the first step, the GEL method does not require such an initial step. As
emphasized by Bera and Bilias (2000), this feature is expected to improve the small
sample properties of the estimation, since the GEL approach “offers an operational
way of optimally combining estimating equations”.!”

Under suitable regularity conditions (similar to those necessary for the consis-
tency of the GMM estimator but excluding those concerning the weighting matrix),
it can be proved that the estimator # that satisfies the system of equations (2.64) is
a consistent estimator of 6y; see inter alia Newey and Smith (2000) for a rigorous as-

ymptotic analysis of the properties of GEL estimators. Moreover, expanding linearly

(2.64) around (0, ¢) = (0o,0) and using standard asymptotic theory, it can also be

10Note that, unlike GMM, the GEL method cannot be directly applied in the estimation of time
series models. Both Kitamura and Stutzer (1997) and Smith (1997) suggest the smoothing of the
observations before the optimization. See those papers for details.
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demonstrated that

gAb Vzh(()) VIM _1
Gl e Y o, (). o
0 — 0, YG'V!

where 3 was defined in (2.6),
M=1-Gs@'v? (2.67)

is an (s x s) idempotent matrix, Vh (0) = —1 and V?h (0) = 1 for EL estimators and
Vh(0) = V?h (0) = 1 in case of EI estimation. Thus, it follows that GEL estimators

are asymptotically normal distributed,

N 2
0 VEO 1T Ay -1M 0
N N , [V2h<0>] : (2.68)
0 — 0, 0 0 ¥

and, hence, the GEL estimator of the parameters of interest is first-order equivalent
to the efficient GMM estimator.

After obtaining 6 and qAb, using the computational procedures discussed in the
next sub-section, the implied probabilities referred to in Back and Brown (1993),
previously denoted by p”? and from now on by pfel, 1 = 1,...,n, may be estimated
using expressions (2.54) for EL and (2.59) for EI estimators. This gives rise to the

same estimates as calculating

i = (0.6) = Z: <Qg;> 3 (2.69)

We can also estimate the distribution F' (y) in (2.1) by

Fgel (y) = Fgel (y, éa gb) = Zﬁgell (yz S y) ) (270)
=1

which is a more efficient estimator than F;, (y) as it takes into account the information
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provided by the moment conditions (2.1). Indeed, assuming that

Vi [Fu (y) = F (y)] < N (0,0%) (2.71)

it can be proved that [see Qin and Lawless (1994) and Smith (2000)]

Vi B () = F ()] 5 N (0,07), (2.72)

where w? = 02 — BM'V'MB and B = Er[1(y; <y)g(yi,00)]. As w? < 0% in
all cases, clearly the GEL distribution F, (y) is more efficient than F, (y). Thus,
the GEL distribution F. (y) can be used as alternative to F), (y) to obtain consis-
tent estimators of statistics such as V' and G, by weighting each observation i by
the estimated probability p?“, i = 1,...,n. Note that when the number of moment
conditions is identical to the number of parameters to be estimated, the value of 0
that optimizes (2.63) is the same that solves > " | ¢ (yi, 9) — 0. In this case ¢ = 0
and, hence, p? = 1 Vi=1,..,n, and Eye (y) = Fu ().

Similarly to the CU-GMM estimator, Newey and Smith (2000) derived asymptotic

expressions for the bias of GEL estimators:

1 1 1
bgel = _EHG + EE [HG;Hg]+—(1-n)HE [giggpgi] ) (2.73)

n

V:[(VO)?V(Z?](Q@ is a scalar. This expression is very similar to that presented

for the CU-GMM estimator in (2.45), apart from the weight (1 — 7). Hence, like

where n =

the CU-GMM estimator, GEL estimators have one less source of bias than the two-
step GMM estimator. Furthermore, for the EL estimator the last term of (2.73)
disappears, as n = 1; for EI estimation n = % Thus, following the interpretation of
the higher-order bias terms in section 2.4, the EL estimator removes the bias due to
estimation of the weighting matrix in the optimal linear combination of moments. Its
bias is then the same as for the (infeasible) GMM estimator based on the optimal

linear combination of moment conditions. On the other hand, under zero expectation

43



of third powers of the moment indicators, CU-GMM and GEL estimators are higher-
order asymptotically equivalent.

Unlike GMM, there are very few papers investigating the finite sample proper-
ties of GEL estimators. Although those studies show promising results, much more
research is still needed which is, therefore, one of the main aims of this thesis. As
we will see in the next chapter, where we assess in two different settings the small
sample bias of GEL estimators, the higher-order bias presented above is very useful

for explaining the results obtained.

2.5.5 Computational issues

We have seen throughout this section various advantages of GEL estimation over
GMM. We now discuss what appears to be the only disadvantage of GEL estima-
tors: their practical computation. Indeed, two main problems arise when we try to
estimate moment condition models employing GEL methods. Firstly, the number of
parameters to be estimated is at least twice larger: (s + k) versus only k. Hence, GEL
estimation is more time consuming. Secondly, and this is the main issue, the GEL
criterion (2.63) is a saddle function. Therefore, either optimizing it directly or solving
the system of equations (2.64) is unattractive from a computational standpoint.

One possibility is first minimize (2.63) with respect to ¢ for given 0,

~

¢ (0) = arg min Qg (6, ¢), (2.74)

which yields the first set of conditions in (2.64), and then maximize (g [9, ¢ (9)]
with respect to 6,
f = arg max H(l;sin Qe (0,90) , (2.75)

which produces the second set of first-order conditions in (2.64). Finally, ¢ is esti-
mated by qAb = &5 (9) However, in our Monte Carlo experiments this procedure did

not prove successful. The minimization with respect to ¢ was very quick and easy
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but the second step failed to converge to a solution almost all the time.
Following Imbens, Spady and Johnson (1998), in our simulation we employed
their penalty approach, which worked very well. Thus, instead of directly optimizing

(2.63), we opted for solving the program

max Qqut (0,6) = 0.5+ A+ VQuu (0,0) - W™ VyQuu (6,0),  (2.76)

)

where A is a large scalar and W an arbitrary positive definite matrix of dimension s.
For any positive definite matrix W and for finite but large enough A, the solutions
to (2.63) and (2.76) are numerically identical. As in Imbens, Spady and Johnson, we

choose

W= v¢¢Qg€l (é’ Q_S) - V¢Qg€l (9a Q_S) V¢Qgel (97 &S),, (277)

where (9, g_b) are some initial estimates of (6, ¢). In all Monte Carlo simulation studies
undertaken throughout this dissertation 6 is the two-step GMM estimator 6 and o
the estimates resulting from the optimization (2.74), with 6 replaced by 6. However,
these choices were inessential for the results obtained, as the solution to (2.76) is
insensitive to the estimates (9, (}5) utilized in the evaluation of W.

After calculating the GEL estimators (5’, &5) as described above, it is then neces-
sary to check whether the resulting implied probabilities 13*;761 = pfd <9, 55) ,i=1,...n,
calculated as in (2.69), are non-negative, since we are not imposing this restriction
during the optimization procedure. If p? > 0, Vi = 1, ..., n, we accept (é, qAb> as GEL

estimators; however, in no cases did we find these constraints to be a problem.

2.5.6 Specification Tests

In this section, we discuss tests of overidentifying moment conditions, tests for addi-
tional moment conditions and tests of parametric restrictions for models estimated
by GEL methods. For a detailed derivation of most of those tests see Smith (2000).
Non-nested tests will only be discussed, and some alternatives proposed, in chapter

d.
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Tests of overidentifying moment conditions

In the GEL framework there are several ways to assess the validity of the moment
conditions assumed to hold in the population. Indeed, as a sample version of each
moment condition is associated with a Lagrange multiplier, the validity of those
restrictions can be analyzed by testing the hypothesis Hy : ¢ = 0. Hence, the three
classical tests may be employed.

Qin and Lawless (1994), for EL estimators, and Kitamura and Stutzer (1997),
for EI estimators, proposed distance metric statistics'! for testing overidentifying

restrictions,

DM, = 2% (@ (6.0) — Quu (2.9)]. (2.78)

where <9, gES) are the GEL estimators resulting from the optimization of (2.63) and
(é, O) are the GEL estimators under the null hypothesis. Note that 0 is not identified
because imposing ¢ = 0 prevents the use of the information contained in the moment
conditions. However, the non-identification of 0 is not problematic since we know
from (2.63) that, when ¢ =0, Qe (5’, 0) is equal to Y, h(0), which is 0 and n for
the EL and EI methods, respectively. Therefore, to calculate the statistic (2.78), only
the estimation of the unconstrained model is required. Under the null hypothesis, the
statistic DM has an asymptotic chi-square distribution with s — k degrees of freedom.

In the GEL context, Smith (1997) proposed testing H, employing Wald or score
tests. The Wald test statistic for Hy is

V20 (0)]° e
W, = V., ¢, 2.79
and the score test statistic is
LM, =ng V. . (2.80)

I'Note that only in the case of EL does this statistic correspond to a likelihood ratio. Therefore,
we adopted the distance metric term, as it is valid for both EL and EI estimation.

46



Note that the latter statistic has exactly the same expression as the J test presented
in (2.14) and that it is not evaluated under the null hypothesis. Again, the problem is
the non-identification of  under Hy. Thus, Smith (1997) suggested the replacement
of by 6, which may be regarded as a least favorable choice of estimator for 6,. Under
the null hypothesis, both statistics have a limiting chi-squared distribution with s —k
degrees of freedom.

In chapter 4, we propose a new class of test statistics for overidentifying moment

conditions appropriate for models estimated by GEL methods.

Tests for additional moment conditions

Both the Jy and C'M tests described for GMM (see expressions 2.15 and 2.16) may also
be utilized to test the validity of further moment conditions in the GEL framework.
Additionally, following Smith (1997), we may employ classical tests as well. To this
end, we need to incorporate a sample version of the new moment conditions in the
GEL criterion (2.63),

n

Qo (0.6,0) =Y " h (¢ g1 (i, 0) + ¢ g2 (1. 0], (2.81)

=1

where g; (+) represents the original s; moment conditions, g (+) is the sy-vector of
additional moment restrictions and ) is the corresponding so-vector of Lagrange mul-
tipliers.

The parameters contained in (2.81) may be estimated in a similar manner to that
described above for standard GEL estimators. Denote such estimators by (9, g~b, {ﬂ)

It can be shown that those estimators satisfy the set of first-order conditions

n g1 (yz,é)
> (0.6.9) 9> (1,0) =0, (2.82)

G <é)/ ¢ + Go <é)/{ﬂ
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where 7} (é,;ﬁ, {ﬂ) =Vh [(%/gl (yi,é) + [b/gz (yl,é)} and Gj; (9) = '80," ,J=1,2,
i=1,...,n

In this setting, we may test Er [go (y,0)] = 0 by assessing the parametric hypoth-
esis Hy : ¢ = 0. Noting that @, (9, &5, 0) = Qgel (9, éﬁ), a distance metric statistic
for this hypothesis is

V2h(0)

DM, =2———
[Vh(0)]

[Qgel (év Q%) - Q;el <é7 (%7 ’IZ):| 9 (283)
which has a limiting chi-squared distribution with s, degrees of freedom under the

null hypothesis. This statistic has a similar interpretation to that of the J, statistic,

as both statistics correspond to the difference between statistics for testing all the mo-

ment conditions, J and DM, = 2[;}(‘(?}) [Qgel (9 0 O) gel ((9 o, w)], and for as-

sessing only the first s; conditions, J; and DM,, = 2 [gh}(LO |:Qgel (9 0) — Qgel (9, &5)} .

A Wald test statistic for Hy : 1y = 0 may be defined as

-1

r{p' (s,01,7, 1 01,,) 0, (2.84)

[VQh (0)
"IV (0)

where Sj, = [ 0 I, ] is a (sy x s) selection matrix and M, is a consistent estimator
of the matrix M defined in (2.67). This statistic has also an asymptotic chi-squared
distribution with sy degrees of freedom under the null hypothesis.

Finally, an asymptotic equivalent score statistic for testing Hy is

o sz(@ ) 65 (10 S,V 01,50 3 m, (6.6) 05 (1 0)

- (2.85)

LM,

Tests of parametric restrictions

Test statistics to assess parametric restrictions in models estimated by GEL methods
were presented in Qin and Lawless (1995), Kitamura and Stutzer (1997) and Smith
(1997, 2000). As before (see section 2.3.4, which concerned this kind of tests in the
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GMM framework), consider the null hypothesis Hy : 7 (6) = 0, where 7 (-) is a known

continuously differentiable g-vector, ¢ being the number of restrictions, and denote

agg?) by R(0), a (¢ X k) matrix of rank ¢. Following Smith (1997), the constrained

model incorporating Hy may be estimated by optimizing the modified GEL function

Qger (0,0,0) = h[¢'g (y:,0) +¢'r ()] (2.86)

The resultant estimators, (é, g~b, {ﬂ), satisfy the first-order conditions

r (9) —0, (2.87)

where 7} (é, &S, {p) =Vh [&S/g (yi, 5’) + {ﬂ/r (5’)]
Using standard asymptotic theory, it is easy to derive the limiting distribution

of <9, g~b, {ﬂ) and, then, deduce expressions for the classical tests to assess Hy. As

demonstrated by Smith (1997),

¢ T (V- VIIGEPGY Y
~ _1
Vil b == | 39 (ReR) I REGV | Viga (00) + 0, (n7)),
0 — 0, PGV
(2.88)
and, hence,
~ 2
¢ 0 (S (v —vriesPev )
~ d 2 _
N I R B BN B R R IO D o vel e
0 — 0, 0 0
2
Vh(0) _ 1
~ | viesR (RER)T 0
2
Vh(0) 1
(o] (RER) 0 || (289
0 nP
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where R = R (#y) and P = I — R'(RER')"' RY is an (k x k) idempotent matrix of

rank ¢. From (2.89), the following score statistic for testing Hy can be derived:

R, R (2.90)

V2h (0)} 2

LM”E”th(O)

This expression has not been discussed previously in this chapter but it is just an-
other form of (2.19), the score statistic for testing parametric restrictions in the GMM
framework. Likewise, it is straightforward to see that the Wald statistic (2.18) pre-
sented previously for GMM estimators is also appropriate for GEL estimators. As for

the DM statistic for Hy, its expression is now

_ . V?h(0) . -

DM, = 2W [Qgel (9, Cb) — Qgel (9,625)] ; (2.91)
since (7, (9, (}5, 0) = Qqa (9, c}ﬁ) and Q) (é, o, @) = Qqa (9, c}ﬁ) All test statistics
have an asymptotic chi-squared distribution with ¢ degrees of freedom.

Smith (2000) derived also Hausman and minimum chi-squared tests, which can be
based on the contrasts v/n (9 — é) or \/n ((}5 — g~b) Using the first contrast, as one

could expect from the comments above, identical statistics to those found for GMM

estimators are obtained. Indeed, from (2.66) and (2.88), it follows that

Vi (0-8) = =1 - PYG'V g (60) + O, (n72) (2.92)

and, hence,

NG (é - é) 4 N[0, 2 (I - P)], (2.93)
since ¥ (I — P)X1 (I — P)'S = £(I — P). Noting that ¥ (I — P) = var (ﬁé) -
var (ﬁé) and that 6 is a consistent estimator under both the alternatives, while 6

~ ~ ~\/
is consistent only under Hy, in which case it is more efficient than 0, then n (9 — 9)
X (I - P)]” (@ — 5’) is a Hausman test statistic. A generalized inverse for ¥ (I — P) is
R (RER) ™" R, so the statistic H,, (2.22) is obtained. Another generalized inverse for
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¥ (I — P)is X' As this is the inverse of the variance of \/n <@ - 90), its utilization
gives rise to the minimum chi-squared statistic MC,, (2.21).

In the case of the second contrast, it follows from (2.66) and (2.88) that

N (g& - gB) - %v—lez (I — PYG'V""ngn (60) + O, (n—%) (2.94)
and, hence,
Jn (fﬁ _ &) LY {o, l%] voes (I - P) G’vl} . (2.95)

V2h(0)
GX(G as a generalized inverse for V!GY (I — P) G'V !, we obtain the Hausman test

Again, [ VAQ) r VAGS (I — P)G'V! =var (ﬁ;b) —var (ﬁ(}ﬁ) Therefore, using

statistic )
VZh(0)]" /o <\ s o
b — — ! —
H® =n [ RO } (¢ ¢>) e (¢ ¢) . (2.96)
Using the alternative generalized inverse V', we obtain the minimum chi-squared test
statistic )
VZh(0)]" /o <\, /s -~
d) pu— — J—
MC?=n { RO ] (6-0) v(6-9). (2.97)

as V is also a generalized inverse for the variance of \/n¢. Both (2.96) and (2.97) have
a limiting chi-square distribution with 7k (P) = ¢ degrees of freedom. Estimators for
the matrices G and V' may be evaluated at either 6 or .

In chapter 4, we propose a Pearson-type statistic appropriate for testing paramet-

ric restrictions in models estimated by GEL methods.
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Chapter 3

GMM, CU-GMM, EI, EL and
bootstrap GMM estimators: small

sample evidence

3.1 Introduction

The finite sample properties of the efficient two-step GMM estimator have been the
subject of intensive investigation recently. As emphasized in the previous chapter, a
number of Monte Carlo simulation studies have concluded that the performance of
this estimator and related statistics in small samples differs significantly from that
predicted by large sample theory (see, for example, the July 1996 special issue of
the Journal of Business & Economic Statistics or the other references cited in section
2.3.6). This problem has motivated the search for alternative efficient estimators with
better small sample properties, which may be divided into two main classes. The first
class contains alternative procedures which are asymptotically first-order equivalent
to efficient two-step GMM estimation such as CU-GMM, EI and EL. On the other
hand, the possibility of improving the finite sample properties of the two-step GMM
estimator using bootstrap techniques was addressed by both Hall and Horowitz (1996)

and Brown, Newey and May (1997), whose proposals form the second set of alternative
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methods.

While there is substantial evidence of the poor small sample properties of the two-
step GMM estimator, there are very few studies examining the properties of the other
methods applicable in the moment condition framework. Concentrating on studies
investigating the bias of parameter estimators for moment condition models, the main
focus of this chapter, Hansen, Heaton and Yaron (1996) analyzed the finite sample
performance of their CU-GMM estimator, Imbens (1997) examined the behaviour of
EL estimators, and Horowitz (1998) considered Hall and Horowitz’s (1996) bootstrap
GMM estimators. To the best of our knowledge, no other papers have examined this
issue. Thus, although all these studies reported promising results, further investiga-
tion is still needed in order to assess the ability of those and other alternative methods
to produce improved estimators for the parameters of moment condition models.

In this chapter we undertake two simulation studies examining the finite sample
properties of three methods that are asymptotically first-order equivalent to GMM
and six alternative bootstrap techniques in two different settings for which there is
previous evidence of the poor performance of efficient GMM estimators. With regard
to the former methods, we investigate the small sample bias of CU-GMM, EL and EI
estimators. All these methods have already been described in the previous chapter
(see sections 2.4 and 2.5). As will be seen, the theoretical findings by Newey and
Smith (2000), who analysed the higher-order properties of these estimators, will be
crucial in the justification of the results obtained in the Monte Carlo experiments.

In our consideration of the bootstrap methods, we consider three techniques al-
ready applied in the moment condition framework and suggest three new ones. The
most commonly applied bootstrap, the so-called nonparametric (NP) bootstrap, is
expected to fail in producing substantial reductions in the bias of GMM estimators.
Indeed, it attempts to approximate the distribution of the data making use of the fact
that the empirical distribution function is similar to the true data generating process.
However, in the overidentified moment condition framework, the moment restrictions

are not satisfied in the sample, so the NP bootstrap does not take them into account
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and, hence, does not mimic correctly the underlying distribution of the data. Hall
and Horowitz (1996) and Brown, Newey and May (1997) proposed two alternative
bootstrap methods that deal with this issue. The former authors suggested the recen-
tered nonparametric (RNP) bootstrap, which still employs the empirical distribution
function to resample the data but recenters the moment indicators at their sample
values. Alternatively, Brown, Newey and May (1997) proposed what we call here the
first-stage GEL (FSGEL) bootstrap, which generates the bootstrap samples using a
distribution that imposes the moment conditions on the original sample.

All bootstrap methods that we propose in this chapter are based on the GEL
distribution, the main motivation for this choice being the fact that this is a more
efficient estimator of the distribution of the data than the two used by the existing
methods (see section 2.5.4). We first consider direct application of the GEL bootstrap.
However, it suffers from the same problems as the NP bootstrap because, while it
does impose the moment conditions on the sample when considering GEL estimators,
when applied to correct the bias of GMM estimators only asymptotically are those
restrictions satisfied. Thus, we suggest two modified versions of the GEL bootstrap:
the recentered GEL (RGEL) bootstrap, which recenters the moment indicators in an
analogous manner to the RNP bootstrap; and the post-hoc GEL (PHGEL) bootstrap,
which introduces a post-sample adjustment in the calculation of the bias of the GMM
estimator.

This chapter is organized as follows. Section 3.2 discusses the general principles
of bootstrap methods, showing how to use them to eliminate the bias of parameter
estimators. Section 3.3 describes the major characteristics of the various bootstrap
methods applicable in the GMM framework. A first Monte Carlo study, for covariance
structure models, is presented in section 3.4. Section 3.5 considers another Monte

Carlo study, for instrumental variable models. Section 3.6 concludes.
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3.2 Bias-corrected GMM estimators

The progress in computer technology in the last two decades stimulated the develop-
ment of computer-intensive statistical methods. One of the methods that benefited
from the increasing availability of inexpensive, powerful and fast computing was the
bootstrap, introduced by Efron (1979). The main appeal of this technique is its sim-
plicity, the theoretical derivations required in traditional methods (such as obtaining
derivatives, the form of the asymptotic variance, calculating explicit expressions for
the bias of an estimator, etc.) being replaced by repeatedly resampling the data and
making inference from the resamples. As example of its increasing popularity several
books dedicated to bootstrap techniques have been published in the last ten years,
for example Hall (1992), Efron and Tibshirani (1993), Shao and Tu (1995), Davison
and Hinkley (1997) and Chernick (1999).

Basically, the bootstrap is a method for estimating the distribution of an estimator
or test statistic by resampling the original data set, which is treated as though it
was the population. If the data were, in fact, the population, then the bias of an
estimator or test statistic could be computed with arbitrary accuracy by repeatedly
resampling the data. Since the data are not the population, the bootstrap provides
only an approximation to the distribution of statistics that, however, turns out to
be often more accurate than the approximation obtained from first-order asymptotic
distribution theory. See, for instance, Hall and Horowitz (1996), Horowitz (1998)
and Ziliak (1997), for examples where the bootstrap is shown to improve significantly
inference from models estimated by GMM.

Assume that a random sample S of size n is collected from a population whose
(unknown) cumulative distribution function is F' (y). Bootstrap samples are generated
by randomly sampling the original data with replacement. This resampling is based
on a certain cumulative distribution function, F* (y), which assigns each observation
a given probability of being sampled. For each bootstrap sample 57, j = 1,..., B, we

calculate a statistic of interest (e.g. a parameter estimator, a standard deviation, a
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test statistic), obtaining thus B observations of those statistics from which measures
of interest can be computed (e.g. bias, variability of estimators, improved critical
values for tests). Here, we focus exclusively on the utilization of bootstrap techniques
to obtain bias-corrected GMM estimators.

