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Abstract

The study of the generalized method of moments (GMM) and alternative estimation

methods for models which are defined solely in terms of a set of moment conditions

constitutes a recent and increasingly popular research topic in econometrics. In this

thesis we focus on the analysis of GMM and generalized empirical likelihood (GEL)

estimators and related statistics, providing an up-to-date survey of the existing liter-

ature and performing three major contributions to this subject.

Our first major investigation concerns the examination of the small sample bias

of ten alternative estimators for moment condition models, which may be divided

into two classes. The first includes the first-order asymptotically equivalent GMM,

continuous-updating GMM, empirical likelihood and empirical information estima-

tors. The second contains six GMM bootstrap estimators, three of which are devel-

oped in this thesis. Two extensive Monte Carlo studies reveal that one of the new

bootstrap techniques produces the estimators with less bias in most cases.

Second, we derive several Pearson-type statistics suitable for testing overidenti-

fying moment conditions and parametric restrictions. In a Monte Carlo study con-

cerning the first class of tests, we find that, in small samples, the size behaviour of

one of the new statistics is superior to that of both alternative tests based on their

asymptotic distributions and bootstrap forms of the popular Hansen’s (1982) J test.

The proposal of a number of new non-nested hypothesis tests that integrate and

complement the work of other authors constitute our last major contribution. We

derive generalized statistics that include most of the existing tests as particular cases

and develop GEL parametric and moment encompassing tests that enlarge substan-

tially the number of tests available to the practitioner to assess non-nested moment

condition models. Simulation experiments indicate that GEL-based encompassing

tests using a robust estimator for the variance matrix of the moment indicators are

particularly efficacious.
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Chapter 1

Introduction

1.1 Motivation

For many years, standard econometric modelling practice was based on strong as-

sumptions concerning the underlying data generation process. Such assumptions

were known to be often highly unrealistic but nevertheless they were made since

they allowed the construction of estimators with optimal theoretical properties. The

most important example of this perspective was the maximum likelihood estimation

method, whose utilization requires the complete specification of the model to be es-

timated, including the probability distribution of (at least) the variable of interest.

However, since the seventies important changes have occurred in econometric prac-

tice. Nowadays, making strong distributional assumptions when a priori knowledge

is insufficient to support them is no longer acceptable and econometricians in general

consider that working under assumed likelihood functions is too restrictive. Thus,

during the last two decades, estimation and hypothesis testing techniques that do

not require the specification of a likelihood have been developed, a wide set of semi-

parametric and nonparametric tools being now available to the practitioner.

One of the new popular model formalizations requires only the specification of a

set of moment conditions, or estimating equations, which the model to be estimated

should satisfy. The analyst need only make mild assumptions on the existence of
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certain zero-valued moments, which are defined in terms of the observable variables

and the parameters of interest. The utilization of moment-based estimation dates

back over 100 years to Karl Pearson’s method of moments but only in the last twenty

years has it received renewed interest by econometricians, instigated by Hansen’s

(1982) seminal paper on the generalized method of moments (GMM). Indeed, a com-

plete methodology for estimation and hypothesis testing applicable to a large number

of models was provided in that paper. Therefore, it is no surprise that utilization

of GMM in empirical work has become common in the econometric literature during

the last decade or so.

Despite its popularity, GMM suffers from some important drawbacks, the principal

of them being its finite sample behaviour. In fact, it has been recognized for several

years that the first-order asymptotic distribution of the GMM estimator provides

a poor approximation to its small sample distribution. There is increasing Monte

Carlo evidence indicating that in finite samples GMM estimators may be badly bi-

ased and the associated tests may have actual sizes substantially different from the

nominal ones. For this reason, several authors recently proposed some alternative

estimation methods to deal with these moment condition models. Like GMM, these

new estimation techniques possess the same asymptotic first-order properties. Unlike

GMM, little is known about their small sample behaviour and some issues are still

unexplored.

The main objective of this thesis is the study of the principal estimation meth-

ods for cross-sectional models defined solely in terms of moment conditions. Besides

GMM, we focus on the analysis of Hansen, Heaton and Yaron’s (1996) continuous-

updating GMM (CU-GMM) and, especially, of Qin and Lawless (1994) and Imbens’s

(1997) empirical likelihood (EL) and Kitamura and Stutzer (1997) and Imbens, Spady

and Johnson’s (1998) exponential tilting or empirical information (EI) methods. The

last two methods possess many common features, being particular cases of both the

minimum discrepancy (MD) methods developed by Corcoran (1998) and the gener-

alized empirical likelihood (GEL) method proposed by Smith (1997). Hence, most of
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the theoretical discussions concerning EL and EI estimators will be realized via the

general framework provided by the GEL method.

The particular attention devoted to the study of GEL estimators throughout this

thesis is justified by the limited knowledge about their finite sample properties and

by their many attractive theoretical features relative to GMM, which more than com-

pensate for the computational burden required in their estimation. To begin with, as

likelihood-like methods, they allow the utilization of classical-type tests to evaluate

various hypotheses concerning the specification of a particular model, including overi-

dentifying moment conditions. Moreover, Newey and Smith (2000) demonstrated that

GEL estimators have one less source of asymptotic bias than the GMM estimator.

Finally, all moment conditions are imposed on the sample by appropriately reweight-

ing the data, rather than only some linear combinations of them. This is achieved by

employing a more efficient estimator of the distribution of the data than the empiri-

cal distribution implicitly used in the GMM case. This estimator, the so-called GEL

distribution function, and corresponding GEL implied probabilities, has many differ-

ent applications. In fact, all the major contributions of this thesis involve particular

uses of the GEL implied probabilities. Namely, we show how to employ the GEL

probabilities in the construction of three new bootstrap techniques applicable in the

GMM framework, several Pearson-type statistics for assessing overidentifying moment

conditions and parametric restrictions and a number of new non-nested hypothesis

tests.

Throughout this thesis there is a continual comparison between the finite sample

properties of GMM and GEL statistics. Our aim is the production of considerable

evidence showing that, as expected, the latter method leads to more reliable estima-

tion and inference. However, GEL estimation is not the only way to improve the

small sample performance of GMM estimation. Indeed, econometricians can opt for

utilizing techniques such as the bootstrap in order to obtain more accurate approx-

imations to the finite-sample distribution of GMM estimators and related statistics.

Thus, the merits of the employment of bootstrap methods in the GMM context are
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also discussed, namely when applied to obtain bias-corrected GMM estimators and to

approximate the small sample distribution of Hansen’s (1982) J test of overidentifying

moment conditions.

In the next sub-section we outline the structure of this thesis.

1.2 Structure of the thesis

This dissertation is organized in six chapters. Below, we give a detailed description

of chapters 2 to 6.

Chapter 2 provides an up-to-date survey of the principal extant literature on esti-

mation methods for moment condition models. We start with a detailed description

of the major characteristics of GMM estimation. Alternative GMM estimators are

analyzed, a special emphasis being given to Hansen’s (1982) two-step efficient GMM

estimator, since this is the GMM estimator that is more often used both throughout

this thesis and in applied work. The main specification tests for efficient GMM es-

timators are reviewed, namely tests of overidentifying moment conditions, tests for

additional moment conditions and tests of parametric restrictions. In an independent

section, by extending Smith’s (1987) work for maximum likelihood estimators to the

GMM framework, we discuss an original way of deriving most GMM tests of para-

metric restrictions and overidentifying moment conditions. In particular, we develop

a test statistic generating equation from which, by evaluation at appropriate estima-

tors, several tests may be obtained as special cases. This review of GMM concludes

with a discussion of its main limitations in order to motivate the use of and the search

for alternative procedures with better finite sample properties.

The second part of chapter 2 is thus dedicated to the study of alternative estima-

tion methods for moment condition models that share the same first-order asymptotic

properties as GMM. First, we briefly review the CU-GMM estimator. Then, we focus

on the utilization of GEL methods, giving special attention, as previously mentioned,

to EI and EL estimation techniques. Computational aspects concerning the calcula-

4



tion of these estimators are discussed, since this seems to be their most important

drawback. Similarly to GMM, specification tests applicable in this context are pre-

sented.

In chapter 3 we compare the finite sample bias of GMM, CU-GMM, EI and EL

estimators through two Monte Carlo simulation studies.1 We examine also the ability

of bootstrap methods to improve the small sample properties of the two-step GMM

estimator. We consider three bootstrap techniques already applied in the moment

condition framework and propose three new ones that employ the GEL implied prob-

abilities to resample the data. Two different settings for which there is previous

evidence of the poor performance of the efficient two-step GMM estimator are simu-

lated using the package S-Plus, which is utilized in all Monte Carlo studies realized

in this thesis.

In chapter 4, Pearson-type statistics suitable for testing overidentifying moment

conditions and parametric restrictions are developed. These new test statistics are

based on the comparison of two consistent estimators, under the corresponding null

hypothesis, of the unknown distribution of the data. For the former class of tests those

estimators are the empirical and the GEL distribution functions, while in the latter

case two GEL distributions estimated under different assumptions are contrasted.

Through a Monte Carlo simulation study based on two of the settings considered by

Imbens, Spady and Johnson (1998), we examine the finite sample properties of several

tests of overidentifying moment conditions, including bootstrap forms of Hansen’s

(1982) J test.

Chapter 5 deals with the issue of testing non-nested hypothesis in the moment

condition framework.2 To the best of our knowledge, there are relatively few papers

addressing this subject. Indeed, only Singleton (1985), Ghysels and Hall (1990b)

and Smith (1992), for the GMM case, and Smith (1997), for GEL estimators, have

1A paper containing the main findings of this chapter was presented at the 56th European Meeting
of the Econometric Society, Lausanne, Switzerland, 25-29/08/2001.

2The main findings of this chapter were included in a joint paper with Richard J. Smith, which
is forthcoming in the Journal of Econometrics and was presented by the author of this dissertation
at the 8th World Congress of the Econometric Society, Seattle, U.S.A., 11-16/08/2000.
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approached this question. In this chapter we derive a number of new tests that com-

plement and integrate those works. With our proposals the number of tests available

for the researcher assessing different non-nested theories is significantly increased. A

Monte Carlo study involving instrumental variable models ends the chapter.

Chapter 6 concludes this thesis by summarizing our major findings and suggesting

potential avenues for future research.
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Chapter 2

Estimation methods for moment

condition models

2.1 Introduction

The main goal of this chapter is to provide a general framework for dealing with

moment condition models. The most relevant econometric literature concerning this

kind of models is surveyed, the major characteristics of the main estimation methods

and corresponding specification tests applicable in this context being presented. In

the following we use the expression ‘empirical-based’ (EB) to designate the set of all

techniques that are special cases of the MD and GEL estimation methods. When

considering GMM specification tests, we discuss an original procedure for deriving

most GMM tests of parametric restrictions and overidentifying moment conditions.

This chapter is organized as follows. Section 2.2 introduces some definitions and

notation. Section 2.3 examines GMM estimation and inference. Section 2.4 discusses

the CU-GMM estimator. Section 2.5 is dedicated to the study of EB estimation

methods.
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2.2 Definitions and notation

The notation and assumptions introduced in this section are used throughout this

dissertation. Let yi, i = 1, ..., n, be independent and identically distributed (i.i.d.)

observations on a data vector y. Consider g (y, θ), an s-dimensioned vector of moment

indicators known up to the k-vector of unknown parameters of interest θ, and assume

that there are at least as many moment conditions as parameters to be estimated

(s ≥ k). Define the true parameter vector θ0 as the unique solution of the system of

moment conditions

EF [g (y, θ)] = 0, (2.1)

where EF [·] denotes expectation taken with respect to the (unknown) distribution
function F of y. We assume that θ0 belongs to the interior of a compact k-dimensional

setΘ, the moment function g (y, θ) is continuous in θ for all θ ∈ Θ, and the expectation

EF [g (y, θ)] exists and is finite for all θ ∈ Θ. Define also the (s× k) matrix G (θ) ≡
EF

h
∂g(y,θ)
∂θ0

i
and the (s× s) positive definite matrix V (θ) ≡ EF

£
g (y, θ) g (y, θ)0

¤
,

where the moment indicators g (y, θ) are assumed to be continuously differentiable in

θ for all θ ∈ Θ. When these matrices are evaluated at θ0 we write G ≡ G (θ0) and

V ≡ V (θ0), in which case the former matrix is assumed to be full column rank.

The sample counterparts of g (y, θ), G (θ) and V (θ) are denoted by gn (θ) ≡
1
n

Pn
i=1 g (yi, θ), Gn (θ) ≡ 1

n

Pn
i=1

∂g(yi,θ)
∂θ

and Vn (θ) ≡ 1
n

Pn
i=1 g (yi, θ) g (yi, θ)

0, respec-

tively. We assume that Gn (θ) converges almost surely and uniformly in θ to G (θ)

and, by applying a Central Limit Theorem, that
√
ngn (θ0)

d→ N (0, V ), i.e. the ran-

dom vector
√
ngn (θ0) has a limiting distribution N (0, V ). When these quantities are

evaluated at θ̂, a consistent estimator for θ0, we write ĝn ≡ gn

³
θ̂
´
, Ĝn ≡ Gn

³
θ̂
´

and V̂n ≡ Vn
³
θ̂
´
, which are assumed to be consistent estimators for g (y, θ0), G

and V , respectively.1 An analogous notational scheme is followed for other variables

1In time series models V̂n calculated in this way would not be a consistent estimator for V . Robust
estimators for V in this context are discussed inter alia by Newey and West (1987a, 1994), Andrews
(1991) and Den Haan and Levin (1997). Note, however, that V̂n is a heteroskedasticity-robust
consistent estimator for V .
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throughout this dissertation.

All estimation methods discussed in the next sections are semi-parametric in the

sense they only require the specification of moment conditions like (2.1) rather than

the full density of the variable of interest. Hence, they are more robust, although

generally less efficient, than parametric methods such as maximum likelihood. As we

will see later on, all these methods are asymptotically first-order equivalent. For this

reason, we adopt the same terminology to denote all of these estimators.

2.3 Generalized method of moments

2.3.1 Introduction

GMM is the conventional way of estimating models when the only information avail-

able about the population of interest is in the form of moment conditions. Since its

formalization by Hansen (1982), GMM has become an important research topic in

the econometric literature, both from theoretical and applied points of view. In the

theoretical literature, the popularity of GMM results from two main facts. On the

one hand, it provides a unifying framework for the analysis of many familiar esti-

mators. Indeed, GMM nests various popular estimation methods such as maximum

likelihood, instrumental variables and least squares, providing a suitable setting for

their comparison. On the other hand, it is a simple alternative to other estimation

techniques, especially when it is difficult to write down the likelihood function. For

a general discussion about GMM, see, for example, Davidson and MacKinnon (1993,

chap. 17), Hall (1993), Newey and McFadden (1994) and the recent book edited by

Mátyás (1999), which is entirely devoted to this method.

With regard to applied work, due to its flexibility and generality, GMM estimation

has been used in certain models which, otherwise, would be computationally very bur-

densome to estimate. Since one of the attractions of GMM estimation is to allow easy

handling of stationary dependent data, this method gained particular importance in

the estimation of time series models, namely asset pricing models, nonlinear dynamic
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rational expectation models, business-cycle models, stochastic volatility models and

covariance structure models. However, GMM has also been widely applied to cross-

sectional and panel data [see Ogaki (1993, p. 461) for a list of references of empirical

examples].

The basic idea behind GMM is very simple: the vector of parameters of interest, θ0,

is estimated in such a way that the sample moment indicators gn (θ) that correspond

to the population moment conditions given by (2.1) are as close as possible to zero.

When the number of moment conditions and unknown parameters is identical (s = k),

the system of equations gn
³
θ̂
´
= 0 can be solved directly in order to obtain θ̂ as

an estimator of θ0. However, in the most common case of overidentifying moment

conditions, where there are more estimator-defining equations than parameters to be

estimated (s > k), solving that system would produce multiple solutions for θ. Thus,

the number of estimating equations has to be reduced in some way to k. Hansen

(1982) proposed using k linear combinations of the s initial equations as described

next.

Let Sn be a (s× s) symmetric, positive definite weighting matrix that may depend

on the observations and converges almost surely to a nonrandom, positive definite

matrix S. Hansen’s (1982) GMM estimator is obtained by minimizing with respect

to θ the following quadratic form of the sample moment conditions:

Qn (θ) ≡ gn (θ)
0 Sngn (θ) . (2.2)

Here, Sn is used to measure the proximity of the sample moment indicators to zero,

via closeness of the quadratic form (2.2) to zero. Note that Qn (θ) ≥ 0, ∀ θ ∈ Θ,

being equal to zero only if and only if gn (θ) = 0, that is, as in the just identified case.

The resultant k first-order conditions for this minimization problem are

Ĝ0
nSnĝn = 0. (2.3)

Using standard asymptotic theory, it can be proved [see Hansen (1982)] that the
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GMM estimator θ̂, under the assumptions made in section 2.2, is consistent and

asymptotically normally distributed:

√
n
³
θ̂ − θ0

´
d→ N (0,Σ) , (2.4)

where

Σ ≡ (G0SG)−1G0SV SG (G0SG)−1 . (2.5)

Analyzing (2.3), (2.4) and (2.5), we see that for each chosen weighting matrix Sn,

a different GMM estimator will be obtained, with different asymptotic properties.

Usually, Sn is chosen according to either computational convenience, in which case

the identity matrix is frequently employed, or efficiency criteria, the weighting matrix

selected being the one that minimizes the matrix Σ defined in (2.5). In the next

section we discuss the issue of efficient GMM estimation.

2.3.2 Efficient estimation

Although the precision of an estimator is always an important matter, in the GMM

framework it gains particular significance as the assumptions made are very weak.

According to (2.5), the asymptotic variance matrix of θ̂ depends on both the matrix

S and the moment conditions g (y, θ0). If we merely wish to obtain consistent, rather

than efficient2, estimates of θ0, we can consider any weighting matrix S and any

moment conditions that satisfy the assumptions discussed earlier. However, if our

aim is to obtain efficient GMM estimators, both S and g (y, θ0) must be chosen in

conformity with specific rules, as long as there are more moment conditions available

than parameters to estimate. The choice of the matrix S is obvious, as we will see

below, but the latter is a much more complicated issue, with a few exceptions in some

specific cases. Note that all results presented in this sub-section are asymptotic.

2By efficient estimator, we mean the most efficient estimator within the general class of GMM
estimators, not efficiency in the absolute sense, that is, considering all possible estimators for a
particular model.

11



In small samples, the calculation of GMM estimators according to the guidelines

described below may not be the best option (see section 2.3.6 for some Monte Carlo

evidence).

Choice of the weighting matrix

In this sub-section we assume that the moment conditions are given. When their

number is equal to the number of parameters to be estimated, the GMM estimator

does not depend on the choice of the weighting matrix. Indeed, in this situation the

GMM estimator solves the system of equations gn
³
θ̂
´
= 0 and the expression of the

covariance matrix given in (2.5) can be simplified to

Σ = G−1V G0−1

=
¡
G0V −1G

¢−1
, (2.6)

as the matrix G is now invertible. This is the covariance matrix of the so-called

efficient GMM estimator. This estimator is the most efficient one within the class

of GMM estimators, in the sense that it always attains the smallest variance of all

possible GMM estimators. To see that (2.6) indeed represents a lower bound for this

class of estimators, that is, (2.5)≥(2.6), ∀S, in a positive semi-definite sense, note
that this is equivalent to proving that

(G0SG)−1G0SV
1
2

h
I − V −

1
2G
¡
G0V −1G

¢−1
G0V −

1
2

i
V

1
2SG (G0SG)−1 ≥ 0.

As the matrix in the square brackets is an orthogonal projection matrix and thus

idempotent, the left-hand side of this equation is always positive semi-definite, which

proves immediately the previous statement.

When there are more moment conditions than parameters to be estimated, the

existence of overidentifying restrictions imply that different GMM estimators are ob-

tained for different choices of Sn. Efficient GMM estimation, as defined above, is now
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achieved only when a specific weighting matrix is used in the estimation procedure,

namely a matrix Sn that converges to S∗ = V −1, the inverse of the limiting covariance

matrix of the empirical moments evaluated at the true value of the parameters. As

it is easily seen, substituting S∗ for S into (2.5) produces (2.6).