Consider again the moment conditions

Er[g(y,60)] = 0. (3.1)

As discussed in the previous chapter (see section 2.3), the efficient GMM estimator
0 is obtained from the minimization of the optimal quadratic form of the sample
moment indicators,

~

6 = arg moin gn () V"1g, (0), (3.2)

n

its bias being given by:
u%):EF@—eQ. (3.3)

If we are able to estimate b = b (6y), we can estimate a bias-corrected GMM estimator
0 by calculating
0=0—b, (3.4)

where b denotes the estimated bias. Instead of deriving an analytic expression for the
bias function' and then evaluating it at the GMM estimator [or using it to correct
the first-order conditions defining GMM estimators - see Firth (1993)], we can simply

use the bootstrap and estimate the bias (3.3) as follows:

1. Compute  accordingly to (3.2) using the original data;

2. Generate B bootstrap samples S7, j = 1, ..., B, of size n by sampling the orig-
inal data randomly with replacement accordingly with the chosen distribution

function F* (y):
§ = (103,

'Newey and Smith (2000) provide such bias functions for both GMM and GEL estimators, as
referred to in the previous chapter.
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where y7;, i = 1, ..., n, denotes the observations included in the bootstrap sample

5%
3. For each bootstrap sample calculate the GMM estimator é’:

A%

Hj = arg Hbin g;n (0) VElgr (0),

j =1,..B, where g3, (0) = LS g (y;fi, 0) and \A/j*;l_l is obtained using estima-

T n

tors from the bootstrap sample S7;

4. Average the B GMM estimators calculated in the preceding step:
1B
0 = B Z 0;;
j=1

5. Estimate the bias of the GMM estimator 6 by calculating;

<33
I

0" — 0. (3.5)

Subtracting the bias (3.3) from the GMM estimator 6, it is then possible to obtain
the bias-corrected GMM estimator defined in (3.4):

0=20—106" (3.6)

This general procedure to obtain bootstrap estimators may be implemented in

several distinct forms, as discussed in the next section.

3.3 Alternative bootstrap GMM estimators

In this section we discuss six alternative procedures for obtaining bootstrap GMM

estimators, two of which are expected to fail in reducing significantly the bias of the
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GMM estimator. We discuss first the three existing methods and then present our

three proposals.

3.3.1 Nonparametric bootstrap

Until now nothing was said about the choice of the distribution F* (y) from which
bootstrap samples are generated. In the most commonly applied bootstrap, the so-
called NP bootstrap, the resampling is based on the empirical distribution func-
tion F, (y) = % >, 1(y; <), so each observation has equal probability % of being

drawn. Denote by p* = dF* (y) = (p}, ..., p}) the n-dimensional resampling vector

that assigns each observation a given probability of being sampled:

o= (%%) (3.7)

Direct application of the NP bootstrap in the GMM framework seems to be unsat-
isfactory in many cases, though. When the model is overidentified, while the popula-
tion moment conditions Er [g (y, )] = 0 are satisfied at § = 6y, the estimated sample
moments are typically not zero, that is, there is no ¢ such that Eg, [¢(y,0)] = 0
is met, except in very special cases. Therefore, the empirical distribution function
may be a poor approximation to the true underlying distribution of the data and,
hence, the NP bootstrap may not yield a substantial improvement over first-order
asymptotic theory in standard applications of GMM.

This problem is particularly serious for the J test of overidentifying moment con-
ditions. As Brown, Newey and May (1997) argued, bootstrapping from the empirical
distribution will produce, even asymptotically, a wrong size for that test. This failure
results from the fact that, instead of imposing the null hypothesis (3.1), the empirical
distribution corresponds to an alternative hypothesis where the moment conditions
(3.1) do not hold. An empirical example using NP bootstrap GMM estimators by
Ziliak (1997) confirmed that, in fact, inference based on the NP bootstrap J test is

severely distorted. In chapter 4 we present additional empirical evidence on the poor

o8



performance of this test in finite samples.

On the other hand, Hahn (1996) demonstrated theoretically that the NP bootstrap
distribution of any GMM estimator converges weakly to the limit distribution of
the estimator. According to this author, the arguments against the use of the NP
bootstrap in the moment condition context apply to the J test, not to the GMM
estimator. Hence, we decided to include the analysis of the bias of the NP bootstrap
GMM estimator in the two Monte Carlo experiments that we conduct in sections 3.4
and 3.5, investigating whether or not it behaves better than simple GMM estimators
in finite samples and how it performs comparatively with the more refined bootstrap

methods discussed below.

3.3.2 Recentered nonparametric bootstrap

As discussed above, the doubts concerning the efficacy of applying the NP bootstrap in
the GMM framework arise from the fact that there is no 6 such that Eg, [g (y,0)] =0
is met. Thus, the key factor to successful application of bootstrap techniques in
the GMM context seems to require the satisfaction of a bootstrap version of the
population moment conditions. There are two alternative ways to deal with this
question. One implies looking for a different resampling distribution, say F} (y), such
that Ep, [g(y,0)] = 0 for § = fa,, the two-step GMM estimator. This hypothesis will
be discussed in the next sub-section. The other alternative was proposed by Hall and
Horowitz (1996), who suggested keeping F, (y) as the resampling distribution and,

instead, recentering the moment indicators as follows:

Ep, [9° (y;.0)] =0, (3.8)

where

9 (y;,0) = g(y;,0) — Ep, [g (y,ézs)}
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n

= 005:0) ~ o (). (39)
j =1,..., B. Now, clearly, the expectation of the modified moment indicators ¢°(-)
with respect to the empirical distribution is zero.

The implementation of this RNP bootstrap method follows very closely the general
procedures described in sub-section 3.2. The only difference is in the way bootstrap
GMM estimators are calculated in step 3, their estimation now being based on the
recentered moment indicators (3.9). If we evaluate the required weighting matrix
at a non-efficient GMM estimator, corrected moment indicators constructed in an
analogous way to (3.9) must be used in its calculation.

Monte Carlo evidence reported by Horowitz (1998) indicates that the RNP boot-
strap attenuates the bias of GMM estimators, although it has not been completely
eliminated in all the cases considered by him. In section 3.4, in our first Monte Carlo
study, we consider a similar experimental design in order to assess the performance

of this method relative to the other bootstrap techniques discussed in this chapter.

3.3.3 First-stage GEL bootstrap

Another modification to the NP bootstrap was suggested by Brown, Newey and May
(1997). Instead of using the NP distribution to resample the original data, they
propose the employment of a distribution that, by assigning to each observation a
different weight, imposes the moment conditions, evaluated at the two-step GMM
estimator @25, on the sample. Such a distribution is obtained from the first step of
one of the estimation procedures described in section 2.5.5 appropriate for the calcu-
lation of GEL estimators, so we call it here the first-stage GEL (FSGEL) cumulative
distribution.

The procedures necessary to estimate this distribution are the following. First, the
GEL objective function Qg (0, ¢), given in (2.63), is minimized only with respect to

the Lagrange multipliers ¢, keeping 6 = Oss. Then, the resulting estimators, qAb Fsgels ATe
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used to obtain the FSGEL distribution Ffyye (y) = > iy ﬁzf %911 (y; < y), where the
probabilities ]5{ sgel = pfel (925, éﬁfsgel) are calculated as in (2.69). Since > , ]5{ sgel
g <yi7923) = 0 is the first-order condition of the FSGEL optimization problem, it
follows that the moment conditions are in fact imposed on the sample.

The FSGEL bootstrap, based on the resampling vector

* ~fsgel ~fsge
P = (p{g ,~--,p£“), (3.10)

is asymptotically efficient relative to any bootstrap based on the empirical distribution
function, as shown by Brown, Newey and May (1997). They reported promising
Monte Carlo results concerning the .J test of overidentifying moment conditions, which
showed that the FSGEL bootstrap provides a good improvement over both asymptotic
first-order theory and the NP bootstrap in this case. Similar empirical evidence is
presented by Ziliak (1997). The capacity of the FSGEL bootstrap to produce bias-

corrected GMM estimators is investigated later in this chapter.

3.3.4 GEL bootstrap

In the previous methods, the bootstrap samples are drawn accordingly to the empirical
distribution F,, (y) or the FSGEL distribution Fys4 (y). However, if a more efficient
estimator of F'(y) is available, in principle bootstrap inference can be improved. For
example, if the true distribution of the data was known up to the parameter 6, say
Fy (y), the so-called parametric bootstrap, where resampling is based on Fj (y), could
be applied. This is not possible in the GMM framework without making additional
assumptions. Nevertheless, in the construction of the resampling vector p*, the special
nature of the data can be taken into account, namely the information provided by the
moment conditions, which is what the FSGEL bootstrap partially achieves. Thus, all
bootstrap methods that we propose in this and the next two sub-sections are based

on the GEL distribution Fj (y) = Z?:lﬁfell (i <), where p?¢ = p?? (é’gel, gESgel>

denotes the estimated GEL implied probabilities and (9961, gbgel) are GEL estimators;
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see section 2.5.4.

This GEL bootstrap, based on the resampling vector

o= (pg@l, ...,ﬁffl) , (3.11)

could be directly applied to improve the finite sample properties of GEL estimators,
without any modifications. In fact, in this case, the moment indicators would not
need to be recentered because the moment conditions (3.1) are imposed on the data by
giving different weights to different data points: ) | Py (yi, é’gd) = 0. However,
our objective in this chapter is the analysis of the ability of bootstrap methods to
reduce the bias of the two-step GMM estimator. In this case, some correction is still
necessary, since in finite samples > Py (yi, @25> # 0. Thus, the next two sub-

sections discuss two alternative procedures that adapt this bootstrap method to the

GMM case.

3.3.5 Recentered GEL bootstrap

The first modified GEL bootstrap that we suggest is very simple. Analogously to

Hall and Horowitz (1996), the moment indicators can be recentered as follows:

Ep,. [9°(y].0)] =0, (3.12)

where

9 (y.0) = 9(y;.0) — Er,, [g (y,ézsﬂ

= 9 (u.0) = >0 (i 0as) (3.13)
=1

j = 1,..., B. The expectation of the corrected moment indicators ¢¢(-) taken with
respect to the distribution Fj; (y) is zero.

This RGEL bootstrap can be implemented applying similar procedures to those

62



described for the RNP method, with two alterations: Fy; (y) is used instead of F), (y)
to generate the bootstrap samples and the calculation of bootstrap GMM estimators

is based on the recentered moment indicators (3.13) instead of (3.9).

3.3.6 Post-hoc GEL bootstrap

Another explanation for the expected failure of the GEL bootstrap to provide less
biased GMM estimators is the following. By using the resampling vector (3.11) and
estimating the bias utilizing the standard formula given in (3.5), b= 0" — Oy, we
are not adequately estimating the bias of the GMM estimator 0, that we intended
to correct. Actually, in the calculation of the bias, we are comparing GMM es-
timators that can be based on quite distinct samples: while 055 results from the
minimization of the quadratic form (3.2), 6" is the average of the standard GMM
estimators @j, j =1,..., B, each of which, due to the way the bootstrap samples are
constructed, can be interpreted as minimizing also (3.2) but with g, (6) replaced by
g, (0) =>"0, 79 (y:,6). In small samples, g, () and g, () can be rather different.
Therefore, in this subsection, we propose a slight modification to the GEL bootstrap
method in order to improve the approximations to bias. We suggest the utilization
of a post-sampling adjustment to GEL bootstrap GMM estimators in a similar way
to that considered by Efron (1990) in another context and with different objectives
(he proposed a post-hoc bootstrap with the aim of reducing the number of boot-
strap samples needed to obtain reliable statistics and improved estimates of the bias,
keeping the usual bootstrap sampling).
Define

a

P = (D51 - Pfn) (3.14)

j =1,...,B, as the actual or post-resampling vector calculated from the bootstrap

sample S7, that is,
o _ #{uii=vi}

i )

- (3.15)

j=1,..B,1=1,..n,is the proportion of times that the i-th original data point
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appeared in the bootstrap sample S7. Define also the average post-resampling vector:

B

Y ra a1 a

Pr= ) =5 D7 (3.16)
j=1

In this framework, the j-th bootstrap estimator 9; can be expressed as a function
of the j-th post-resampling vector: 9; =40 (p?) Similarly, we have for the original
GMM estimator o, = 6 (p°), where p° = (1,...,1). Define also 0" = 6 (p?) as the
estimator resultant from the application of the average post-sampling probabilities

Instead of using b=0"—0 (p°), we propose the calculation of the bias of the GMM
estimator as:

b=0"—0(p"). (3.17)

The intuition behind this is the following. Although the theoretical expectation of
the resampling vector is p°, its actual average is p®. Thus, using 6 (p®) instead of
0 (p°) in the estimation of the bias, we might be able to correct this discrepancy.
In fact, in (3.17), we are effectively comparing GMM estimators based on similar
samples, as opposed to previously. The bias-corrected GMM estimator is then found
by calculating:

By = by — 0"+ 0" (3.18)

When both n and B go to infinity, 0" will converge to 05, SO asymptotically this
method will produce the same results as the other bootstrap techniques discussed in
the previous sections. Note that we could have also opted for estimating the bias by
b=0"—0(p*"), where p° = (ﬁi’d, . Agel), with similar results being obtained, as

p* ~ p9¢. The utilization of the post-resampling probabilities are only expected to

provide a slight further improvement.?

2For this reason, the employment of post-resampling probabilities in the NP and RNP bootstrap
methods would not produce significant improvements, as in these two cases p* ~ p° and, hence,
0 (py) ~ 0. Also, the same would happen for the FSEB bootstrap, since p* ~ pf%9¢! and the
utilization of the latter weighting scheme in the GMM criterion function yields the same estimator
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In terms of procedures, the algorithm presented in section 3.2 must be modified
as follows. In step 3, for each bootstrap sample, in addition to the GMM estimator

0

;, we calculate also the post-resampling vector p$ using (3.14) and (3.15). In step

4, the average post-resampling vector p® is also determined as in (3.16). In the final
step, 0" is calculated by using p* to weight each moment condition, i.e. instead of
utilizing sample means to estimate the population moment conditions in expression

(3.2), we use the post-resampling probabilities:

7" (0) = Zﬁ?g (v, 0) . (3.19)

The estimation of the covariance matrix of the moment indicators needs also to be
adapted to conform with this new weighting scheme as well as non-efficient GMM es-
timation for consistent initial estimates for #y. Finally, the bias is estimated according

to expression (3.17).

3.4 Monte Carlo simulation study I: covariance struc-
ture models

Our first Monte Carlo investigation concerns models of covariance structures, which
are important in the analysis of a variety of economic processes. Basically, they
are employed to model the serial correlation structure of one economic variable in
longitudinal data or the relation between movements in different economic variables
(such as earnings and hours changes) over time. For applications involving these
models see, for example, Abowd and Card (1987, 1989), Behrman, Rozenzweig and
Taubman (1994), Griliches (1979) and Hall and Mishkin (1982).

Altonji and Segal (1996) carried out an extensive Monte Carlo analysis of the

finite sample properties of GMM estimators for covariance structure models. They

(923) as that obtained when the empirical distribution is employed.
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found that the efficient two-step GMM estimator is severely downward biased in small
samples for most distributions and in relatively large samples for badly behaved dis-
tributions. They explain this poor performance as due to the correlation between the
estimated second moments used to construct the moment indicators and the sampling
optimal weighting matrix. Indeed, as they argue, moment conditions consisting of
second moments are likely to be highly correlated with their covariance matrix “be-
cause individual observations that increase the sample estimate of a variance will also
tend to increase the sample estimate of the variance of the variance”. Thus, it is not
surprising that both the equally weighted GMM, which uses the identity matrix as
weighting matrix, and efficient GMM estimation based on split-sample estimators for
the covariance matrix of the moment conditions produce parameter estimators with
significantly improved properties in finite samples, as showed by Altonji and Segal
(1996) in their investigation and also by Horowitz (1998) in a similar study. The lat-
ter author also considered the RNP bootstrap GMM estimator which, although also
biased in some cases, performed much better than the standard two-step GMM esti-
mator. In this section we examine the performance of the other estimation methods

applicable in this context.

3.4.1 Experimental design

In order to investigate the behaviour of both asymptotically first-order equivalent
methods to efficient GMM and bootstrap techniques for GMM estimators, we use
the simplest experimental design analyzed by Altonji and Segal (1996). We consider
a setting where the objective is the estimation of a population variance for a scalar
random variable X from observations on a panel of individuals covering 10 time
periods. Let each observation be denoted by X;;, where t = 1, ..., 10 indexes the time

period and 7 = 1,...,n, indexes the individuals. For each period, the mean and the
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variance of the observations can be computed using the standard unbiased estimators
1 n

== Xy (3.20)
[

and
n

(3.21)

-1
=1

respectively. The estimates of the second moments are stacked into a 10-dimensional
vector, m, and are related to the population variance, denoted by the parameter 6,

(a scalar), through the 10-vector of moment conditions
Elg(60)] = E(m — 6p) = 0, (3.22)

where ¢ is a 10-vector of ones. With this formulation, we are assuming the equality
between the variances of the 10 components of m and the nullity of the covariance of
X across time periods.

Hence, in this Monte Carlo study, all samples are generated in a way that ensures
that the data are independent across both ¢ and 7. The observations for all time
periods were independently generated from the same distribution, with equal number
of observations in each period, so the model defined by (3.22) is also homoskedastic.
Although the elements of m are independent, both the diagonal and off-diagonal
components of the estimated covariance matrix V., of the moment indicators use
sample estimates. Eight different distributions for X, scaled to have mean 0 and
variance 1 (so 0y = 1), and two sample sizes, 100 and 500, were considered. In each
experiment, 1000 Monte Carlo replications were performed.

In this framework, the two-step GMM estimator represents a weighted mean of

the ten sample variances,

10
Oy, = w'm = Zwtmt, (3.23)
=1

~

-1 N R
where w = (L’ Vn_1L> /'V.=1 is a 10-dimensional vector of weights and V;, is a con-
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sistent estimator of V' evaluated at equally weighted GMM estimators [which results

from considering w = & in (3.23)]. In turn, the GEL estimators are obtained using

the procedures described in section 2.5.5 and satisfy the first-order equations (2.64).
99(0)

In this particular case, as =7 = —¢, it can be proved that the second of those

conditions may be reduced to (see the Appendix):
> =0 (3.24)

Furthermore, as (Aﬁ/b = 0 and, hence, gAb/g <9gel) = gAb/m, the other first-order condition

implies
) TR )
Oget = 15 > mi, (3.25)
t=1
where
n e -
mi=—— ST (X — X)) (3.26)

Compared to the two-step GMM estimator given in (3.23), we detect two important
and interesting differences between these estimators. First, noting that (3.23) can be

written as
n

10

. 1 _

925 = E Wt n E E (th - Xt)27 (327)
t=1

n—1
i=1

we see that in each time period the two-step GMM estimator gives the same weight
to each observation (%) while the GEL methods use the GEL implied probabilities as
weights. Second, the former method assigns distinct weights, given by the vector w
in (3.23), to each time period, while for the latter each time period receives an equal

weight. Thus, notice that, if p7 = 1 i=1,...,n, GEL estimators would be identical

to the equally weighted GMM estimator.
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3.4.2 Results

Table 3.1 reports the estimated mean bias (as a percentage)®, standard error (SE),
root mean squared error (RMSE) and median absolute error (MAE) of four asymp-
totically first-order equivalent methods for estimating moment condition models. The
results obtained for the two-step GMM estimator are very similar to those presented
by Altonji and Segal (1996). As in their study, this estimator is clearly downward
biased, this distortion particularly marked for “badly-behaved” distributions, namely
thicker-tailed symmetric (student-t with 5 degrees of freedom) and long-tailed skewed
(lognormal and exponential) distributions. Increasing the sample size significantly
improves inference but, for the aforementioned distributions, GMM estimators still
display substantial bias. The worst case is given by the lognormal distribution, where
the bias (MAE) is 41.5% (43%) and 22.5% (22.7%) for n = 100 and 500, respectively.

This poor performance of the two-step GMM estimator is due to the correlation
between the moment indicators and the weighting matrix Vn_l, as discussed above. As
this correlation is not eliminated by the iterative or continuous updating of the weight-
ing matrix, it is perfectly natural that the CU-GMM estimator [which is numerically
equal to Hansen, Heaton and Yaron’s (1996) repeatedly-iterated GMM estimator in
this framework| does not provide any improvement over two-step GMM estimation.
Actually, as observed in Table 3.1, the results are even worse, as confirmed by the
analysis of Figure 3.1, where some scatter plots comparing CU and two-step GMM
estimates for the n = 100 case are shown. While for “well-behaved” distributions
these methods produced very similar estimates (for n = 500 the Monte Carlo results
are virtually identical), for t(5), exponential and, mainly, lognormal cases the CU-
GMM clearly amplified the underestimation of the parameter of interest in most of
the replications. Note also that in the last case both methods produced estimates

less than 1, the true value of 6y, in almost all replications.

3We do not report the median bias because it was very similar, with a single exception, referred
to later on.
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Table 3.1: Monte Carlo results for Two-Step GMM, CU-GMM, EI and EL estima-
tors of a variance parameter using ten sample variances from one distribution (1000
replications)

Estimator n=100 n=500
Mean bias SE RMSE MAE Mean bias SE RMSE MAE
t(5)
2S-GMM -.111 .065 .129 .116 -.041 .034 .053 .042
CU-GMM -.125 .069 143 128 -.042 .034 .054 .043
EI -.094 .067 115 .099 -.029 .033 .044 .031
EL -.065 .067 .094 073 -.016 .034 .038 .026
t(10)
2S-GMM -.059 .053 .079 .062 -.016 .025 .029 .021
CU-GMM -.066 .055 .086 .068 -.016 .025 .030 .021
EI -.046 .054 071 .053 -.010 .024 .026 .018
EL -.028 .055 .062 .043 -.004 .025 .025 .017
t(15)
2S-GMM -.045 .056 .072 .052 -.012 .023 .026 .018
CU-GMM -.051 .058 077 .057 -.012 .023 .026 .018
EI -.034 .056 .066 .045 -.007 .023 .024 .016
EL -.018 .056 .059 .040 -.002 .023 .023 .015
Normal
2S-GMM -.036 .047 .059 .041 -.008 .021 .022 .015
CU-GMM -.040 .049 .063 .044 -.008 .021 .022 .015
EI -.026 .048 .055 .038 -.005 .020 .021 .014
EL -.015 .048 .050 .035 -.001 .021 .021 .014
Uniform
2S-GMM -.007 .029 .030 .021 -.002 .013 .013 .009
CU-GMM -.008 .030 .031 .021 -.002 .013 .013 .009
EI -.005 .030 .030 .020 -.001 .013 .013 .009
EL -.003 .030 .030 .020 -.001 .013 .013 .009
Lognormal
2S-GMM -.415 A11 429 430 -.225 .082 .239 227
CU-GMM -.481 125 497 .490 -.231 .085 .246 233
EI -.396 .120 414 408 -.178 .079 .194 182
EL -.303 131 331 317 -.118 .081 143 125
Exponential
2S-GMM -.141 .087 .166 147 -.041 .040 .057 .044
CU-GMM -.162 .097 189 .166 -.042 .040 .058 .045
EI -.108 .088 .140 113 -.024 .039 .046 .032
EL -.058 .087 .105 .076 -.006 .039 .040 .029
Bimodal
2S-GMM -.009 .028 .029 .020 -.002 .012 .013 .009
CU-GMM -.010 .028 .030 .021 -.002 .012 .013 .009
EI -.006 .028 .029 .020 -.001 .012 .012 .008
EL -.002 .028 .028 .019 -.000 .012 .012 .008

70



CU-GMM

CU-GMM

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

Figure 3.1:
t(5)
0.0 0.5 1.0 1.5 2.0
Two-step GMM
Uniform
0.0 0.5 1.0 1.5 2.0

Two-step GMM

Scatter plots for two-step and CU-GMM estimators of a variance parameter using

ten sample variances from one distribution (n=100; 1000 replications)

U-GMM
1.0

C

U-GMM
1.0

C

2.0

1.5

0.5

0.0

2.0

1.5

0.5

0.0

{(10)

0.0

0.5 1.0 1.5
Two-step GMM

Lognormal

2.0

0.0

0.5 1.0 1.5
Two-step GMM

2.0

CU-GMM

CU-GMM

2.0

1.5

1.0

0.5

0.0

2.0

1.5

1.0

0.5

0.0

t(15)
o
o
i ©
=
R R RRRE 0 2
2
O
{o]
T =
=
T T T o
0.0 05 1.0 1.5 2.0
Two-step GMM
Exponential
o
o
i ©
=
S ERERTEPRTNNS (STTPPRTPPR o 2
o )
' O
i ©
o o
=
T T T o
0.0 05 1.0 1.5 2.0

Two-step GMM

Normal
0.0 0.5 1.0 15 2.0
Two-step GMM
Bimodal
0.0 0.5 1.0 1.5 2.0

Two-step GMM




A theoretical explanation for the small sample behaviour of these estimators arises
from the results derived in Newey and Smith (2000), which were presented in the pre-
vious chapter. Indeed, comparing expressions (2.45) and (2.46), we see that the addi-
tional terms present in the bias function of the two-step GMM estimator disappears
because, in this example, G = —¢ and \_/gj =0, 5 =1,...,s. Therefore, the asymptotic
biases of the CU and two-step GMM estimators are identical, which explains why
these two estimators behave in such a similar way in this Monte Carlo experiment.*

Thus, it appears that estimation methods using estimators of the optimal weight-
ing matrix based on simple sample means do not work well in this context. In or-
der to obtain asymptotically efficient estimators with better finite sample properties,
one solution consists in keeping two-step or CU-GMM estimation but utilizing split-
sample estimators for V' as those suggested by Altonji and Segal (1996) and Horowitz
(1998), which reduce the correlation between the moment indicators and the covari-
ance matrix and thus work relatively well. Another possible solution, which is now
investigated, is the employment of asymptotically first-order equivalent methods not
requiring the utilization of any weighting matrix such as GEL techniques.

The results obtained for EI and EL estimators are also reported in Table 3.1. In
all cases both methods produce estimators with better finite sample properties rela-
tive to GMM. While all methods have very similar standard errors, the improvement
in terms of bias, RMSE and MAE is clear, mainly in the case of EL estimation,
although the bias is not completely eliminated in some cases. Relative to the two-
step GMM estimator, for n = 100, the bias of the EL estimator is less between 27%
(lognormal) and 79% (bimodal), the MAE between 4% (uniform) and 48% (expo-
nential) and the RMSE between 2% (uniform) and 37% (exponential). For the EI
estimator, the improvements are much more modest, ranging from 4% (lognormal) to

35% (bimodal) for the bias, from 0% (bimodal) to 23% (exponential) for the MAE

4 Actually, the bias expressions derived by Newey and Smith (2000) are not strictly applicable
here because in (3.22) m depends on the sample estimate of the mean of the observations (3.20).
However, this should not affect significantly the behaviour of the estimators for 6y, as additional
experiments, not reported here, assuming a zero mean in (3.21), confirmed.

72



and from 1% (uniform) to 16% (exponential) for the RMSE. Again, using Newey
and Smith (2000) results, we can explain theoretically why this happens. Accord-
ing to expressions (2.45), (2.46) and (2.73), and as G = —: in this example, the
asymptotic bias for two-step GMM, CU-GMM, EL and EI estimators are given by
bos = bey = %HE (9:giPgi), bei = 0.5b9s and b.; = 0. Clearly, this is the main reason
for the superior performance of the EL method in this Monte Carlo experiment and
for the less significant improvements resulting from application of the EI method.
The conclusions just drawn in the previous paragraphs are clearly confirmed by
Figures 3.2 and 3.3 which show, respectively, the sampling cumulative and probability
density functions for all estimators for the n = 100 case. As can be seen from both
figures, whichever distribution for the data is considered, the performance of the
estimation methods are ranked the same: the best is the EL method (dashed line),
followed by the EI technique (dot-dashed line), the two-step GMM (solid line) and,
finally, the CU-GMM (dotted line). Only in terms of dispersion is the behaviour of all
methods very similar, with the exception of the lognormal case, where the distribution

of the two-step GMM estimator is slightly more concentrated.

We also analyzed the ability of the alternative bootstrap techniques discussed
in section 3.3 to improve the finite sample properties of two-step GMM estimators.
The FSGEL, GEL, RGEL and PHGEL bootstrap methods were implemented using
the EL criterion function. Although the observations are independent across both
individuals and time periods, we adopted the resampling scheme usual in the panel
data context, i.e. we sampled with replacement from the set of n individuals. The
results reported in Table 3.2 were computed using 100 bootstrap samples in each
replication.

As we can see, in all cases the utilization of any one of the bootstrap methods
allows the bias of the GMM estimator to be substantially reduced, although at the
expense of an increment in its dispersion. However, the behaviour of these methods

is not at all uniform. Analyzing firstly the three methods previously suggested by
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Figure 3.2: Sampling cumulative density functions for GMM, CU-GMM, El, and EL estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)
t(5) t(10) t(15) Normal
= o =
> ' > @ | > @ > @
@ : B © BT B ©
c . c c c
3 : S 3 3
g : g © | ¢ ©] g ©]
E : g © 5 ° g °
=] Y A =] > = R 2 AT
E - E E E
3 ! 3 < | 3 < | 3 <
T : w © g © g ©
3 . 3 ° ke
s : 5 5 5
IS . E o E o E o
L w o 7 w o7 w o7
= = =
T =) o =) T t T
1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
Parameter estimates Parameter estimates Parameter estimates Parameter estimates
Uniform Lognormal Exponential Bimodal
o e o e
2> @] 2> <] > @] 2> @]
Z 3 2 3 Z 3 Z 5
c c c c
3 3 3 3
g «© | g © | ¢ ] g o]
'ﬁ o ﬁ o ﬁ o ﬁ o
S S =T T Y A N A S
E E E ; E
3 < | 3 < | 3 < | 3 < |
g © g © g © g ©
© © ° ke
€ «o € « E o E o
w o 7 w o 7 w o7 w o 7
o o o o
o T t T o T T T t o 1 o
0.90 0.95 1.00 1.05 1.10 0.2 0.4 0.6 0.8 1.0 1.2 06 07 08 09 10 11 12 13 0.90 0.95 1.00 1.05 1.10
Parameter estimates Parameter estimates Parameter estimates Parameter estimates
Notes: Two-step GMM (solid line), CU-GMM (dotted line), El (dot-dashed line), EL (dashed line).




Figure 3.3: Sampling probability density functions for GMM, CU-GMM, El, and EL estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)
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Table 3.2: Monte Carlo results for bootstrap GMM estimators of a variance parameter
using ten sample variances from one distribution (1000 replications)

Estimator n=100 n=>500
Mean bias SE RMSE MAE Mean bias SE RMSE MAE
t(5)
NP-BOOT-GMM -.073 .076 .105 .084 -.020 .038 .042 .029
RNP-BOOT-GMM -.050 077 .091 .068 -.014 .039 .041 .028
FSEL-BOOT-GMM -.044 .075 .086 .065 -.014 .038 .040 .028
EL-BOOT-GMM -.088 .076 116 .094 -.038 .040 .056 .041
REL-BOOT-GMM -.041 .075 .086 .065 -.013 .038 .040 .027
PHEL-BOOT-GMM -.042 .075 .086 .064 -.014 .038 .040 .028
t(10)
NP-BOOT-GMM -.026 .060 .065 .046 -.003 .026 .026 .018
RNP-BOOT-GMM -.017 .059 .061 .044 -.002 .026 .026 .018
FSEL-BOOT-GMM -.011 .058 .059 .040 -.002 .026 .026 .018
EL-BOOT-GMM -.042 .059 .073 .052 -.013 .027 .030 .021
REL-BOOT-GMM -.011 .058 .059 .041 -.001 .026 .026 .018
PHEL-BOOT-GMM -.011 .058 .059 .041 -.002 .026 .026 .018
t(15)
NP-BOOT-GMM -.014 .061 .062 .042 -.001 .024 .024 .016
RNP-BOOT-GMM -.008 .060 .060 .041 .000 .024 .024 .016
FSEL-BOOT-GMM -.002 .059 .059 .039 .000 .024 .024 .016
EL-BOOT-GMM -.030 .061 .067 .046 -.010 .025 .026 .018
REL-BOOT-GMM -.002 .059 .059 .040 .000 .024 .024 .016
PHEL-BOOT-GMM -.003 .059 .059 .039 .000 .023 .023 .016
Normal
NP-BOOT-GMM -.008 .050 .051 .036 .000 .021 .021 .014
RNP-BOOT-GMM -.005 .050 .050 .035 .001 .021 .021 .014
FSEL-BOOT-GMM -.001 .049 .049 .033 .001 .021 .021 .014
EL-BOOT-GMM -.022 .050 .055 .038 -.006 .021 .022 .015
REL-BOOT-GMM -.001 .049 .049 .034 .001 .021 .021 .013
PHEL-BOOT-GMM -.001 .049 .049 .034 .001 .021 .021 .013
Uniform
NP-BOOT-GMM .006 .030 .030 .020 .001 .013 .013 .009
RNP-BOOT-GMM .005 .030 .030 .020 .001 .013 .013 .009
FSEL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .009
EL-BOOT-GMM .003 .030 .030 .020 .000 .013 .013 .009
REL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .009
PHEL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .008
Lognormal
NP-BOOT-GMM -.380 .145 407 403 -.161 .108 194 .168
RNP-BOOT-GMM -.230 453 .508 .289 -.107 123 163 129
FSEL-BOOT-GMM -.264 .158 .308 292 -.121 .106 161 131
EL-BOOT-GMM -.353 157 .387 378 -.209 123 .243 .216
REL-BOOT-GMM -.242 .165 .293 271 -.103 .109 .150 121
PHEL-BOOT-GMM -.244 .165 .294 273 -.104 .109 .150 121
Exponential
NP-BOOT-GMM -.089 .108 .140 107 -.012 .044 .046 .032
RNP-BOOT-GMM -.060 .105 122 .085 -.009 .044 .045 .031
FSEL-BOOT-GMM -.042 .102 110 077 -.007 .043 .044 .030
EL-BOOT-GMM -.122 110 .164 133 -.040 .049 .063 .046
REL-BOOT-GMM -.039 .103 110 077 -.006 .043 .044 .031
PHEL-BOOT-GMM -.040 .103 110 .076 -.006 .043 .044 .030
Bimodal
NP-BOOT-GMM .006 .029 .029 .021 .002 .013 .013 .008
RNP-BOOT-GMM .006 .028 .029 .020 .002 .013 .013 .008
FSEL-BOOT-GMM .008 .028 .029 .020 .002 .012 .013 .008
EL-BOOT-GMM .001 .029 .029 .020 .000 .013 .013 .009
REL-BOOT-GMM .008 .028 .029 .020 .002 .012 .013 .008
PHEL-BOOT-GMM .008 .028 .029 .021 .002 .012 .013 .008
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other authors, we see that they produce estimators with less bias, RMSE and MAE
than the GMM estimator, but the improvements are much less significant for the NP
bootstrap, as expected. The RNP and FSEL methods yielded very similar results for
n = 500 but, for the smaller sample size considered (see also Figures 3.4 and 3.5),
the FSEL bootstrap in general performed better, which is not surprising, since, as
already referred to, Brown, Newey and May (1997) demonstrated that this method

is efficient relative to any bootstrap method based on the empirical distribution.

With regard to the methods proposed in this chapter, the EL bootstrap, for the
reasons argued in section 3.3.4, systematically under-estimated the bias of the GMM
estimator, so no significant improvements were achieved. Thus, this is the only boot-
strap estimator which is sometimes characterized by a larger RMSE than that of
the two-step GMM estimator. In contradistinction, both the REL and the PHEL
bootstrap methods produced very promising (and almost identical) results (see also
Figures 3.6 and 3.7, where the lines for these methods are indistinguishable). Apart
from the over-correction produced for uniform and bimodal distributions at n = 100
(a problem shared by all bootstrap methods), in the remaining cases for this sample
size the improvement in terms of bias over the EL bootstrap GMM estimator ranges
from 31% (lognormal) to 94% (normal) and, in relation to the two-step GMM estima-
tor, from 41% (lognormal) to 96% (normal), which is quite impressive. Furthermore,
certainly due to the employment of a more efficient estimator of the distribution of the
data, the performance of these two bootstrap GMM estimators was clearly superior
to that of RNP bootstrap estimators for all criteria in almost all cases® and slightly

better than that of FSEL bootstrap estimators for the “badly-behaved” distributions.

With the exception of the NP and EL bootstrap methods, all others behave better

in all experiments in terms of bias than EL, the method that produced the best

®Note that the exception found for the mean bias for the lognormal and n = 100 case was due
to an outlier, as the enormous standard error of the RNP bootstrap GMM estimator indicates. In
terms of median bias, the values are 0.282 (RNP), 0.290 (FSEL), 0.267 (REL) and 0.270 (PHEL).
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Figure 3.4: Sampling cumulative density functions for NP, RNP and FSEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)
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Figure 3.5: Sampling probability density functions for NP, RNP and FSEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)
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Figure 3.6: Sampling cumulative density functions for EL, REL and PHEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)
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Figure 3.7: Sampling probability density functions for EL, REL and PHEL bootstrap GMM estimators of a variance parameter using
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results in Table 3.1. However, they sometimes have a larger RMSE due to the greater

dispersion usually exhibited by bootstrap estimators.

3.5 Monte Carlo simulation study II: instrumental
variable models

In this second Monte Carlo investigation we consider instrumental variable models,
one of the most wide spread applications of GMM. There are numerous studies show-
ing that, in small samples, GMM estimators are not unbiased, especially when the
number of instruments is large [e.g. Tauchen (1986b), Kocherlakota (1990) and An-
dersen and Sorensen (1996)] or the correlation between regressors and instruments is
weak [e.g. Nelson and Startz (1990) and Bound, Jaeger and Baker (1995)]. In this
section we present additional evidence confirming those results and examine how the

alternative estimation methods under analysis perform in this framework.

3.5.1 Data generating process

Consider the linear model described by the equation
y = X0+ u, (3.28)

where y and X are n-vectors of observations on a dependent variable and a regressor
variable, respectively, and u is a n-vector of normal errors with mean zero and variance
one. Analogously to Nelson and Startz (1990), we generate the regressor X and the

s instruments Z;, j = 1, ..., s, that constitute the matrix of instruments Z from
X=MN+e (3.29)

and

Zj = ;€ + vy, (3.30)
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Jj =1,...,s, where € and v; are random disturbances independently generated from
a N (0, 1) distribution and A and +; are fixed parameters that allow the correlations
P2y between X and v and p,. between X and the instrument Z; to be controlled

according to the equations

A= Lo (3.31)

and

1+ )\
o , 3.32
e 9

As we are assuming homoskedasticity, the two-step GMM estimator is given by
§— [X’Z (2'2)7 Z’X}IX’Z(Z’Z)1 Z'y, (3.33)
while GEL estimators can be expressed as [see Smith (1997), p. 517]
h= [X’PZ (2'2)7 Z’PX} Xz (22) 7Py, (3.34)

gel
70

where P is a (n x n) diagonal matrix with typical element p{”, i = 1,...,n. Com-
paring expressions (3.33) and (3.34), we see that, again, the difference between these
estimators results from the weights applied to the matrices Z’X and Z'y: the two-
step GMM estimator applies unit weight whereas the GEL estimators weight each
component of those matrices using the GEL implied probabilities.

Five different experiments were performed, as described in Table 3.3. In the
first case, we have just a single overidentifying moment condition, where one of the
instruments utilized in estimation is worthless. The second experiment is similar, with
the modification that there is a large number of instruments relative to the number
of regressors. The nine instruments added are also useless. This characteristic was
kept in experiments 3 and 4, which are simple extensions of experiment 2. In the first
case we investigate the effects of increasing the correlation between the explanatory

variable and the instrument Z;. In the other case we examine the consequences

of lower feedbacks from u to X in equation (3.28) over the parameter estimates.
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Table 3.3: Monte Carlo experiments for instrumental variable models

Experiment | s | puy | Pazy | Pazs | Pazy U =3, 11)
1 210703 0 -
2 1110.7] 03| 0 0
3 1110.7] 07| 0 0
4 1103] 07| 0 0
5 1107 03] 0 0.3

The latter effect is not usually analyzed [the only exception seems to be Blomquist
and Dahlberg (1999)] but, as Nelson and Startz (1990) implicitly acknowledge, the
correlation between the error term u and the regressor X is one of the most important
determinants of the accuracy with which an IV model may be estimated, because high
feedbacks from u to X make the model poorly identified even when the correlation
between regressors and Vs is relatively important. Finally, in experiment 5, we repeat
experiment 2 but now the additional nine instruments utilized convey information
about X.

For each experiment, 1000 replications of samples of both 100 and 500 observations
were generated. The parameter 6y was fixed at 1. Once again, all bootstrap methods
using a GEL (or FSGEL) distribution to resample the data were based on the EL
implied probabilities and on 100 bootstrap samples for each replication. We resampled

with replacement from the original (y, X, Z) sample.

3.5.2 Results

The results obtained for n = 100 are presented in Table 3.4. In addition to the statis-
tics reported in the previous section we also report the bias in terms of median and
the values of the 0.05 and 0.95 quantiles of the distribution of the various estimators
of the parameter 6. Indeed, unlike before, the median is substantially different from
the mean for some of the estimation methods considered. Moreover, the tails of some
of the distributions of the estimators are now much heavier for some methods, while
in the previous study all of them were characterized by very similar standard errors,

apart from the expected larger dispersion for GMM bootstrap estimators. In Figures
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3.8 and 3.9 we show also the sampling cumulative distribution functions for some

estimation methods.

Similarly to the results widely reported by other simulation studies, the two-
step GMM estimator [which, in this context, is numerically equal to Hansen, Heaton
and Yaron’s (1996) repeatedly-iterated GMM estimator] is significantly biased in all
experiments. Its best (least bad) performance in terms of bias occurs when only
two instruments are used (experiment 1), precisely the case where it exhibits more
dispersion, which reflects the traditional trade-off between bias and efficiency that
usually happens when the number of moment conditions is increased and the two-
step GMM estimator is employed. Note that this effect occurs not only when the nine
instruments added are useless (experiments 2-4) but also in experiment 5, where each
one of the new instruments has the same correlation with X as the instrument Z; in
experiment 1. Notice also that the decrease in the dispersion of the two-step GMM
estimator when new instruments are added is such that its RMSE is substantially
lower in experiments 2-5. In all cases, this estimator has the smallest standard error
of all estimation methods considered.

The bias of the two-step GMM is particularly significant in experiment 2, where
this method clearly overestimates the parameter 6, producing estimates greater than
1, the true value of 0y, in 96.8% of the replications realized. In experiment 3 the two-
step GMM estimator is still very biased but there is an important improvement in its
small sample properties, which shows clearly the beneficial effects of high correlations
between instruments and regressors on the performance of this estimator. In fact,
although 10 instruments are still worthless, the mean bias of the two-step GMM esti-
mator is reduced by 68.6% and its standard error by 39.2% by merely increasing the
correlation between the regressor and the remaining instrument from 0.3 to 0.7. With
regard to the feedback from u to X in equation (3.28), its decrease seems to have two
distinct consequences for the GMM estimator, as shown by the results obtained with

experiment 4. On the one hand, its bias diminishes considerably, which was expected
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Table 3.4: Performance of alternative estimators for instrumental variable models
(1000 Monte Carlo replications; n = 100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95
Model 1
2S-GMM .023 .066 0.604 1.347 315 .316 .159
CU-GMM .254 .008 0.264 1.317 12.490 12.492 .169
EI -.111 .004 0.206 1.320 .698 707 173
EL -.124 .007 0.178 1.328 .866 874 172
NP-BOOT-GMM -.021 .060 0.397 1.358 .504 .504 .164
RNP-BOOT-GMM -.022 .061 0.395 1.358 .503 .04 .165
FSEL-BOOT-GMM  -.015 .060 0.465 1.351 .504 .504 .164
EL-BOOT-GMM .036 .102 0.444 1.424 513 .b14 187
REL-BOOT-GMM -.032 .053 0.376  1.349 D11 512 167
PHEL-BOOT-GMM -.097 .044 0.161 1.340 764 770 171
Model 2
2S-GMM .280 278 1.042 1.497 143 314 278
CU-GMM .091 .009 -0.033 1.405 3.976 3.977 .192
El -.233 .005 -0.269 1.407 1.610 1.627 .205
EL -.201 .004 -0.228 1.406 1.313 1.329 .202
NP-BOOT-GMM .192 .200 0.829 1.477 .204 .280 218
RNP-BOOT-GMM .193 .202 0.829 1.478 .203 .280 218
FSEL-BOOT-GMM .201 .206 0.865 1.480 194 279 217
EL-BOOT-GMM 315 .320 0.948 1.666 222 .385 .325
REL-BOOT-GMM .163 175 0.776  1.465 221 274 .204
PHEL-BOOT-GMM -.087 .047 -0.105 1.416 744 749 .210
Model 3
2S-GMM .088 .098 0.928 1.217 .087 124 .103
CU-GMM -.010 .007 0.798 1.136 .107 .108 072
EI -.016 .003 0.751 1.157 123 124 077
EL -.015 .002 0.759 1.153 121 122 074
NP-BOOT-GMM .020 .035 0.826 1.175 .106 .108 .079
RNP-BOOT-GMM .020 .035 0.824 1.173 .106 .108 .079
FSEL-BOOT-GMM .023 .037 0.827 1.174 .105 .108 .080
EL-BOOT-GMM .102 .108 0.892 1.288 118 .156 .120
REL-BOOT-GMM .008 .024 0.801 1.164 .110 .110 077
PHEL-BOOT-GMM -.000 .017 0.789 1.158 114 114 .076
Model 4
2S-GMM .049 .060 0.825 1.255 .129 138 .099
CU-GMM -.010 .002 0.728 1.222 .150 151 .092
EI -.016 -.005 0.695 1.236 .169 170 .109
EL -.016 -.003 0.698 1.237 .169 .170 107
NP-BOOT-GMM .010 .020 0.758 1.231 142 .143 .091
RNP-BOOT-GMM .010 .019 0.758 1.233 142 142 .091
FSEL-BOOT-GMM .008 .020 0.758 1.231 142 142 .093
EL-BOOT-GMM .065 .068 0.825 1.307 147 161 114
REL-BOOT-GMM .005 .017 0.755 1.232 144 144 .094
PHEL-BOOT-GMM .000 .012 0.744 1.231 147 147 .093
Model 5
2S-GMM 117 .129 0.938 1.262 .099 .153 132
CU-GMM -.018 -.000 0.733 1.168 .136 137 .083
El -.029 -.003 0.669 1.181 .160 .163 .096
EL -.028 .000 0.676 1.185 .158 161 .093
NP-BOOT-GMM .035 .049 0.808 1.211 128 .133 .097
RNP-BOOT-GMM .036 .051 0.804 1.209 128 133 .095
FSEL-BOOT-GMM .041 .056 0.818 1.217 124 131 .094
EL-BOOT-GMM 138 .146 0.906 1.360 .145 .200 .155
REL-BOOT-GMM .018 .037 0.782 1.199 134 135 .094
PHEL-BOOT-GMM -.005 .021 0.718 1.188 148 .148 .092
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Figure 3.8: Sampling cumulative density functions for GMM, CU-GMM, El, and EL estimators
of instrumental variable models (n=100; 1000 replications)
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Figure 3.9: Sampling cumulative density functions for FSEL, EL, REL and PHEL bootstrap GMM estimators
of instrumental variable models (n=100; 1000 replications)
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because, although the correlation between Z; and X is still 0.7, the component of
the regressor not correlated with the error term now has a greater influence over the
behaviour of the dependent variable. On the other hand, there was an increase in its
dispersion, probably due to the higher variability of y, which in turn results directly
from X and u being less dependent. Finally, the results obtained in experiment 5,
although better than those achieved for experiment 2 as expected, are worse than
those of experiment 3, which emphasizes the importance of high correlations between
instruments and regressors in this framework. Indeed, despite the existence of 10
useless instruments in experiment 3 and only 1 in experiment 5, the presence of a
single good instrument in the former model is sufficient for better results than those
obtained when 10 reasonable instruments are used in the latter.