The optimal weighting matrix V −1 depends on θ0, so an initial consistent estimator

for this parameter vector is needed for feasible estimation. Given the availability

of a consistent, although generally inefficient, estimator of θ0 (see section 2.3.3 for

details), as long as V̂n is a consistent estimator for V , the utilization of the former in

place of the latter does not affect the asymptotic properties of the resultant efficient

GMM estimator. Hence, the GMM estimator obtained from the minimization of the

objective function

Qn (θ) ≡ gn (θ)
0 V̂ −1n gn (θ) . (2.7)

will have the same first-order asymptotic properties as that obtained from using the

true V in (2.7). However, different V̂ −1n matrices will give rise to different GMM

estimators, which can exhibit different behaviour in small samples.

In the econometric literature, a estimator obtained by minimizing an expression

such as (2.7) is often termed a minimum chi-square estimator or an optimal minimum

distance estimator. This is the GMM estimator that we consider throughout this

dissertation, so we call it simply the GMM estimator, usually omitting ‘efficient’.

Whenever we refer to a GMM estimator not based on S∗ = V −1, we will call it

explicitly a non-efficient GMM estimator.

Choice of the moment conditions

When S = V −1, the above GMM estimator is the most efficient one for the given

set of moment conditions. However, econometric models are generally specified in

terms of conditional moments. From one set of conditional moments, we can draw

an extensive set of unconditional moment conditions. For instance, E [u (y, θ0)|X]
= 0 ⇒ E [H 0 (X)u (y, θ0)] = 0, for any measurable function H. Thus, there is a
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large set of candidates to be used as orthogonality conditions. For each one of these

potential sets, there exists an efficient GMM estimator in the sense discussed in the

previous sub-section. Although throughout this dissertation we consider the moment

conditions as given, we discuss next, briefly, the issue of how to select, for a given

weighting matrix, the set of moment conditions which yields the most asymptotically

efficient estimators.

One might think that the more moment conditions used, the more efficient the

resulting estimator. Actually, although it is true that the inclusion of extra moment

conditions allows an improvement in the efficiency of parameter estimates3, there

seems to be a trade-off between asymptotic efficiency and bias in finite samples. Using

a large number of overidentifying moment conditions may lead to a smaller asymptotic

covariance matrix, but the estimates may be seriously biased in small samples. This

conjecture is confirmed by some Monte Carlo simulation studies undertaken [see,

for example, Kocherlakota (1990) and Ferson and Foerster (1994)], which strongly

suggest that one should be quite parsimonious in the selection of the orthogonality

conditions to be used in estimation.

The question of how to optimally choose the moment conditions has been studied

mainly for the case of instrumental variables (one of the main applications of GMM),

where the moment conditions can be expressed as a set of orthogonality conditions

between a matrix (n× s) of instrumental variables, H (X), and an n-vector of dis-

turbance terms, u (y, θ0), which is assumed to be known up to the parameter vector

θ0. In this setting, the problem is then how to choose the instrument matrix H (X)

which yields the asymptotically most efficient GMM estimator given the function u (·).
This issue has been extensively studied for some specific cases. Earlier examples are

Amemiya (1974) and Jorgenson and Laffont (1974), who calculated covariance matrix

bounds for instrumental variables estimators in the homoskedastic disturbances case.

The general case (but still in the instrumental variables context) was discussed by

3Provided they are not redundant, contributing additional information to that contained in the
existing moment conditions.
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Hansen (1985), who suggested a procedure for calculating the greatest lower bound

for the asymptotic covariance matrix of GMM estimators. In fact, although the higher

the number of relevant conditions used, the more efficient the GMM estimator, a lower

bound exists for its covariance matrix. This bound was calculated for some specific

instrumental variable models by Hansen (1985), Hansen, Heaton and Ogaki (1988)

and Heaton and Ogaki (1991). However, even in those cases, the authors did not

calculate an expression for the optimal instruments that would attain that bound.

Actually, although in theory there exists an optimal set of instrumental variables

which allows the GMM bound to be achieved, in applied work it has been proved

difficult to calculate. Exceptions occur in certain models, mainly when independence

among observations can be assumed. For instance, Tauchen (1986a) showed that,

for a model where the disturbance terms are serially uncorrelated, Hansen’s (1985)

bound implies that the optimal instruments matrix is

H∗ (X) =
©
E
£
u (y, θ0) u (y, θ0)

0 |X ¤ª−1E · ∂u (y, θ0)
∂θ0

¯̄̄̄
X

¸
C

= [Ω (X)]−1 U (X)C, (2.8)

where C is any nonsingular, nonrandom (k × k) matrix. This is the same expression

found by Amemiya (1977), using another approach and also assuming homoskedas-

ticity.

It can be proved that the asymptotic covariance matrix attained when we use

H∗ (X) as instruments,

Σ∗ =
­
EX

©
U (X)0 [Ω (X)]−1 U (X)

ª®−1
, (2.9)

constitutes a lower bound for all instrumental variables estimators under the validity

of the assumptions made [see, for example, Newey (1993)]. Furthermore, Chamberlain

(1987), assuming independent and identically distributed observations, demonstrated

that the semi-parametric efficiency bound for conditional moment restriction models,
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derived in that paper, is attained by the optimal instrumental variables estimator de-

fined in (2.8). Therefore, expression (2.9) represents a lower bound for the asymptotic

covariance matrix of any consistent, asymptotically normal estimator for a model de-

fined by E [u (y, θ0) |X ] = 0 and not just for the instrumental variable estimator.

Note that H∗ (X) is an (n× k) matrix which means that the optimal instruments

reduce the s original moment conditions to only k. With as many moment conditions

as unknown parameters, GMM estimation becomes independent of the choice of the

weighting matrix and, thus, estimators based on H∗ (X) are also efficient in the sense

discussed in the previous section. However, the matrix H∗ (X) depends on unknown

parameters and functions. The conditional expectations present in (2.8) are generally

not available, so the relevant issue now is how to construct feasible optimal GMM

estimators, which must use as instrumental variable matrix an estimate of H∗ (X)

that does not affect the asymptotic distribution of the GMM estimator.

The estimation of H∗ (X) can be a hard task, so these optimal instruments may

be difficult to implement in practice. However, when U (X) is known up to some

parameters, then estimating the optimal instruments is much easier. For instance, in

linear models, U (X) = −X because ∂u(y,θ0)
∂θ0 depends only on the set of conditioning

variables, so, with C = −I,

H∗ (X) = [Ω (X)]−1X, (2.10)

which yields the Generalized Least Squares (GLS) estimator. Even so, unless ho-

moskedasticity and serial independence [Ω (X) = I] may be assumed, we need an

estimate of Ω, that is, we need to use feasible GLS. As it is known, feasible GLS

produces estimators asymptotically equivalent to those from infeasible GLS estima-

tion as long as Ω is a known function of X and depends on a vector of parameters

that can be consistently estimated by an auxiliary procedure. Otherwise, GLS based

on a nonparametric estimation of the variance can be implemented along the lines

described in Carroll (1982) and Robinson (1987).
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As mentioned above, a detailed study of this issue lies outside the scope of this

dissertation. Therefore, from now on and in all circumstances, we assume that the

moment conditions are given.

2.3.3 Alternative computing procedures

In this sub-section, we discuss how to obtain GMM estimators in practice. When a

weighting matrix Sn not dependent on θ0 is chosen, for example the identity matrix,

then a one-step estimation procedure may be employed: the set of equations (2.3)

is solved employing a standard numerical optimization routine. If an efficient GMM

estimator is the aim, then an initial consistent estimate of the matrix V is needed,

which in turn requires the availability of an initial consistent estimator for θ0. As

solution to this “circular” problem, a two-step procedure is generally utilized, which

can be described as follows:

1. Find a consistent estimator for θ0, for instance by using a non-efficient GMM

estimator based on a matrix Sn that does not depend on θ0 (although this

preliminary estimate need not be obtained by GMM),

Gn

³
θ̂
1
´0
Sngn

³
θ̂
1
´
= 0, (2.11)

where θ̂
1
denotes the resultant one-step estimator of θ0; θ̂

1
will generally be

inefficient but consistent, so it can used to construct V̂n ≡ Vn

³
θ̂
1
´
, a consistent

estimator of V ;

2. Solve again the set of equations (2.11) but now using Sn = V̂ −1n ,

Gn

³
θ̂
´0
V̂ −1n gn

³
θ̂
´
= 0, (2.12)

in order to obtain θ̂, an efficient estimator of θ0.

Usually, the resultant efficient GMM estimator is called a two-step GMM esti-

mator. Although in theory one iteration in the second step is enough for achieving
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asymptotic efficiency, it is now much more common to iterate the two-step GMM

estimator until full convergence is reached again, keeping V̂n fixed in all iterations.

All two-step GMM estimators referred to later in our Monte Carlo simulation studies

were calculated using the latter technique.

Recently, Hansen, Heaton and Yaron (1996) proposed another computational pro-

cedure to estimate efficiently moment condition models by GMM. Their estimator,

called the repeatedly-iterated GMM estimator, can be obtained by an analogous

process to the one described above for the two-step GMM estimator but in the sec-

ond step, instead of using the initial weighting matrix V̂n ≡ Vn
³
θ̂
1
´
in all iterations,

this matrix is re-estimated in each iteration in such a way that Vn
³
θ̂
j−1´

is used

to estimate θ̂
j
in iteration j. Note that, although the weighting matrix continues

to be treated as given in each iteration, this estimator can be characterized by the

first-order conditions:

Gn

³
θ̂
´0 h

Vn

³
θ̂
´i−1

gn

³
θ̂
´
= 0. (2.13)

2.3.4 Specification tests

Several specification tests for models estimated by the efficient GMM have been pro-

posed. In this section, we present the main existing tests for overidentifying moment

conditions, additional moment conditions and parametric restrictions. Non-nested

hypothesis will be discussed later, in chapter 5, where some alternative tests are

developed.

Tests of overidentifying moment conditions

Hansen (1982) proposed the J test for assessing the specification of a model estimated

by GMM, which is probably the most frequently applied test in the moment condition

framework. The construction of this test and the idea behind it is very simple. If there

are s estimator-defining equations and k parameters to be estimated, with s > k, only

k moments are needed to identify the k parameters, so there are s−k overidentifying

moment conditions. One way to test whether all moment conditions are satisfied is
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to check if their sample versions are as close to zero as would be expected in that

case. Hence, Hansen (1982) suggested using n times the minimized value of the GMM

criterion function (2.7),

J ≡ nĝ0nV̂
−1
n ĝn, (2.14)

which he showed to possess a limiting chi-squared distribution with s− k degrees of

freedom under the hypothesis that all moment conditions are valid.

The J test may be adapted to test the correctness of only a subset of moment con-

ditions. Following Eichenbaum, Hansen and Singleton (1988), partition the sample

moments vector gn (θ)
0 as

h
g1n (θ)

0 g2n (θ)
0
i
, where the population moment condi-

tions corresponding to the second sub-vector are presumed to hold only under the null

hypothesis and the ones concerning the first are assumed also to be valid under the al-

ternative hypothesis. Let s1 and s2 be the dimension of each sub-vector, respectively,

with s = s1 + s2 and s1 ≥ k. Partition the matrix V as

 V11 V12

V21 V22

 conformably
with the two subsets of moment conditions. Consider two optimizations, one based

on the full set of moment conditions, the other using only the first s1 moments. Under

these assumptions, we can then assess the validity of the second subset of moment

conditions through the test statistic

J2 ≡ n
h
Qn

³
θ̂
´
−Q1n

³
θ̂1
´i
, (2.15)

where Q1n

³
θ̂1

´
= g1n

³
θ̂1

´0
V̂ −111ng1n

³
θ̂1

´
and θ̂1 is the vector of parameter estimates

from the second minimization. Under the null hypothesis, the asymptotic distribution

of J1 is chi-square with s2 degrees of freedom. Note that J2 is equal to the difference

between the J statistic, given by (2.14), and J1, the statistic that would be used to

test the validity of the moment conditions based on g1 (y, θ0).

19



Tests for additional moment conditions

The J2 test may also be applied to examine whether an additional s2-dimensional

vector of moments has mean zero and, thus, may be incorporated in the moment

conditions (2.1) in order to improve inference on θ0. For this purpose, assume that an

initial GMM estimation based only on the vector g1n (θ) defined above was performed,

with the estimate θ̂1 being obtained, and interpret g2n (θ) as the sample counterpart

of the set of additional moment conditions EF [g2 (y, θ0)] = 0. It is easily seen that

the statistic J2 may be used to assess this hypothesis.

Alternatively, we may follow the approach due to Newey (1985b) and Tauchen

(1985) and employ the test statistic

CM ≡ nĝ02n
³
ÂnV̂nÂ

0
n

´−1
ĝ2n, (2.16)

where ·̂ means evaluation at θ̂1, Ân is a consistent estimator for

A ≡
h
−G2

¡
G0
1V

−1
11 G1

¢−1
G0
1V

−1
11 Is2

i
, (2.17)

G0 ≡
h
G0
1 G0

2

i
and Is2 is an s2-dimensional identity matrix. This statistic has also

a chi-squared distribution with s2 degrees of freedom. In contrast to the J2 test, only

one model estimation is required.

Tests of parametric restrictions

As with any other estimation procedure, we may wish to test whether some specific

restrictions concerning the vector of parameters of interest may be entertained in

the model. To this end, in the GMM context it is possible to employ the usual Wald

(W ), Lagrange multiplier (LM), distance metric (DM), minimum chi-squared (MC),

Hausman (H) and Neyman’s (1959) C(α) statistics. The first four tests were proposed

by Newey and West (1987b) and the last two in Newey and McFadden (1994) and

Davidson and MacKinnon (1993), respectively. See those papers for the proofs of the
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results given below.

Consider the null hypothesis H0 : r (θ0) = 0, where r (·) is a known, possibly non-
linear, continuously differentiable q-vector representing certain parametric restrictions

expressed in constraint equation form and q is the number of restrictions (q ≤ k), and

denote ∂r(θ)
∂θ0 by R (θ), a full row rank (q × k) matrix. All statistics presented below

have a limiting chi-squared distribution with q degrees of freedom under H0.

The Wald statistic for testing H0 is

Wn ≡ nr̂0
³
R̂Σ̂nR̂

0
´−1

r̂, (2.18)

where ·̂ denotes evaluation at the unconstrained GMM estimator θ̂ and Σ̂n is a con-

sistent estimator for the matrix Σ defined in (2.6). As usual for Wald statistics, this

test has the disadvantage of not being invariant under reparametrization of the re-

strictions. On the other hand, it does not require optimization of the constrained

model.

With regard to the LM or score test, it is only necessary to estimate the restricted

model. Let θ̃ be the constrained GMM estimator obtained by minimizing Qn (θ)

subject to the restrictions r (θ) = 0. The test statistic for H0 is:

LMn ≡ ng̃0nṼ
−1
n G̃nΣ̃nG̃

0
nṼ

−1
n g̃n. (2.19)

If there are as many moment conditions as parameters, then G̃n is a square matrix

and, thus, (2.19) can be written as LM = nQn

³
θ̃
´
, that is, this test turns to be

numerically identical to the J test based on θ̃, provided that the same estimate of V

is used in both statistics.

As for the distance metric or likelihood ratio-type test, the test statistic for H0 is:

DMn ≡ n
h
Qn

³
θ̃
´
−Qn

³
θ̂
´i
. (2.20)

Note that the same estimator of V must be used for both restricted and unrestricted
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estimation to guarantee that DMn is non-negative [Newey and West (1987b)]. The

main disadvantage of this test is that it requires two optimizations. If s = k, then

Qn

³
θ̂
´
= 0 and DM = nQn

³
θ̃
´
, and, consequently, this test turns to be numerically

equal to the J and LM tests.

The minimum chi-squared test statistic for H0 is given by

MCn ≡ n
³
θ̂ − θ̃

´0
Σ−1n

³
θ̂ − θ̃

´
(2.21)

and the Hausman test by:

Hn ≡ n
³
θ̂ − θ̃

´0
R0 (RΣnR

0)−1R
³
θ̂ − θ̃

´
. (2.22)

Like the distance metric test, two optimizations are needed to perform these tests.

Estimation for the matrices R and Σ may be evaluated at either θ̂ or θ̃.

Finally, Davidson and MacKinnon (1993) derived a C(α) test. Let θ̇ be any root-n

consistent estimator of θ0 that satisfies the null hypothesis, that is, r
³
θ̇
´
= 0. The

test statistic for H0 is:

Cn (α) ≡ nġ0nV̇
−1
n ĠnΣ̇nṘ

0
³
ṘΣ̇nṘ

0
´−1

ṘΣ̇nĠ
0
nV̇

−1
n ġn. (2.23)

This statistic only requires θ̇ rather than the GMM estimator.

2.3.5 Generating GMM test statistics

Before continuing our survey on estimation methods for moment condition models,

we present in this section an original way of deriving some of the tests discussed in

the previous section. Furthermore, we consider a more general setting of implicit

parametric restrictions, which allows us to generalize those tests for other kind of

constraints. Essentially, we extend Smith’s (1987) results for maximum likelihood

estimators to the GMM framework.
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A linearized GMM statistic for testing implicit parametric restrictions

Suppose that we aim to test whether some specific restrictions, involving not only

the vector of parameters of interest θ but also a p-dimensional vector α of auxiliary

parameters, may be entertained in a model estimated by GMM. We assume that the

null hypothesis to be assessed can be expressed as

H0 : r (θ0, α0) = 0, (2.24)

where α0 is the true value of α and, as before, r (·) is a q-vector of restrictions and q is
the number of restrictions. The function r (·) satisfies the implicit function theorem,
that is, r (·) = 0 has a unique solution and the (q × k) matrix Rθ ≡ ∂r(θ,α)

∂θ0 and the

(q × p) matrix Rα ≡ ∂r(θ,α)
∂α0 are of rank q and p, respectively, for values of (θ, α) near

to the true values (θ0, α0), with p ≤ q ≤ k. The specification of the restrictions in

the very general implicit form (2.24) includes the more common cases of constraint

[r (θ0) = 0] and freedom [θ0 = rα (α0)] equation restrictions as special cases.

The standard approach for constructing Wald statistics to test the null hypothesis

(2.24) against H1 : r (θ0, α0) 6= 0 is not directly applicable here, since α is only

identified under the null hypothesis. To circumvent this difficulty, Szroeter (1983)

suggested using as an estimate of α0 the solution α̂ to the program

min
α

Λ (α) ≡ r
³
θ̂, α

´0
Φnr

³
θ̂, α

´
, (2.25)

where Φn is a (q × q) positive semi-definite matrix that converges almost surely to a

nonrandom, positive definite matrix Φ. The estimator α̂ thus obtained is function of

the unrestricted estimator θ̂ given the matrix Φn: α̂ = f
³
θ̂
¯̄̄
Φn

´
. The function f (·)

can be defined for each value of θ, which allows the reformulation of the restrictions

(2.24) into a constraint equation form,

r (θ0, α0) = r [θ0, f (θ0|Φ)] = hΦ (θ0|Φ) = 0. (2.26)
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Using the reformulated restrictions (2.26), which now omit α, we may construct a

standard Wald statistic for testing H0 against H1,

W ≡ nĥ0Φ
³
ĤΦΣnĤ

0
Φ

´−
ĥΦ, (2.27)

where ĥΦ ≡ hΦ
³
θ̂
¯̄̄
Φn

´
≡ r

³
θ̂, α̂

´
, HΦ ≡ ∂hΦ

∂θ0 = MΦRθ is a (q × k) matrix, MΦ ≡
I −Rα (R

0
αΦnRα)

−1R0αΦn is a (q × q) idempotent matrix of rank q − p, (·)− denotes
a generalized inverse and ·̂ denotes evaluation at

³
θ̂, α̂

´
. This statistic has a limiting

chi-squared distribution with q−p degrees of freedom under H0. For a full discussion

of the derivation of this test statistic see Szroeter (1983).

In the maximum likelihood context, Smith (1987) developed a linearized classical

statistic, which shares the same first-order properties as W . In a similar manner,

a linearized GMM (LGMM) statistic may also be constructed. To that end, the

first point to note is that the unconstrained efficient GMM estimator θ̂ can be ob-

tained from the first-step of, for instance, the Newton-Raphson algorithm based on

an consistent and asymptotically normal unconstrained estimator θ̈ for θ0,

θ̂ = θ̈ − ΣnG̈
0
nV

−1
n g̈n; (2.28)

a single iteration is enough to assure the asymptotic efficiency of θ̂. Then, linearizing

the constraints ĥΦ around θ̈ produces:

ĥΦ = ḧΦ + ḦΦ

³
θ̂ − θ̈

´
+ op

³
n−

1
2

´
= ḧΦ − ḦΦΣnG̈

0
nV

−1
n g̈n + op

³
n−

1
2

´
. (2.29)

Finally, substituting (2.29) into (2.27) yields the LGMM statistic

LGMM = n
³
ḧΦ − ḦΦΣnG̈

0
nV

−1
n g̈n

´0 ³
ḦΦΣnḦ

0
Φ

´− ³
ḧΦ − ḦΦΣnG̈

0
nV

−1
n g̈n

´
, (2.30)

which has a limiting chi-square distribution with q − p degrees of freedom under H0
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and can be used to test the hypothesis (2.24) in the GMM framework. Note that

·̈ denotes evaluation at
³
θ̈, α̈

´
, where α̈ = f

³
θ̈
¯̄̄
Φn

´
, that is α̈ solves (2.25) with θ̂

replaced by θ̈.

For the statistic LGMM to be operational, the matrix Φn in (2.25) and the

generalized inverse present in (2.30) must be chosen. The asymptotic power of the test

based on W , and thus that of the LGMM statistic, is independent of those choices,

as shown by Szroeter (1983). However, in finite samples, the statistical properties of

bothW and LGMM tests will depend on the matrices selected. For any given choice

of the matrix Φn, a generalized inverse for ĤΦΣnĤ
0
Φ isM

0
ΩΩMΩ, with Ω ≡ (RθΣR

0
θ)
−1

and MΩ ≡ I − Rα (R
0
αΩRα)

−1R0αΩ.
4 On the other hand, a choice for Φn that allows

certain simplifications to these and other statistics presented below is a consistent

estimator Ωn for Ω, in which case α0 is efficiently estimated.5 In this case, the matrix

Ω is a generalized inverse for ĤΦΣnĤ
0
Φ = M̂ΩΩ

−1
n M̂ 0

Ω and, since r
³
θ̂, α̂

´
≡ ĥΩ, the

W statistic is numerically equal to nΛ (α̂).

We can define similar statistics to (2.30) appropriate for the more familiar con-

straint and freedom equation restrictions. In the former case, H0 : r (θ0) = 0, so

Rα = 0, which implies MΦ = Iq and HΦ = Rθ. Hence, it follows that

LGMMc = n
³
r̈ − R̈θΣnG̈

0
nV

−1
n g̈n

´0 ³
R̈θΣnR̈

0
θ

´−1 ³
r̈ − R̈θΣnG̈

0
nV

−1
n g̈n

´
, (2.31)

which has an asymptotic chi-squared distribution with q degrees of freedom.

For freedom equation restrictions, asH0 : θ0 = rα (α0), we have q = k andRθ = Ik,

which gives HΦ =MΦ and Ω = Σ−1. Let θ̆ = rα (α̈), with α̈ solving:

min
α

Λ (α) =
h
θ̈ − rα (α)

i0
Φn

h
θ̈ − rα (α)

i
; (2.32)

4Note that HΦΣH
0
ΦM

0
ΩΩMΩHΦΣH

0
Φ = MΦΩ

−1M 0
ΦM

0
ΩΩMΩMΦΩ

−1M 0
Φ = MΦΩ

−1M 0
Φ, for

MΩMΦ =MΩ and Ω−1M 0
ΩΩMΩΩ

−1 =M 0
ΩΩ
−1MΩ.

5Note that in this case an initial consistent estimator of α is needed to evaluate Φn = Ωn in
(2.25). It can be obtained solving also (2.25) but considering a matrix Φn, such as the identity
matrix, not dependent on unknown parameter values.
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cf. (2.25). The first-order conditions corresponding to (2.32) are given by R̈0αΦn

³
θ̈ − θ̆

´
= 0, so M̈Φ

³
θ̈ − θ̆

´
=
³
θ̈ − θ̆

´
. Using M 0

ΩΩMΩ = M 0
Σ−1Σ

−1MΣ−1 as generalized in-

verse and expression (2.28) for θ̂, we obtain

LGMMf = n
³
θ̈ − θ̆ − ΣnG̈

0
nV

−1
n g̈n

´0
M̈ 0

Σ−1Σ
−1
n M̈Σ−1

³
θ̈ − θ̆ − ΣnG̈

0
nV

−1
n g̈n

´
= n

³
θ̂ − θ̆

´0
M 0

Σ−1Σ
−1
n MΣ−1

³
θ̂ − θ̆

´
. (2.33)

The degrees of freedom are now k − p.

Besides being suitable for testing parametric restrictions in models estimated by

GMM, the three LGMM statistics derived, when evaluated at certain estimators,

give rise to various well known tests, as is emphasized next.

A test statistic generating equation

Consider again the LGMM statistic given in (2.30) but permitting any consistent

asymptotically normal estimator of θ0 (and, hence, α0) to be used:

TSGE (θ, α) = n
¡
hΦ −HΦΣnG

0
nV

−1
n gn

¢0
(HΦΣnH

0
Φ)
− ¡

hΦ −HΦΣnG
0
nV

−1
n gn

¢
.

(2.34)

This equation may be viewed as a test statistic generating equation (TSGE) for im-

plicit parametric restrictions in the GMM framework. Accordingly to the estimators

(θ, α) at which TSGE is evaluated, several different test statistics may be obtained.

Note that all results presented below are exact.

First of all, evaluating TSGE at
³
θ̈, α̈

´
, where α̈ = f

³
θ̈
¯̄̄
Φn

´
, gives, obviously,

the LGMM statistic.

Second, using
³
θ̂, α̂

´
, where θ̂ is the efficient GMM estimator and α̂ = f

³
θ̂
¯̄̄
Φn

´
,

implies that Ĝ0
nV

−1
n ĝn = 0, so

TSGE
³
θ̂, α̂

´
= nĥ0Φ

³
ĤΦΣnĤ

0
Φ

´−
ĥΦ, (2.35)
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the generalized Wald statistic (2.27).

Third, let
³
θ̇, α̇

´
be any consistent estimator of θ0 and α0 which satisfy r

³
θ̇, α̇

´
=

0. Then, since Ḣ 0
Φ

³
ḢΦΣnḢ

0
Φ

´−
ḢΦ = Ḣ 0

ΩΩnḢΩ, it follows that

TSGE
³
θ̇, α̇

´
= nġ0nV

−1
n ĠnΣnḢ

0
ΩΩnḢΩΣnĠ

0
nV

−1
n ġn, (2.36)

Neyman’s C (α) statistic.6

Finally, consider the efficient constrained GMM estimator θ̃ that results from

min
θ,α

Qn (θ) subject to r (θ, α) = 0. (2.37)

Solving this optimization problem using a Lagrangian function yields as first-order

conditions h̃Φ =r
³
θ̃, α̃

´
= 0, G̃0

nV
−1
n g̃n + R̃0θψ̃ = 0 and R̃0αψ̃ = 0, where ψ̃ is the

Lagrange multiplier associated with the restrictions. Substituting G̃0
nV

−1
n g̃n for R̃0θψ̃

into (2.36) and noting that ψ̃
0
M̃Ω = ψ̃, we see that evaluation of TSGE at

³
θ̃, α̃

´
produces

TSGE
³
θ̃, α̃

´
= nψ̃

0
R̃θΣnR̃

0
θψ̃ (2.38)

= ng̃0nV
−1
n G̃nΣnG̃

0
nV

−1
n g̃n, (2.39)

the two usual forms of a Score test based on GMM estimation.

Test statistics for constraint and freedom equation restrictions may be obtained

defining a similar test generating equation to (2.34) but from (2.31) and (2.33), re-

spectively. Alternatively, we can derive them directly from (2.35), (2.36) or (2.39), in

the same way as (2.31) and (2.33) were deduced from (2.30). For the case of constraint

equation restrictions, versions of the above Wald and Score statistics were presented

by Newey and West (1987b) and of the C (α) statistic by Davidson and MacKinnon

6Remember that α is not identified under the alternative hypothesis. Thus, as this statistic is
evaluated under H0, α̇ 6= f

³
θ̇
¯̄̄
Sn
´
, as we do not need to use program (2.25) to estimate α. The

same happens with the Score test presented next.
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(1993), as discussed in section 2.3.4.

We now demonstrate that the TSGE given in (2.34) may be adapted to another

type of hypothesis. Indeed, it is straightforward to show that the statistic J given in

(2.14) may also be obtained from the test generating equation described above. Now,

defining r (θ, α) as gn (θ) and, hence, Rθ as Gn, equation (2.34) can be simplified to

TSGE (θ) = n
¡
gn −GnΣnG

0
nV

−1
n gn

¢0
(GnΣnG

0
n)
− ¡

gn −GnΣnG
0
nV

−1
n gn

¢
= ng0nM

0
V −1V

−1
n MV −1gn, (2.40)

where we have used V −1n as generalized inverse for GnΣnG
0
n. As rank (MV −1) =

s − k, the two tests of overidentifying moment conditions we next generate from

equation (2.40) have, under H0, a limiting chi-squared distribution with s−k degrees
of freedom. First, evaluating (2.40) at θ̂ implies M̂V −1 ĝn = ĝn, which yields

TSGE
³
θ̂
´
= nĝ0nV

−1
n ĝn, (2.41)

the J test. Second, evaluation of (2.40) at θ̈ produces

TSGE
³
θ̈
´
= ng̈0nM̈

0
V −1V

−1
n M̈V −1 g̈n, (2.42)

which we designate as a linearized J statistic because it could be deduced by lineariz-

ing ĝn around θ̈ of (2.28) and substituting the consequent result into the expression

for the J test. While (2.41) can only be evaluated at efficient GMM estimators, (2.42)

may be used to assess any model estimated by GMM, irrespective of the weighting

matrix employed in GMM estimation.

2.3.6 Limitations

To complete our survey of the GMM estimator and motivate the following discus-

sion of alternative estimation methods for moment condition models, we now discuss

some important drawbacks of this estimator, the principal of them being their finite
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sample behaviour. In fact, it has long been recognized that the first-order asymp-

totic distribution of the GMM estimator provides a poor approximation to its small

sample distribution. There is increasing Monte Carlo evidence indicating that in

finite samples GMM estimators may be badly biased and the associated tests may

have actual sizes substantially different from the nominal ones. One of the first stud-

ies of this issue was Tauchen (1986b), using data generated from artificial nonlinear

consumption-based asset pricing models. He concluded that the two-step GMM esti-

mator performed reasonably well but was very sensitive to the choice of instruments:

the more lags (instruments), the lower the variance of the estimators, but, at the same

time, the higher their bias. Kocherlakota (1990) conducted a similar study confirming

the results obtained in Tauchen (1986b) and also finding evidence on the tendency

of the J test to reject the true hypothesis too often. Ferson and Foerster (1994)

considered another example, estimating a seemgly unrelated regression model with

cross equation restrictions for asset returns using real financial data. They concluded

that, in simple models, with few assets, the biases of the estimators were relatively

small but their standard errors were underestimated, mainly for smaller sample sizes

and where more instruments were utilized. In more complex models, with more as-

sets, they found that both the coefficient estimates and the estimated standard errors

could be severely biased.

The level of the concern about the small-sample properties of GMM estimators has

been sufficient great that, recently (in 1996), the Journal of Business & Economic

Statistics dedicated a special issue to studies investigating this question. Among

other articles published there, Andersen and Sorensen (1996), considering stochastic

volatility models, confirmed previous results about the deleterious effect of the number

of instruments on the performance of GMM estimators in small samples and Altonji

and Segal (1996), simulating covariance structure models, reported that, at least in

some circumstances, the two-step GMM estimator displays worse behaviour than a

non-efficient GMM estimator obtained using the identity matrix as weighting matrix.

Hansen, Heaton and Yaron (1996), also in that issue, undertook an extensive
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Monte Carlo study comparing the performance of, among others, the two-step and

the repeatedly-iterated GMM estimators. In their experiments, both methods per-

formed very poorly in many cases, producing heavy biases in the parameter estimates.

Moreover, the J test led to over-rejection of the null hypothesis andWald tests of para-

metric restrictions were unreliable. Surprisingly, the repeatedly-iterated estimator in

some cases behaved the worst, whereas originally it had been proposed as alternative

to the two-step estimator with the objective of improving its finite-sample proper-

ties. Hansen, Heaton and Yaron (1996) also noticed that the poorest performances

occurred when more moment conditions were used.

To summarize, most of these investigations suggest that the finite sample perfor-

mance of GMM is sensitive to both the number of moment conditions and the sample

size. When the former increases or the latter decreases, the finite sample properties of

the GMM estimator and related statistics deviate more from the nominal asymptotic

properties, no matter which kind of GMM estimator is used. In this dissertation, we

provide additional evidence on this subject and investigate the behaviour of alterna-

tive methods.

With regard to the J test, there is an additional problem. Newey (1985a) argued

that the J test may fail to detect a misspecified model, showing that there exist

local alternatives for which the assumed population moment conditions are invalid

but the statistic J will still converge to a χ2s−k random variable. Therefore, the J

test may be inconsistent in some circumstances, failing to reject the null hypothesis

of no misspecification when the model is incorrect. An example of such a situation

occurs when the sample is characterized by structural instability [see Ghysels and

Hall (1990a)].

A final problem associated with GMM is that the use of a consistent estimate of the

optimal weighting matrix, instead of estimating it jointly with the model parameters,

can lead to the sensitivity of GMM estimators to the choice of the initial weighting

matrix. Indeed, GMM estimation, by holding that matrix fixed, fails to account for

the dependence of the weighting matrix on the parameter vector. Hence, unless we

30



have as many parameters as moment conditions, GMM estimators are not invariant

to linear transformations of the original moment functions.

2.4 The continuous-updating GMM estimator

As some of the problems of the standard GMM estimator seem to arise from the

necessity of utilizing a consistent estimate of V in an initial step, alternative one-step

methods have recently been suggested. One of those alternatives is the CU-GMM

estimator, proposed by Hansen, Heaton and Yaron (1996). This estimator is obtained

by minimizing the function

Qn (θ) ≡ gn (θ)
0 [Vn (θ)]

−1 gn (θ) , (2.43)

whose first-order conditions are given by

Ĝ0
nV̂

−1
n ĝn +

1

2

sX
j=1

ĝjn

Ã
∂V̂ j

n

∂θ

!0
ĝn = 0, (2.44)

where ĝjn corresponds to the jth sample moment condition, V̂ j
n is the j

th s-dimensional

row of the matrix V̂ −1n and ∂V̂ j
n

∂θ
is a (s× k) matrix. As the weighting matrix and the

parameters are now estimated simultaneously, the CU-GMM estimator is invariant to

parameter-dependent transformations of the moment indicators. The weighting ma-

trix used in (2.43) can no longer be viewed as a nonrandom matrix but, nevertheless,

according to Hansen, Heaton and Yaron (1996), the extra term present in the first-

order conditions (2.44) does not distort the limiting distribution of the CU-GMM

estimator relative to the standard GMM estimator. Therefore, the two estimators

are asymptotically first-order equivalent and, hence, all specification tests discussed

in the previous section could also be evaluated at the CU-GMM estimator.

In fact, the presence of the additional term in (2.44) implies that the CU-GMM es-

timator should have smaller bias in finite samples than the standard GMM estimator,
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as both Donald and Newey (2000) and Newey and Smith (2000) argue. The former

authors gave a jackknife interpretation of the CU-GMM estimator, demonstrating

that, in (2.44), own observation terms are automatically deleted, which eliminates

one known important source of bias for GMM estimators. On the other hand, Newey

and Smith (2000) derived stochastic expansions for both estimators, providing asymp-

totic expressions for their biases. They find that the asymptotic bias of the CU-GMM

estimator is given by

bcu = −1
n
Ha+

1

n
EF (HGiHgi) +

1

n
HEF (gig

0
iPgi) , (2.45)

where gi ≡ g (yi, θ), Gi ≡ ∂gi
∂θ0 , H ≡ ΣG0V −1, P ≡ V −1 − V −1GΣG0V −1 and a is

an s-vector such that aj ≡ 1
2
tr
n
ΣEF

h
∂2gij(θo)

∂θ∂θ0

io
, gij denotes the jth element of gi,

j = 1, ..., s. The bias (2.45) is composed by three terms, each of which has its own

interpretation. Following Newey and Smith (2000), the sum of the two first terms

is the bias for the (infeasible) optimal GMM estimator based on the moment vector

G0V −1g (y, θ), where the optimal linear combination matrix G0V −1 does not need to

be estimated. The first term arises from nonlinearity of the moments, while the second

is generally nonzero whenever there is endogeneity but it should tend to be not very

large. The third term is due to estimation of V in the optimal linear combination of

moments. For the two-step GMM estimator Newey and Smith (2000) demonstrated

that

b2s = bcu − 1
n
ΣEF (G

0
iPgi) +

1

n
H

sX
j=1

V̄θj (HS −H)0 ej, (2.46)

where V̄θj ≡ E
³
∂gig0i
∂θj

´
, HS ≡ (G0S−1G)G0S−1 and ej is an s-vector whose j-element

is one and the others are zero. Hence, the two-step GMM estimator has two further

and important sources of bias. The first arises from the necessity of estimating G in

the linear combination matrix G0V −1 for the infeasible optimal GMM estimator. The

second arises from the choice of the first-step estimator, being zero if S is a scalar

multiple of V . Note that for the repeatedly-iterated GMM estimator the last source
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of bias is not present.

There is relatively little Monte Carlo evidence on the small sample properties of

the CU-GMM estimator. To the best of our knowledge, only Hansen, Heaton and

Yaron (1996) and Stock and Wright (2000) have undertaken simulation studies of this

estimator, obtaining similar conclusions, which indicate that the CU-GMM estimator

is effectively approximately median unbiased but has a finite sample distribution with

very fat tails, exhibiting sometimes extreme outlier behaviour. We investigate this

question further in the next chapter.

2.5 Empirical-based estimation methods

2.5.1 Introduction

The CU-GMM is just one of several methods that can be used as an alternative

to GMM for the estimation of moment condition models. Indeed, a number of other

alternative estimation procedures have been recently suggested. Like CU-GMM, these

new techniques produce estimators that are insensitive to how the moment conditions

are scaled but, in addition, possess the advantages of not requiring a weighting matrix

and of ensuring that all moment conditions, rather than only k linear combinations,

are satisfied in the sample. Furthermore, as likelihood-like methods, they allow the

use of classical tests to evaluate various hypotheses concerning the specification of

a particular model, including overidentifying moment conditions. Conversely, their

main disadvantage is computational: the system of equations requiring solution is at

least twice as large as that of GMM.

In this dissertation, we concentrate on the study of two of these new EB estimation

procedures, namely the EL and EI methods. Both are particular cases of the MD

methods discussed by Corcoran (1998) and of the GEL method proposed by Smith

(1997). Here, we follow the former approach to motivate the utilization of EBmethods

but employ the analytical framework provided by the latter author to present the main

results concerning them.
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2.5.2 Minimum discrepancy estimators

Consider again the moment conditions given in (2.1), EF [g (y, θ0)] = 0, where the

distribution F ≡ F (y) is unknown. Implicitly, by giving the same weight ( 1
n
) to

each observation, GMM uses the empirical distribution function Fn (y) ≡ 1
n

Pn
i=1

1 (yi ≤ y) as an estimate for F (y), where the indicator function 1 (yi ≤ y) is equal to

1 if yi ≤ y and 0 otherwise. The distribution Fn (y) is the nonparametric maximum

likelihood estimator of F (y), being the best estimator when no information about

the population of interest is available. However, because the moment conditions

(2.1) are assumed to be satisfied in the population, this information can be exploited

in order to obtain a more efficient estimator of F (y). Thus, the idea behind MD

estimation is the following: to estimate θ0, we may select, as suggested firstly by

Back and Brown (1993), the estimator θ̂ that minimizes the distance, relatively to

somemetric, between Fn (y) and a distribution function Fmd (y) satisfying the moment

conditions (2.1). The distribution Fmd (y) is, hence, the member of the class F (θ) of
all distribution functions that satisfy (2.1),

F (θ) ≡ {Fmd : EFmd
[g (y, θ0)] = 0} , (2.47)

that is closest to Fn (y). As we will see below, the MD estimators θ̂ and F̂md (y) are

calculated simultaneously.