Unlike the previous section, the CU-GMM, EI and EL estimators now exhibit a
very similar behaviour in all experiments, as can be immediately seen from Figure 3.8,
where their sampling cumulative density functions are almost indistinguishable. This
happens because, in this case of moments consisting of products of instruments with
a Gaussian residual, the third moments of ¢; are zero, so the last term of (2.45) and
(2.73) disappears and, hence, the asymptotic biases of these three estimators become
equal. It can also be seen that, while the two-step GMM estimator is severely biased
in all cases, the other three are always nearly median unbiased, a property which
is independent of the quality and the number of instruments used in estimation.’
However, for the poorest identified models (experiments 1 and 2), the Monte Carlo
distributions of their estimators are quite disperse, having very heavy left tails. The
tremendous standard errors in these two cases, especially of the CU-GMM estimator,
are due to the occurrence of extreme values in some replications. These results con-
form with those obtained by Hansen, Heaton and Yaron (1996), which showed that

the criterion function for the CU-GMM estimator can sometimes lead to extreme out-

6This confirms empirically the theoretical results of Newey and Smith (2000), which derive bias
expressions for the two-step and CU-GMM estimators for a instrumental variable model of the kind
considered here. They show that while the bias of the former estimator increases linearly with the
number of moment conditions, the bias of the latter does not depend on it.
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liers for the minimizing value of 6 but that, in general, this estimator will be median
unbiased [see also the results reported by Stock and Wright (1996)].” By increasing
the correlation between instruments and regressors, much more concentrated sam-
pling distributions for these three estimators are obtained, without extreme values.
For this reason, only small mean biases are present in experiments 3-5, substantially
less than that of the two-step GMM estimator.

With regard to the bootstrap methods, the first aspect to note is that those whose
resampling is based on the empirical distribution £}, (y), the NP and RNP bootstrap
methods, produced almost identical results in all experiments. The reason for this
behaviour in this setting seems to be the following. As can be inferred from section
3.3.2, the more distant from zero are the sample moment conditions evaluated at
the two-step GMM estimator, the more significant are the differences between these
two bootstrap techniques. With covariance structure models, for the reasons stated
earlier, the estimated value of the moments was significantly different from zero, so
the improvement produced by the RNP bootstrap was substantial. Here, the sample
moment conditions evaluated at the two-step GMM estimator are nearly zero in all
cases. Indeed, although most are not good instruments, once they convey little or no
information at all about the explanatory variable (and this is the main reason why
the estimators are strongly biased in some cases), they are not correlated with the
error term, so the sample moment conditions are very close to zero, attenuating the
differences between these bootstrap methods. For the same reason, the FSEL implied
probabilities are approximately equal to % for all observations, in all cases. Thus,
also the FSEL bootstrap produced very similar results to the NP and RNP bootstrap
methods.

In the first two experiments, which concern the most poorly identified models, the
performance of these three bootstrap methods is not particularly promising. In the

first case, they are only very slightly less biased than the two-step GMM estimator

"Note that median bias is more appropriate than mean bias to assess the performance of the
CU-GMM estimator because, in this example, it coincides with the limited information maximum
likelihood estimator, which is known to have no finite moments [see inter alia Mariano (1982)].
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itself and their sampling distributions are much more variable. In the second case,
although they cut the bias of the two-step GMM estimator by about 30%, their bias
is still very high (around 20%). However, their behaviour improves substantially in
the remaining experiments. In these models, using the FSEL bootstrap method or
bootstrapping the two-step GMM estimator utilizing the empirical distribution F,, (y)
is an effective way of largely, although still not entirely, correcting its bias.

While the standard form of the EL bootstrap method is not able to improve at all
the properties of two-step GMM estimators in any case (the results are worse accord-
ing to all criteria), the two proposed adjustments work very well, as shown clearly
by Figure 3.9. Indeed, the REL and PHEL are the two best bootstrap methods in
terms of median bias in all cases, with the latter being always superior. Furthermore,
while in the two first experiments the performance of the PHEL bootstrap was af-
fected negatively by the great variability exhibited by EL estimators in those cases, as
soon as this problem disappears (experiments 3-5) the PHEL bootstrap becomes the
only estimation method which appears mean unbiased. However, the best in terms
of median bias are still the CU-GMM, EL and EI estimators.

Table 3.5 presents the results for n = 500. There is a significant improvement in
the properties of all estimation methods but various points should be noted. First,
even for this sample size, the two-step GMM estimator exhibits important biases,
particularly in experiment 2. Thus, it seems that it would be necessary to dramatically
increase the number of observations to avoid this. Second, the CU-GMM, EI and EL
estimators appear even more similar. Their variability is much less for this sample size,
so they are now also approximately mean unbiased. Comparing the results obtained
for experiments 1 and 2, we can confirm that these methods are relatively indifferent
to the addition of worthless instruments, unlike the two-step GMM estimator that
continues to present the habitual trade-off between bias and efficiency. With respect to
bootstrap techniques, the EL bootstrap method continues to provide no improvement
over the two-step GMM estimator, while the estimators based on its post-hoc adjusted

version are clearly unbiased in all cases. The NP, RNP, FSEL and REL bootstrap
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GMM estimators also perform well, but in experiment 2 still exhibit some bias.

3.6 Conclusion

In this chapter we investigated through some Monte Carlo experiments the finite
sample properties of various methods which are theoretically appropriate for the es-
timation of moment condition models. Two different settings, where two-step GMM
is known to produce biased estimators, were considered. Clearly, our results showed
that there are better alternatives to estimate both covariance structure and instru-
mental variable models. Indeed, very promising results were obtained by particularly
the PHEL bootstrap and EL estimation methods.

In covariance structure models, apart from the CU-GMM estimator, whose behav-
iour appeared even worse, all the other seven alternative methods clearly performed
better than the two-step GMM estimator in all circumstances. The REL and the
PHEL bootstrap methods, suggested in sections 3.3.5 and 3.3.6, produced the best
results, leading to the least biased estimators in almost all cases simulated. More-
over, in spite of the usual greater dispersion exhibited by bootstrap estimators, they
also behaved very well in terms of RMSE, sharing with the EL method the best
performance according to this criterion.

For instrumental variable models, two-step GMM proved again to be completely
inadequate, producing very biased estimators for models using large number of in-
struments, even for moderate sample sizes (500 observations). Also the finite sample
properties of the EL bootstrap GMM estimator were not satisfactory, which empha-
sizes the necessity for a correction of the kind proposed in this chapter. All other
estimation methods possess better finite sample properties. The CU-GMM, EI and
EL methods behaved in a very similar way, being always nearly unbiased in terms
of median bias and also mean unbiased for larger sample sizes. However, in poorly
identified models, they exhibited great variability which suggests that some care must

be taken in their application in small samples and when there are doubts about the
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Table 3.5: Performance of alternative estimators for instrumental variable models
(1000 Monte Carlo replications; n = 500)

Estimator Bias Quantiles SE  RMSE MAE
Mean Median 0.05 0.95
Model 1
2S-GMM .001 .015 0.793 1.159 113 113 .072
CU-GMM -.011 .004 0.780 1.153 118 118 .073
EI -.011 .004 0.776 1.155 118 118 .073
EL -.011 .004 0.776 1.155 118 118 073
NP-BOOT-GMM .001 .015 0.794 1.159 114 114 .073
RNP-BOOT-GMM .001 .015 0.794 1.158 114 114 .073
FSEL-BOOT-GMM .001 .012 0.793 1.159 114 114 .072
EL-BOOT-GMM .013 .027 0.804 1.177 114 115 .074
REL-BOOT-GMM .001 .013 0.790 1.157 114 114 .071
PHEL-BOOT-GMM .001 .015 0.798 1.158 113 113 .073
Model 2
2S-GMM .088 .093 0.947 1.216 .086 123 .097
CU-GMM -.008 .007 0.780 1.157 118 118 .075
El -.008 .005 0.787 1.160 122 123 .078
EL -.008 .006 0.786 1.160 122 123 .078
NP-BOOT-GMM .024 .034 0.841 1.179 .109 11 .076
RNP-BOOT-GMM .024 .035 0.837 1.180 .109 111 077
FSEL-BOOT-GMM .028 .037 0.850 1.180 .106 .110 077
EL-BOOT-GMM .096 .102 0.917 1.260 .108 145 .108
REL-BOOT-GMM .016 .027 0.824 1.178 113 114 077
PHEL-BOOT-GMM .001 .013 0.798 1.171 123 123 077
Model 3
2S-GMM .018 .019 0.946 1.081 .043 .047 .032
CU-GMM -.002 -.001 0.921 1.066 .045 .045 .030
EI -.001 -.001 0.921 1.068 .046 .046 .029
EL -.001 -.001 0.921 1.068 .046 .046 .029
NP-BOOT-GMM .001 .003 0.926 1.069 .045 .045 .030
RNP-BOOT-GMM .001 .003 0.925 1.069 .045 .045 .031
FSEL-BOOT-GMM .001 .004 0.924 1.070 .046 .046 .030
EL-BOOT-GMM .019 .022 0.942 1.092 .046 .050 .034
REL-BOOT-GMM .000 .003 0.922 1.069 .046 .046 .030
PHEL-BOOT-GMM  .000 .002 0.923 1.066 .045 .045 .030
Model 4
2S-GMM .012 .013 0917 1.103 .058 .059 .040
CU-GMM .001 .003 0.902 1.095 .060 .060 .040
El .001 .002 0.898 1.096 .061 .061 .039
EL .001 .002 0.900 1.098 .061 .061 .039
NP-BOOT-GMM .002 .004 0.905 1.096 .060 .060 .041
RNP-BOOT-GMM .002 .003 0.905 1.096 .060 .060 .041
FSEL-BOOT-GMM .002 .004 0.901 1.098 .060 .060 .041
EL-BOOT-GMM .012 .012 0.914 1.110 .060 .062 .042
REL-BOOT-GMM .002 .004 0.904 1.097 .060 .060 .040
PHEL-BOOT-GMM .002 .004 0.904 1.097 .060 .060 .040
Model 5
2S-GMM .026 .028 0.942 1.102 .049 .056 .040
CU-GMM -.002 -.001 0.907 1.081 .054 .054 .034
El -.002 .001 0.908 1.083 .055 .055 .035
EL -.002 .002 0.909 1.084 .055 .055 .035
NP-BOOT-GMM .002 .005 0.912 1.086 .053 .054 .036
RNP-BOOT-GMM .002 .005 0.912 1.086 .053 .054 .035
FSEL-BOOT-GMM .002 .005 0.913 1.086 .053 .053 .036
EL-BOOT-GMM .028 .031 0.937 1.112 .054 .061 .044
REL-BOOT-GMM .001 .004 0.910 1.085 .054 .054 .035
PHEL-BOOT-GMM  .000 .003 0.910 1.083 .054 .054 .034
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quality of the instruments. Apart from the experiments where it was affected by the
large dispersion of the EL estimator, the PHEL bootstrap worked very well, being
the only mean unbiased estimation method in the smallest sample size considered.

We also found that Newey and Smith’s (2000) results seem to be a good guide
for the small sample behaviour of the non-bootstrap estimators. Thus, a natural and
interesting extension of the investigation undertaken in this chapter would be the
study of the finite sample properties of bias-corrected GMM estimators based on the
expression derived by those authors for the bias of the GMM estimator. Another
potential avenue for future research is the analysis of the ability of the bootstrap and
Newey and Smith’s (2000) theoretical results to correct the bias of CU-GMM and
GEL estimators.®

3.7 Appendix

The first-order conditions (2.64) defining GEL estimators can also be written as:

For covariance structure models, G; (é’) = —¢. Therefore,

n RN R n
SGi(0) 6 = —6>
=1 =1

= —L/{b

s
= =)0
t=1

and the second first-order condition can be written as >, , (}ﬁt =0.

8A joint paper with R. J. Smith and A. D. Chesher examining some of these issues is currently
in preparation.
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Furthermore, as

S (3) = 3 (mi - 0) —0,
i=1 i=1

then

n n

~gel _ f ~gel
E P m; = L@E D;
i=1 i=1

n
. vl
= g pim;
i=1
10 n

SN e

t=1 =1

>
Il

95



Chapter 4

GEL Pearson-type specification

tests

4.1 Introduction

In this chapter we propose Pearson-type statistics suitable to test overidentifying
moment conditions and parametric restrictions in models estimated by GEL methods.
These new statistics are based on the comparison of two consistent estimators, under
the corresponding null hypothesis, of the unknown distribution of the data. For the
former class of tests those estimators are the empirical and the GEL distribution
functions, while in the latter case two GEL distributions estimated under different
assumptions are contrasted. We derive two types of Pearson-type tests. First, we show
that the classical Pearson y? statistic is directly applicable in the GEL framework,
after minor adaptations. The other approach involves the partition of the sample
space into several sets and the contrast between the empirical and the GEL implied
probabilities (or two GEL implied probabilities) estimated for each set, which forms
the basis for the second Pearson-type statistic we develop.

In the second part of this chapter we investigate, through a Monte Carlo simulation
analysis based on two of the settings considered by Imbens, Spady and Johnson

(1998), how Pearson-type statistics for overidentifying moment conditions perform
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in finite samples. We examine their size behaviour and compare it with some of the
existing alternatives: Hansen’s (1982) .J test, cf. section 2.3.4, and the distance metric
and Wald statistics discussed in section 2.5.6. In the case of the J test evaluated
at the two-step GMM estimator, we consider also bootstrap approximations to its
small sample distribution. In particular, five bootstrap techniques already studied
in chapter 3 are utilized: the nonparametric (NP), recentered nonparametric (RNP),
first-stage GEL (FSGEL), GEL and recentered GEL (RGEL) bootstrap methods.
Note that the post-hoc GEL bootstrap, also analyzed in that chapter, is not applicable
in this context.

This chapter is organized as follows. Section 4.2 briefly reviews the concept of
GEL implied probabilities and formalizes its asymptotic relation to the empirical
distribution function. The Pearson-type tests for overidentifying moment conditions
are derived in section 4.3 while the case of parametric restrictions is considered in
section 4.4. The Monte Carlo simulation studies are discussed in section 4.5. Section

4.6 concludes.

4.2 GEL implied probabilities
Consider the moment conditions
Erg(y,00)] =0, (4.1)

where the distribution F' = F (y) with respect to which the expected value is taken
is assumed unknown. As discussed previously, in the GEL context there exists two
different ways of consistently estimating F'. One of those estimators is the empirical

cumulative distribution function,

E, (y) = %Z L(y: <), (4.2)
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which gives constant weights dF, (y) = % to each observation. A more efficient

estimator is the GEL distribution,

n

Foa () => 1w <y)pi (9, &) , (4.3)

=1

where p; (-) = p?“' (), since it exploits the information contained in (4.1) by reweight-

ing each observation in such a way that the moment conditions are numerically im-
posed in the sample; cf. section 2.5.4. The weights assigned to each observation, the

GEL implied probabilities dﬁ’gel (y) = pi (é’, gAb), i =1,...,n, are estimated using the
T (éa gb)
— (4.4)
D iy i (9 ) ¢>

where 7; (@, gAb) =Vh [g}ﬁ,g (yi, @)}, cf. (2.69) and (2.65). Under the null hypothesis

formula

Di = pi (&éﬁ) =

that the moment conditions (4.1) hold in the population of interest, the probability
limit of ¢ is 0, so 7 (9,0) = Vh(0), and, hence, the GEL probabilities p; (9,0),
i=1,...,n, are equal to the empirical measures dF,, (y) = %

More rigorously, let §; = ¢ (yi, é’) and b, = supyee |9 (v:,0)]. From Newey and
Smith (2001, Proof of Lemma A1), max;<;<, b; = O, (ni), where o > 2 is such that

E [supgeo |9 (vi,0)]|"] < oo. A second-order expansion Taylor series expansion for

s (@, qAb> yields

N

Vi (83) = VRO + VR 85+ 590 (63) (63) . (9)

where 0 < gb < ¢. Now, maxj<;<p

Veh (Cb/f]z) - vsh(o)‘ 5 0 as SUPgeco,1<i<n
gb,g (ys, 9)‘ 2.0, see Newey and Smith (2001, Proof of Lemma Al). Therefore,

v (89) (63) =0, (n0-3), (4.6)
as ¢ = O, (n’%) and |G| = O, (né) On the other hand, a first-order Taylor
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expansion gives

1 1 11 2 (N
S Vh (¢g> ~ V() n[wL(O)PE;V h<¢gl> 99
- = 10 7] )

as MmaXi<i<n

V2h (675:) = V2R (0)

2,0 and D (yz,@) =0, (n’

=
N———

Hence,
pi = [Vh (0) + V21 (0) ¢ g; + %V?’h (#'9:) ({ﬁ’giﬂ M%(O) [1+0,(n")]
; %VVQ: (((;))) O+ %vzggi,og)i) (¢3) +0, (07 (48)
and, using (4.6),
Nz (p - %) - V;:(f; gi/nb+ 0, (n D). (4.9)

Equations (4.8) and (4.9), by expressing the asymptotic relationship between the
empirical and GEL probability density functions, form the basis for the construction

of the Pearson-type test statistics derived in the next sections.

4.3 Tests of overidentifying moment conditions

In this section we develop two classes of Pearson-type test statistics appropriate for
testing the moment conditions (4.1). First, we show that a very simple adaptation of
the standard Pearson statistic utilized in the parametric context allows its employ-
ment in the GEL framework as a test of overidentifying moment conditions. Then, we
derive an alternative Pearson-type statistic which is based on the contrast between

empirical and GEL probabilities estimated for each set into which the sample space

is divided.
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4.3.1 Classical Pearson statistics

Suppose that we have a dataset containing some ties, where the distinct value y; arises
n; > 1 times. Let u be the number of ties. In a parametric context, we may wish to
test whether a given distribution function F (y) correctly describes the data. To this

end, there are two versions of the Pearson statistic that are usually applied:

P = i (‘3;7”)2 (4.10)

i=1 g

and

Pr=> @ (4.11)

i=1
where n; and e; = n-dF (y;) denote, respectively, the actual and the expected number
of observations of the distinct value y;, i = 1,...,u, under F (y). In (4.11) it is assumed
that e; > 0 for all = 1, ..., u. Both statistics have a limiting chi-square distribution
when F (y) is indeed the true distribution of the data.

In the GEL framework, we can ignore the ties in the data and deal with the
probability associated with an observation, not a value; see inter alia Owen (2001).
In other words, we can act as if a single data point was observed in each cell of a
n-cell contingency table, that is, a GEL version of the above statistics may be directly
obtained by setting n;, = 1, u = n and e; = np;, i = 1, ..., n. In fact, as we show next,
the corresponding versions of (4.10) and (4.11) that allow the hypothesis (4.1) to be
tested in models estimated by GEL methods are given by

n

Pr=> " (np; —1)° (4.12)

=1

and
n

P=>" M, (4.13)

n/\4
i=1 pi

which have a limiting chi-square distribution with s — k degrees of freedom.! Note

IThese Pearson statistics could also be used as distance metric in (2.48) and, therefore, be
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Q=

that, from (4.8), it follows that np; = 1 + O, (n_(%_ )), so (4.12) and (4.13) are
asymptotically equivalent.

To demonstrate that these statistics are appropriated for testing the moment
conditions (4.1), we show the asymptotic equivalence of P; to a Wald test of overi-

dentifying moment conditions. The proof is very simple. In fact, from (4.8), and

using (4.6), it follows that

2h(0) -/ Vh(da) ., 2
(mpi— 1) = vwiz(%o)) AL h((of) ) e or
B [VV}?((OO)) ({b/gz)Q VV:((OO))(%/gZ'Op (n_(l_z))+
Vh(6a) e
1 Vh((o))( 3i) Oy (n"00))

n 2 2, n . 2 N
S (np— 1) = n{w(o)] 313 g0+ YO g

=1

as =37 g = 0,(1) and LY0, [v?’h (gb/gi) G — V3h (0)} 2, 0. Hence, P, =
W, + 0O, (n_<1_%)) ,where W,, denotes the Wald test statistic of overidentifying mo-

ment conditions given in (2.79).

applied to produce estimators for the parameters of interest in moment condition models. Actually,
the optimization of the program (2.48) based on P; and P» would yield the same estimators as
those produced by the choices My (Fy,q4, Fy,) and My (Fy,, Finq) in the Cressie-Read statistic (2.49),

respectively. Note that (4.13) may be written as Py = Y . (L - 1).

1=1 nﬁi
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4.3.2 Alternative Pearson-type tests

In this sub-section we develop an alternative Pearson-type test of overidentifying
moment conditions. As discussed in section 4.2, the distribution F' in (4.1) can be
consistently estimated, under the hypothesis that those moment conditions hold in
the population of interest, by either F}, (y) of (4.2) or Fgel (y) of (4.3). Therefore, we
can think of testing the validity of the overidentifying moment conditions (4.1) by
testing for Hy : Fye (y) — F, (y) = 0. Indeed, if the null model is correctly specified,
the limiting distribution of a test statistic based on the contrast Fye (y) — F, (y)

should be centred at zero.

Derivation
Consider a first-order Taylor series expansion of /nF, vel (y) around ¢ = 0:

Ip; <9, 0)/

VinFga (y) = Vi, (y) + 3 1 (5 < y) Tﬁ{h +0, (n—%> (4.14)

As

Ip; (0, ) _ Vi (0,9)g (i, 0) Z?:l mi (0,¢) — i (0,9) Z?:l Vi (0,0) 9 (yi,0)

¢/ >or, i (0, 9))
(4.15)
and, thus,
6‘%(9’0) V2 (0)1 N L Y
o8 Vh(O)ﬁlg(y“e) —E;g<yi,6’)]
= VVZ:(%]))%Q (:8) (4.16)

since = 3" | g (yi, 9) =0, (n_%>, it follows that

v h(O)lzl(yi Sy)g(yz-,@)/\/ﬁ{b

ViFu (y) = VnF,(y) + Vh(0) n &
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+0, (n_%)

= VnF.(y) + VA0

Vh (0)

b\ /ng + O, (n—%) , (4.17)

where the s-vector b = Er [1(y; < y) g (yi,00)] is assumed to be nonzero. Moreover,

as \/no = —sz};((%))v_lM\/ﬁgn (60)+ 0O, (n’%>, see expression (2.66), equation (4.17)

can be written as:

A

Vit B () = Fu ()] = 0V Mg, 00) + 0, (n73) . (418)

Now, consider a partition of the sample space of y into the sets C;, j = 1,..., L,

where L is finite. Define

and :
Fy (C)) = Z 1(y: € Cj) pi (é’, qb) - (4.20)

Using a similar argument to that above, we have, corresponding to (4.18),

A

Vi [Ft (C3) = B (C)] = =0V M/rgy (60) + 0, (n73), (421
j=1,...,L. Stacking B = (by,...,br), an (s X L) matrix, and

Fyer (C1) — F, (Cy)
Fgel - Fn = ) (422)

Foa (Cp) — Fy (C1)

an L-vector, it follows that

A

NG (Fgel - Fn) = —B'V'M/ng. () + O, (n—%) . (4.23)
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Hence, under the null hypothesis that the moment conditions (4.1) hold in the pop-

ulation,

NG (ng - Fn) 4 N(0,1), (4.24)
where ¥ = B'M'V-'MB. Thus,

A

R /
n <Fgel - Fn) \:[17: <Fgel - Fn) i X12;7 (425)

where U~ = (B;M;Vn—anBn>_ denotes a consistent estimator for a g-inverse of
v, Bn, V., and M, are consistent estimators for B, V and M , respectively, and
v=rk(BMV-MB).