In the selection of a particular probability measure in F (θ), different metrics for
the closeness between Fmd ≡ Fmd (y) and Fn ≡ Fn (y) may be used, which gives rise

to different estimation methods. LetM (Fn, Fmd) be the distance metric used in each

method. Then, the MD estimator θ̂ can be described as the solution to the program

min
θ
M (Fn, Fmd) subject to pmd

i ≥ 0,
nX
i=1

pmd
i = 1 and

nX
i=1

pmd
i g (yi, θ) = 0, (2.48)

where pmd
i ≡ dFmd (y) denotes the probability assigned to (functions of) the i-th

sample outcome, i = 1, ..., n. Note that the last restriction is an empirical measure
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counterpart to the moment conditions (2.1). Thus, all moment restrictions assumed to

hold in the population are imposed numerically by appropriately reweighting the data,

unlike the GMM context, where only k linear combinations of the sample moment

conditions are set equal to zero.

Several estimation methods based on the program (2.48), differing only in the

choice of metric M (·), have been proposed. The most common choices for M (·)
are particular cases of the Cressie-Read power-divergence statistic [Cressie and Read

(1984)].7 In the moment condition framework, the employment of this statistic as

discrepancy metric in (2.48) was suggested firstly by Imbens, Spady and Johnson

(1998). The Cressie-Read statistic measures the proximity between two distribution

functions F and G by

Mλ (F,G) =
1

λ (1 + λ)

nX
i=1

dF (yi)

(·
dF (yi)

dG (yi)

¸λ
− 1
)
, (2.49)

where λ is a fixed scalar. The most well known special cases of this measure are the

empirical likelihood (λ → 0), Kullback-Leibler (λ → −1), Euclidean (λ = −2) and
Hellinger (λ = −1

2
) discrepancies. We present next only the first two, which are the

subject of analysis throughout this dissertation and are the most widely applied in

the moment condition context. In fact, the study of the estimation methods that are

based on those two discrepancy metrics is now being introduced in textbooks, such

as that of Mittelhammer, Judge and Miller (2000), who dedicate two autonomous

chapters (12 and 13) to their analysis.

Empirical likelihood

The utilization of EL as a general statistical tool was first suggested by Owen (1988,

1990, 1991), who demonstrated that EL criterion-based statistics parallel many prop-

erties of parametric likelihood ratios; see also his recent survey textbook [Owen

7For a more general specification ofM (·), which includes the Cressie-Read family as a particular
case, see Corcoran (1998).
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(2001)]. Namely, he proved that an asymptotic chi-square distribution holds for the

EL ratio, which implies that this empirical version of the likelihood ratio can be used

in the same fashion as the parametric form, both for constructing confidence regions

and performing hypothesis tests. Later, Qin and Lawless (1994) and Imbens (1997)

extended these results to the case in which there is information available about the

parameters of interest in the form of a set of moment conditions. They showed how

to combine this information with the EL ratio in order to obtain consistent, asymp-

totically normal and efficient estimators for both the parameters and the underlying

distribution of moment condition models.

The EL estimator is obtained by solving the problem (2.48) using as distance

metric the EL ratio

ELR = −2
nX
i=1

ln
pmd
i

dFn
(2.50)

or, equivalently, the Cressie-Read statisticM0 (Fn, Fmd)

M0 (Fn, Fmd) =lim
λ→0

Mλ (Fn, Fmd) =
nX
i=1

dFn ln
dFn

pmd
i

=
nX
i=1

dFn ln
dFn

pmd
i

. (2.51)

In both cases, since dFn =
1
n
, the EL estimator may be defined as the solution to:

max
θ

nX
i=1

ln pmd
i subject to pmd

i ≥ 0,
nX
i=1

pmd
i = 1 and

nX
i=1

pmd
i g (yi, θ) = 0. (2.52)

The problem (2.52) can be solved by optimizing the Lagrangian function8

L ¡pmd
i , γ, φ, θ

¢
=

nX
i=1

ln pmd
i − γ

Ã
nX
i=1

pmd
i − 1

!
− nφ0

nX
i=1

pmd
i g (yi, θ) , (2.53)

where γ and the normalized s-vector φ are Lagrange multipliers. Apparently, there

are (n+ k + s+ 1) elements to be estimated but, as explained next, this difficulty

can be circumvented. Indeed, solving the first-order conditions from (2.53), it follows

8In order to simplify the computational estimation procedures, we do not impose explicitly the
restrictions pebi > 0, i = 1, ..., n. See section 2.5.5 for an explanation of the method adopted.
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that γ̂ = n and

p̂md
i =

h
1 + φ̂

0
g
³
yi, θ̂

´i−1
Pn

i=1

h
1 + φ̂

0
g
³
yi, θ̂

´i−1 = 1

n
h
1 + φ̂

0
g
³
yi, θ̂

´i , (2.54)

i = 1, ..., n. Using the latter result to concentrate out pmd
i from

Pn
i=1 ln p

md
i and

dropping irrelevant terms, we obtain the so-called EL criterion function,

Qel (θ, φ) = −
nX
i=1

ln [1 + φ0g (yi, θ)] , (2.55)

whose optimization produces the same estimates as in (2.53) but where only (k + s)

parameters need to be estimated, namely the k parameters of interest θ and the s-

vector of Lagrange multipliers φ. Note that each one of the elements of φ is associated

with a moment indicator. Hence, a value for φ statistically close to zero implies that

the moment conditions hold in the population.

Empirical information

Another distance metric widely used in the moment condition framework is the

Kullback-Leibler information criterion (KLIC). The KLIC measures the proximity

between the distribution functions Fn (y) and Fmd (y) by:

K (Fmd |Fn ) = EFmd

·
ln

pmd
i

dFn

¸
=

nX
i=1

pmd
i ln

pmd
i

dFn
= lim
λ→−1

Mλ (Fn, Fmd) =M−1 (Fn, Fmd) .

(2.56)

Note that this measure is not a distance in the usual sense because it is not symmetric,

that is, K (F |G) 6= K (G |F ). However, the KLIC can be used as a discrepancy

measure between two distributions because it is always nonnegative, being equal to

zero if and only if F = G.
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The estimator obtained by using (2.56) as metric in (2.48),

min
θ

nX
i=1

pmd
i ln pmd

i subject to pmd
i ≥ 0,

nX
i=1

pmd
i = 1 and

nX
i=1

pmd
i g (yi, θ) = 0, (2.57)

excluding irrelevant terms, is usually called the exponential tilting or EI estimator. It

was firstly proposed by Kitamura and Stutzer (1997) and Imbens, Spady and Johnson

(1998). Note that switching the roles of Fmd and Fn in (2.56) yields K (Fn |Fmd ),

which is equal to M0 (Fn, Fmd). Hence, in this sense, the EL estimator may also

be interpreted as minimizing a KLIC. As observed by Imbens, Spady and Johnson

(1998), the principal difference between EL and EI estimators is that the discrepancy

between Fn (y) and Fmd (y) is weighted by dFn (y) in the former case and by dFmd (y)

in the latter. For this reason, these authors advocate the use of the EI estimator,

as Fmd (y) is a more efficient estimator of the true distribution of the data, since it

takes into account of the information provided by the moment conditions. However,

as we will see later on, these estimators are asymptotically first-order equivalent and,

furthermore, the EL estimator seems to have more desirable higher-order properties.

The Lagrangian function for the constrained minimization of (2.57) is:

L ¡pmd
i , γ, φ, θ

¢
=

nX
i=1

pmd
i ln

¡
pmd
i

¢− γ

Ã
nX
i=1

pmd
i − 1

!
− φ0

nX
i=1

pmd
i g (yi, θ) . (2.58)

Again, the dimension of this optimization problem can be reduced. Solving the first-

order conditions from (2.58), it results that γ = 1− lnPn
i=1 e

φ̂
0
g(yi,θ̂) and

p̂md
i =

eφ̂
0
g(yi,θ̂)Pn

i=1 e
φ̂
0
g(yi,θ̂)

, (2.59)

i = 1, ..., n. Concentrating out pmd
i from

Pn
i=1 p

md
i ln

¡
pmd
i

¢
and omitting irrelevant

terms yields the EI objective function

Qei (θ, φ) =
nX
i=1

eφ
0g(yi,θ), (2.60)
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which is maximized and minimized with respect to θ and φ, respectively.

Before discussing the asymptotic properties of EL and EI estimators, we introduce

in the next sub-section the GEL method that enables us to deal with both estimators

simultaneously.

2.5.3 Generalized empirical likelihood estimation

Smith (1997) proposed alternative criteria for the estimation of moment condition

models which, among others, includes as particular cases both the EL and EI methods.

His approach is based on Chesher and Smith’s (1997) paper, which is concerned

with generating likelihood ratio test statistics for implied moment conditions in a

fully parametric likelihood context by augmenting the null parametric density for

the observations, dF (y; θ), by a multiplicative factor that carries a weighted sample

version of the information contained in the implied moment conditions, h [φ0g (y, θ)],

where φ is an s-vector of auxiliary parameters. Apart normalizing constants, the

augmented density is

r (θ, φ) = dF (y; θ) h [φ0g (y, θ)] , (2.61)

where the carrier function h (·) is chosen such that, when φ = 0, r (θ, φ) = dF (y; θ).

In the GMM context, however, there is no explicit knowledge of the underlying

density function for the data, the only parametric information being contained in

the moment conditions (2.1). Hence, Smith (1997) suggested using the empirical

distribution function Fn (y) and the consequent augmented function

r (θ, φ) = dFn (y) h [φ
0g (y, θ)] , (2.62)

from where we can form the semi-parametric quasi-likelihood function Q (θ, φ) =

−n lnn+Pn
i=1 lnh [φ

0g (yi, θ)]. Excluding irrelevant terms and dropping the operator

‘ln’ in order to simplify some of the expressions to be presented later, we obtain the
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equivalent criterion function

Qgel (θ, φ) =
nX
i=1

h [φ0g (yi, θ)] , (2.63)

optimization of which yields the so-called GEL estimators.9 As we can see imme-

diately, this formulation includes as special cases the criterion functions (2.55) and

(2.60): h (·) is equal to − ln [1 + φ0g (yi, θ)] for EL estimation and to eφ
0g(yi,θ) for the

EI method. Thus, from now on, we adopt the analytical framework provided by the

optimization of (2.63) to present in an integrated way the main results concerning EL

and EI estimators. Therefore, these results will be expressed in a very general form,

being valid not only for those two estimators but for any GEL estimator, unless we

explicitly mention that they were specialized for the EL and EI cases.

Before proceeding our discussion, we emphasize that GEL estimators are not al-

ways identical to MD estimators. For the chosen h (·) functions above, GEL estima-
tors are indeed equal to MD estimators based on the minimization of the EL and

Kullback-Leibler discrepancies. However, as discussed by Newey and Smith (2000),

this equivalence occurs only when γ, the Lagrange multiplier associated with the last

restriction of (2.48), can be factored out of the first-order conditions corresponding to

that problem. This is possible when h (·) is a member of the Cressie-Read family but,
for other cases, it appears impossible to do so and, hence, MD and GEL estimators

are different in general. Notice that, in those cases, the MD problem will have a much

larger dimension, with a (n+ k + s + 1)-vector of parameters to estimate.

9All derivations and results presented throughout this thesis assume this specification for the GEL
criterion function. Note that Smith (1997, 1998) uses the equivalent quasi-likelihood function above

defined and Newey and Smith (2000) the normalized function Q (θ, φ) =
Pn

i=1 h
h
∇h(0)
∇2h(0)φ

0g (yi, θ)
i
,

where ∇h (0) and ∇2h (0) are defined in sub-section 2.5.4. These different specifications must be
taken into account when comparing the expressions derived in this dissertation with those presented
in those papers.
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2.5.4 Asymptotic properties of GEL estimators

In this sub-section, we discuss the asymptotic properties of GEL estimators. Taking

the first derivatives of (2.63) with respect to θ and φ, we find that GEL estimators

satisfy the conditions
nX
i=1

πi
³
θ̂, φ̂

´ g
³
yi, θ̂

´
Gi

³
θ̂
´0
φ̂

 = 0, (2.64)

with Gi

³
θ̂
´
≡ ∂g(yi,θ̂)

∂θ0 and

πi
³
θ̂, φ̂
´
≡ ∇h

h
φ̂
0
g
³
yi, θ̂

´i
, (2.65)

where ∇h (v) ≡ ∂h(v)
∂v
. In EL estimation πi

³
θ̂, φ̂
´
= −

h
1 + φ̂

0
g
³
yi, θ̂

´i−1
and for the

EI method πi
³
θ̂, φ̂

´
= eφ̂

0
g(yi,θ̂). Below we denote the second and third derivatives of

h (v) by ∇2h (v) and ∇3h (v), respectively.
The estimating equations (2.64) form a just-identified system of (k + s) equations.

Thus, while the efficient GMM estimator needs a two-step procedure due to the

estimation of the optimal weighting matrix, thereby having its finite sample properties

depending on the first step, the GEL method does not require such an initial step. As

emphasized by Bera and Bilias (2000), this feature is expected to improve the small

sample properties of the estimation, since the GEL approach “offers an operational

way of optimally combining estimating equations”.10

Under suitable regularity conditions (similar to those necessary for the consis-

tency of the GMM estimator but excluding those concerning the weighting matrix),

it can be proved that the estimator θ̂ that satisfies the system of equations (2.64) is

a consistent estimator of θ0; see inter alia Newey and Smith (2000) for a rigorous as-

ymptotic analysis of the properties of GEL estimators. Moreover, expanding linearly

(2.64) around (θ, φ) = (θ0, 0) and using standard asymptotic theory, it can also be

10Note that, unlike GMM, the GEL method cannot be directly applied in the estimation of time
series models. Both Kitamura and Stutzer (1997) and Smith (1997) suggest the smoothing of the
observations before the optimization. See those papers for details.
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demonstrated that

√
n

 φ̂

θ̂ − θ0

 = −
 ∇h(0)

∇2h(0)V
−1M

ΣG0V −1

√ngn (θ0) +Op

³
n−

1
2

´
, (2.66)

where Σ was defined in (2.6),

M ≡ I −GΣG0V −1 (2.67)

is an (s× s) idempotent matrix, ∇h (0) = −1 and ∇2h (0) = 1 for EL estimators and
∇h (0) = ∇2h (0) = 1 in case of EI estimation. Thus, it follows that GEL estimators
are asymptotically normal distributed,

√
n

 φ̂

θ̂ − θ0

 d→ N

 0

0

 ,

 h
∇h(0)
∇2h(0)

i2
M 0V −1M 0

0 Σ

 , (2.68)

and, hence, the GEL estimator of the parameters of interest is first-order equivalent

to the efficient GMM estimator.

After obtaining θ̂ and φ̂, using the computational procedures discussed in the

next sub-section, the implied probabilities referred to in Back and Brown (1993),

previously denoted by pmd
i and from now on by pgeli , i = 1, ..., n, may be estimated

using expressions (2.54) for EL and (2.59) for EI estimators. This gives rise to the

same estimates as calculating

p̂geli ≡ pgeli

³
θ̂, φ̂

´
=

πi

³
θ̂, φ̂
´

Pn
i=1 πi

³
θ̂, φ̂
´ . (2.69)

We can also estimate the distribution F (y) in (2.1) by

F̂gel (y) ≡ Fgel

³
y, θ̂, φ̂

´
=

nX
i=1

p̂geli 1 (yi ≤ y) , (2.70)

which is a more efficient estimator than Fn (y) as it takes into account the information
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provided by the moment conditions (2.1). Indeed, assuming that

√
n [Fn (y)− F (y)]

d→ N
¡
0, σ2

¢
, (2.71)

it can be proved that [see Qin and Lawless (1994) and Smith (2000)]

√
n
h
F̂gel (y)− F (y)

i
d→ N

¡
0, ω2

¢
, (2.72)

where ω2 = σ2 − B0M 0V −1MB and B = EF [1 (yi ≤ y) g (yi, θ0)]. As ω2 < σ2 in

all cases, clearly the GEL distribution F̂gel (y) is more efficient than Fn (y). Thus,

the GEL distribution F̂gel (y) can be used as alternative to Fn (y) to obtain consis-

tent estimators of statistics such as V and G, by weighting each observation i by

the estimated probability p̂geli , i = 1, ..., n. Note that when the number of moment

conditions is identical to the number of parameters to be estimated, the value of θ

that optimizes (2.63) is the same that solves
Pn

i=1 g
³
yi, θ̂

´
= 0. In this case φ̂ = 0

and, hence, p̂geli = 1
n
, ∀i = 1, ..., n, and F̂gel (y) = Fn (y).

Similarly to the CU-GMM estimator, Newey and Smith (2000) derived asymptotic

expressions for the bias of GEL estimators:

bgel = −1
n
Ha+

1

n
E [HGiHgi] +

1

n
(1− η)HE [gig

0
iPgi] , (2.73)

where η = ∇h(0)·∇3h(0)
2[∇2h(0)]2

is a scalar. This expression is very similar to that presented

for the CU-GMM estimator in (2.45), apart from the weight (1− η). Hence, like

the CU-GMM estimator, GEL estimators have one less source of bias than the two-

step GMM estimator. Furthermore, for the EL estimator the last term of (2.73)

disappears, as η = 1; for EI estimation η = 1
2
. Thus, following the interpretation of

the higher-order bias terms in section 2.4, the EL estimator removes the bias due to

estimation of the weighting matrix in the optimal linear combination of moments. Its

bias is then the same as for the (infeasible) GMM estimator based on the optimal

linear combination of moment conditions. On the other hand, under zero expectation
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of third powers of the moment indicators, CU-GMM and GEL estimators are higher-

order asymptotically equivalent.

Unlike GMM, there are very few papers investigating the finite sample proper-

ties of GEL estimators. Although those studies show promising results, much more

research is still needed which is, therefore, one of the main aims of this thesis. As

we will see in the next chapter, where we assess in two different settings the small

sample bias of GEL estimators, the higher-order bias presented above is very useful

for explaining the results obtained.

2.5.5 Computational issues

We have seen throughout this section various advantages of GEL estimation over

GMM. We now discuss what appears to be the only disadvantage of GEL estima-

tors: their practical computation. Indeed, two main problems arise when we try to

estimate moment condition models employing GEL methods. Firstly, the number of

parameters to be estimated is at least twice larger: (s+ k) versus only k. Hence, GEL

estimation is more time consuming. Secondly, and this is the main issue, the GEL

criterion (2.63) is a saddle function. Therefore, either optimizing it directly or solving

the system of equations (2.64) is unattractive from a computational standpoint.

One possibility is first minimize (2.63) with respect to φ for given θ,

φ̂ (θ) ≡ arg min
φ

Qgel (θ, φ) , (2.74)

which yields the first set of conditions in (2.64), and then maximize Qgel

h
θ, φ̂ (θ)

i
with respect to θ,

θ̂ ≡ arg max
θ
min
φ

Qgel (θ, φ) , (2.75)

which produces the second set of first-order conditions in (2.64). Finally, φ is esti-

mated by φ̂ = φ̂
³
θ̂
´
. However, in our Monte Carlo experiments this procedure did

not prove successful. The minimization with respect to φ was very quick and easy
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but the second step failed to converge to a solution almost all the time.

Following Imbens, Spady and Johnson (1998), in our simulation we employed

their penalty approach, which worked very well. Thus, instead of directly optimizing

(2.63), we opted for solving the program

max
θ,φ

Qgel (θ, φ)− 0.5 · A ·∇φQgel (θ, φ)
0 ·W−1 ·∇φQgel (θ, φ) , (2.76)

where A is a large scalar and W an arbitrary positive definite matrix of dimension s.

For any positive definite matrix W and for finite but large enough A, the solutions

to (2.63) and (2.76) are numerically identical. As in Imbens, Spady and Johnson, we

choose

W = ∇φφQgel

¡
θ̄, φ̄

¢−∇φQgel

¡
θ̄, φ̄
¢∇φQgel

¡
θ̄, φ̄
¢0
, (2.77)

where
¡
θ̄, φ̄

¢
are some initial estimates of (θ, φ). In all Monte Carlo simulation studies

undertaken throughout this dissertation θ̄ is the two-step GMM estimator θ̂ and φ̄

the estimates resulting from the optimization (2.74), with θ replaced by θ̂. However,

these choices were inessential for the results obtained, as the solution to (2.76) is

insensitive to the estimates
¡
θ̄, φ̄

¢
utilized in the evaluation of W .