Let L > s and assume that B is full row rank s. Then, v = s—k and a generalized
inverse for ¥ is B' (BB')"'V (BB')"' B. Therefore, the Pearson-type test statistic

proposed in this section is given by

A

/AN o -1 . R -1 . ~
Py=n (Fgel - Fn) B (BnB;) v, (BnB;) B, (Fgel - Fn) A2, (4.26)
If L = s, the matrix B will be invertible and this test statistic can be simplified to

A A A

/ NN
Py=n (ng _ Fn) B, B! (ng _ Fn) L2 (4.27)

Asymptotic equivalence to alternative tests

In this sub-section we show that the Pearson-type test statistic 3 above developed
is asymptotically equivalent to all the other GEL tests of overidentifying moment

conditions discussed before. First, note that (4.23) can be rewritten both as

A

NG (Fgel _ Fn) — _B'V 'ng, (0) +0, <n—%) (4.28)

and
V2h (0)

NG (Fgel _ Fn) _ —VTO)B%&% +0, (n*%) . (4.29)
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Expression (4.28) follows from a Taylor series expansion of /ng, (9 around /ng, (6o),

VNGn (@) =v/ng, (00) + G\/n (9 — 90) + 0, (n’%>, where /n (9 — 90) is replaced
by —XG'V~1/ng, (6y), see (2.66), yielding

N——

Vg (9) = M/ng, (60) + O, (n—%) . (4.30)

To obtain (4.29), note that \/ﬁgﬁ(g)@ = —VM/ng, (6y) + O, (n_%), see also
(2.66).
Using (4.25) and (4.28), we can demonstrate the asymptotic equivalence of the Ps

and J tests. Indeed, substituting the latter expression into the former, we obtain:
Py =ni VB, (B;M;V;%Bn)‘ BV G, + 0, (n*%) . (4.31)

Following Lemma, 2.2.5d) of Rao and Mitra (1971), B, <B%M7’Z\A/n*1]\}[nén)i B is a
generalized inverse for M/ V' M,, since 7k (B;M;anlj\}[néo =rk (M;anlj\}[o

Thus, as V,, is just another generalized inverse for MéVn’an, it follows that

)

= J,+0, (n—%) . (4.32)

M

o= nglVilg +0, (m

Similarly, substituting (4.29) into (4.25) and applying the same Lemma of Rao
and Mitra (1971), the asymptotic equivalence of the Pearson-type test to the Wald

M

test presented in (2.79) (and, hence, to the Pearson statistics P, and P,) is proven:
2 2
n o
Po= n {V (0)} Vi + 0, <n—

Vi (0) )
= W,+0, (n*%) . (4.33)

The asymptotic equivalence of the Pearson-type test to the distance metric test
of (2.78) can be shown by demonstrating the equivalence of the latter to the Wald
statistic; see Smith (1997, pp. 510-511) for a proof.
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4.4 Tests of parametric restrictions

The same principles used to construct Pearson-type tests of overidentifying moment
conditions can be applied in other contexts. In this section we show how to develop

GEL Pearson-type statistics appropriate for testing parametric restrictions.

4.4.1 Constrained GEL estimation

Consider the null hypothesis
HO . r ((90) = 0, (434)

where 7 (+) is a known continuously differentiable g-vector of parametric restrictions,
where ¢ < k. The (¢ x k) derivative matrix R () = Vyr () is assumed full row
rank ¢q. Let (9, qAb> be the unconstrained estimators resulting from the optimization
of the GEL criterion Q¢ (6,¢) = h[¢'g (y;,0)] and (é,&ﬁ, @ND) the estimators of the
constrained model incorporating Hy, which are obtained by optimizing the modified
GEL function Q% (6, ¢,¢) = h[¢'g (y:,0) +¢'r (0)]; see Smith (1997) and section
2.5.6. Define

P =1} (9,&, @) = : (4.35)
where 7; (@, ng,zZ) = Vh [(%/g (yi,é) + @/T (9)}, 1=1,...,n.

In this setting, assuming that the moment conditions (4.1) hold in the population,
the empirical distribution function F, (y) and the unconstrained GEL distribution
F,. (y) are still consistent estimators of the distribution F in (4.1), whether or not

Hy (4.34) holds. However, under Hy (4.34), a more efficient estimator is given by
(W) =Y 1y < y)p; (9, %, fb) . (4.36)
i=1

The statistics suggested below for testing the parametric restrictions (4.34) are based

on the contrasts Fgel (y) — F*, (y) or p; — pt, i = 1,...,n. Before presenting them, we

gel
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derive in the remaining of this sub-section the asymptotic relationship that occurs
between the GEL implied probabilities p; and p, i = 1,...,n.
Consider a Taylor expansion of \/np; about (é, 0, 0):

. a;ﬂé,o,o/ _ opr(6,0,0 \
Vi, = Vi (0,0,0)+%¢,)ﬁ¢+%ﬂp+o (n ). (37)
As
Op; (0,0,4) _ Vi (0,0,9) g (yi, 0) 3 75 (0, ¢,0) — 7} (0,0,9) 30, V; (0,6, ) g (y:,0)
0df >, i (0, w)]
and

Op; (6.6.4) _ Vi (6.6,9) iy (6.6, ) — mt (6.6.4) S, Vi (6,6,9)
o S (0,0, w)]

it follows that, since 7} (0, ¢,0) = 7; (0, ¢),

(9) Y

op; (8,0,0) Vi (8.0) g (4:,0) iy (6,0) = mi (4 o) iy Vi (8,0) g (1:.0)

o s (00)]
= —7 (4.38)
and
W (0.00) gL 0 -0 O,

0y’ [, VR (0)

_ nV?h(0) Vi (0) - nVh(0) VZh (O)T )
[nVh (0))?

— 0. (4.39)
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Noting that p} @, 0, O) = 1 and substituting (4.38) and (4.39) into (4.37) yields:

vi (7= 2) = T (10) VAo, (). (1.40)

Finally, subtracting (4.40) from (4.9), with 6 and 6 replaced by 6, produces:

V2L (0) 1
Vi (0) n?

Vi (pi — py) = (yi, 00) v/ (Zﬁ — {b) +0, (n*g) . (4.41)

4.4.2 Classical Pearson tests

In the present framework, classical-type Pearson statistics for testing (4.34), similar
to those derived in section 4.3.1, can be constructed. Corresponding to P; (4.12), we

propose the statistic
n

P =" (np; — nfi;)?, (4.42)

i=1
which has a limiting chi-square distribution with ¢ degrees of freedom. Indeed, from

(4.41) it follows that

n(p;—p)° = {vvz:((g))r% (Qb — Eb)/g(yi,eo)g(yi,go)/ (gb _ ;b) ‘1o, (n_)
2 n(pi—p)° = {VVQ;?(%])) ( - é)/% ;g (yi,60) g (yi, 6o)’ ((% _ gb) +0, (n_g)
e I GORA G A

where M), denotes the minimum chi-square statistic of parametric restrictions given
in (2.97).
Corresponding to P, we have the following two alternatives:

, (np; — npy)°
Péna = Z T (443)
i=1 v
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and )
np; — np;)
Pl = (—~’ 4.44
p-3 e (4.44)
Both statistics also have a limiting chi-square distribution with ¢ degrees of freedom.

The proof is similar to that presented above for P}" since, from (4.9), np; = 1 +

0, (n_@_%)) and, from (4.40), np; =1+ O, (n*%).

4.4.3 Alternative Pearson-type tests

By analogy with the overidentifying moment conditions case, a test statistic based

on the normalized contrast \/n [ ver (y) — E

el (y)] constitutes an alternative way of

assessing the hypothesis Hy (4.34). Expandin about (0,0,0) vields:
g yp p g gel » Yy y

n @p;"(é,(),()),
VnE, (y) = \/ﬁFn(?J)ﬂLZl(yzSy)a—d

DR ff % o v,

V21 (0) 1
Vh(0) n

+0, (nf%) : (4.45)

Vg +

= VnF,(y)+ Zl(yi Sy)g<yi,9)/ﬁc~b+

=1

see (4.38) and (4.39). Hence, using the same notation as in sub-section 4.3.2, we have:

VQ

Vi B ) = B )] = b/mm (n?). (4.46)
Subtracting (4.46) from (4.17) produces:
Vi (B ) = 0] = T (5-3) +0, (n7h). ()

Finally, as /ng = — Vh(o (V L—VAIGEG' V) V/ng, (60) + O, <n*%), see (2.66),
and \/ng = V2h(0 (V 1 — VIGEPG' V1Y) /ng, (00) + O, (n_%), see (2.88), it
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follows that

o Vh(0) oy -1 -3
>:VT(®V GS (1= P)G'V gy (60) + 0, (n73)  (4.43)

and, therefore,
Vi [Fyt (9) = By ()| =¥V GR (1= PY GV nga (60) + Oy (n73) . (4.49)

Now, consider a partition of the sample space of y into the sets C;, j = 1,..., L,

identical to that of the previous section. Define F o (C5) = >0y L(y: € Cy) py and

Fper (C1) — Fy (CY)
Fp— Fry = . (4.50)
Foa (Cp) — Fry (C1)

Then, noting that ¥ (I — P)X7'G (I — P)' ¥ = ¥ (I — P), it follows from (4.49) that

~ ~

Vi (Fya = Fp) % N (0,0), (4.51)

where U = B'VIGY (I — P) G’V B. Thus, a Pearson-type statistic for testing the

parametric restrictions (4.34) is given by
T 7 [ " (£ [ d
Py = (Fya = Fpa) W (B = Fpa) 532, (4.52)

where U~ denotes a consistent estimator for a g-inverse of ¥. Assuming that B is
full row rank s, a generalized inverse for ¥ is B' (BB')"'V (BB')"' B. In the case

that B is a square matrix (L = s), a generalized inverse for ¥ is simply B~V B~1.

110



4.5 Finite sample properties of tests of overidenti-
fying moment conditions: Monte Carlo inves-
tigation

In this section we investigate the finite sample properties of some of the Pearson-type
tests proposed in the previous sections. In particular, we examine the size behaviour
of the Py, P, and Pj test statistics of overidentifying moment conditions suggested
in section 4.3 and assess how they perform comparatively to the J, Wald (W) and
distance metric (D M) tests, see sections 2.3.4 and 2.5.6, and also to several bootstrap

versions of the first test.

4.5.1 Experimental designs

We follow closely the simulation study realized by Imbens, Spady and Johnson (1998)
to compare the finite sample properties of the aforementioned tests, using their first
two experimental designs as a basis for our investigation. The first model simulated is
a simplified version of an asset-pricing model, characterized by the moment indicators
for unit ¢
exp |[—0.72 — 0 Xz—i-ZZ +3ZZ —1

where X and Z were generated independently from a N (0,0.16) distribution and the
true value of # is 3. The second Monte Carlo experiment is based on the moment

vector

Zi—0
9(Z;,0) = : (4.54)
72— 0* —20

where Z has a chi-square distribution with one degree of freedom and 6y = 1. We

considered samples of 100, 200, 500 and 1000 observations, each one being replicated
10000 times.
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For the tests requiring evaluation at GEL estimators (W, DM, Py, P, and P;),
we considered both EI and EL estimation. In both cases, consistent estimators for
the matrices needed to compute the W and P; tests were obtained in three different

ways:

e gel(n): uses sample means to estimate consistently V' and G, for example:
=250 (48) g (5.8 455
n—E;g@i,)g(w,), (4.55)

e gel(s): uses the GEL implied probabilities p;, ¢ = 1, ..., n, for both V' and G, for

example: :
Vo= > ig (11.0) 9 (s 9)/; (4.56)
=1

e gel(r): the matrix G is estimated as in gel (s) and V, is estimated robustly as:

n ) n / 1
Vo= 2 b (yi’é> g (yi’é> [”Zﬁ?g (yi,é) g (yi,é) ] .
=1 i=1
-im (4.0) 9 (w0) . (@57
=1

The same three procedures were followed to compute the J test but, in addition, we
evaluate it also at two-step (.Ja5), repeatedly-iterated (.J,;) and continuous-updating
(Jeu) GMM estimators, in which cases we only use a consistent estimator for the
matrix V' based on, naturally, sample means.

In their Monte Carlo simulation study, Imbens, Spady and Johnson (1998) ana-
lyzed the finite sample behaviour of the following tests: Jos, Jri, Jeu, Jei(s), Weis),
Weiry, DM,; and DM,,. In this section we replicate their results for the two experi-
mental designs described above and examine whether their conclusions remain valid
when other estimators are employed to evaluate the J and Wald tests. In particular,
we study the effects of using EL instead of EI estimation [Jes), Wes) and W

tests|, confirm the conjecture that robust estimation of the matrix V' does not work
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well in the case of the J test [Jei(r) and Jey(r) tests], for reasons explained below, and
investigate the consequences of using sample means to estimate that same matrix
when GEL estimation is utilized [Jei(n), Jei(n), Wein) and Weygn) tests].

The implementation of the P5 test requires the previous partition of the sample
space into L sets. In order to examine the sensitivity of this test to the number of
classes into which the observations are divided, we considered two different values for
L: 8 and 16. The definition of each set in each Monte Carlo sample was such that

each class contains, approximately, (100/L) % of the observations.

4.5.2 Main results

Tables 4.1 and 4.2, for the asset-pricing model, and 4.3 and 4.4, for the chi-squared
moments case, report the estimated size of each test at seven different levels of signif-
icance for the asset-pricing models. For each significance level, sample size and model
considered, the actual size closest to the nominal size is underlined. For the tests
analyzed there, these results conform with those presented by Imbens, Spady and
Johnson (1998).> As can be immediately seen from tables 4.1 and 4.3, all tests are
significantly oversized in almost all cases, particularly for the chi-squared moments
model. Clearly, the W) test registered the best behaviour in most experiments,
the only exceptions being the largest nominal sizes, where the J., test, in the first
model, and the W, test, in both models, achieved superior performances. However,
even for n = 1000 the W, test is still slightly oversized for most significance levels.
The J test evaluated at two-step GMM estimators, the most widely applied test to
assess overidentifying moment condition models, has a disastrous behaviour in these
experiments, in the asset-pricing model being the worst of all versions of the J test
based on sample mean estimators for the matrix V' [Jas, Jriy Jeus Jei(ny and Jel(n)]- The

DM tests also produced very modest results, with that based on the EL objective

2There is the following correspondence between the notation used here and that utilized by

Imbens, Spady and Johnson (1998): Jos = TﬁM, Ji = Tg’%M, Jouw = Tg‘%M, Jei(s) = T4M, Weits) =

TEM . Wiy = T5M, DMy = TGE .,y and DMy =TEE, .

et(s)’ et(r)? %
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function performing substantially better than that using the EI criterion, particularly
for the chi-squared moments model and for the smallest nominal sizes.

As noted by Imbens, Spady and Johnson (1998), robust estimation of the matrix
V' decisively influences the performance of the tests. However, the extraordinary
benefits reported by them for the We;(, statistic do not extend to all the other tests.
They do not extend even to the W, test for the smallest nominal sizes considered.
The behaviour of the J test also deteriorates considerably. Although a theoretical
analysis of the effects of using the gel (r) method is not available, it is evident why
the W and the J tests are affected in opposite ways: the matrix V' appears in the
expression of those tests in an inverse way.

When the J test is evaluated at GEL estimators, it is relatively invariant to the
use of EI or EL estimation. In both cases the robust version of the J test is clearly
the worst and the actual sizes of the tests based on sample means, Je;,) and Je(n),
are very similar. The only important divergence appears when the Je;) and Jgs)
tests are considered. In both models the utilization of the GEL implied probabilities
in the estimation of the covariance matrix V' produced substantially better results
in the EL case. For this reason, while the .J ) statistic is the best of the J tests
based on EL estimators, in the EI case the best performances are shared by the Jg;,)
(pricing-asset model) and Jg;(s) (chi-squared model) tests.

With regard to the Wald statistics, there are significant differences between eval-
uation at EI or EL estimators. W) is undoubtedly the best performer, being
surpassed by W) only for 10% (sometimes) and 20% (always) levels of significance.
For the smallest nominal sizes, the actual sizes of the W, statistic are much higher
than those of the ei (r) version in both models. The same happens with the el (n)
version relative to the ei (n) one. In contradistinction, EL evaluation leads to better
performances when based on the gel (s) method. Clearly, as also found for the J
test, direct application of the GEL probabilities to estimate the covariance matrix V'
works much better in the EL case. Therefore, while robust estimation of V' is always

recommended when calculating Wald tests based on EI estimators, in the EL case the
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Table4.1: Monte Carlo estimated sizesfor J, W and DM tests of overidentifying moment conditions: asset-pricing model (10 000 replications)

n Size J w DM

2s(n) ri(n) cu(n) ei(n) ei(s) ei(r) el(n) el(s) el(r)|ei(n) ei(s) ei(r) el(n) el(s) el(r)| ei el
100 | 20.0%| 26.7 26.1 24.0 255 29.8 29.2 259 28.3 285 299 253 269 28.1 283 24.8| 27.2 279
10.0%| 17.5 16.7 12.8 159 196 20.1 16.4 17.6 19.3| 198 16.1 14.8 187 17.6 15.3| 169 17.0
5.0%| 122 113 7.2 10.6 13.7 146 11.2 112 14.0[ 13.8 11.0 8.3 13.6 11.2 10.4| 11.0 111
25% 95 85 45 78 99 115 83 74 108/ 103 83 46 104 74 76| 77 7.3
1.0% 69 59 25 52 69 87 57 43 81 73 58 22 76 43 53| 50 41
05%| 57 44 16 37 54 72 42 29 70/ 56 44 13 61 29 40/ 36 28
01%| 39 23 07 17 33 47 21 11 46| 35 24 04 40 11 27 18 1.2
200 | 20.0%| 25.3 25.1 242 24.8 28.0 27.7 25.0 26.8 27.2| 28.1 24.7 25.7 26.0 26.8 23.6| 26.0 26.8
10.0%| 15.0 14.7 13.3 14.4 17.3 18.0 14.7 15.7 17.3| 17.4 145 13.6 16.5 15.7 13.9| 15.2 155
50%f 99 95 76 92 112 125 95 94 119/ 113 95 71 112 94 89 93 91
25% 68 66 45 62 78 91 65 58 85 78 65 38 81 58 66| 58 56
1.0%| 46 43 24 40 50 62 43 29 6.0 50 43 15 59 29 46| 36 3.0
05%f 35 31 14 29 35 49 31 19 48/ 36 31 09 48 19 36| 25 19
01% 19 15 04 13 20 30 15 07 30 21 16 02 32 07 21 11 0.7
500 | 20.0%| 23.1 23.0 22.7 22.8 25.6 254 229 24.7 25.1| 25.7 229 23.7 242 247 221| 240 244
10.0%| 13.1 13.0 124 12.8 150 15.6 13.0 13.5 15.0/ 15.0 13.0 12.0 14.4 135 12.4| 13.4 13.6
50%f 80 79 73 76 93 101 78 79 97/ 94 78 63 93 79 79 78 77
25% 50 49 41 47 62 69 49 46 66| 62 49 34 66 46 54 47 46
1.0%| 30 30 23 29 37 44 30 24 42 37 30 13 45 24 37| 25 22
05% 21 21 15 19 24 33 21 14 32/ 25 20 06 37 14 28/ 16 13
01% 08 09 04 07 211 17 08 05 18/ 12 08 01 24 05 18 05 04
1000 | 20.0%| 21.8 21.8 216 21.7 235 235 219 226 23.2| 235 21.8 220 223 226 20.8| 225 227
10.0%| 119 11.8 116 11.8 132 139 119 121 13.6| 133 119 112 125 121 11.2| 123 123
50%f 67 68 65 67 80 85 68 71 83 81 68 59 80 71 66| 69 638
25%| 44 43 41 43 48 55 44 39 54| 50 44 30 52 39 43} 41 39
1.0%| 24 24 23 24 25 35 24 18 34 26 24 12 34 18 25 22 19
05% 17 17 16 17 17 24 17 10 25/ 1v 17 06 24 10 194 13 10

0.1% 0.7 0.7 06 06 07 12 06 03 13 07 07 01 15 03 10 05 0.3
Note: The actual size closest to the nominal size of all tests contained in Tables 4.1 and 4.2 is underlined.




Table 4.2: Monte Carlo estimated sizesfor Pear son-type tests of overidentifying moment conditions: asset-pricing model (10 000 replications)

n Size P1 P2 P3 (L=8) P3 (L=16)
ei el ei el |ei(n) ei(s) ei(r) el(n) el(s) el(r) [ei(n) ei(s) ei(r) el(n) el(s) el(r)
100 | 20.0%| 26.7 28.6| 30.4 28.3| 25.2 224 20.2 258 229 21.8| 251 225 20.2 254 229 21.2
10.0%| 17.0 19.3| 20.4 17.6| 143 154 9.3 14.0 147 83| 142 156 9.7 13.7 150 8.1
5.0%| 11.8 14.0| 14.6 11.2| 84 109 38 7.3 102 21| 86 111 46 7.3 104 23
25%| 89 108/ 109 74 50 79 11 38 69 03 53 82 17 37 75 04
1.0%| 64 81 79 43} 24 47 01 14 40 00/ 27 52 03 16 45 00
05% 50 704 62 29 14 27 00 06 23 00 16 35 01 08 28 0.0
01%| 28 46| 43 11 03 06 00 01 05 00 06 11 00 01 09 0.
200 | 20.0%| 25.5 27.2| 285 26.8 254 21.6 215 255 233 226 250 215 21.2 253 228 223
10.0%| 15.4 17.3| 18.1 15.7| 143 142 10.2 141 133 10.5| 141 143 10.1 13.7 133 9.9
5.0%| 10.0 11.9| 120 94| 81 100 48 76 88 43| 81 101 48 73 88 39

25%| 70 85 87 58 47 71 24 43 60 13| 47 72 25 40 59 11

1.0%| 4.7 60 57 29 25 47 08 19 36 03 25 48 09 16 37 03

0.5%| 35 48 43 19/ 15 33 03 10 26 01} 15 34 04 08 24 01

0.1%f 19 30/ 27 07/ 05 13 00 03 10 00 O5 15 00 03 10 0.0

500 | 20.0%| 23.6 25.1] 26.0 24.7| 242 21.0 21.6 243 228 222| 240 21.0 21.3 240 225 220
10.0%| 13.5 15.0| 15.6 13.5| 13,5 124 104 133 126 110/ 134 123 104 128 123 10.6

50%f 83 97/ 99 79 77 81 51 77 72 56| 75 81 49 74 70 52

25%| 53 66/ 68 46| 45 56 25 46 45 26| 44 55 25 41 44 24

1.0%| 33 42 42 24 24 36 10 23 27 10f 23 36 10 20 26 0.7

05%| 23 32/ 31 14 14 26 04 14 18 04 13 26 05 11 17 03

01% 10 18 17 05 04 12 01 05 07 01 04 11 01 04 06 00

1000 | 20.0%| 22.1 23.2| 23.8 22.6| 229 208 21.1 226 22.0 21.2| 229 20.7 209 225 217 211
10.0%| 12.3 13.6| 13.6 12.1f 12.6 115 10.2 123 119 105 124 115 10.1 121 11.7 10.2

50% 72 83 84 71 71 71 52 70 65 56/ 70 70 52 69 63 53

25%| 46 54 54 39| 42 48 27 40 40 26| 40 47 27 38 40 25

1.0%| 26 34 30 18 22 30 11 20 23 10/ 21 30 10 18 22 09

0.5% 18 25 21 104 12 21 06 12 15 05 12 20 05 10 14 04

0.1%f O07 13 10 03 04 10 01 04 OS5 01 04 10 01 03 05 01

Note: The actual size closest to the nominal size of all tests contained in Tables Eand 4.2 isunderlined.