After calculating the GEL estimators
³
θ̂, φ̂
´
as described above, it is then neces-

sary to check whether the resulting implied probabilities p̂geli ≡ pgeli

³
θ̂, φ̂
´
, i = 1, ..., n,

calculated as in (2.69), are non-negative, since we are not imposing this restriction

during the optimization procedure. If p̂geli > 0, ∀i = 1, ..., n, we accept
³
θ̂, φ̂
´
as GEL

estimators; however, in no cases did we find these constraints to be a problem.

2.5.6 Specification Tests

In this section, we discuss tests of overidentifying moment conditions, tests for addi-

tional moment conditions and tests of parametric restrictions for models estimated

by GEL methods. For a detailed derivation of most of those tests see Smith (2000).

Non-nested tests will only be discussed, and some alternatives proposed, in chapter

5.
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Tests of overidentifying moment conditions

In the GEL framework there are several ways to assess the validity of the moment

conditions assumed to hold in the population. Indeed, as a sample version of each

moment condition is associated with a Lagrange multiplier, the validity of those

restrictions can be analyzed by testing the hypothesis H0 : φ = 0. Hence, the three

classical tests may be employed.

Qin and Lawless (1994), for EL estimators, and Kitamura and Stutzer (1997),

for EI estimators, proposed distance metric statistics11 for testing overidentifying

restrictions,

DMn ≡ 2 ∇
2h (0)

[∇h (0)]2
h
Qgel

³
θ̃, 0
´
−Qgel

³
θ̂, φ̂

´i
, (2.78)

where
³
θ̂, φ̂

´
are the GEL estimators resulting from the optimization of (2.63) and³

θ̃, 0
´
are the GEL estimators under the null hypothesis. Note that θ̃ is not identified

because imposing φ = 0 prevents the use of the information contained in the moment

conditions. However, the non-identification of θ̃ is not problematic since we know

from (2.63) that, when φ = 0, Qgel

³
θ̃, 0
´
is equal to

Pn
i=1 h (0), which is 0 and n for

the EL and EI methods, respectively. Therefore, to calculate the statistic (2.78), only

the estimation of the unconstrained model is required. Under the null hypothesis, the

statistic DM has an asymptotic chi-square distribution with s−k degrees of freedom.
In the GEL context, Smith (1997) proposed testing H0 employing Wald or score

tests. The Wald test statistic for H0 is

Wn ≡ n

·∇2h (0)
∇h (0)

¸2
φ̂
0
V̂nφ̂, (2.79)

and the score test statistic is

LMn ≡ nĝ0nV̂
−1
n ĝn. (2.80)

11Note that only in the case of EL does this statistic correspond to a likelihood ratio. Therefore,
we adopted the distance metric term, as it is valid for both EL and EI estimation.
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Note that the latter statistic has exactly the same expression as the J test presented

in (2.14) and that it is not evaluated under the null hypothesis. Again, the problem is

the non-identification of θ̃ under H0. Thus, Smith (1997) suggested the replacement

of θ̃ by θ̂, which may be regarded as a least favorable choice of estimator for θ0. Under

the null hypothesis, both statistics have a limiting chi-squared distribution with s−k

degrees of freedom.

In chapter 4, we propose a new class of test statistics for overidentifying moment

conditions appropriate for models estimated by GEL methods.

Tests for additional moment conditions

Both the J2 and CM tests described for GMM (see expressions 2.15 and 2.16) may also

be utilized to test the validity of further moment conditions in the GEL framework.

Additionally, following Smith (1997), we may employ classical tests as well. To this

end, we need to incorporate a sample version of the new moment conditions in the

GEL criterion (2.63),

Q∗gel (θ, φ, ψ) ≡
nX
i=1

h [φ0g1 (yi, θ) + ψ0g2 (yi, θ)] , (2.81)

where g1 (·) represents the original s1 moment conditions, g2 (·) is the s2-vector of

additional moment restrictions and ψ is the corresponding s2-vector of Lagrange mul-

tipliers.

The parameters contained in (2.81) may be estimated in a similar manner to that

described above for standard GEL estimators. Denote such estimators by
³
θ̃, φ̃, ψ̃

´
.

It can be shown that those estimators satisfy the set of first-order conditions

nX
i=1

π∗i
³
θ̃, φ̃, ψ̃

´
g1

³
yi, θ̃

´
g2

³
yi, θ̃

´
G1i

³
θ̃
´0
φ̃+G2i

³
θ̃
´0
ψ̃

 = 0, (2.82)
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where π∗i
³
θ̃, φ̃, ψ̃

´
≡ ∇h

h
φ̃
0
g1
³
yi, θ̃

´
+ ψ̃

0
g2
³
yi, θ̃

´i
and Gji

³
θ̃
´
≡ ∂gj(yi,θ̃)

∂θ0 , j = 1, 2,

i = 1, ..., n.

In this setting, we may test EF [g2 (y, θ)] = 0 by assessing the parametric hypoth-

esis H0 : ψ = 0. Noting that Q∗gel
³
θ̂, φ̂, 0

´
= Qgel

³
θ̂, φ̂
´
, a distance metric statistic

for this hypothesis is

DMn ≡ 2 ∇
2h (0)

[∇h (0)]2
h
Qgel

³
θ̂, φ̂

´
−Q∗gel

³
θ̃, φ̃, ψ̃

´i
, (2.83)

which has a limiting chi-squared distribution with s2 degrees of freedom under the

null hypothesis. This statistic has a similar interpretation to that of the J2 statistic,

as both statistics correspond to the difference between statistics for testing all the mo-

ment conditions, J and DMn ≡ 2 ∇
2h(0)

[∇h(0)]2
h
Q∗gel

³
θ̆, 0, 0

´
−Q∗gel

³
θ̃, φ̃, ψ̃

´i
, and for as-

sessing only the first s1 conditions, J1 andDMn ≡ 2 ∇
2h(0)

[∇h(0)]2
h
Qgel

³
θ̆, 0
´
−Qgel

³
θ̂, φ̂

´i
.

A Wald test statistic for H0 : ψ = 0 may be defined as

Wn ≡ n

·∇2h (0)
∇h (0)

¸2
ψ̃
0 ³
S 0ψM̃

0
nṼ

−1
n M̃nSψ

´−1
ψ̃, (2.84)

where S 0ψ =
h
0 Is2

i
is a (s2 × s) selection matrix and M̃n is a consistent estimator

of the matrix M defined in (2.67). This statistic has also an asymptotic chi-squared

distribution with s2 degrees of freedom under the null hypothesis.

Finally, an asymptotic equivalent score statistic for testing H0 is

LMn ≡ 1

n

1

[∇h (0)]2
nX
i=1

πi

³
θ̂, φ̂
´
g02
³
yi, θ̂

´
S 0ψM̂

0
nV̂

−1
n M̂nSψ

nX
i=1

πi

³
θ̂, φ̂
´
g02
³
yi, θ̂

´
.

(2.85)

Tests of parametric restrictions

Test statistics to assess parametric restrictions in models estimated by GEL methods

were presented in Qin and Lawless (1995), Kitamura and Stutzer (1997) and Smith

(1997, 2000). As before (see section 2.3.4, which concerned this kind of tests in the
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GMM framework), consider the null hypothesis H0 : r (θ0) = 0, where r (·) is a known
continuously differentiable q-vector, q being the number of restrictions, and denote
∂r(θ)
∂θ0 by R (θ), a (q × k) matrix of rank q. Following Smith (1997), the constrained

model incorporating H0 may be estimated by optimizing the modified GEL function

Q∗gel (θ, φ, ψ) = h [φ0g (yi, θ) + ψ0r (θ)] . (2.86)

The resultant estimators,
³
θ̃, φ̃, ψ̃

´
, satisfy the first-order conditions

nX
i=1

π∗i
³
θ̃, φ̃, ψ̃

´
g
³
yi, θ̃

´
r
³
θ̃
´

Gi

³
θ̃
´0
φ̃+R

³
θ̃
´0
ψ̃

 = 0, (2.87)

where π∗i
³
θ̃, φ̃, ψ̃

´
≡ ∇h

h
φ̃
0
g
³
yi, θ̃

´
+ ψ̃

0
r
³
θ̃
´i
.

Using standard asymptotic theory, it is easy to derive the limiting distribution

of
³
θ̃, φ̃, ψ̃

´
and, then, deduce expressions for the classical tests to assess H0. As

demonstrated by Smith (1997),

√
n


φ̃

ψ̃

θ̃ − θ0

 = −


∇h(0)
∇2h(0) (V

−1 − V −1GΣPG0V −1)

− ∇h(0)
∇2h(0) (RΣR

0)−1RΣG0V −1

ΣPG0V −1

√ngn (θ0) +Op

³
n−

1
2

´
,

(2.88)

and, hence,

√
n


φ̃

ψ̃

θ̃ − θ0

 d→ N



0

0

0

 ,

h
∇h(0)
∇2h(0)

i2
(V −1 − V −1GΣPG0V −1)

−
h
∇h(0)
∇2h(0)

i2
(RΣR0)−1RΣG0V −1

0

−
h
∇h(0)
∇2h(0)

i2
V −1GΣR0 (RΣR0)−1 0h

∇h(0)
∇2h(0)

i2
(RΣR0)−1 0

0 ΣP


 , (2.89)
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where R ≡ R (θ0) and P = I − R0 (RΣR0)−1RΣ is an (k × k) idempotent matrix of

rank q. From (2.89), the following score statistic for testing H0 can be derived:

LMn ≡ n

·∇2h (0)
∇h (0)

¸2
ψ̃
0
R̃Σ̃nR̃

0ψ̃. (2.90)

This expression has not been discussed previously in this chapter but it is just an-

other form of (2.19), the score statistic for testing parametric restrictions in the GMM

framework. Likewise, it is straightforward to see that the Wald statistic (2.18) pre-

sented previously for GMM estimators is also appropriate for GEL estimators. As for

the DM statistic for H0, its expression is now

DMn ≡ 2 ∇
2h (0)

[∇h (0)]2
h
Qgel

³
θ̂, φ̂
´
−Qgel

³
θ̃, φ̃
´i
, (2.91)

since Q∗gel
³
θ̂, φ̂, 0

´
= Qgel

³
θ̂, φ̂

´
and Q∗gel

³
θ̃, φ̃, ψ̃

´
= Qgel

³
θ̃, φ̃
´
. All test statistics

have an asymptotic chi-squared distribution with q degrees of freedom.

Smith (2000) derived also Hausman and minimum chi-squared tests, which can be

based on the contrasts
√
n
³
θ̂ − θ̃

´
or
√
n
³
φ̂− φ̃

´
. Using the first contrast, as one

could expect from the comments above, identical statistics to those found for GMM

estimators are obtained. Indeed, from (2.66) and (2.88), it follows that

√
n
³
θ̂ − θ̃

´
= −Σ (I − P )G0V −1

√
ngn (θ0) +Op

³
n−

1
2

´
(2.92)

and, hence,
√
n
³
θ̂ − θ̃

´
d→ N [0,Σ (I − P )] , (2.93)

since Σ (I − P )Σ−1 (I − P )0Σ = Σ (I − P ). Noting that Σ (I − P ) = var
³√

nθ̂
´
−

var
³√

nθ̃
´
and that θ̂ is a consistent estimator under both the alternatives, while θ̃

is consistent only under H0, in which case it is more efficient than θ̂, then n
³
θ̂ − θ̃

´0
[Σ (I − P )]−

³
θ̂ − θ̃

´
is a Hausman test statistic. A generalized inverse forΣ (I − P ) is

R0 (RΣR0)−1R, so the statistic Hn (2.22) is obtained. Another generalized inverse for
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Σ (I − P ) is Σ−1. As this is the inverse of the variance of
√
n
³
θ̂ − θ0

´
, its utilization

gives rise to the minimum chi-squared statistic MCn (2.21).

In the case of the second contrast, it follows from (2.66) and (2.88) that

√
n
³
φ̂− φ̃

´
=
∇h (0)
∇2h (0)V

−1GΣ (I − P )G0V −1
√
ngn (θ0) +Op

³
n−

1
2

´
(2.94)

and, hence,

√
n
³
φ̂− φ̃

´
d→ N

(
0,

· ∇h (0)
∇2h (0)

¸2
V −1GΣ (I − P )G0V −1

)
. (2.95)

Again,
h
∇h(0)
∇2h(0)

i2
V −1GΣ (I − P )G0V −1 = var

³√
nφ̃
´
−var

³√
nφ̂
´
. Therefore, using

GΣG0 as a generalized inverse for V −1GΣ (I − P )G0V −1, we obtain the Hausman test

statistic

Hφ
n ≡ n

·∇2h (0)
∇h (0)

¸2 ³
φ̂− φ̃

´0
GΣG0

³
φ̂− φ̃

´
. (2.96)

Using the alternative generalized inverse V , we obtain the minimum chi-squared test

statistic

MCφ
n ≡ n

·∇2h (0)
∇h (0)

¸2 ³
φ̂− φ̃

´0
V
³
φ̂− φ̃

´
, (2.97)

as V is also a generalized inverse for the variance of
√
nφ̂. Both (2.96) and (2.97) have

a limiting chi-square distribution with rk (P ) = q degrees of freedom. Estimators for

the matrices G and V may be evaluated at either θ̂ or θ̃.

In chapter 4, we propose a Pearson-type statistic appropriate for testing paramet-

ric restrictions in models estimated by GEL methods.
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Chapter 3

GMM, CU-GMM, EI, EL and

bootstrap GMM estimators: small

sample evidence

3.1 Introduction

The finite sample properties of the efficient two-step GMM estimator have been the

subject of intensive investigation recently. As emphasized in the previous chapter, a

number of Monte Carlo simulation studies have concluded that the performance of

this estimator and related statistics in small samples differs significantly from that

predicted by large sample theory (see, for example, the July 1996 special issue of

the Journal of Business & Economic Statistics or the other references cited in section

2.3.6). This problem has motivated the search for alternative efficient estimators with

better small sample properties, which may be divided into two main classes. The first

class contains alternative procedures which are asymptotically first-order equivalent

to efficient two-step GMM estimation such as CU-GMM, EI and EL. On the other

hand, the possibility of improving the finite sample properties of the two-step GMM

estimator using bootstrap techniques was addressed by both Hall and Horowitz (1996)

and Brown, Newey andMay (1997), whose proposals form the second set of alternative
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methods.

While there is substantial evidence of the poor small sample properties of the two-

step GMM estimator, there are very few studies examining the properties of the other

methods applicable in the moment condition framework. Concentrating on studies

investigating the bias of parameter estimators for moment condition models, the main

focus of this chapter, Hansen, Heaton and Yaron (1996) analyzed the finite sample

performance of their CU-GMM estimator, Imbens (1997) examined the behaviour of

EL estimators, and Horowitz (1998) considered Hall and Horowitz’s (1996) bootstrap

GMM estimators. To the best of our knowledge, no other papers have examined this

issue. Thus, although all these studies reported promising results, further investiga-

tion is still needed in order to assess the ability of those and other alternative methods

to produce improved estimators for the parameters of moment condition models.

In this chapter we undertake two simulation studies examining the finite sample

properties of three methods that are asymptotically first-order equivalent to GMM

and six alternative bootstrap techniques in two different settings for which there is

previous evidence of the poor performance of efficient GMM estimators. With regard

to the former methods, we investigate the small sample bias of CU-GMM, EL and EI

estimators. All these methods have already been described in the previous chapter

(see sections 2.4 and 2.5). As will be seen, the theoretical findings by Newey and

Smith (2000), who analysed the higher-order properties of these estimators, will be

crucial in the justification of the results obtained in the Monte Carlo experiments.

In our consideration of the bootstrap methods, we consider three techniques al-

ready applied in the moment condition framework and suggest three new ones. The

most commonly applied bootstrap, the so-called nonparametric (NP) bootstrap, is

expected to fail in producing substantial reductions in the bias of GMM estimators.

Indeed, it attempts to approximate the distribution of the data making use of the fact

that the empirical distribution function is similar to the true data generating process.

However, in the overidentified moment condition framework, the moment restrictions

are not satisfied in the sample, so the NP bootstrap does not take them into account
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and, hence, does not mimic correctly the underlying distribution of the data. Hall

and Horowitz (1996) and Brown, Newey and May (1997) proposed two alternative

bootstrap methods that deal with this issue. The former authors suggested the recen-

tered nonparametric (RNP) bootstrap, which still employs the empirical distribution

function to resample the data but recenters the moment indicators at their sample

values. Alternatively, Brown, Newey and May (1997) proposed what we call here the

first-stage GEL (FSGEL) bootstrap, which generates the bootstrap samples using a

distribution that imposes the moment conditions on the original sample.

All bootstrap methods that we propose in this chapter are based on the GEL

distribution, the main motivation for this choice being the fact that this is a more

efficient estimator of the distribution of the data than the two used by the existing

methods (see section 2.5.4). We first consider direct application of the GEL bootstrap.

However, it suffers from the same problems as the NP bootstrap because, while it

does impose the moment conditions on the sample when considering GEL estimators,

when applied to correct the bias of GMM estimators only asymptotically are those

restrictions satisfied. Thus, we suggest two modified versions of the GEL bootstrap:

the recentered GEL (RGEL) bootstrap, which recenters the moment indicators in an

analogous manner to the RNP bootstrap; and the post-hoc GEL (PHGEL) bootstrap,

which introduces a post-sample adjustment in the calculation of the bias of the GMM

estimator.

This chapter is organized as follows. Section 3.2 discusses the general principles

of bootstrap methods, showing how to use them to eliminate the bias of parameter

estimators. Section 3.3 describes the major characteristics of the various bootstrap

methods applicable in the GMM framework. A first Monte Carlo study, for covariance

structure models, is presented in section 3.4. Section 3.5 considers another Monte

Carlo study, for instrumental variable models. Section 3.6 concludes.
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3.2 Bias-corrected GMM estimators

The progress in computer technology in the last two decades stimulated the develop-

ment of computer-intensive statistical methods. One of the methods that benefited

from the increasing availability of inexpensive, powerful and fast computing was the

bootstrap, introduced by Efron (1979). The main appeal of this technique is its sim-

plicity, the theoretical derivations required in traditional methods (such as obtaining

derivatives, the form of the asymptotic variance, calculating explicit expressions for

the bias of an estimator, etc.) being replaced by repeatedly resampling the data and

making inference from the resamples. As example of its increasing popularity several

books dedicated to bootstrap techniques have been published in the last ten years,

for example Hall (1992), Efron and Tibshirani (1993), Shao and Tu (1995), Davison

and Hinkley (1997) and Chernick (1999).

Basically, the bootstrap is a method for estimating the distribution of an estimator

or test statistic by resampling the original data set, which is treated as though it

was the population. If the data were, in fact, the population, then the bias of an

estimator or test statistic could be computed with arbitrary accuracy by repeatedly

resampling the data. Since the data are not the population, the bootstrap provides

only an approximation to the distribution of statistics that, however, turns out to

be often more accurate than the approximation obtained from first-order asymptotic

distribution theory. See, for instance, Hall and Horowitz (1996), Horowitz (1998)

and Ziliak (1997), for examples where the bootstrap is shown to improve significantly

inference from models estimated by GMM.

Assume that a random sample S of size n is collected from a population whose

(unknown) cumulative distribution function is F (y). Bootstrap samples are generated

by randomly sampling the original data with replacement. This resampling is based

on a certain cumulative distribution function, F ∗ (y), which assigns each observation

a given probability of being sampled. For each bootstrap sample S∗j , j = 1, ..., B, we

calculate a statistic of interest (e.g. a parameter estimator, a standard deviation, a
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test statistic), obtaining thus B observations of those statistics from which measures

of interest can be computed (e.g. bias, variability of estimators, improved critical

values for tests). Here, we focus exclusively on the utilization of bootstrap techniques

to obtain bias-corrected GMM estimators.