Table 4.3: Monte Carlo estimated sizesfor J, W and DM tests of overidentifying moment conditions: chi-squared moments model (10 000
replications)

n Size J W DM
2s(n) ri(n) cu(n) ei(n) ei(s) ei(r) el(n) el(s) el(r) |ei(n) ei(s) ei(r) el(n) el(s) elr)| ei el
100 | 20.0%| 34.6 34.6 34.6 34.7 380 38.0 350 365 37.2| 37.7 341 351 338 365 31.2| 35.7 36.3
10.0%| 27.0 269 26.9 27.2 28.0 30.1 275 259 295 27.6 270 234 254 259 228| 26,5 26.0
5.0%| 22.3 223 223 226 215 252 231 193 249| 21.3 223 16.9 20.3 19.3 17.8| 20.7 19.3
25%| 18.8 18.8 18.8 19.1 17.6 21.7 19.8 148 21.8| 176 19.3 12.7 16.7 148 14.4| 171 155
1.0%| 155 155 155 158 134 18.2 16.7 11.1 18.9| 135 16.2 9.6 134 11.1 11.3| 139 115
0.5%| 134 134 134 138 115 164 147 9.0 17.3| 11.7 142 8.0 118 9.0 95| 120 99
01%| 98 98 98 102 81 130 113 59 143 86 108 54 89 59 73 89 6.8
200 | 20.0%| 29.0 29.0 29.0 29.0 309 319 29.1 296 31.2| 30.5 285 28.2 26.0 29.6 23.1| 29.6 30.0
10.0%| 209 209 209 210 21.1 238 211 195 229 20.8 208 168 17.4 195 14.7| 20.2 19.8
5.0%| 164 164 164 165 146 190 16.8 129 184 144 165 105 128 129 10.8| 151 13.6
25%| 13.8 138 138 138 11.0 158 141 89 157 109 139 69 98 89 85| 11.7 97
1.0% 104 104 104 106 76 127 110 58 131 76 106 44 78 58 6.3 87 6.5
05%| 91 90 90 92 61 108 95 41 113 61 92 31 65 41 53] 72 51
01% 63 63 63 65 35 84 69 21 90 35 66 17 47 21 38 47 29
500 | 20.0%| 25.4 254 254 254 26.3 279 255 253 27.3| 26.1 252 240 21.7 253 19.1| 264 26.1
10.0%| 16.4 16.4 164 165 156 188 16.5 144 18.3| 154 16.3 125 13.1 144 11.3| 157 14.8
5.0%| 115 115 115 115 9.8 133 116 87 130 9.7 114 69 90 87 78| 102 91
25%( 86 86 86 86 6.6 103 86 53 102 65 85 37 67 53 58 71 59
1.0%f 63 63 63 64 37 75 64 27 77/ 36 63 17 49 27 40/ 50 33
05%| 52 52 52 52 26 62 53 18 65 26 52 10 40 18 32| 36 23
01% 30 30 30 31 12 42 32 07 47 12 31 03 27 07 20 20 10
1000 | 20.0%| 23.2 23.2 23.2 232 244 251 233 23.6 246| 242 231 225 208 23.6 18.8| 23.8 23.5
10.0%| 14.0 140 140 141 139 16.0 141 129 15.7( 137 140 116 120 129 10.7| 139 13.2
50%/ 91 91 91 91 84 108 91 74 103 83 91 61 80 74 704 85 79
25%| 65 65 65 65 50 79 65 41 77 48 64 29 58 41 52| 56 45
1.0% 43 43 43 43 27 53 43 20 55 27 42 11 42 20 36| 32 22
05%| 32 32 32 32 17 41 32 12 43 17 32 06 34 12 28 21 13
01%| 17 1v 17 17 07 22 17 04 25 07 17 01 21 04 16| 09 04
Note: The actual size closest to the nominal size of all tests contained in Tables 4.3 and 4.4 is underlined.




Table 4.4: Monte Carlo estimated sizesfor Pear son-type tests of overidentifying moment conditions: chi-squared moments model (10 000

replications)
n Size P1 P2 P3 (L=8) P3 (L=16)
ei el ei el [ei(n) ei(s) ei(r) elin) el(s) el(r) |ei(n) ei(s) eir) el(n) el(s) el(r

100 | 20.0%| 35.6 37.2| 38.4 36.5| 328 33.7 279 303 327 221 343 349 29.8 343 33.7 29.9
10.0%| 27.9 29.5| 285 259 216 28.0 171 16.7 256 244 29.7 206 218 284 115
5.0%| 235 249 221 19.3] 153 234 105 9.8 206 18.0 256 146 135 241 46
25%| 20.0 21.8| 18.2 148 110 196 6.3 6.1 16.6 143 222 99 86 207 23
1.0%| 17.1 189 142 111, 76 153 3.1 3.7 124 104 186 53 51 173 1.1
0.5%| 152 17.3| 122 9.0f 57 126 18 27 96 84 163 30 36 150 06
0.1%| 120 143] 90 59 31 61 01 14 21 48 121 05 20 109 0.0
200 | 20.0%| 29.8 31.3| 31.3 29.6| 28.0 27.7 235 26.1 27.6 29.0 286 249 287 278 259
10.0%| 21.5 229| 21.8 195 176 21.8 132 141 191 19.2 232 158 175 211 114
5.0%| 17.2 18.4| 155 129| 111 178 76 7.6 1438 13.4 194 104 109 174 4.6
2.5%| 144 15.7| 11.7 89| 74 150 44 45 115 16/ 96 166 71 6.7 148 15
1.0%| 11.5 131 84 58 46 117 21 24 84 06| 66 139 41 33 118 04
0.5%| 9.8 113, 68 41 31 97 13 15 67 03] 52 118 26 21 99 01

)
.°°9°|.O .O|.O|.C"'!\’:'>|.“D
o Nx|olulo = wliv

0.1%| 74 90 41 21 15 67 03 05 39 01 28 89 10 08 72 0.0

500 | 20.0%| 26.0 27.3] 26.8 25.3| 254 23.8 226 234 25.0 20.5 26.0 240 232 248 249 222
10.0%| 17.2 18.3| 16.1 144 141 170 111 126 147 9.2| 152 17.7 118 138 158 10.6

5.0%| 12.0 13.0f 105 8.7 85 127 58 70 94 42 95 138 69 81 110 5.0

25%| 9.1 102 72 534 53 99 32 40 68 21 6.2 110 44 48 84 20

1.0% 66 7.7 45 27 28 73 13 18 47 09 38 84 23 22 61 07

05%| 56 65 31 18 18 60 07 13 35 05 25 69 14 13 51 05

01% 36 47 16 07, 06 39 02 05 18 01 12 49 04 05 31 0.1

1000 | 20.0%| 23.6 24.6| 24.7 23.6/ 235 218 216 223 231 20.3| 23.7 220 219 231 231 21.2
10.0%| 14.6 15.7| 144 129 131 139 107 121 130 9.8/ 136 144 112 126 135 103

50%| 95 103} 90 74 77 98 54 67 77 49 82 105 60 73 85 52

25%| 6.8 7.7 55 41 43 75 24 39 50 27/ 49 81 32 41 60 25

1.0%| 46 55 31 20/ 21 54 10 21 27 13 25 60 15 20 38 10

05%| 35 43 21 12| 12 41 06 14 19 07/ 15 47 09 13 28 05

01% 19 25 10 04 04 22 01 05 08 02 05 27 04 04 13 01

Note: The actual size closest to the nominal size of al tests contained in Tables 4.3 and 4.4 is underlined.



choice of an estimator for that matrix must depend on the level of significance that
the practitioner chooses to use: in both models, the utilization of the el (r) method
is preferable for the largest nominal sizes, whereas the el (s) method performs better
for smaller significance levels.

The estimated sizes for the Pearson-type statistics are reported in tables 4.2 and
4.4. The P, and P; tests perform very modestly, being substantially oversized in all
cases. Their size behaviour does not differ much from that described for the other
tests.> However, the P; statistic shows a very promising performance. Whichever the
number of classes considered, the general effects of evaluating this test at different
estimators are similar in all cases. Analogously to the W test, the least number of
rejections of the null hypothesis occurs when robust estimation of V' is employed.
This is not surprising since the matrix V' appears in their expressions in a similar
form. However, while this was always beneficial for the W test, the P; test becomes
sometimes quite undersized, particularly for the smallest nominal sizes and sample
sizes considered.

Figure 4.1 displays QQ-plots comparing the six versions of the P; test for the
L = 8 case. Vertical coordinates are Monte Carlo estimates of quantiles of the finite
sample distribution of those statistics and horizontal coordinates are quantiles of a
chi-square variable with one degree of freedom. The vertical solid line marks the
asymptotic critical value for a nominal size of 0.05. Clearly, the best performances
are obtained by P{"™ and P{'"). Note how for n > 500 (first model) or n. = 1000
(second model) the estimated quantiles of these tests are very close to the asymptotic
ones while the other versions of Pj are still significantly oversized. Notice also how,
for small sample sizes, all three EL versions of the P; test tend to reject the null

hypothesis significantly less than the corresponding EI variants.

3The sizes estimated for the EL version of the P test are numerically equal to those calculated for
the Jg(5) and W) statistics which is due to the particular form assumed by the EL probabilities:

A 71 ~ ~
pi=n"1 [1 + ¢Ig <y1,9>} ,i=1,....,n, see (2.54). For example, as d)lg <yi,9> =np; —1land V is

estimated by Y. pig <yi7 é) g <yi7 9>I, we have W, = nd V= >lic1
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Figure 4.1: QQ-plots of P3 tests of overidentifying moment conditions (L=8; 10 000 replications)
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The performance of the P; test does not seem to depend significantly on L on
small samples. This is particularly evident for the asset-pricing model case. For the
chi-squared moments model the differences between the L = 8 and L = 16 cases are
more important being, however, attenuated as the sample size increases. Figure 4.2
illustrates this situation, displaying QQ-plots for the P;i(r) test for the two distinct
values of L simulated.

Figure 4.3 compares the robust forms of the W and Pj tests (for L = 8), both
evaluated at EI and EL estimators. Recall that the W, statistic registered the best
behaviour of all tests analyzed in the previous sub-section. From Figure 4.3 we see
that the Pj test clearly performs better for both models, its actual quantiles being in
most cases closer to the asymptotic ones. Furthermore, while the P test is relatively
indifferent to the use of EI or EL estimation, at least for larger sample sizes, in the

case of the Wald test EL estimation does not work well, even for n. = 1000.

4.5.3 Alternative bootstrap .J,; tests

The Monte Carlo experiments in the previous sub-section confirmed that, at least for
these sorts of models, first-order asymptotic theory does not provide a good approxi-
mation to the distribution of the J,, statistic, the most applied test of overidentifying
moment conditions. The alternative tests considered performed substantially better,
especially the P3 test proposed in this chapter. In this section we investigate other
alternatives, namely the ability of bootstrap techniques to improve the size properties
of the Jo, test. Due to the computation time involved, only the 10%, 5% and 1%
bootstrap critical values were calculated and the n = 100 case analyzed.

The general procedures implemented to obtain the bootstrap critical values can

be summarized as follows:

1. Calculate the two-step GMM estimator using the original data and utilize it to

evaluate the J test;
2. Generate B = 100 bootstrap samples of size n = 100 by sampling the original
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Figure 4.2: QQ-plots of ei(r) P3 tests of overidentifying moment conditions (10 000 replications)
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Figure 4.3: QQ-plots of robust forms of Wald and P3 (L=8) tests of overidentifying moment conditions (10 000 replications)
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data randomly with replacement according to the chosen resampling distribu-

tion function F™;

3. For each bootstrap sample compute the corresponding two-step GMM estimator

and use it to obtain bootstrap versions of the J test;

4. Calculate the 1 — a quantiles of the empirical distribution of the bootstrap

versions of the tests in order to obtain bootstrap critical values;

5. Determine whether the null hypotheses of the tests are rejected using the boot-

strap critical values.

By repeating these steps 10000 times we estimated the levels of the tests using
bootstrap critical values. We analyzed five different techniques to obtain the boot-
strap critical values, namely the NP, RNP, FSEL, EL. and REL bootstrap methods,
discussed in chapter 3.

The results of the experiments are shown in Table 4.5. Whichever bootstrap
method is used, the empirical levels of this test are less than when asymptotic critical
values were used. However, their behaviour is still not satisfactory. On the one
hand, the Jy4 test never rejects the null hypotheses when it is based on NP bootstrap
critical values. As discussed in chapter 3, this failure results from the fact that,
instead of imposing the null hypotheses (4.1), the empirical distribution corresponds
to an alternative hypothesis where the moment conditions (4.1) do not hold. As
Brown, Newey and May (1997, p.8) pointed out, “the overidentification test should
tend to reject when the estimated sample moment conditions are far from zero, but
it is exactly those cases where bootstrapping from the empirical distribution should
yield large critical values, because they correspond to cases where the moments are
far from their null hypothesis value of zero”. Ziliak (1997) presents further evidence
of the severe size distortions that result from the application of the NP bootstrap to
obtain critical values for the J5, test.

On the other hand, the other four bootstrap methods provide a nice improve-

ment over the size behaviour of the Jo, test, especially for the asset-pricing model.
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Table 4.5: Monte Carlo estimated sizes for the Jys test of overidentifying moment
conditions using bootstrap critical values (10 000 replications; 100 observations; 100
bootstrap samples)

Size | Asymp. Bootstrap method

NP | RNP [ FSEL [ EL [ REL
sset-pricing model

10% 1751 00| 135 | 14.5|14.8| 11.3
5% 12.2 | 0.0 84| 10.5|10.5| 6.6
1% 6.9 | 0.0 4.2 6.2 | 57| 27
Chi-squared moments model
10% 27.0 0.0 | 23.2 24.3 | 24.6 | 24.5
5% 2231 0.0 19.0| 194 |19.9]| 195
1% 1551 00| 136 | 124 | 13.8| 128

Indeed, in this case, the utilization of bootstrap critical values allows the differences
between the empirical and the nominal levels of this test to be reduced by 46-54%
(RNP bootstrap), 12-40% (FSEL bootstrap), 20-36% (EL bootstrap) and 71-83%
(REL bootstrap). For the chi-squared moments model the reductions are much more
modest: 13-22% (RNP bootstrap), 16-21% (FSEL bootstrap), 12-14% (EL bootstrap)
and 16-19% (REL bootstrap). However, even for the first model, the size distortions
of the Jys test are not completely eliminated. Moreover, as we saw in Tables 4.1-
4.4, there are some tests (namely some versions of the P tests, in both cases, and
the robust forms of the Wald test, for the second model) with better size properties,
particularly for the 1% level. As these tests are based on asymptotic critical val-
ues, being, therefore, less time consuming, there seems to be little point in using the

bootstrap Jos test simulated in this sub-section.

4.6 Summary

In this chapter we developed new Pearson-type statistics suitable for testing overi-
dentifying moment conditions and parametric restrictions. One of those statistics,
the Pj test, performed very well in two Monte Carlo simulation studies concerning
tests of overidentifying moment conditions. Its size behaviour, when based on robust

estimation of the matrix V', seems to be superior to that of both alternative tests
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based on asymptotic critical values and the Jo, test based on bootstrap critical val-
ues. Moreover, the P5 statistic does not seem to be sensitive to the number of classes

into which the sample space is divided.
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Chapter 5

Non-nested hypothesis tests

5.1 Introduction

This chapter is concerned with tests for non-nested hypothesis of models which are
specified solely in terms of moment conditions. To the best of our knowledge, there
are relatively few papers which address testing non-nested hypothesis in a moment
condition framework. This issue has been investigated by Singleton (1985), Ghysels
and Hall (1990b) and Smith (1992), who detail various tests based on efficient two-
step GMM estimation. Although all of these tests may also be evaluated at GEL
estimators with no alteration to their first order asymptotic properties, they do not
utilize all the information provided by the GEL method. Cox-type non-nested tests
[Cox (1961, 1962)] requiring evaluation at GEL estimators were, therefore, suggested
in Smith (1997).

In this chapter we propose a number of new tests that integrate and complement
the works of those authors. On the one hand, we derive generalized statistics that
include most of the existing tests as particular cases. On the other hand, most of
the tests that we suggest require evaluation at GEL estimators and are based on the
encompassing principle of Mizon and Richard (1986). Thus, they will constitute an
important alternative method for the assessment of moment condition models against

specific non-nested alternatives.
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According to the encompassing principle, the validity of a given model against a
rival formulation may be tested by examining whether or not the former model can
predict the relevant behaviour of the latter. We consider two different approaches to
this question. First, we derive parametric encompassing tests, which are based on the
usual approach of contrasting two consistent estimators, under the null hypothesis,
of the pseudo true values of the parameters of the alternative model. Our second ap-
proach permits the construction of simpler tests, requiring only a single estimation of
the alternative model. These tests, which we term generalized moment encompassing
tests, involve the comparison of two consistent estimators, under the null hypothesis,
of a statistic which may represent a particular feature of interest of the competing
alternative model. Accordingly, a wide class of encompassing tests is defined. A par-
ticular variant in this class, based on the contrast between two consistent estimators
of the moment indicators of the alternative model, provides a simple method of im-
plementing Ghysels and Hall’s (1990b) idea for constructing a moment-based test in
the GMM framework. Moreover, unlike Ghysels and Hall’'s (1990b) test, ours does
not require the introduction of auxiliary (and, possibly, erroneous) assumptions in
addition to those given by the moment conditions. Some of Smith’s (1997) Cox-type
tests may also be viewed as members of this class.

This chapter is organized as follows. Section 5.2 introduces some notation, briefly
outlines the competing hypothesis and gives general forms for Cox-type and encompassing-
type non-nested test statistics. The Cox-type tests of Singleton (1985) and Smith
(1992, 1997) are reviewed in section 5.3. Section 5.4 discusses Smith’s (1992) GMM
parametric encompassing statistic together with a new statistic based on GEL esti-
mators. The new class of moment encompassing statistics is presented in section 5.5.
The finite sample properties of some of these tests are investigated in a Monte Carlo

simulation study in section 5.6. Section 5.7 concludes.
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5.2 Non-nested hypothesis and tests

This and the following sections of this chapter are concerned with non-nested tests for
the comparison of rival models based on differing moment conditions. The moment
indicators associated with the competing moment condition models may be different
in functional form and according to included conditioning variables. The main em-
phasis in these sections is non-nested tests based on the GEL approach described in

the preceding chapters; however, tests based on GMM are also considered.

5.2.1 Non-nested hypothesis

A notation similar to that utilized in the previous chapters is employed to characterize
the alternative models, an additional subscript (g or ¢) being used in some cases
to distinguish between them. Thus, denote the model embodied in the moment

conditions

Eqlg(y,00)] =0 (5.1)

by H,, where ¢ (-) is an s,-vector of moment indicators known up to the k;-element
parameter vector 6, s, > k,, and FE,[-] denotes expectation taken with respect to
the unknown distribution of y under H,. Consider a rival model H, based on the
sq-vector of moment indicators ¢ (y, 3), where f3 is a k,-vector of unknown parameters

and s, > k,. The corresponding moment conditions defining H, are

Eqla(y:, Bo)] =0, (5.2)

where 3, € B, with the parameter space B compact, and E, [-] denotes expectation
taken with respect to the unknown distribution of y under H,. Throughout this
chapter H, is always considered as the null hypothesis that we aim to test against
H,. All tests discussed below are based on this assumption but, as usual with this
kind of tests, just interchanging the roles of the hypothesis, we can find appropriate

tests for assessing H, against H,.
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Let Vg, (0) = %2?219 (yi,0) g (y;,0)". Following section 2.3.3, the two-step H,-
efficient GMM estimator  for 6 minimizes g, ()’ [an (91)] - gn (0), where Vi, (@1)
is a positive semi-definite H-consistent estimator for V;, = E, [g (v, 60) g (y,6o)'] and
91 denotes a preliminary H,-consistent estimator for #y. Similarly, define g, () = %
S q(yi, B) and Vi, (B) = 237" g (vi, 8) ¢ (y;, )" Then, the two-step H,-efficient
GMM estimator J3 for 3, minimizes ¢, (3)’ [an (Bl)} - ¢n (), where V, (Bl) is, un-
der H,, a positive semi-definite consistent estimator for V, = E, [q (y, Bo) q (v, ﬁo)'],
the limiting covariance matrix of the random vector ¢, (), and Bl denotes a prelim-
inary H,-consistent estimator for 3.

With regard to GEL estimation, the parameters of the H, model are obtained by
optimizing

Ry (0:0) = > _h1dg (4.0)], (5:3)

while the GEL criterion appropriate for H, is

Rq (67 :u) = Z h [:u,q (y> ﬁ)] s (54)

where ¢ and p are s,- and s,-vectors of auxiliary parameters, respectively; see section
2.5.3. In order to create convenient and simple forms for the non-nested tests discussed
in later sections, the carrier function A (-) is chosen identically in both cases.

Of particular importance for the construction of non-nested tests of H, against
H, is the asymptotic behaviour of H -estimators and associated statistics under H,.
For GEL, let i, and 3, denote the saddle point of E, {h [1/q (y, )]}, which is also the
probability limit of the estimated normalized GEL criterion %Rq (B, ﬂ) under H,.!
Hence, i 2 i, and B 2, 3., where % denotes convergence in probability, and z, and
B, are the pseudo-true values of the GEL estimators i and B under H,. To avoid the

possibility of observational equivalence between the H,- and H,-GEL criteria under

"That is, £, {Vh[uLa (v, 8.)]a(y, 8.)} = 0 and B, {Vh[ulq(y, 5.)] 245Lp. b = 0; of. (2.64)
and (2.65).
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H, and, hence, to allow non-degenerate comparisons to be made, it is assumed that
E,{h[i.q (y,8,)]} < h(0), which ensures that z, # 0. For GMM, 3 % 3, under H,,
with the GMM pseudo-true value 3, solving Qg (8,) [Vag (B.:)] " Eqla (v, 8,)] = 0,
where Q, (9) = By 2922, Vi (8) = B, [a(y.5.) a (v, 8.)) and B 5 B.., the

A1
pseudo-true value of 8 under H,.

5.2.2 Generalized non-nested tests

As will be seen in the next sub-sections and as observed by Smith (1997), non-nested
test statistics for moment condition models are expressible, at least in an asymptotic
sense, as linear combinations of the estimated sample H ;-moment vector g, (@) as this
vector represents the sole information feasible and available for inference purposes.
Therefore, following Singleton (1985), let ¢, denote a (sq4 X s,,) random matrix that
converges, under H,, to a nonstochastic, non-zero vector c4, ¢, LN cg, and carries
information concerning the alternative H,. Assume that M{c, # 0, where Mg =
I, — G (¢ th’lGY1 G'V,'. Consider the statistic ¢, g, (9), where 6 denotes either
a two-step Hg-efficient GMM estimator or a GEL estimator. Under H,, noting from
(4.30) that /ng, (é) = Mav/ngn (00) + O, (n_%), it follows that

e gn (9) N (0, ¢, MgV, M) (5.5)

Cox-type non-nested statistics are univariate in construction, s,, = 1, and, there-

fore, a general form of Cox-type statistic to test H, against H, is

1

G = (&, MVt )  Vithgn (0) - N (0,1) (5.6)

N A ~ ~ PN ~ N1 o A
under H,, where V,, = V,, (0) and Mg = I, — G, (G;I@;l@n) Gr VL with G,
and an H ,-consistent estimators for G and Vj,. A test of H, may then be based on a
two-sided test constructed from (5.6) using critical values from the standard normal

distribution.
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Encompassing-type non-nested statistics possess a multivariate basis and, thus, a

general form for an encompassing-type statistic to test H, against H, is
AP N 4 .2
GE, = ng, (8) enV, ¢ gn <0) = Xrk(w,): (5.7)

under H,, where \iJ; denotes a H,-consistent estimator for a generalized inverse of
U, = c,MgV,;Mgc,. A test of Hy may then be based on (5.7) using critical values

from the chi-square distribution with rk (¥,) degrees of freedom.

5.3 Non-nested Cox-type tests

5.3.1 GMM non-nested Cox-type tests

For the case of equal numbers of moment conditions under both H, and H,, that is,
g = Sq, Singleton (1985) proposed a GC, statistic with ¢, = V' E, [q (1, 8,)]. He
showed that this choice produces an asymptotically locally most powerful test statis-
tic against the sequence of local alternatives H, : E, [g (y,60)] = v ((,) E, g (v, 5,)],
where ¢, = (o +n"Y2n, n # 0, v(¢,) = 0, v(¢,) # 0 and Vv ({,) # 0; cf.
Singleton [1985, eq. (29), pp. 403-404]. He suggested estimating ¢, by ¢, =
Vg;l [qn <B) — Gn <9)} which has the merit of possessing a non-zero probability limit
under both H, and H,. Another possible choice, analyzed in our Monte Carlo study
in section 5.6, is ¢, = \79;1qn (B), since ¢, (é) converges in probability to zero under
H,. The main drawback of Singleton’s (1985) test is the requirement of the existence
of the same number of moment conditions in both the competing models. Conversely,
its computation is very simple and quick.

To deal with situations in which s, # s,, Smith (1992) contrasts H,-consistent
estimators of the probability limit of the H,-GMM criterion function evaluated at the
corresponding pseudo-true value; viz. Ey [q (yi, 8.)] [Vag (Bus)] ™ B, ¢ (y, 8.)]. Smith’s
(1992) test statistic reduces to choosing ¢, = A [Vy, (B Eylq (i, 8,)] in (5.6),

where A, is some finite and non-null (s, X s,) matrix with 7k (4,) = min (s,, s,),
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and ¢ = A;ann In (B), where Agn is a Hg-consistent estimator for A, and ‘7(1” =
Vin (ﬁ) Another possible choice, analyzed in our Monte Carlo study in section 5.6,
ise,=A V-1 [qn (B) — Agngn (9)] , which is similar in spirit to Singleton’s (1985)

gn - qn

suggestion.

5.3.2 GEL non-nested Cox-type tests

Smith (1997) proposed some Cox-type tests based on the H,-GEL criterion (5.4) using
a contrast between consistent estimators for its probability limit E, {h [u.q (v, 5,)]}
under H,. The normalized optimized criterion %Rq (B , /1) provides one such estima-
tor. A second estimator is obtained from optimization of the reweighted H,-GEL

criterion

=D _pthlwa (v B, (5.8)

Vh[¢'g(s.0)]
=1 VA[S g(v )]
sures used throughout this thesis; cf. section 2.5.4. Denote the corresponding sad-

where p! = ¢ = 1,...,n, denotes the Hj -implied probability mea-

dle point estimators for g and u by B and [i, respectively. Because, under H,,
pl = % [1 + 0, (n_%)}, i =1,..,n, see (4.9), B and i are also consistent estima-
tors for 3, and p,, respectively, rendering R} (ﬁ, /1) as a consistent estimator for

E,{h[p.q(y,B,)]}. Under H,, the normalized contrast of optimized GEL criteria
1 P w (> ~
Vi [gRq (B.0r) - (@u)} N (0,6, MGV, Mo, (5.9)

if Ma€, # 0, where §, = E,{g (4, 00) h [11,q (i, B,)] }; see Smith (1997). Hence, under
H,, the GEL non-nested Cox-type statistic for H, against H, is given by

Co = (606, 18, ) 1@[%&(&;1)—}%;(3,;1)}iN<0,1>, (5.10)

2A possible choice is Ay = Eg [q(y ,6’ )9 (y,00)] V!, which solves the minimization problem
ming, 4 Eg{[q (y,8) — Ag (v,0)] [Vy (B)] " g (v, B) — Ag (y,@)]} so that the alternative H, is “clos-

g

est” to Hy. Thus, Agn = %Z [ (y ﬁ) gly, ) } V=L cf. section 5.6.1 and Smith (1992).
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where én is a Hy-consistent estimator for ;. For example, én = %Z?Zl g (yl-,@
h [/l’q (yﬁﬂ =30 Py (%9) h [/ft’q (yﬁ)] =13 g (yz-,é) h [ﬁ’q (yBﬂ
or &, =Y, ply (yi> é) h [ﬁ/q (%Bﬂ

The limit distribution (5.10) of C), is obtained via a first-order Taylor expansion of
the contrast about (y,0) and <ﬁ u) This expansion suggests two further statistics
which are asymptotically equivalent tests to C,, under H,: a linearized Cox-type
statistic

V2h (0)

L0y =~y (EMeVin Vet €,vind, (5.11)

and a simplified Cox-type statistic
1 1 R R
—1 - ~\ _ px N
SCu = (&, M6V, Mk, ) ﬁ{an(ﬁ,u) Rq(ﬁ,u)}, (5.12)

both of which require one less optimization than C,; see Smith (1997). The form
of LC,, indicates that, asymptotically, these GEL statistics correspond to choosing
=V, '€, in GC,, of (5.6); recall from (2.66) and (4.30) that

NG -V 1fgn( ) (n—%). (5.13)

5.4 Parametric encompassing tests

5.4.1 GMM parametric encompassing tests

Smith (1992) proposes a GMM parametric encompassing (PE) test based on the
contrast of two H,-consistent estimators for the pseudo true value 3,. One is the
standard efficient two-step GMM estimator B , the other is obtained from a Taylor’s

series expansion of the first-order conditions defining 3 around B,, being given by

b= (QV0) QT Aguan (9)., (5.14)
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where Q, = Y1, aqgg,’ﬁ) is a consistent estimator for Q, = Q4 (5,). From (5.14),

the resultant GMM PE test statistic is
AN . A
Eo=n(B-8.) 0 (3-5.). (5.15)

where Q_ denotes a H,-consistent estimator for a g-inverse of {1, = ( p qngg)

Vgl AgMGVoMEAL Y 1Q, (Q) qngg) , Vig = Vg (B,). Under H,, this statistic
has a limiting chi-squared distribution with rk (Q) < min (k,, s, — k,) degrees of
freedom. See Smith (1992).

Using (5.14), the statistic F,, may also be written as

E, = ngn (9) A V10,0 QL Vo A g, (9) , (5.16)

where \if_ denotes a Hy-consistent estimator for a g-inverse of W, = Q! V' Ay MgV, M,

Al qngg From (5.16), it is clear that E), corresponds to choosing ¢, = Aj qngg in

GE, of (5.7).
5.4.2 GEL parametric encompassing tests

In this sub-section we derive a GEL PE test statistic based on the normalized contrast

between ji and i and B and f3:

Jn (5.17)

7;%>

~b
— i

To evaluate the limiting distribution of (5.17), we need to examine the first or-
der conditions defining (B, /l) and (B, ﬂ). The H,-GEL criterion R, (8, 1) and the
reweighted GEL criterion R; (3, 1) have first-order conditions

8q<yZ7B)l A~

gw ia (vi.B)] q (d; ; —0 (5.18)

5
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and

Zpgw[ a (v, B)] { Z ;] 0, (5.19)

q (%ﬁ

respectively. Expanding both sets of moment conditions about (f3,, ) yields

0 L 9a(yi,f.). )’ . )
S TR | RN B V] Kl S (n?)
0 =1 q (y’u ﬁ*) lu’ /’L*
(5.20)
and
9q(yi,8,)" a_ X
prQVh dwes |7 | P o, ().
(5.21)
where
s¢  024i(wiB) | Oa(yiB.)
9q(y:,8,) 0
op’
dq(yz .) m [ ]
q (y2> 6*) 818
Subtracting (5.21) from (5.20) produces
B - B MM* _1
vl DT = leZ(pz——)Vh[u* w7 Mo, (nd)
nw— q (i, B.)
n 6q(yi’,ﬁ*)/,u 1
K Vhbasl | 7 v (i)
i=1 q(yi, B.)
+0, (rfé) . (5.23)

Now, substituting ~ Vh(o =9 (i, 00) \/_qb + O, (n %) for \/ﬁ(ﬁ? — %) in (5.23), see
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(4.9), it follows that, under H,,

3-8\ V(0 .
vn S )K*Ing/ﬁcé +0, (n*%) : (5.24)
i— i Vh(0) ¢
where
9q(yi,B.)
_ / op” M /
Wy = Ey q Vhaq (i, 5.)] 9 (i, 00)" ¢ - (5.25)
Hence, the GEL PE test statistic is given by
A ~ / A ~
b=B) -~ - . S—p
PE,=n| | Kp¥, Ky R (5.26)
w=Hr =

where Kgn denotes a Hg-consistent estimators for K, and \ifg_ is a H,-consistent
estimator for a g-inverse of U, = W, M{V, ' MW, which is assumed non-null. The
statistic PE), has a limiting chi-square distribution under H, with degrees of freedom
equal to 7k (¥,) whose critical values provide a basis for a test of H, against H,.
Comparing (5.24) and (5.13), this test corresponds asymptotically to the choice ¢, =
V,'W in the GE, statistic (5.7).

A linearized statistic which is asymptotically equivalent to PE, and avoids the
necessity of providing the estimator K gn and the GEL estimators 3 and [t is obtained

by noting from (5.23) that

n

K,/n [?_B \/ﬁi (ﬁ? - l) Vh [/f/q (yﬁ)] 7 o, (n*%)
=1

=

NS ol g (v 8)] | 70 |40, (nF)  (521)
=1

[see also the first-order conditions (5.18)], which may be regarded as a re-weighted

Hg-score and has a limiting normal distribution with variance matrix ¥,. Other
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encompassing statistics may be based on sub-vectors of (5.27), for example,

Vi Z(pz——) Vi |ilq (v 8)] a (v 8) = v Zngh[ o (11.5)] 0 (1. 5) 40, (1)

(5.28)

5.5 Moment encompassing tests

5.5.1 GMM moment encompassing tests

Ghysels and Hall (1990b) suggested a moment encompassing (ME) test for H, against
H, using a contrast of two H,-consistent estimators for E, [q (y;, 3,)]. Their test sta-
tistic is based on the difference between g, (B) and % S v Eglq (i, 8,)]. The imple-
mentation of this statistic requires the specification of the data generation process of
the maintained model in order to simulate = > | E; [q (y;, 3,)], which runs counter
the spirit of GMM estimation and inference. Consequently, Ghysels and Hall’s (1990b)
statistic may reject H, not due to the falsity of H, but rather because the additional
assumptions made might not hold in the population. Moreover, their statistic is

computationally very intensive [see Ghysels and Hall (1990b), pp. 288-289).

5.5.2 GEL generalized moment encompassing tests

In this sub-section we outline a general class of moment-based test statistics. Again,
the basis for GEL ME tests arises from noting that n (p! — 1) = O, (n’%) under H,
i =1,...,n. Consider an s,,-vector of moment indicators m, (y;, 8, ¢, 3, ) which, typ-
ically, but not necessarily, is obtained from the H,-moment condition model. Simple

H ,-consistent estimators for E, [m, (v;, 60,0, 5,, 1,)] are provided by

Mgn = % > m, (y 0,9,5, /l) (5.29)
i=1
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and

m;n = Zﬁ?mq (y%éa gba Ba ,&) ) (530)

the latter of which circumvents the necessity in Ghysels and Hall’s (1990b) statistic of
specifying the distribution of the random variable Y under H,; see sub-section 5.5.3

below. The consequent contrast underlying GEL ME statistics is

. . - AN,
i=1
If the null hypothesis H, is correct, the limiting distribution of the contrast (5.31)
should be centred at zero.

The limiting distribution of (5.31) is straightforward to derive. From (4.9), it
follows that

) . VZh(0) 1 < A , =4 1
\/ﬁ (mqn - mqn) == Vh (0) g ;mq <yi>0>¢a6>,u) g (yiaeo) \/ﬁﬁb + Op (TL 2) :
(5.32)
A further expansion of m, <yl-, 0,0, 5, /1) about (0,0, 5, it,) yields, under H,,
. . VZh(0) 1 < ; 1
\/ﬁ (m(m - mqn) = = vh (0) ﬁ ;mq (‘907 Ovﬁ*nu*) 9 (yia ‘90)/ \/ﬁgb + OP (n 2)
_ V?R(0) . 1
= g LV + O, (n?), (5.33)

where T'y = E; [my (i, 00,0, B,, 1t,) 9 (yi,60)'] is a (s X s4) matrix and it is assumed
that rk (I'y) = s, and MgI', # 0. Therefore, under Hy, recalling from (2.68) that

\ 2
N {0, [VVQ};L((OO))] Mél/;]lMG}, it follows that

Vi (fgn — 15,) <5 N (0,,), (5.34)

where ¥, = FgM’GVg_lMgf’g, and a general form for GEL ME statistics is then given
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by
GME, = n (1ivg, —1i,) U, (g, — 1) (5.35)

qan qn

where \ilg’ denotes an H,-consistent estimator for a g-inverse of W,; for example, I',
may be consistently estimated by f‘gn = % S my (yi, é’, qAb, B , [L) g (yi, é’)/ or fgn =
S pimg (yi, 9, (}5,3,/}) g (yi, 9)/ Under H,, the generalized ME statistic GM E,,
has a limiting chi-squared distribution with rk (U,) degrees of freedom. A test of
H, may then be based on GME,, of (5.35) using critical values from the chi-square
distribution with rk (¥,) degrees of freedom.

From (5.33), a first order Hj-asymptotically equivalent form is given by the lin-
earized statistic:

LGME, =

2

[VV : (((;)))} ST IT, 0. (5.36)
The form of this statistic shows that, asymptotically, these GEL statistics correspond
to the choice ¢, = V,7'I"} in the GE,, statistic (5.7); see also (5.13).

The GME, and LGME, statistics (5.35) and (5.36) may be used to generate
more familiar statistics. For example, choosing m, (v;, 8, ¢, 3, 1) = g (v;, ) and, thus,
Sm = Sg, Tesults in Mg, = g, (é) and m;, = 0. Hence, GME, of (5.35) reduces
to Hansen’s (1982) J statistic for overidentifying moment restrictions as I'j = V,
Lyn = Vg and Vb is a g-inverse for Ty MLV, MeTY, = MgV,M{,. In this sense,
therefore, the generalized ME statistic may be regarded as a generalization of Hansen’s

(1982) J statistic. An interesting form for LGM E,, arises when s, = s, and, thus,

I'y is non-singular. In this case,

_v2h(0)-2““/ & v =12 ™\ P oa
LGME, = |G| o1, (FnMGann MGnPn) [d
VRO (e
= "% ] ¢ (MG" gn MG") ¢
VR0 e s

which is a GEL Wald-type test for overidentifying moment conditions; see section
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2.5.6.

5.5.3 GEL moment encompassing tests

In the non-nested test framework, the choice of m, (v;, 0, ¢, 5, ;1) may be determined
to maximize power against H, in a particular direction or against a particular feature
of the H, competing specification. For example, the statistics LC,, and SC,, of (5.11)
and (5.12) are obtained by choosing m, (vi, 0, ¢,0,1) = hli'q(yi, 5)] and, hence,
sm=1and I'y =&

The above difficulties experienced by Ghysels and Hall (1990b) occasioned by the
estimator = >°" | B, [q (y;, 8,)] may simply be avoided in the GEL framework using
the GME, and LGME,, statistics (5.35) and (5.36). Analogously to Ghysels and
Hall’s (1990b) ME statistic, choosing m, (y;,0, ¢, 8, 1) = ¢ (yi, ) yields for 1, and

Ty, respectively
. 1 .
n = — i) 5.38
q (6) L (y B) (5.38)
and

() sz (yu ) (5.39)

and the resultant GEL ME statistic

ME, =na (5) = a ()] 9, [an (5) =2 (3)]. (5.40)

where I'y = E, [q (y;, 8,) g (vi,00)'] and may be estimated by [y, = 4 ) DR <yl, )
g (yl-, 9)/ Under H,, M E,, has a limiting chi-square distribution with 7k (¥,) degrees
of freedom. Note that this statistic does not involve an estimator for p, unlike PE,
of (5.26). Moreover, estimation of x, may be avoided altogether as any H,, consistent,
not necessarily GEL, estimator for 5, may be substituted in (5.40). A linearized ME

statistic LM E,, may also be constructed according to (5.36).
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5.6 Simulation evidence

This section explores the finite sample size and power properties of some of the non-
nested test statistics discussed above in a linear instrumental variable (IV) model
context using Monte Carlo methods.

The tests considered in these simulation experiments fall into two groups: those as-
sociated with GMM and GEL. In the first group, we analyze Singleton’s (1985) test us-
ing two different estimators for E, [q (v;, 8,)] given by ¢, (B) and [qn (B) — n (9)} ,
labelled S and AS respectively; Smith’s (1992) Cox-type test based on g, <B) and
[qn (B) — Agngn (@)], labelled C' and AC' respectively; and Smith’s (1992) encom-
passing test (5.16) tests, labelled E; see sections 5.3.1 and 5.4.1. For comparison
purposes, we also consider Hansen’s (1982) J test of overidentifying moment con-
ditions; see section 2.3.4. The group of GEL-based tests includes Smith’s (1997)
linearized Cox (LC') and simplified Cox (SC) tests of (5.11) and (5.12), respectively;
the linearized form of the PE statistic (PE) of (5.26) obtained using (5.27); and the
ME statistic (M E) of (5.40) and its linearized counterpart (LM E); see sections 5.3.2,
5.4.2 and 5.5.3.

The Hg-consistent matrix estimators necessary for the computation of the GEL-
based tests (namely, G, and qu for all tests, é’n, for the GEL Cox-type tests, Wgn for
the PE test and Iy, for both M E and LM E tests) were obtained via the gel(s) and
gel(r) methods described in section 4.5.1. All tests in the GMM group were calculated
using the methods gel(n) and gel(s). EL estimation is considered. The EL implied
probabilities are given by pf = 1 [1 + qAb,g <y,~, 9)} B and p! = 1 [1 + ii'q (y,,@)} 71,
1 =1,....,n. Hence, SC = LC and PE = ME = LMEFE, results which are specific to
EL estimation and arise because of the particular form of the EL implied probabilities;
see footnote 3 in page 119.

Two questions are of special interest: (a) is the Hj-asymptotic distribution a
reliable guide to the finite sample distribution of the tests? (b) how do the tests

perform comparatively in terms of power?
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5.6.1 Linear instrumental variable models

Consider two competing regression models

H, : y=X,00+u,, (5.41)
H, : y=X,58)+u, (5.42)

where y = (Y1, ..., yn)', Xy = (Tg1, - Tgn) and X, = (241, ..., T4n) are an n-vector and
(n x ky) and (n x k,) matrices of observations on a scalar dependent variable and k-
and k,-dimensioned regressor variables, respectively. In all experiments, H, (5.41) is
always the null hypothesis with H, (5.42) the alternative hypothesis. It is assumed
that, under H, (resp. H,), the regressor matrix X, (resp. X,) and the error term
ug (resp. u,) are asymptotically correlated rendering least squares estimation of 6,
(resp. [3,) inconsistent. Consequently, we assume the availability of n observations
on s, (tesp. 5,) IVs Z, = (241, -, 2gn)’ [168P. Zg = (241, s 2qn)’], Where s, > k, (resp.
sq > kg), such that, under H,, E, (%Z;ug) = 0 and, under H,, £, (%Z(;uq) = 0. The
n observations comprising y, Xy, Xy, Z, and Z, are assumed to be independently
distributed.

In the notation of this chapter, we have, for H,, g (vi,0) = 24 (y — 0), 1=
Loy ga (0) = 1250y, 1y = May, Ve = L, — 2%, (X,2,V;1 2%, ) Cxiz,0
and G, = —%Z;Xg. For Hy, q(yi,B) = 24 (y -z ), 1=1,...,n, qp (9) = %Z’f&q,
iy = Ny, Mg = I, - Z,X, (X, 2,V Z,X, ) VX2,V and O, = 17X, Uti-

lizing efficient GMM estimation, explicit expressions can be found for the estimators:

N N -1 N

H, 9=<X;nggnzgxg) X! ZVn 2Ly, (5.43)
N ~ -1 ~

Hy + 8= (X;quanQXq> XoZgVanZgy- (5.44)

The implementation of the GMM non-nested tests C', AC, and E requires a
choice of the matrix A, and its associated estimator flgn; see section 5.3.1. Smith

(1992) suggested two forms for A, in the IV context: fl}m = 1Z(;Zg\7g;1 and Agn =

T n
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ZyZg (Z;Zg)_l. We only consider the latter choice. Indeed, the simulation design,
described in more detail below, assumes homoskedastic errors under both H, and
H,. Hence, if \A/g;l were set as n% (Z;Zg)fl, where &zn is the IV estimator for the
variance of the elements of the error vector u,, flgn = &znfl;n, so identical results for
the C' and F statistics would be obtained for both choices of Agn. However, the AC'
statistic is not invariant to scale transformations when based on A;n. Therefore, only
the matrix flgn is used in our experiments.

Numerous factors affect the performance of non-nested tests when applied to IV
models. We concentrate on two main aspects: (a) when the H, instruments are
invalid under H, (Design I); (b) when the forms of the H, and H, regressions differ

(Design II). In both cases, we considered two sample sizes, n = 200 and n = 400.

Each Monte Carlo experiment comprised 2000 replications.

5.6.2 Monte Carlo experiment I

In both null and alternative IV regression models, to aid the interpretability of the
simulation results, the number of regressors comprising X, and X, was fixed to be
unity, k, = k; = 1. To make the use of IVs necessary, the regressors of the null and

the alternative models were generated according to the design
Xy =€+ T+ Ay (5.45)

Xq =M + @Duq, (546)

where random n-vectors € and p and error vectors u, and u, are independent N (0, 1,,)
vectors. The parameters A\, 7 and 1 are the covariances between, respectively, X, and

ug, Xy and X, and X, and u,. These parameters allow the corresponding correlations

Poug = N (1+ 2+ )\2)_1/2 , (5.47)

oo =7 [(L4+0%) (1472 +22)] 72, (5.48)
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and

Do, = & (14 0%) 7, (5.49)

to be controlled. The dependent variable y was generated under the null hypotheses
H, (5.41) and under the alternative hypotheses H, (5.42) with 6y = 5, = 1.

The H, matrix of IVs Z,, s, = 4, was generated via
Zgj =pret+¢5, 5 =12, (5.50)

Zyi = o€ + 0uy + 4, j = 3,4, (5.51)

where ¢; ~ IN (0,1,,), j =1, ..., 4, are independent of €, p, u, and u,. The parameter
¢; in the first set of IVs (5.50) allow a degree of control over the correlation p,,

between Z,;, j = 1,2, and the regressor X,:
Pz = 21 [(L49]) (147240077 =12 (5.52)
For the second set of IVs (5.51),
Pazy, = a [(L+ @3 +0%) (L4 72+ 23], =34, (5.53)

with ¢, set to equate p,, ,j=1,2,and p,, , j=3,4.

The IVs Z,, s, = 4, of the alternative model H, were generated to ensure their
correlation with both sets of regressors X, and X, and no correlation with the error
terms u, and u,:

Zy =y +w;, j=1,..4, (5.54)

where w; ~ IN (0,1,), j = 1,...,4, are independent of ¢;, j = 1,...,4, €, u, u, and
ug. The parameter v, which represents the covariance between the IVs Z, and the

H, regressor X, enables control of their correlation p,. wvia:

~1/2

ey =7 [(L+77) (1+97)] (5.55)
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Although all IVs Z;, j = 1,...,4, from (5.50) and (5.51) are valid instruments
under H,, only the IVs Z,;, j = 1,2, are also valid under the alternative hypotheses
H,. As the structures of the two competing models H, and H, are rather similar,
the IVs Z,;, j = 3,4, from (5.51), should be the main source of misspecification of
the H, model (5.41) when the alternative hypothesis H, model (5.42) is correct. We
anticipate, therefore, that the ability of the various tests to reject the false H, model
will decisively depend on the degree of misspecification of these IVs Z;, j = 3,4,

measured by their correlation with the error term wu,:
~1/2
Pogug = 0 (15 4+0%) 7, (5.56)

Table 5.1 reports empirical sizes for each of the various non-nested statistics de-
tailed above applied to test the IV models H, (5.41) against H, (5.42). The nominal
size for all tests is 0.05 based on critical values taken from their H, asymptotic distri-
butions. To relate the behaviour of the tests to the quality of the instruments utilized,
two distinct values of p,, (0.3 and 0.6) and p,, (0.25 and 0.5) were considered. To
check the effect of different degrees of proximity between the regressors of the two
competing models, we simulated experiments for two distinct values of p,,: 0.2 and
0.4. We fixed ¢y =1, y =1 and ¢ = 0 in these experiments.