Consider again the moment conditions

EF [g (y, θ0)] = 0. (3.1)

As discussed in the previous chapter (see section 2.3), the efficient GMM estimator

θ̂ is obtained from the minimization of the optimal quadratic form of the sample

moment indicators,

θ̂ ≡ arg min
θ

gn (θ) V̂
−1
n gn (θ) , (3.2)

its bias being given by:

b (θ0) = EF

³
θ̂ − θ0

´
. (3.3)

If we are able to estimate b ≡ b (θ0), we can estimate a bias-corrected GMM estimator

θ̃ by calculating

θ̃ = θ̂ − b̂, (3.4)

where b̂ denotes the estimated bias. Instead of deriving an analytic expression for the

bias function1 and then evaluating it at the GMM estimator [or using it to correct

the first-order conditions defining GMM estimators - see Firth (1993)], we can simply

use the bootstrap and estimate the bias (3.3) as follows:

1. Compute θ̂ accordingly to (3.2) using the original data;

2. Generate B bootstrap samples S∗j , j = 1, ..., B, of size n by sampling the orig-

inal data randomly with replacement accordingly with the chosen distribution

function F ∗ (y):

S∗j =
©
y∗j1, ..., y

∗
jn

ª
,

1Newey and Smith (2000) provide such bias functions for both GMM and GEL estimators, as
referred to in the previous chapter.
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where y∗ji, i = 1, ..., n, denotes the observations included in the bootstrap sample

S∗j ;

3. For each bootstrap sample calculate the GMM estimator θ̂
∗
j :

θ̂
∗
j ≡ arg min

θ
g∗jn (θ) V̂

∗−1
jn g∗jn (θ) ,

j = 1, ...B, where g∗jn (θ) =
1
n

Pn
i=1 g

¡
y∗ji, θ

¢
and V̂ ∗−1jn is obtained using estima-

tors from the bootstrap sample S∗j ;

4. Average the B GMM estimators calculated in the preceding step:

θ̄
∗
=
1

B

BX
j=1

θ̂
∗
j ;

5. Estimate the bias of the GMM estimator θ̂ by calculating:

b̂ = θ̄
∗ − θ̂. (3.5)

Subtracting the bias (3.3) from the GMM estimator θ̂, it is then possible to obtain

the bias-corrected GMM estimator defined in (3.4):

θ̃ = 2θ̂ − θ̄
∗. (3.6)

This general procedure to obtain bootstrap estimators may be implemented in

several distinct forms, as discussed in the next section.

3.3 Alternative bootstrap GMM estimators

In this section we discuss six alternative procedures for obtaining bootstrap GMM

estimators, two of which are expected to fail in reducing significantly the bias of the
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GMM estimator. We discuss first the three existing methods and then present our

three proposals.

3.3.1 Nonparametric bootstrap

Until now nothing was said about the choice of the distribution F ∗ (y) from which

bootstrap samples are generated. In the most commonly applied bootstrap, the so-

called NP bootstrap, the resampling is based on the empirical distribution func-

tion Fn (y) =
1
n

Pn
i=1 1 (yi ≤ y), so each observation has equal probability 1

n
of being

drawn. Denote by p∗ ≡ dF ∗ (y) ≡ (p∗1, ..., p
∗
n) the n-dimensional resampling vector

that assigns each observation a given probability of being sampled:

p∗ =
µ
1

n
, ...,

1

n

¶
. (3.7)

Direct application of the NP bootstrap in the GMM framework seems to be unsat-

isfactory in many cases, though. When the model is overidentified, while the popula-

tion moment conditions EF [g (y, θ)] = 0 are satisfied at θ = θ0, the estimated sample

moments are typically not zero, that is, there is no θ such that EFn [g (y, θ)] = 0

is met, except in very special cases. Therefore, the empirical distribution function

may be a poor approximation to the true underlying distribution of the data and,

hence, the NP bootstrap may not yield a substantial improvement over first-order

asymptotic theory in standard applications of GMM.

This problem is particularly serious for the J test of overidentifying moment con-

ditions. As Brown, Newey and May (1997) argued, bootstrapping from the empirical

distribution will produce, even asymptotically, a wrong size for that test. This failure

results from the fact that, instead of imposing the null hypothesis (3.1), the empirical

distribution corresponds to an alternative hypothesis where the moment conditions

(3.1) do not hold. An empirical example using NP bootstrap GMM estimators by

Ziliak (1997) confirmed that, in fact, inference based on the NP bootstrap J test is

severely distorted. In chapter 4 we present additional empirical evidence on the poor
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performance of this test in finite samples.

On the other hand, Hahn (1996) demonstrated theoretically that the NP bootstrap

distribution of any GMM estimator converges weakly to the limit distribution of

the estimator. According to this author, the arguments against the use of the NP

bootstrap in the moment condition context apply to the J test, not to the GMM

estimator. Hence, we decided to include the analysis of the bias of the NP bootstrap

GMM estimator in the two Monte Carlo experiments that we conduct in sections 3.4

and 3.5, investigating whether or not it behaves better than simple GMM estimators

in finite samples and how it performs comparatively with the more refined bootstrap

methods discussed below.

3.3.2 Recentered nonparametric bootstrap

As discussed above, the doubts concerning the efficacy of applying the NP bootstrap in

the GMM framework arise from the fact that there is no θ such that EFn [g (y, θ)] = 0

is met. Thus, the key factor to successful application of bootstrap techniques in

the GMM context seems to require the satisfaction of a bootstrap version of the

population moment conditions. There are two alternative ways to deal with this

question. One implies looking for a different resampling distribution, say F1 (y), such

that EF1 [g (y, θ)] = 0 for θ = θ̂2s, the two-step GMM estimator. This hypothesis will

be discussed in the next sub-section. The other alternative was proposed by Hall and

Horowitz (1996), who suggested keeping Fn (y) as the resampling distribution and,

instead, recentering the moment indicators as follows:

EFn

£
gc
¡
y∗j , θ

¢¤
= 0, (3.8)

where

gc
¡
y∗j , θ

¢
= g

¡
y∗j , θ

¢− EFn

h
g
³
y, θ̂2s

´i
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= g
¡
y∗j , θ

¢− 1
n

nX
i=1

g
³
yi, θ̂2s

´
, (3.9)

j = 1, ..., B. Now, clearly, the expectation of the modified moment indicators gc (·)
with respect to the empirical distribution is zero.

The implementation of this RNP bootstrap method follows very closely the general

procedures described in sub-section 3.2. The only difference is in the way bootstrap

GMM estimators are calculated in step 3, their estimation now being based on the

recentered moment indicators (3.9). If we evaluate the required weighting matrix

at a non-efficient GMM estimator, corrected moment indicators constructed in an

analogous way to (3.9) must be used in its calculation.

Monte Carlo evidence reported by Horowitz (1998) indicates that the RNP boot-

strap attenuates the bias of GMM estimators, although it has not been completely

eliminated in all the cases considered by him. In section 3.4, in our first Monte Carlo

study, we consider a similar experimental design in order to assess the performance

of this method relative to the other bootstrap techniques discussed in this chapter.

3.3.3 First-stage GEL bootstrap

Another modification to the NP bootstrap was suggested by Brown, Newey and May

(1997). Instead of using the NP distribution to resample the original data, they

propose the employment of a distribution that, by assigning to each observation a

different weight, imposes the moment conditions, evaluated at the two-step GMM

estimator θ̂2s, on the sample. Such a distribution is obtained from the first step of

one of the estimation procedures described in section 2.5.5 appropriate for the calcu-

lation of GEL estimators, so we call it here the first-stage GEL (FSGEL) cumulative

distribution.

The procedures necessary to estimate this distribution are the following. First, the

GEL objective function Qgel (θ, φ), given in (2.63), is minimized only with respect to

the Lagrange multipliers φ, keeping θ = θ̂2s. Then, the resulting estimators, φ̂fsgel, are

60



used to obtain the FSGEL distribution Ffsgel (y) =
Pn

i=1 p̂
fsgel
i 1 (yi ≤ y), where the

probabilities p̂fsgeli ≡ pgeli

³
θ̂2s, φ̂fsgel

´
are calculated as in (2.69). Since

Pn
i=1 p̂

fsgel
i

g
³
yi, θ̂2s

´
= 0 is the first-order condition of the FSGEL optimization problem, it

follows that the moment conditions are in fact imposed on the sample.

The FSGEL bootstrap, based on the resampling vector

p∗ =
³
p̂fsgel1 , ..., p̂fsgeln

´
, (3.10)

is asymptotically efficient relative to any bootstrap based on the empirical distribution

function, as shown by Brown, Newey and May (1997). They reported promising

Monte Carlo results concerning the J test of overidentifying moment conditions, which

showed that the FSGEL bootstrap provides a good improvement over both asymptotic

first-order theory and the NP bootstrap in this case. Similar empirical evidence is

presented by Ziliak (1997). The capacity of the FSGEL bootstrap to produce bias-

corrected GMM estimators is investigated later in this chapter.

3.3.4 GEL bootstrap

In the previous methods, the bootstrap samples are drawn accordingly to the empirical

distribution Fn (y) or the FSGEL distribution Ffsgel (y). However, if a more efficient

estimator of F (y) is available, in principle bootstrap inference can be improved. For

example, if the true distribution of the data was known up to the parameter θ, say

Fθ (y), the so-called parametric bootstrap, where resampling is based on Fθ̂ (y), could

be applied. This is not possible in the GMM framework without making additional

assumptions. Nevertheless, in the construction of the resampling vector p∗, the special

nature of the data can be taken into account, namely the information provided by the

moment conditions, which is what the FSGEL bootstrap partially achieves. Thus, all

bootstrap methods that we propose in this and the next two sub-sections are based

on the GEL distribution Fgel (y) =
Pn

i=1 p̂
gel
i 1 (yi ≤ y), where p̂geli ≡ pgeli

³
θ̂gel, φ̂gel

´
denotes the estimated GEL implied probabilities and

³
θ̂gel, φ̂gel

´
are GEL estimators;
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see section 2.5.4.

This GEL bootstrap, based on the resampling vector

p∗ =
³
p̂gel1 , ..., p̂geln

´
, (3.11)

could be directly applied to improve the finite sample properties of GEL estimators,

without any modifications. In fact, in this case, the moment indicators would not

need to be recentered because the moment conditions (3.1) are imposed on the data by

giving different weights to different data points:
Pn

i=1 p̂
gel
i g

³
yi, θ̂gel

´
= 0. However,

our objective in this chapter is the analysis of the ability of bootstrap methods to

reduce the bias of the two-step GMM estimator. In this case, some correction is still

necessary, since in finite samples
Pn

i=1 p̂
gel
i g

³
yi, θ̂2s

´
6= 0. Thus, the next two sub-

sections discuss two alternative procedures that adapt this bootstrap method to the

GMM case.

3.3.5 Recentered GEL bootstrap

The first modified GEL bootstrap that we suggest is very simple. Analogously to

Hall and Horowitz (1996), the moment indicators can be recentered as follows:

EFgel

£
gc
¡
y∗j , θ

¢¤
= 0, (3.12)

where

gc
¡
y∗j , θ

¢
= g

¡
y∗j , θ

¢−EFgel

h
g
³
y, θ̂2s

´i
= g

¡
y∗j , θ

¢− nX
i=1

p̂geli g
³
yi, θ̂2s

´
, (3.13)

j = 1, ..., B. The expectation of the corrected moment indicators gc (·) taken with
respect to the distribution Fgel (y) is zero.

This RGEL bootstrap can be implemented applying similar procedures to those
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described for the RNP method, with two alterations: Fgel (y) is used instead of Fn (y)

to generate the bootstrap samples and the calculation of bootstrap GMM estimators

is based on the recentered moment indicators (3.13) instead of (3.9).

3.3.6 Post-hoc GEL bootstrap

Another explanation for the expected failure of the GEL bootstrap to provide less

biased GMM estimators is the following. By using the resampling vector (3.11) and

estimating the bias utilizing the standard formula given in (3.5), b̂ = θ̄
∗ − θ̂2s, we

are not adequately estimating the bias of the GMM estimator θ̂2s that we intended

to correct. Actually, in the calculation of the bias, we are comparing GMM es-

timators that can be based on quite distinct samples: while θ̂2s results from the

minimization of the quadratic form (3.2), θ̄∗ is the average of the standard GMM

estimators θ̂j, j = 1, ..., B, each of which, due to the way the bootstrap samples are

constructed, can be interpreted as minimizing also (3.2) but with gn (θ) replaced by

gp (θ) ≡
Pn

i=1 p̂
gel
i g (yi, θ). In small samples, gn (θ) and gp (θ) can be rather different.

Therefore, in this subsection, we propose a slight modification to the GEL bootstrap

method in order to improve the approximations to bias. We suggest the utilization

of a post-sampling adjustment to GEL bootstrap GMM estimators in a similar way

to that considered by Efron (1990) in another context and with different objectives

(he proposed a post-hoc bootstrap with the aim of reducing the number of boot-

strap samples needed to obtain reliable statistics and improved estimates of the bias,

keeping the usual bootstrap sampling).

Define

paj ≡
¡
paj1, ..., p

a
jn

¢
, (3.14)

j = 1, ..., B, as the actual or post-resampling vector calculated from the bootstrap

sample S∗j , that is,

paji =
#
©
y∗ji = yi

ª
n

, (3.15)

j = 1, ..., B, i = 1, ..., n, is the proportion of times that the i-th original data point
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appeared in the bootstrap sample S∗j . Define also the average post-resampling vector:

p̄a ≡ (p̄a1, ..., p̄an) =
1

B

BX
j=1

paj . (3.16)

In this framework, the j-th bootstrap estimator θ̄∗j can be expressed as a function

of the j-th post-resampling vector: θ̄∗j = θ
¡
paj
¢
. Similarly, we have for the original

GMM estimator θ̂2s = θ (p0), where p0 =
¡
1
n
, ..., 1

n

¢
. Define also θ̂

a
= θ (p̄a) as the

estimator resultant from the application of the average post-sampling probabilities

p̄a.

Instead of using b̂ = θ̄
∗−θ (p0), we propose the calculation of the bias of the GMM

estimator as:

b̄ = θ̄
∗ − θ (p̄a) . (3.17)

The intuition behind this is the following. Although the theoretical expectation of

the resampling vector is p0, its actual average is p̄a. Thus, using θ (p̄a) instead of

θ (p0) in the estimation of the bias, we might be able to correct this discrepancy.

In fact, in (3.17), we are effectively comparing GMM estimators based on similar

samples, as opposed to previously. The bias-corrected GMM estimator is then found

by calculating:

θ̃2s = θ̂2s − θ̄
∗
+ θ̂

a
. (3.18)

When both n and B go to infinity, θ̂
a
will converge to θ̂2s, so asymptotically this

method will produce the same results as the other bootstrap techniques discussed in

the previous sections. Note that we could have also opted for estimating the bias by

b̄ = θ̄
∗ − θ

¡
p̂gel
¢
, where p̂gel ≡

³
p̂gel1 , ..., p̂geln

´
, with similar results being obtained, as

p̄a ' p̂gel. The utilization of the post-resampling probabilities are only expected to

provide a slight further improvement.2

2For this reason, the employment of post-resampling probabilities in the NP and RNP bootstrap
methods would not produce significant improvements, as in these two cases p̄a ' p0 and, hence,
θ (p̄a) ' θ̂2s. Also, the same would happen for the FSEB bootstrap, since p̄a ' p̂fsgel and the
utilization of the latter weighting scheme in the GMM criterion function yields the same estimator
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In terms of procedures, the algorithm presented in section 3.2 must be modified

as follows. In step 3, for each bootstrap sample, in addition to the GMM estimator

θ̄
∗
j , we calculate also the post-resampling vector p

a
j using (3.14) and (3.15). In step

4, the average post-resampling vector p̄a is also determined as in (3.16). In the final

step, θ̂
a
is calculated by using p̄a to weight each moment condition, i.e. instead of

utilizing sample means to estimate the population moment conditions in expression

(3.2), we use the post-resampling probabilities:

ḡa (θ) =
nX
i=1

p̄ai g (yi, θ) . (3.19)

The estimation of the covariance matrix of the moment indicators needs also to be

adapted to conform with this new weighting scheme as well as non-efficient GMM es-

timation for consistent initial estimates for θ0. Finally, the bias is estimated according

to expression (3.17).

3.4 Monte Carlo simulation study I: covariance struc-

ture models

Our first Monte Carlo investigation concerns models of covariance structures, which

are important in the analysis of a variety of economic processes. Basically, they

are employed to model the serial correlation structure of one economic variable in

longitudinal data or the relation between movements in different economic variables

(such as earnings and hours changes) over time. For applications involving these

models see, for example, Abowd and Card (1987, 1989), Behrman, Rozenzweig and

Taubman (1994), Griliches (1979) and Hall and Mishkin (1982).

Altonji and Segal (1996) carried out an extensive Monte Carlo analysis of the

finite sample properties of GMM estimators for covariance structure models. They

(θ̂2s) as that obtained when the empirical distribution is employed.
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found that the efficient two-step GMM estimator is severely downward biased in small

samples for most distributions and in relatively large samples for badly behaved dis-

tributions. They explain this poor performance as due to the correlation between the

estimated second moments used to construct the moment indicators and the sampling

optimal weighting matrix. Indeed, as they argue, moment conditions consisting of

second moments are likely to be highly correlated with their covariance matrix “be-

cause individual observations that increase the sample estimate of a variance will also

tend to increase the sample estimate of the variance of the variance”. Thus, it is not

surprising that both the equally weighted GMM, which uses the identity matrix as

weighting matrix, and efficient GMM estimation based on split-sample estimators for

the covariance matrix of the moment conditions produce parameter estimators with

significantly improved properties in finite samples, as showed by Altonji and Segal

(1996) in their investigation and also by Horowitz (1998) in a similar study. The lat-

ter author also considered the RNP bootstrap GMM estimator which, although also

biased in some cases, performed much better than the standard two-step GMM esti-

mator. In this section we examine the performance of the other estimation methods

applicable in this context.

3.4.1 Experimental design

In order to investigate the behaviour of both asymptotically first-order equivalent

methods to efficient GMM and bootstrap techniques for GMM estimators, we use

the simplest experimental design analyzed by Altonji and Segal (1996). We consider

a setting where the objective is the estimation of a population variance for a scalar

random variable X from observations on a panel of individuals covering 10 time

periods. Let each observation be denoted by Xti, where t = 1, ..., 10 indexes the time

period and i = 1, ..., n, indexes the individuals. For each period, the mean and the
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variance of the observations can be computed using the standard unbiased estimators

X̄t =
1

n

nX
i=1

Xti (3.20)

and

mt =
1

n− 1
nX
i=1

¡
Xti − X̄t

¢2
, (3.21)

respectively. The estimates of the second moments are stacked into a 10-dimensional

vector, m, and are related to the population variance, denoted by the parameter θ0

(a scalar), through the 10-vector of moment conditions

E [g (θ0)] = E (m− ιθ0) = 0, (3.22)

where ι is a 10-vector of ones. With this formulation, we are assuming the equality

between the variances of the 10 components of m and the nullity of the covariance of

X across time periods.

Hence, in this Monte Carlo study, all samples are generated in a way that ensures

that the data are independent across both t and i. The observations for all time

periods were independently generated from the same distribution, with equal number

of observations in each period, so the model defined by (3.22) is also homoskedastic.

Although the elements of m are independent, both the diagonal and off-diagonal

components of the estimated covariance matrix V̂n of the moment indicators use

sample estimates. Eight different distributions for X, scaled to have mean 0 and

variance 1 (so θ0 = 1), and two sample sizes, 100 and 500, were considered. In each

experiment, 1000 Monte Carlo replications were performed.

In this framework, the two-step GMM estimator represents a weighted mean of

the ten sample variances,

θ̂2s = w0m =
10X
t=1

wtmt, (3.23)

where w =
³
ι0V̂ −1n ι

´−1
ι0V̂ −1n is a 10-dimensional vector of weights and V̂n is a con-
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sistent estimator of V evaluated at equally weighted GMM estimators [which results

from considering w = 1
10
in (3.23)]. In turn, the GEL estimators are obtained using

the procedures described in section 2.5.5 and satisfy the first-order equations (2.64).

In this particular case, as ∂g(θ)
∂θ0 = −ι, it can be proved that the second of those

conditions may be reduced to (see the Appendix):

10X
t=1

φ̂t = 0. (3.24)

Furthermore, as φ̂
0
ι = 0 and, hence, φ̂

0
g
³
θ̂gel

´
= φ̂

0
m, the other first-order condition

implies

θ̂gel =
1

10

10X
t=1

m∗
t , (3.25)

where

m∗
t =

n

n− 1
nX
i=1

p̂geli

¡
Xti − X̄t

¢2
. (3.26)

Compared to the two-step GMM estimator given in (3.23), we detect two important

and interesting differences between these estimators. First, noting that (3.23) can be

written as

θ̂2s =
10X
t=1

wt
n

n− 1
nX
i=1

1

n

¡
Xti − X̄t

¢2
, (3.27)

we see that in each time period the two-step GMM estimator gives the same weight

to each observation ( 1
n
) while the GEL methods use the GEL implied probabilities as

weights. Second, the former method assigns distinct weights, given by the vector w

in (3.23), to each time period, while for the latter each time period receives an equal

weight. Thus, notice that, if p̂geli = 1
n
, i = 1, ..., n, GEL estimators would be identical

to the equally weighted GMM estimator.
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3.4.2 Results

Table 3.1 reports the estimated mean bias (as a percentage)3, standard error (SE),

root mean squared error (RMSE) and median absolute error (MAE) of four asymp-

totically first-order equivalent methods for estimating moment condition models. The

results obtained for the two-step GMM estimator are very similar to those presented

by Altonji and Segal (1996). As in their study, this estimator is clearly downward

biased, this distortion particularly marked for “badly-behaved” distributions, namely

thicker-tailed symmetric (student-t with 5 degrees of freedom) and long-tailed skewed

(lognormal and exponential) distributions. Increasing the sample size significantly

improves inference but, for the aforementioned distributions, GMM estimators still

display substantial bias. The worst case is given by the lognormal distribution, where

the bias (MAE) is 41.5% (43%) and 22.5% (22.7%) for n = 100 and 500, respectively.

This poor performance of the two-step GMM estimator is due to the correlation

between the moment indicators and the weighting matrix V̂ −1n , as discussed above. As

this correlation is not eliminated by the iterative or continuous updating of the weight-

ing matrix, it is perfectly natural that the CU-GMM estimator [which is numerically

equal to Hansen, Heaton and Yaron’s (1996) repeatedly-iterated GMM estimator in

this framework] does not provide any improvement over two-step GMM estimation.

Actually, as observed in Table 3.1, the results are even worse, as confirmed by the

analysis of Figure 3.1, where some scatter plots comparing CU and two-step GMM

estimates for the n = 100 case are shown. While for “well-behaved” distributions

these methods produced very similar estimates (for n = 500 the Monte Carlo results

are virtually identical), for t(5), exponential and, mainly, lognormal cases the CU-

GMM clearly amplified the underestimation of the parameter of interest in most of

the replications. Note also that in the last case both methods produced estimates

less than 1, the true value of θ0, in almost all replications.

3We do not report the median bias because it was very similar, with a single exception, referred
to later on.
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Table 3.1: Monte Carlo results for Two-Step GMM, CU-GMM, EI and EL estima-
tors of a variance parameter using ten sample variances from one distribution (1000
replications)

Estimator n=100 n=500
Mean bias SE RMSE MAE Mean bias SE RMSE MAE

t(5)
2S-GMM -.111 .065 .129 .116 -.041 .034 .053 .042
CU-GMM -.125 .069 .143 .128 -.042 .034 .054 .043
EI -.094 .067 .115 .099 -.029 .033 .044 .031
EL -.065 .067 .094 .073 -.016 .034 .038 .026

t(10)
2S-GMM -.059 .053 .079 .062 -.016 .025 .029 .021
CU-GMM -.066 .055 .086 .068 -.016 .025 .030 .021
EI -.046 .054 .071 .053 -.010 .024 .026 .018
EL -.028 .055 .062 .043 -.004 .025 .025 .017

t(15)
2S-GMM -.045 .056 .072 .052 -.012 .023 .026 .018
CU-GMM -.051 .058 .077 .057 -.012 .023 .026 .018
EI -.034 .056 .066 .045 -.007 .023 .024 .016
EL -.018 .056 .059 .040 -.002 .023 .023 .015

Normal
2S-GMM -.036 .047 .059 .041 -.008 .021 .022 .015
CU-GMM -.040 .049 .063 .044 -.008 .021 .022 .015
EI -.026 .048 .055 .038 -.005 .020 .021 .014
EL -.015 .048 .050 .035 -.001 .021 .021 .014

Uniform
2S-GMM -.007 .029 .030 .021 -.002 .013 .013 .009
CU-GMM -.008 .030 .031 .021 -.002 .013 .013 .009
EI -.005 .030 .030 .020 -.001 .013 .013 .009
EL -.003 .030 .030 .020 -.001 .013 .013 .009

Lognormal
2S-GMM -.415 .111 .429 .430 -.225 .082 .239 .227
CU-GMM -.481 .125 .497 .490 -.231 .085 .246 .233
EI -.396 .120 .414 .408 -.178 .079 .194 .182
EL -.303 .131 .331 .317 -.118 .081 .143 .125

Exponential
2S-GMM -.141 .087 .166 .147 -.041 .040 .057 .044
CU-GMM -.162 .097 .189 .166 -.042 .040 .058 .045
EI -.108 .088 .140 .113 -.024 .039 .046 .032
EL -.058 .087 .105 .076 -.006 .039 .040 .029

Bimodal
2S-GMM -.009 .028 .029 .020 -.002 .012 .013 .009
CU-GMM -.010 .028 .030 .021 -.002 .012 .013 .009
EI -.006 .028 .029 .020 -.001 .012 .012 .008
EL -.002 .028 .028 .019 -.000 .012 .012 .008
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Figure 3.1: Scatter plots for two-step and CU-GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)



A theoretical explanation for the small sample behaviour of these estimators arises

from the results derived in Newey and Smith (2000), which were presented in the pre-

vious chapter. Indeed, comparing expressions (2.45) and (2.46), we see that the addi-

tional terms present in the bias function of the two-step GMM estimator disappears

because, in this example, G = −ι and V̄θj = 0, j = 1, ..., s. Therefore, the asymptotic
biases of the CU and two-step GMM estimators are identical, which explains why

these two estimators behave in such a similar way in this Monte Carlo experiment.4

Thus, it appears that estimation methods using estimators of the optimal weight-

ing matrix based on simple sample means do not work well in this context. In or-

der to obtain asymptotically efficient estimators with better finite sample properties,

one solution consists in keeping two-step or CU-GMM estimation but utilizing split-

sample estimators for V as those suggested by Altonji and Segal (1996) and Horowitz

(1998), which reduce the correlation between the moment indicators and the covari-

ance matrix and thus work relatively well. Another possible solution, which is now

investigated, is the employment of asymptotically first-order equivalent methods not

requiring the utilization of any weighting matrix such as GEL techniques.

The results obtained for EI and EL estimators are also reported in Table 3.1. In

all cases both methods produce estimators with better finite sample properties rela-

tive to GMM. While all methods have very similar standard errors, the improvement

in terms of bias, RMSE and MAE is clear, mainly in the case of EL estimation,

although the bias is not completely eliminated in some cases. Relative to the two-

step GMM estimator, for n = 100, the bias of the EL estimator is less between 27%

(lognormal) and 79% (bimodal), the MAE between 4% (uniform) and 48% (expo-

nential) and the RMSE between 2% (uniform) and 37% (exponential). For the EI

estimator, the improvements are much more modest, ranging from 4% (lognormal) to

35% (bimodal) for the bias, from 0% (bimodal) to 23% (exponential) for the MAE

4Actually, the bias expressions derived by Newey and Smith (2000) are not strictly applicable
here because in (3.22) m depends on the sample estimate of the mean of the observations (3.20).
However, this should not affect significantly the behaviour of the estimators for θ0, as additional
experiments, not reported here, assuming a zero mean in (3.21), confirmed.
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and from 1% (uniform) to 16% (exponential) for the RMSE. Again, using Newey

and Smith (2000) results, we can explain theoretically why this happens. Accord-

ing to expressions (2.45), (2.46) and (2.73), and as G = −ι in this example, the
asymptotic bias for two-step GMM, CU-GMM, EL and EI estimators are given by

b2s = bcu =
1
n
HE (gig

0
iPgi), bei = 0.5b2s and bel = 0. Clearly, this is the main reason

for the superior performance of the EL method in this Monte Carlo experiment and

for the less significant improvements resulting from application of the EI method.

The conclusions just drawn in the previous paragraphs are clearly confirmed by

Figures 3.2 and 3.3 which show, respectively, the sampling cumulative and probability

density functions for all estimators for the n = 100 case. As can be seen from both

figures, whichever distribution for the data is considered, the performance of the

estimation methods are ranked the same: the best is the EL method (dashed line),

followed by the EI technique (dot-dashed line), the two-step GMM (solid line) and,

finally, the CU-GMM (dotted line). Only in terms of dispersion is the behaviour of all

methods very similar, with the exception of the lognormal case, where the distribution

of the two-step GMM estimator is slightly more concentrated.

We also analyzed the ability of the alternative bootstrap techniques discussed

in section 3.3 to improve the finite sample properties of two-step GMM estimators.

The FSGEL, GEL, RGEL and PHGEL bootstrap methods were implemented using

the EL criterion function. Although the observations are independent across both

individuals and time periods, we adopted the resampling scheme usual in the panel

data context, i.e. we sampled with replacement from the set of n individuals. The

results reported in Table 3.2 were computed using 100 bootstrap samples in each

replication.

As we can see, in all cases the utilization of any one of the bootstrap methods

allows the bias of the GMM estimator to be substantially reduced, although at the

expense of an increment in its dispersion. However, the behaviour of these methods

is not at all uniform. Analyzing firstly the three methods previously suggested by
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Figure 3.2: Sampling cumulative density functions for GMM, CU-GMM, EI, and EL estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: Two-step GMM (solid line), CU-GMM (dotted line), EI (dot-dashed line), EL (dashed line).
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Figure 3.3: Sampling probability density functions for GMM, CU-GMM, EI, and EL estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: Two-step GMM (solid line), CU-GMM (dotted line), EI (dot-dashed line), EL (dashed line).



Table 3.2: Monte Carlo results for bootstrap GMM estimators of a variance parameter
using ten sample variances from one distribution (1000 replications)

Estimator n=100 n=500
Mean bias SE RMSE MAE Mean bias SE RMSE MAE

t(5)
NP-BOOT-GMM -.073 .076 .105 .084 -.020 .038 .042 .029
RNP-BOOT-GMM -.050 .077 .091 .068 -.014 .039 .041 .028
FSEL-BOOT-GMM -.044 .075 .086 .065 -.014 .038 .040 .028
EL-BOOT-GMM -.088 .076 .116 .094 -.038 .040 .056 .041
REL-BOOT-GMM -.041 .075 .086 .065 -.013 .038 .040 .027
PHEL-BOOT-GMM -.042 .075 .086 .064 -.014 .038 .040 .028

t(10)
NP-BOOT-GMM -.026 .060 .065 .046 -.003 .026 .026 .018
RNP-BOOT-GMM -.017 .059 .061 .044 -.002 .026 .026 .018
FSEL-BOOT-GMM -.011 .058 .059 .040 -.002 .026 .026 .018
EL-BOOT-GMM -.042 .059 .073 .052 -.013 .027 .030 .021
REL-BOOT-GMM -.011 .058 .059 .041 -.001 .026 .026 .018
PHEL-BOOT-GMM -.011 .058 .059 .041 -.002 .026 .026 .018

t(15)
NP-BOOT-GMM -.014 .061 .062 .042 -.001 .024 .024 .016
RNP-BOOT-GMM -.008 .060 .060 .041 .000 .024 .024 .016
FSEL-BOOT-GMM -.002 .059 .059 .039 .000 .024 .024 .016
EL-BOOT-GMM -.030 .061 .067 .046 -.010 .025 .026 .018
REL-BOOT-GMM -.002 .059 .059 .040 .000 .024 .024 .016
PHEL-BOOT-GMM -.003 .059 .059 .039 .000 .023 .023 .016

Normal
NP-BOOT-GMM -.008 .050 .051 .036 .000 .021 .021 .014
RNP-BOOT-GMM -.005 .050 .050 .035 .001 .021 .021 .014
FSEL-BOOT-GMM -.001 .049 .049 .033 .001 .021 .021 .014
EL-BOOT-GMM -.022 .050 .055 .038 -.006 .021 .022 .015
REL-BOOT-GMM -.001 .049 .049 .034 .001 .021 .021 .013
PHEL-BOOT-GMM -.001 .049 .049 .034 .001 .021 .021 .013

Uniform
NP-BOOT-GMM .006 .030 .030 .020 .001 .013 .013 .009
RNP-BOOT-GMM .005 .030 .030 .020 .001 .013 .013 .009
FSEL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .009
EL-BOOT-GMM .003 .030 .030 .020 .000 .013 .013 .009
REL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .009
PHEL-BOOT-GMM .007 .030 .030 .020 .001 .013 .013 .008

Lognormal
NP-BOOT-GMM -.380 .145 .407 .403 -.161 .108 .194 .168
RNP-BOOT-GMM -.230 .453 .508 .289 -.107 .123 .163 .129
FSEL-BOOT-GMM -.264 .158 .308 .292 -.121 .106 .161 .131
EL-BOOT-GMM -.353 .157 .387 .378 -.209 .123 .243 .216
REL-BOOT-GMM -.242 .165 .293 .271 -.103 .109 .150 .121
PHEL-BOOT-GMM -.244 .165 .294 .273 -.104 .109 .150 .121

Exponential
NP-BOOT-GMM -.089 .108 .140 .107 -.012 .044 .046 .032
RNP-BOOT-GMM -.060 .105 .122 .085 -.009 .044 .045 .031
FSEL-BOOT-GMM -.042 .102 .110 .077 -.007 .043 .044 .030
EL-BOOT-GMM -.122 .110 .164 .133 -.040 .049 .063 .046
REL-BOOT-GMM -.039 .103 .110 .077 -.006 .043 .044 .031
PHEL-BOOT-GMM -.040 .103 .110 .076 -.006 .043 .044 .030

Bimodal
NP-BOOT-GMM .006 .029 .029 .021 .002 .013 .013 .008
RNP-BOOT-GMM .006 .028 .029 .020 .002 .013 .013 .008
FSEL-BOOT-GMM .008 .028 .029 .020 .002 .012 .013 .008
EL-BOOT-GMM .001 .029 .029 .020 .000 .013 .013 .009
REL-BOOT-GMM .008 .028 .029 .020 .002 .012 .013 .008
PHEL-BOOT-GMM .008 .028 .029 .021 .002 .012 .013 .008
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other authors, we see that they produce estimators with less bias, RMSE and MAE

than the GMM estimator, but the improvements are much less significant for the NP

bootstrap, as expected. The RNP and FSEL methods yielded very similar results for

n = 500 but, for the smaller sample size considered (see also Figures 3.4 and 3.5),

the FSEL bootstrap in general performed better, which is not surprising, since, as

already referred to, Brown, Newey and May (1997) demonstrated that this method

is efficient relative to any bootstrap method based on the empirical distribution.

With regard to the methods proposed in this chapter, the EL bootstrap, for the

reasons argued in section 3.3.4, systematically under-estimated the bias of the GMM

estimator, so no significant improvements were achieved. Thus, this is the only boot-

strap estimator which is sometimes characterized by a larger RMSE than that of

the two-step GMM estimator. In contradistinction, both the REL and the PHEL

bootstrap methods produced very promising (and almost identical) results (see also

Figures 3.6 and 3.7, where the lines for these methods are indistinguishable). Apart

from the over-correction produced for uniform and bimodal distributions at n = 100

(a problem shared by all bootstrap methods), in the remaining cases for this sample

size the improvement in terms of bias over the EL bootstrap GMM estimator ranges

from 31% (lognormal) to 94% (normal) and, in relation to the two-step GMM estima-

tor, from 41% (lognormal) to 96% (normal), which is quite impressive. Furthermore,

certainly due to the employment of a more efficient estimator of the distribution of the

data, the performance of these two bootstrap GMM estimators was clearly superior

to that of RNP bootstrap estimators for all criteria in almost all cases5 and slightly

better than that of FSEL bootstrap estimators for the “badly-behaved” distributions.

With the exception of the NP and EL bootstrap methods, all others behave better

in all experiments in terms of bias than EL, the method that produced the best

5Note that the exception found for the mean bias for the lognormal and n = 100 case was due
to an outlier, as the enormous standard error of the RNP bootstrap GMM estimator indicates. In
terms of median bias, the values are 0.282 (RNP), 0.290 (FSEL), 0.267 (REL) and 0.270 (PHEL).
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Figure 3.4: Sampling cumulative density functions for NP, RNP and FSEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: NP bootstrap GMM (solid line), RNP bootstrap GMM (dotted line), FSEL bootstrap GMM (dot-dashed line).
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Figure 3.5: Sampling probability density functions for NP, RNP and FSEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: NP bootstrap GMM (solid line), RNP bootstrap GMM (dotted line), FSEL bootstrap GMM (dot-dashed line).
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Figure 3.6: Sampling cumulative density functions for EL, REL and PHEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: EL bootstrap GMM (solid line), REL bootstrap GMM (dotted line), PHEL bootstrap GMM (dot-dashed line).
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Figure 3.7: Sampling probability density functions for EL, REL and PHEL bootstrap GMM estimators of a variance parameter using
ten sample variances from one distribution (n=100; 1000 replications)

Notes: EL bootstrap GMM (solid line), REL bootstrap GMM (dotted line), PHEL bootstrap GMM (dot-dashed line).



results in Table 3.1. However, they sometimes have a larger RMSE due to the greater

dispersion usually exhibited by bootstrap estimators.

3.5 Monte Carlo simulation study II: instrumental

variable models

In this second Monte Carlo investigation we consider instrumental variable models,

one of the most wide spread applications of GMM. There are numerous studies show-

ing that, in small samples, GMM estimators are not unbiased, especially when the

number of instruments is large [e.g. Tauchen (1986b), Kocherlakota (1990) and An-

dersen and Sorensen (1996)] or the correlation between regressors and instruments is

weak [e.g. Nelson and Startz (1990) and Bound, Jaeger and Baker (1995)]. In this

section we present additional evidence confirming those results and examine how the

alternative estimation methods under analysis perform in this framework.

3.5.1 Data generating process

Consider the linear model described by the equation

y = Xθ0 + u, (3.28)

where y and X are n-vectors of observations on a dependent variable and a regressor

variable, respectively, and u is a n-vector of normal errors with mean zero and variance

one. Analogously to Nelson and Startz (1990), we generate the regressor X and the

s instruments Zj, j = 1, ..., s, that constitute the matrix of instruments Z from

X = λu+ � (3.29)

and

Zj = γj�+ vj, (3.30)
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j = 1, ..., s, where � and vj are random disturbances independently generated from

a N (0, I) distribution and λ and γj are fixed parameters that allow the correlations

ρxu between X and u and ρxzj between X and the instrument Zj to be controlled

according to the equations

λ =
ρxup
1− ρ2xu

(3.31)

and

γj = ρxzj

s
1 + λ2

1− ¡1 + λ2
¢
ρ2xzj

. (3.32)

As we are assuming homoskedasticity, the two-step GMM estimator is given by

θ̂ =
h
X 0Z (Z 0Z)−1 Z 0X

i−1
X 0Z (Z 0Z)−1 Z 0y, (3.33)

while GEL estimators can be expressed as [see Smith (1997), p. 517]

θ̂ =
h
X 0P̂Z (Z 0Z)−1 Z 0P̂X

i−1
X 0P̂Z (Z 0Z)−1 Z 0P̂ y, (3.34)

where P̂ is a (n× n) diagonal matrix with typical element p̂geli , i = 1, ..., n. Com-

paring expressions (3.33) and (3.34), we see that, again, the difference between these

estimators results from the weights applied to the matrices Z 0X and Z 0y: the two-

step GMM estimator applies unit weight whereas the GEL estimators weight each

component of those matrices using the GEL implied probabilities.