From Table 5.1, for tests in the GMM group, size behaviour for both sample sizes
does not appear to be markedly affected by the correlation between the regressor X,
and IVs Z, (pmg), except for £/ and J at n = 200. These two statistics seem also
sensitive to the feedback from u, to X, (p,,,). The C and AC tests had the best
performances, with empirical sizes close to the nominal ones in all cases. Overall, the
adjustment to the Cox statistic suggested in section 5.3.1 does not appear to affect
size behaviour particularly. In contradistinction, the adjusted statistic AS is quite
oversized in all cases, even when n = 400, while the S test seems a little undersized
when the proximity between the competing models is higher (p,, = 0.4). The AS

statistic is also sensitive to the correlation between regressors across models and, in
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Table 5.1: Monte Carlo estimated sizes (%) for a nominal size of 5% for non-nested hypothesis tests: design I (2000 replications)

N | Pxug Prxzg  Pxx S AS C AC E J SC/LC PE/ME
gmm el(s) |gmm el(s) [gmm el(s) [gmm el(s) |gmm el(s) [|gmm el(s) | el(s) el(r) | el(s) el(r)
2001 0.3 0.25 0.2 51 52| 95 93| 47 50 45 47, 58 6.1 51 53 6.0 51 71 53
04| 38 37/ 82 7.8 45 51 44 49 56 6.0 51 52| 60 54 71 55
050 02| 49 52 94 93| 48 55 45 52| 53 58 52 52| 60 51 76 57
04| 39 43 77 78 46 53 45 50 56 58 54 52 60 53 78 58
06 025 0.2 52 501 112 114| 53 53] 53 53] 65 6.2 61 53 56 50 72 55
04| 42 4.0 101 104 53 54| 50 53] 64 58 64 52 59 500 75 56
0.50 0.2 51 49| 114 114| 50 56| 50 54| 6.0 58 56 53 57 52 76 59
04| 40 42 104 106/ 58 55 52 51 56 60 58 56| 62 53 76 59
4001 0.3 025 02| 45 47| 107 10.7| 44 48| 44 49| 44 46| 47 47| 53 46| 53 42
04| 45 45 94 95| 43 49| 44 500 42 45 46 46| 45 43| 56 4.1
050 02| 47 45| 104 105 41 44| 45 44| 43 44| 47 48| 52 48 53 43
04| 44 46| 96 95 41 42 41 42 42 451 48 48| 46 42 55 43
06 025 02| 46 45 88 8.7 49 47| 47 500 45 45 50 48/ 55 500 53 4.1
04| 47 44| 77 75 47 45 45 44 46 46| 50 46| 51 46| 55 4.1
050 02| 45 45 87 88| 45 45 43 46| 45 44| 48 48 55 52 53 43
04| 46 45 75 76| 42 42 41 41 45 44] 49 48| 53 49 54 42

Note: the values underlined are significantly different from the nominal size at the 5% level (95% confidence interval limits: 4.045 and 5.955).



addition, to the correlation between u, and X,. Clearly, high feedbacks (p,,, = 0.7)
from u, to X, have a very negative effect on its behaviour.

For the GEL group of tests, evaluated at EL estimators, there seems to be no
major influence of the control variables, apart from the sample size n, on the behaviour
of the tests. The most decisive influence appears via the estimation method for the
variance matrix V,. When the tests are based on el(s), they are significantly oversized
when n = 200, particularly the encompassing tests. If robust estimation of Vj is
employed, el(r), their size performance improves quite dramatically, now being fairly
well approximated by the nominal size 0.05 which conforms to the results reported
by Imbens, Spady and Johnson (1998) and in chapter 4. Preliminary experiments,
not reported here, indicate that evaluation of GMM tests using el(r) produces worse
results than those obtained using el(s), presumably because of the inverse manner in
which V, appears in these tests relative to GEL tests; see chapter 4. The beneficial
effect of robust estimation of V, for the PE/ME/LME tests is emphasized in Figure
5.1, which displays a QQ-plot for the case corresponding to the first row of Table 5.1.
As it can be clearly seen, the robust forms of these tests are uniformly better.

Table 5.2 reports the empirical (size-corrected) powers of the above statistics which
are the percentage of times the statistics exceeded the 0.05 nominal critical values
obtained from their H, empirical distribution. Two different values for p,, (0.3 and
0.6) and p,, (0.25 and 0.50) are simulated with different degrees of proximity between
the competing models (p,, = 0.2 and 0.4). The correlations Pz, a0d p,. are both
fixed at 0.5. Table 5.2 has an additional column indicating the value of p, , (0.1
and 0.2) in each experiment. As expected, for the reasons given above, the crucial
determinant of power for all tests is the value of p, , with the other correlations
having minor effects. Although the AS statistic appears most powerful, owing to
the rather excessive sizes displayed in Table 5.1 it cannot be viewed as providing a
reliable test of H, against H,. The performances of the J and PE/ME/LME tests
appear uniformly superior to the S, C'; AC, E, and SC/LC tests. The Cox-type test

AC performs only slightly better than the unadjusted C'.
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Figure 5.1: QQ-plots for PE/ME/LME non-nested hypothesis tests
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Table 5.2: Monte Carlo estimated (size-corrected) powers (%) for a nominal size of 5% for non-nested hypothesis: design I (2000 replications)

N | Pxug Prxzg Pxx Prgug S AS C AC E J SC/LC PE/ME
gmm el(s) [gmm el(s) [gmm el(s) |gmm el(s) |gmm el(s) |gmm el(s) | el(s) el(r) | el(s) el(r)
200|1 0.3 025 0.2 0.1 | 13.8 14.0| 245 24.0| 148 14.7| 16.2 16.1] 13.9 13.8| 19.6 19.5| 142 14.1| 19.8 189
0.2 | 358 36.5 73.7 75.4| 394 36.6| 40.4 39.5| 36.0 35.9| 69.4 69.9| 353 33.4| 63.9 58.6
04 0.1 [ 127 12.6| 204 20.5| 134 13.4| 148 14.7| 126 129| 169 17.9| 13.0 12.5| 17.7 171
0.2 | 316 31.2| 66.7 66.4| 351 33.1| 36.6 36.2| 324 31.5| 614 62.8| 314 28.9| 56.5 51.5
050 02 0.1 | 13.9 13.6| 246 24.2| 143 14.9| 16.0 171 17.2 17.3| 19.6 19.5| 144 13.6| 19.8 18.9
0.2 | 355 356| 73.7 75.5| 38.7 35.9| 40.6 40.6| 36.7 36.1| 69.4 69.9| 37.3 34.9| 63.9 58.6
04 0.1 | 125 12.1] 20.8 20.7| 13.7 13.5| 14.8 16.1| 16.3 16.2| 16.9 17.9| 124 122 17.7 171
0.2 | 311 31.1] 66.3 66.2] 351 33.0) 36.4 36.1] 33.6 32.9| 614 62.8 32.2 30.2] 56.5 51.5
06 025 02 0.1 | 176 17.6| 341 350/ 16.9 17.0( 19.9 20.1| 16.3 16.4| 26.0 26.6| 16.9 16.0| 25.0 23.5
0.2 | 43.5 44.5| 89.0 88.6| 44.7 43.9| 50.9 48.2| 43.7 43.8| 84.3 84.9| 422 38.9| 78.0 71.6
04 0.1 | 142 14.7| 274 26.0| 15.0 14.0| 18.0 17.2| 144 14.7| 20.3 21.2| 143 13.5| 21.7 19.9
0.2 | 354 36.4| 76.7 77.7| 39.5 36.4| 43.3 42.8| 37.7 36.3| 70.3 71.0| 36.3 34.1| 65.6 59.3
050 0.2 0.1 | 17.8 17.8| 34.0 34.1| 16.2 17.2| 20.0 20.1| 19.3 18.3| 26.0 26.6| 16.7 15.9| 25.0 23.5
0.2 | 43.7 44.1| 88.7 88.8| 44.3 44.3| 50.9 50.3| 43.2 41.2| 84.3 84.9| 43.6 40.6| 78.0 71.6
04 0.1 | 141 141| 27.3 25.8| 144 15.0| 182 17.7| 16.7 16.2| 20.3 21.2| 14.7 13.6| 21.7 19.9
0.2 | 36.2 359 77.2 78.3| 39.0 37.1] 445 45.0| 36.8 35.1| 70.3 71.0/ 374 36.1| 65.6 59.3
400| 0.3 025 0.2 0.1 | 26.8 26.8| 44.0 43.6| 26.2 25.3| 29.1 28.0| 29.1 28.2| 42.2 425| 23.9 22.7| 421 40.9
0.2 | 56.5 55.8| 96.6 96.6| 58.7 57.5| 60.1 58.9| 56.8 55.3| 97.1 97.1| 56.5 53.9| 95.2 93.0
04 0.1 | 246 24.7| 36.4 37.5| 234 23.3| 26.3 25.8| 27.8 255| 37.7 37.8| 21.1 20.8| 37.4 36.8
0.2 | 519 52.0{ 93.1 93.5| 54.1 53.6| 56.6 55.5| 53.3 52.2| 93.1 93.3| 52.0 51.0| 91.4 89.6
0.50 0.2 0.1 | 26.8 26.1| 44.7 44.1| 269 245 29.1 28.6| 29.5 27.9| 42.2 425| 23.6 23.1| 42.1 40.9
0.2 | 56.6 56.4| 96.6 96.7| 58.5 56.9| 58.8 58.7| 55.3 53.9| 97.1 97.1| 57.3 54.6| 95.2 93.0
04 0.1 | 23.7 242| 37.8 37.4| 224 22.2| 26.3 26.5| 27.7 26.5| 37.7 37.8| 206 20.5| 37.4 36.8
0.2 | 519 525| 93.0 93.5| 529 52.4| 55.6 54.5| 52.1 51.1] 93.1 93.3| 53.4 51.7| 91.4 89.6
06 025 0.2 0.1 | 328 32.7| 604 59.8| 33.3 32.8| 35.0 34.9| 33.1 31.7| 554 55.3| 31.6 31.0| 53.7 51.8
0.2 | 62.7 62.7| 99.6 99.6| 64.5 63.6| 68.2 67.7| 62.4 60.4| 99.4 99.5| 63.7 60.9| 98.8 97.2
04 0.1 | 274 272 471 475| 26.8 26.7| 30.1 29.8| 29.0 27.9| 441 44.8| 25.0 24.7| 441 4238
0.2 | 57.2 56.8/ 97.2 97.1| 58.0 58.1| 62.7 60.7| 57.7 56.6| 97.0 97.0| 57.1 54.7| 95.6 93.4
050 0.2 0.1 | 32.6 32.5| 57.9 59.2| 32.7 32.4| 354 36.0| 32.4 33.0| 554 55.3| 31.8 30.7| 53.7 51.8
0.2 | 62.7 62.6] 99.4 99.5| 63.6 63.9| 68.5 67.9| 61.3 62.2| 99.4 99.5| 64.0 60.9| 98.8 97.2
04 0.1 | 278 27.5| 471 46.5| 26.3 25.8| 30.2 29.7| 29.2 28.7| 441 44.8| 253 25.0| 441 4238
0.2 | 574 57.2| 97.3 97.2| 585 57.2| 61.9 61.2| 56.2 56.8| 97.0 97.0| 56.9 54.5| 95.6 93.4




5.6.3 Monte Carlo experiment II

In these second set of experiments the number of regressors comprising X, was in-
creased to k, = 2 and all the instruments of the null model H, are now also valid under
the alternative hypothesis H,, that is, p, , = 0. Hence, a difference in regression
functions is now the main possible source of misspecification.
The regressors of both models were generated in a similar way to Design I. Thus,
X, and X, are given by
Xy =€+ Ty + Auy, (5.57)

Xoj = 1 +ug, j = 1,2, (5.58)
where €, 14, iy, uy and u, are independent N (0, [,,) vectors. The H, matrix of IVs
Zg4, 84 = 4, are generated as

Zgj = 1€ + Hq + 125 + Sj» j = 1727 (559)

Zgj = pa€+py +<5, ] = 3,4, (5.60)

and the H, matrix of IVs Z,, s, =4, as
Zoj = +wj, j=1,2, (5.61)

Zgj =Yy +wj, J = 3,4, (5.62)

where ¢; and wj, j = 1,...,4, are independent N (0, I,,) vectors generated indepen-
dently of €, 11, iy, uy and u,.

The parameters A, 7, 1, ¢, @, and v control correlations in a similar manner to
the previous sub-section with the above formulas still appropriate with the exception
of those concerning the correlation between the regressor and the instruments in the

H, model, which are now given by

Pazy, = (01 + 1) [(BH93) L+ 724+ A7) =12 (5.63)
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and

Doz, = (o2 + 1) [(2+93) (L+ 724232 j =34 (5.64)

Table 5.3 reports the empirical sizes obtained in this second set of experiments.
We considered the same control variables of the first experimental design with ranges:
Pau, (0.3 and 0.6), p,. (0.3 and 0.6) and p,, (0.25 and 0.5). We also fixed p,,, =
0.5 = p,,, = 0.5. As can be seen from Table 5.3, most of the conclusions achieved
in the previous sub-section are still valid. Thus, the superior performance of the
robust forms of the GEL-based tests relative to their standard versions is once again
clear. The over-rejection of the AS test is now even more apparent as well as its
sensitiveness to the correlation between X, and u,. The poor performance of the £
test when that correlation is higher becomes evident as well as the influence of p,. .
The C and el (s) J tests continue to exhibit empirical sizes close to the nominal ones.
In contradiction, the size characteristics of AC' deteriorated significantly over those
in Table 5.3. Like the E test, the size behaviour of the AC' test is worse for higher
values of p,,, and improves with larger correlations between the regressor X, and the

instruments Z,.

Table 5.4 reports (size-corrected) powers. As before, we fixed p,, = p,., = 0.5.
The power of all tests seem to be negatively related to estimation accuracy under
Hy, pyy,, and to model proximity, p,,. The most important difference relative to the
previous study is that the power of the AC' test is now more than twice that of the
unadjusted version C' in almost all cases and is the most powerful test in this second
set of experiments. Unfortunately, as seen in Table 5.3, this good power performance
came at the expense of a poor size behaviour. The AS, E, J and PE/ME/LME
tests also perform well, with rather moderate power for the S, C and SC'/LC tests.
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Table5.3: Monte Carlo estimated sizes (%) for a nominal size of 5% for non-nested hypothesistests: design |1 (2000 replications)

n Pxug Pxzg  Pxx S AS C AC E J SC/LC PE/ME
gmm el(s) [gmm el(s) |gmm el(s) [gmm el(s) [gmm el(s) |gmm el(s) | el(s) el(r) | el(s) el(r)
200| 0.3 0.3 0.25| 5.0 53| 145 143 47 51 80 8.0 48 55 48 47| 6.1 52| 74 56
0.50( 5.3 55| 14.0 13.6| 47 57| 7.7 76| 52 6.1 46 454 6.0 53 72 54
06 025 49 55| 139 138/ 49 56| 67 73 44 56| 46 47 59 504 78 6.1
0.50f 53 55| 134 132 45 54 65 71 50 55/ 46 48/ 6.1 51 82 6.2
06 03 025/ 53 53| 16.1 166 51 51| 101 72 79 8.1 58 47| 61 55/ 7.7 57
0.50( 53 54| 16.2 16.2| 48 54| 91 6.7/ 88 95/ 59 46| 63 54 76 56
06 0.25| 52 54| 158 16.4| 47 56| 70 6.6 55 6.4 48 47| 57 51 81 6.2
0.50 5.7 56| 157 162 45 56 69 6.9 67 73 50 51 63 54 83 64
400( 0.3 0.3 025 42 41| 124 122 40 44| 69 65/ 50 59 48 46| 53 49 49 39
050 43 4.0 11.1 109/ 45 46| 64 6.6 51 58/ 45 45/ 53 49 48 39
06 0.25| 42 41| 123 120 43 43| 6.1 6.1 47 58| 44 45 54 49| 53 42
050 46 4.0 114 113| 45 44| 6.1 64 46 500 43 45 53 47 54 4.2
0.6 03 0.25| 43 43| 14.2 140 44 43| 79 6.1 71 73] 52 46| 56 504 50 41
0.50( 45 3.7/ 13.2 13.1| 46 44| 76 6.1 79 84 49 45 53 47 50 4.0
0.6 0.25| 4.1 4.0| 145 143 42 43| 6.2 5. 54 6.1 45 45/ 56 52| 52 4.2
0.50| 43 4.1| 13.8 13.4| 42 42| 6.7 6.2 58 6.9 45 45 52 50 55 46

Note: the values underlined are significantly different from the nominal size at the 5% level (95% confidence interval limits: 4.045 and 5.955).




Table5.4: Monte Carlo estimated (size-corrected) powers (%) for a nominal size of 5% for non-nested hypothesistests: design I (2000 replications)

n

Pxug

Pxzq

Pxx

S

AS

C

AC

E

J

SC/LC

PE/ME

gmm el(s)

gmm el(s)

gmm el(s)

gmm el(s)

gmm el(s)

gmm el(s)

el(s) el(r)

el(s) el(r)

200

0.3

0.3

0.6

0.25
0.50
0.25
0.50

40.0 37.5
38.3 36.3
39.8 37.0
37.7 353

68.5 67.5
63.0 59.9
68.9 67.7
62.2 59.2

31.2 315
29.0 29.8
324 37.1
30.9 33.3

746 71.0
70.9 654
73.7 73.2
69.1 67.4

70.5 62.8
67.7 65.0
70.4 68.5
69.9 64.9

68.2 67.9
64.0 63.1
68.2 67.9
64.0 63.1

33.8 321
324 304
342 324
33.6 31.6

58.2 52.9
54.2 48.8
58.2 52.9
54.2 48.8

0.6

0.3

0.6

0.25
0.50
0.25
0.50

252 242
224 21.7
251 18.6
22.0 15.0

56.1 54.9
35.6 344
56.6 56.9
355 35.9

23.4 220
229 195
23.2 254
23.1 23.3

54.3 53.8
40.4 38.5
51.1 50.2
39.2 39.8

459 439
38.6 36.1
46.7 44.7
37.2 33.5

41.3 415
345 35.2
41.3 415
345 35.2

23.0 214
19.8 18.6
23.8 228
19.6 19.0

36.6 35.2
30.9 283
36.6 35.2
30.9 28.3

400

0.3

0.3

0.6

0.25
0.50
0.25
0.50

58.4 58.1
56.2 55.8
58.3 574
56.6 55.1

94.2 94.2
91.1 91.3
94.3 94.2
91.3 91.2

447 49.0
422 478
451 57.2
425 54.2

955 95.1
93.1 92.5
96.4 95.9
93.7 944

954 78.6
941 779
948 35.1
945 59.5

93.7 93.7
914 91.2
93.7 93.7
914 91.2

52.3 50.4
50.8 48.9
519 49.8
51.4 49.0

90.9 89.0
88.7 86.5
90.9 89.0
88.7 86.5

0.6

0.3

0.6

0.25
0.50
0.25
0.50

43.7 44.0
40.3 39.8
43.7 36.1
40.2 34.5

84.8 84.9
64.5 64.0
84.3 85.6
66.1 67.5

41.4 35.0
34.2 319
40.4 418
35.1 39.0

82.1 83.1
68.4 69.2
78.7 79.4
68.9 70.1

76.3 34.8
69.5 35.0
713 7.5
68.5 20.9

744 743
63.7 64.0
744 743
63.7 64.0

37.9 36.7
32.3 31.2
38.3 37.2
32.8 32.0

69.4 68.2
59.1 57.7
69.4 68.2
59.1 57.7




5.7 Conclusion

This chapter has proposed a number of new non-nested test statistics for evaluating
competing models specified solely in terms of moment conditions. A simple modifi-
cation of Smith’s (1992) GMM-based Cox-type test, which is similar in construction
to that of Singleton (1985), is given, which appears to lead, in some cases, to signif-
icantly improved power properties but with concomitant poorer size characteristics.
Furthermore, and this is the main contribution of this chapter, a parametric and a
class of moment encompassing tests are also suggested within the GEL framework.
Simulation experiments for competing linear instrumental variable models indicate
that GEL-based encompassing tests using a robust estimator for the variance matrix
of the moment indicators are particularly efficacious.

The generalized moment encompassing tests can be implemented in a number of
different ways, accordingly to the statistic chosen to represent a specific characteristic
of the rival model. Here, we compared two of the possible choices for that statistic,
one based on the moment indicators, which give rise to the moment encompassing
test, and the other based on the objective function, which produces Smith’s (1997)
SC and LC' tests. Naturally, different choices would produce tests with different
finite sample properties, so a future avenue for research is to explore the possibility
of constructing tests with better small sample properties by changing the feature of

the competing model that is contrasted.
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Chapter 6

Conclusion

6.1 Main findings

The study of GMM and alternative estimation methods for moment condition models
is, nowadays, one of the most popular research topics in theoretical econometrics. In
this thesis we focused mainly on the analysis of GMM and GEL estimators and related
statistics, achieving three major contributions to this subject.

First, through the realization of two extensive Monte Carlo simulation studies,
we examined the small sample bias of two classes of alternative estimators that are
theoretically appropriate for estimating models defined solely in terms of moment
conditions. The first class includes the first-order asymptotically equivalent GMM,
CU-GMM and GEL estimators, while the second contains six distinct bootstrap GMM
estimators, three of which were developed in this thesis. The three bootstrap tech-
niques that we propose use the GEL implied probabilities to construct the bootstrap
samples, which are, thus, generated in a more efficient way than in the three bootstrap
methods previously suggested by other authors. Our simulation results, involving co-
variance structure and instrumental variable models, popular applications of GMM,
show clearly that there are much better methods to estimate moment condition mod-
els than conventional GMM estimation. Indeed, this estimation method produced

the worst results in almost all cases. In contrast, the PHGEL bootstrap behaved in
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a very promising manner, being the method with less mean bias in most cases. The
RGEL bootstrap, also derived in this thesis, despite behaving more modestly in the
second set of experiments, produced also better results than the remaining bootstrap
methods. Considering only the non-bootstrap methods, the EL estimator had the
best performance. For this class of estimators, we found that Newey and Smith’s
(2000) results seem to be a good guide for their small sample behaviour.

Our second major investigation concerned the development of Pearson-type test
statistics suitable for testing both overidentifying moment conditions and parametric
restrictions in models estimated by GEL methods. We derived two classes of Pearson-
type statistics, both based on the comparison of two consistent estimators, under the
corresponding null hypothesis in assessment, of the unknown distribution of the data.
The first class includes tests that are very similar in form to the classical Pearson
x? statistics. The other requires the partition of the sample space in several sets,
the contrast between the empirical and the GEL implied probabilities (or two GEL
implied probabilities) estimated for each set forming the basis for the test. The two
Monte Carlo simulation studies realized, concerning tests of overidentifying moment
conditions, revealed a very promising performance of the latter Pearson-type statistic
relative to both bootstrap versions of the J test and alternative tests. The best
results were obtained when robust estimation of the variance matrix of the moment
indicators was employed.

A number of new non-nested hypothesis tests that integrate and complement the
work of other authors constitute our last major contribution to the econometrics of
moment condition models. On the one hand, we derived generalized statistics that
include most of the existing tests as particular cases. On the other hand, we devel-
oped GEL parametric and moment encompassing tests that enlarge substantially the
number of tests available to the practitioner to assess non-nested moment condition
models. One of our suggestions provides a simple method of implementing Ghysels
and Hall’s (1990) idea for constructing a moment-based test in the GMM framework,

without requiring the introduction of auxiliary assumptions in addition to those given

157



by the moment conditions. Simulation experiments for competing non-nested linear
instrumental variable models indicate that GEL-based encompassing tests using a
robust estimator for the variance matrix of the moment indicators are particularly

efficacious.

6.2 Future Research

The findings from this thesis provide some avenues for future research in the econo-
metric analysis of moment condition models. This is especially true for the investi-
gation undertaken in chapter 3, a natural extension of it being the examination of
the ability of bootstrap methods to eliminate the finite sample bias of CU-GMM and
GEL estimators. Although theoretically simple, such extension will require a great
amount of computer time and power. A more interesting topic of investigation is per-
haps the analysis of alternative methods for obtaining bias-corrected GMM and GEL
estimators. We are already investigating, in a joint paper with R. J. Smith and A.
D. Chesher, the small sample properties of such corrected estimators when based on
Newey and Smith’s (2000) asymptotic bias functions. We consider two approaches.
One uses those expressions evaluated at the corresponding estimator to obtain an
estimate of its bias; by directly subtracting this estimate from the standard estimator
we are able to calculate a bias-corrected estimator. The second approach, based on
the work of Firth (1993), utilizes Newey and Smith’s (2000) expressions to correct the
first-order conditions defining the estimator, which can be or not previously evaluated
at it; solving these modified first-order conditions other bias-corrected estimators are
obtained.

All major contributions of this thesis are based in some way on the utilization
of the GEL implied probabilities to estimate some features of the data. In fact, we
showed how to employ them to construct the three new bootstrap techniques, the
Pearson-type statistics and the parametric and moment encompassing non-nested

tests. However, more applications of these probabilities are certainly possible. For
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example, in a parametric context, it should be relatively straightforward to assess
distributional assumptions using a GEL Kolmogorov-Smirnov-type statistic based on
the comparison of the GEL and the assumed cumulative distribution functions.
Finally, the extension of all methods and statistics concerning GEL estimation
for a time-series framework is also an interesting and important avenue for future
research. Indeed, only Kitamura and Stutzer (1997) and Smith (1997, 2001) have
dealt with this issue, proposing the smoothing of the observations before the opti-
mization. However, the performance in practice of such GEL estimators remains to

be examined.
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