Five different experiments were performed, as described in Table 3.3. In the

first case, we have just a single overidentifying moment condition, where one of the

instruments utilized in estimation is worthless. The second experiment is similar, with

the modification that there is a large number of instruments relative to the number

of regressors. The nine instruments added are also useless. This characteristic was

kept in experiments 3 and 4, which are simple extensions of experiment 2. In the first

case we investigate the effects of increasing the correlation between the explanatory

variable and the instrument Z1. In the other case we examine the consequences

of lower feedbacks from u to X in equation (3.28) over the parameter estimates.
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Table 3.3: Monte Carlo experiments for instrumental variable models

Experiment s ρxu ρxz1 ρxz2 ρxzj (j = 3, ..., 11)
1 2 0.7 0.3 0 -
2 11 0.7 0.3 0 0
3 11 0.7 0.7 0 0
4 11 0.3 0.7 0 0
5 11 0.7 0.3 0 0.3

The latter effect is not usually analyzed [the only exception seems to be Blomquist

and Dahlberg (1999)] but, as Nelson and Startz (1990) implicitly acknowledge, the

correlation between the error term u and the regressor X is one of the most important

determinants of the accuracy with which an IV model may be estimated, because high

feedbacks from u to X make the model poorly identified even when the correlation

between regressors and IVs is relatively important. Finally, in experiment 5, we repeat

experiment 2 but now the additional nine instruments utilized convey information

about X.

For each experiment, 1000 replications of samples of both 100 and 500 observations

were generated. The parameter θ0 was fixed at 1. Once again, all bootstrap methods

using a GEL (or FSGEL) distribution to resample the data were based on the EL

implied probabilities and on 100 bootstrap samples for each replication. We resampled

with replacement from the original (y,X, Z) sample.

3.5.2 Results

The results obtained for n = 100 are presented in Table 3.4. In addition to the statis-

tics reported in the previous section we also report the bias in terms of median and

the values of the 0.05 and 0.95 quantiles of the distribution of the various estimators

of the parameter θ0. Indeed, unlike before, the median is substantially different from

the mean for some of the estimation methods considered. Moreover, the tails of some

of the distributions of the estimators are now much heavier for some methods, while

in the previous study all of them were characterized by very similar standard errors,

apart from the expected larger dispersion for GMM bootstrap estimators. In Figures
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3.8 and 3.9 we show also the sampling cumulative distribution functions for some

estimation methods.

Similarly to the results widely reported by other simulation studies, the two-

step GMM estimator [which, in this context, is numerically equal to Hansen, Heaton

and Yaron’s (1996) repeatedly-iterated GMM estimator] is significantly biased in all

experiments. Its best (least bad) performance in terms of bias occurs when only

two instruments are used (experiment 1), precisely the case where it exhibits more

dispersion, which reflects the traditional trade-off between bias and efficiency that

usually happens when the number of moment conditions is increased and the two-

step GMM estimator is employed. Note that this effect occurs not only when the nine

instruments added are useless (experiments 2-4) but also in experiment 5, where each

one of the new instruments has the same correlation with X as the instrument Z1 in

experiment 1. Notice also that the decrease in the dispersion of the two-step GMM

estimator when new instruments are added is such that its RMSE is substantially

lower in experiments 2-5. In all cases, this estimator has the smallest standard error

of all estimation methods considered.

The bias of the two-step GMM is particularly significant in experiment 2, where

this method clearly overestimates the parameter θ0, producing estimates greater than

1, the true value of θ0, in 96.8% of the replications realized. In experiment 3 the two-

step GMM estimator is still very biased but there is an important improvement in its

small sample properties, which shows clearly the beneficial effects of high correlations

between instruments and regressors on the performance of this estimator. In fact,

although 10 instruments are still worthless, the mean bias of the two-step GMM esti-

mator is reduced by 68.6% and its standard error by 39.2% by merely increasing the

correlation between the regressor and the remaining instrument from 0.3 to 0.7. With

regard to the feedback from u to X in equation (3.28), its decrease seems to have two

distinct consequences for the GMM estimator, as shown by the results obtained with

experiment 4. On the one hand, its bias diminishes considerably, which was expected
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Table 3.4: Performance of alternative estimators for instrumental variable models
(1000 Monte Carlo replications; n = 100)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
2S-GMM .023 .066 0.604 1.347 .315 .316 .159
CU-GMM .254 .008 0.264 1.317 12.490 12.492 .169
EI -.111 .004 0.206 1.320 .698 .707 .173
EL -.124 .007 0.178 1.328 .866 .874 .172
NP-BOOT-GMM -.021 .060 0.397 1.358 .504 .504 .164
RNP-BOOT-GMM -.022 .061 0.395 1.358 .503 .504 .165
FSEL-BOOT-GMM -.015 .060 0.465 1.351 .504 .504 .164
EL-BOOT-GMM .036 .102 0.444 1.424 .513 .514 .187
REL-BOOT-GMM -.032 .053 0.376 1.349 .511 .512 .167
PHEL-BOOT-GMM -.097 .044 0.161 1.340 .764 .770 .171

Model 2
2S-GMM .280 .278 1.042 1.497 .143 .314 .278
CU-GMM .091 .009 -0.033 1.405 3.976 3.977 .192
EI -.233 .005 -0.269 1.407 1.610 1.627 .205
EL -.201 .004 -0.228 1.406 1.313 1.329 .202
NP-BOOT-GMM .192 .200 0.829 1.477 .204 .280 .218
RNP-BOOT-GMM .193 .202 0.829 1.478 .203 .280 .218
FSEL-BOOT-GMM .201 .206 0.865 1.480 .194 .279 .217
EL-BOOT-GMM .315 .320 0.948 1.666 .222 .385 .325
REL-BOOT-GMM .163 .175 0.776 1.465 .221 .274 .204
PHEL-BOOT-GMM -.087 .047 -0.105 1.416 .744 .749 .210

Model 3
2S-GMM .088 .098 0.928 1.217 .087 .124 .103
CU-GMM -.010 .007 0.798 1.136 .107 .108 .072
EI -.016 .003 0.751 1.157 .123 .124 .077
EL -.015 .002 0.759 1.153 .121 .122 .074
NP-BOOT-GMM .020 .035 0.826 1.175 .106 .108 .079
RNP-BOOT-GMM .020 .035 0.824 1.173 .106 .108 .079
FSEL-BOOT-GMM .023 .037 0.827 1.174 .105 .108 .080
EL-BOOT-GMM .102 .108 0.892 1.288 .118 .156 .120
REL-BOOT-GMM .008 .024 0.801 1.164 .110 .110 .077
PHEL-BOOT-GMM -.000 .017 0.789 1.158 .114 .114 .076

Model 4
2S-GMM .049 .060 0.825 1.255 .129 .138 .099
CU-GMM -.010 .002 0.728 1.222 .150 .151 .092
EI -.016 -.005 0.695 1.236 .169 .170 .109
EL -.016 -.003 0.698 1.237 .169 .170 .107
NP-BOOT-GMM .010 .020 0.758 1.231 .142 .143 .091
RNP-BOOT-GMM .010 .019 0.758 1.233 .142 .142 .091
FSEL-BOOT-GMM .008 .020 0.758 1.231 .142 .142 .093
EL-BOOT-GMM .065 .068 0.825 1.307 .147 .161 .114
REL-BOOT-GMM .005 .017 0.755 1.232 .144 .144 .094
PHEL-BOOT-GMM .000 .012 0.744 1.231 .147 .147 .093

Model 5
2S-GMM .117 .129 0.938 1.262 .099 .153 .132
CU-GMM -.018 -.000 0.733 1.168 .136 .137 .083
EI -.029 -.003 0.669 1.181 .160 .163 .096
EL -.028 .000 0.676 1.185 .158 .161 .093
NP-BOOT-GMM .035 .049 0.808 1.211 .128 .133 .097
RNP-BOOT-GMM .036 .051 0.804 1.209 .128 .133 .095
FSEL-BOOT-GMM .041 .056 0.818 1.217 .124 .131 .094
EL-BOOT-GMM .138 .146 0.906 1.360 .145 .200 .155
REL-BOOT-GMM .018 .037 0.782 1.199 .134 .135 .094
PHEL-BOOT-GMM -.005 .021 0.718 1.188 .148 .148 .092
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Figure 3.8: Sampling cumulative density functions for GMM, CU-GMM, EI, and EL estimators
of instrumental variable models (n=100; 1000 replications)
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Figure 3.9: Sampling cumulative density functions for FSEL, EL, REL and PHEL bootstrap GMM estimators 
of instrumental variable models (n=100; 1000 replications)



because, although the correlation between Z1 and X is still 0.7, the component of

the regressor not correlated with the error term now has a greater influence over the

behaviour of the dependent variable. On the other hand, there was an increase in its

dispersion, probably due to the higher variability of y, which in turn results directly

from X and u being less dependent. Finally, the results obtained in experiment 5,

although better than those achieved for experiment 2 as expected, are worse than

those of experiment 3, which emphasizes the importance of high correlations between

instruments and regressors in this framework. Indeed, despite the existence of 10

useless instruments in experiment 3 and only 1 in experiment 5, the presence of a

single good instrument in the former model is sufficient for better results than those

obtained when 10 reasonable instruments are used in the latter.

Unlike the previous section, the CU-GMM, EI and EL estimators now exhibit a

very similar behaviour in all experiments, as can be immediately seen from Figure 3.8,

where their sampling cumulative density functions are almost indistinguishable. This

happens because, in this case of moments consisting of products of instruments with

a Gaussian residual, the third moments of gi are zero, so the last term of (2.45) and

(2.73) disappears and, hence, the asymptotic biases of these three estimators become

equal. It can also be seen that, while the two-step GMM estimator is severely biased

in all cases, the other three are always nearly median unbiased, a property which

is independent of the quality and the number of instruments used in estimation.6

However, for the poorest identified models (experiments 1 and 2), the Monte Carlo

distributions of their estimators are quite disperse, having very heavy left tails. The

tremendous standard errors in these two cases, especially of the CU-GMM estimator,

are due to the occurrence of extreme values in some replications. These results con-

form with those obtained by Hansen, Heaton and Yaron (1996), which showed that

the criterion function for the CU-GMM estimator can sometimes lead to extreme out-

6This confirms empirically the theoretical results of Newey and Smith (2000), which derive bias
expressions for the two-step and CU-GMM estimators for a instrumental variable model of the kind
considered here. They show that while the bias of the former estimator increases linearly with the
number of moment conditions, the bias of the latter does not depend on it.
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liers for the minimizing value of θ but that, in general, this estimator will be median

unbiased [see also the results reported by Stock and Wright (1996)].7 By increasing

the correlation between instruments and regressors, much more concentrated sam-

pling distributions for these three estimators are obtained, without extreme values.

For this reason, only small mean biases are present in experiments 3-5, substantially

less than that of the two-step GMM estimator.

With regard to the bootstrap methods, the first aspect to note is that those whose

resampling is based on the empirical distribution Fn (y), the NP and RNP bootstrap

methods, produced almost identical results in all experiments. The reason for this

behaviour in this setting seems to be the following. As can be inferred from section

3.3.2, the more distant from zero are the sample moment conditions evaluated at

the two-step GMM estimator, the more significant are the differences between these

two bootstrap techniques. With covariance structure models, for the reasons stated

earlier, the estimated value of the moments was significantly different from zero, so

the improvement produced by the RNP bootstrap was substantial. Here, the sample

moment conditions evaluated at the two-step GMM estimator are nearly zero in all

cases. Indeed, although most are not good instruments, once they convey little or no

information at all about the explanatory variable (and this is the main reason why

the estimators are strongly biased in some cases), they are not correlated with the

error term, so the sample moment conditions are very close to zero, attenuating the

differences between these bootstrap methods. For the same reason, the FSEL implied

probabilities are approximately equal to 1
n
for all observations, in all cases. Thus,

also the FSEL bootstrap produced very similar results to the NP and RNP bootstrap

methods.

In the first two experiments, which concern the most poorly identified models, the

performance of these three bootstrap methods is not particularly promising. In the

first case, they are only very slightly less biased than the two-step GMM estimator

7Note that median bias is more appropriate than mean bias to assess the performance of the
CU-GMM estimator because, in this example, it coincides with the limited information maximum
likelihood estimator, which is known to have no finite moments [see inter alia Mariano (1982)].
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itself and their sampling distributions are much more variable. In the second case,

although they cut the bias of the two-step GMM estimator by about 30%, their bias

is still very high (around 20%). However, their behaviour improves substantially in

the remaining experiments. In these models, using the FSEL bootstrap method or

bootstrapping the two-step GMM estimator utilizing the empirical distribution Fn (y)

is an effective way of largely, although still not entirely, correcting its bias.

While the standard form of the EL bootstrap method is not able to improve at all

the properties of two-step GMM estimators in any case (the results are worse accord-

ing to all criteria), the two proposed adjustments work very well, as shown clearly

by Figure 3.9. Indeed, the REL and PHEL are the two best bootstrap methods in

terms of median bias in all cases, with the latter being always superior. Furthermore,

while in the two first experiments the performance of the PHEL bootstrap was af-

fected negatively by the great variability exhibited by EL estimators in those cases, as

soon as this problem disappears (experiments 3-5) the PHEL bootstrap becomes the

only estimation method which appears mean unbiased. However, the best in terms

of median bias are still the CU-GMM, EL and EI estimators.

Table 3.5 presents the results for n = 500. There is a significant improvement in

the properties of all estimation methods but various points should be noted. First,

even for this sample size, the two-step GMM estimator exhibits important biases,

particularly in experiment 2. Thus, it seems that it would be necessary to dramatically

increase the number of observations to avoid this. Second, the CU-GMM, EI and EL

estimators appear even more similar. Their variability is much less for this sample size,

so they are now also approximately mean unbiased. Comparing the results obtained

for experiments 1 and 2, we can confirm that these methods are relatively indifferent

to the addition of worthless instruments, unlike the two-step GMM estimator that

continues to present the habitual trade-off between bias and efficiency. With respect to

bootstrap techniques, the EL bootstrap method continues to provide no improvement

over the two-step GMM estimator, while the estimators based on its post-hoc adjusted

version are clearly unbiased in all cases. The NP, RNP, FSEL and REL bootstrap
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GMM estimators also perform well, but in experiment 2 still exhibit some bias.

3.6 Conclusion

In this chapter we investigated through some Monte Carlo experiments the finite

sample properties of various methods which are theoretically appropriate for the es-

timation of moment condition models. Two different settings, where two-step GMM

is known to produce biased estimators, were considered. Clearly, our results showed

that there are better alternatives to estimate both covariance structure and instru-

mental variable models. Indeed, very promising results were obtained by particularly

the PHEL bootstrap and EL estimation methods.

In covariance structure models, apart from the CU-GMM estimator, whose behav-

iour appeared even worse, all the other seven alternative methods clearly performed

better than the two-step GMM estimator in all circumstances. The REL and the

PHEL bootstrap methods, suggested in sections 3.3.5 and 3.3.6, produced the best

results, leading to the least biased estimators in almost all cases simulated. More-

over, in spite of the usual greater dispersion exhibited by bootstrap estimators, they

also behaved very well in terms of RMSE, sharing with the EL method the best

performance according to this criterion.

For instrumental variable models, two-step GMM proved again to be completely

inadequate, producing very biased estimators for models using large number of in-

struments, even for moderate sample sizes (500 observations). Also the finite sample

properties of the EL bootstrap GMM estimator were not satisfactory, which empha-

sizes the necessity for a correction of the kind proposed in this chapter. All other

estimation methods possess better finite sample properties. The CU-GMM, EI and

EL methods behaved in a very similar way, being always nearly unbiased in terms

of median bias and also mean unbiased for larger sample sizes. However, in poorly

identified models, they exhibited great variability which suggests that some care must

be taken in their application in small samples and when there are doubts about the
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Table 3.5: Performance of alternative estimators for instrumental variable models
(1000 Monte Carlo replications; n = 500)

Estimator Bias Quantiles SE RMSE MAE
Mean Median 0.05 0.95

Model 1
2S-GMM .001 .015 0.793 1.159 .113 .113 .072
CU-GMM -.011 .004 0.780 1.153 .118 .118 .073
EI -.011 .004 0.776 1.155 .118 .118 .073
EL -.011 .004 0.776 1.155 .118 .118 .073
NP-BOOT-GMM .001 .015 0.794 1.159 .114 .114 .073
RNP-BOOT-GMM .001 .015 0.794 1.158 .114 .114 .073
FSEL-BOOT-GMM .001 .012 0.793 1.159 .114 .114 .072
EL-BOOT-GMM .013 .027 0.804 1.177 .114 .115 .074
REL-BOOT-GMM .001 .013 0.790 1.157 .114 .114 .071
PHEL-BOOT-GMM .001 .015 0.798 1.158 .113 .113 .073

Model 2
2S-GMM .088 .093 0.947 1.216 .086 .123 .097
CU-GMM -.008 .007 0.780 1.157 .118 .118 .075
EI -.008 .005 0.787 1.160 .122 .123 .078
EL -.008 .006 0.786 1.160 .122 .123 .078
NP-BOOT-GMM .024 .034 0.841 1.179 .109 .111 .076
RNP-BOOT-GMM .024 .035 0.837 1.180 .109 .111 .077
FSEL-BOOT-GMM .028 .037 0.850 1.180 .106 .110 .077
EL-BOOT-GMM .096 .102 0.917 1.260 .108 .145 .108
REL-BOOT-GMM .016 .027 0.824 1.178 .113 .114 .077
PHEL-BOOT-GMM .001 .013 0.798 1.171 .123 .123 .077

Model 3
2S-GMM .018 .019 0.946 1.081 .043 .047 .032
CU-GMM -.002 -.001 0.921 1.066 .045 .045 .030
EI -.001 -.001 0.921 1.068 .046 .046 .029
EL -.001 -.001 0.921 1.068 .046 .046 .029
NP-BOOT-GMM .001 .003 0.926 1.069 .045 .045 .030
RNP-BOOT-GMM .001 .003 0.925 1.069 .045 .045 .031
FSEL-BOOT-GMM .001 .004 0.924 1.070 .046 .046 .030
EL-BOOT-GMM .019 .022 0.942 1.092 .046 .050 .034
REL-BOOT-GMM .000 .003 0.922 1.069 .046 .046 .030
PHEL-BOOT-GMM .000 .002 0.923 1.066 .045 .045 .030

Model 4
2S-GMM .012 .013 0.917 1.103 .058 .059 .040
CU-GMM .001 .003 0.902 1.095 .060 .060 .040
EI .001 .002 0.898 1.096 .061 .061 .039
EL .001 .002 0.900 1.098 .061 .061 .039
NP-BOOT-GMM .002 .004 0.905 1.096 .060 .060 .041
RNP-BOOT-GMM .002 .003 0.905 1.096 .060 .060 .041
FSEL-BOOT-GMM .002 .004 0.901 1.098 .060 .060 .041
EL-BOOT-GMM .012 .012 0.914 1.110 .060 .062 .042
REL-BOOT-GMM .002 .004 0.904 1.097 .060 .060 .040
PHEL-BOOT-GMM .002 .004 0.904 1.097 .060 .060 .040

Model 5
2S-GMM .026 .028 0.942 1.102 .049 .056 .040
CU-GMM -.002 -.001 0.907 1.081 .054 .054 .034
EI -.002 .001 0.908 1.083 .055 .055 .035
EL -.002 .002 0.909 1.084 .055 .055 .035
NP-BOOT-GMM .002 .005 0.912 1.086 .053 .054 .036
RNP-BOOT-GMM .002 .005 0.912 1.086 .053 .054 .035
FSEL-BOOT-GMM .002 .005 0.913 1.086 .053 .053 .036
EL-BOOT-GMM .028 .031 0.937 1.112 .054 .061 .044
REL-BOOT-GMM .001 .004 0.910 1.085 .054 .054 .035
PHEL-BOOT-GMM .000 .003 0.910 1.083 .054 .054 .034
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quality of the instruments. Apart from the experiments where it was affected by the

large dispersion of the EL estimator, the PHEL bootstrap worked very well, being

the only mean unbiased estimation method in the smallest sample size considered.

We also found that Newey and Smith’s (2000) results seem to be a good guide

for the small sample behaviour of the non-bootstrap estimators. Thus, a natural and

interesting extension of the investigation undertaken in this chapter would be the

study of the finite sample properties of bias-corrected GMM estimators based on the

expression derived by those authors for the bias of the GMM estimator. Another

potential avenue for future research is the analysis of the ability of the bootstrap and

Newey and Smith’s (2000) theoretical results to correct the bias of CU-GMM and

GEL estimators.8

3.7 Appendix

The first-order conditions (2.64) defining GEL estimators can also be written as:

nX
i=1

p̂geli

 gi

³
θ̂
´

Gi

³
θ̂
´0
φ̂

 = 0.
For covariance structure models, Gi

³
θ̂
´
= −ι. Therefore,

nX
i=1

p̂geli Gi

³
θ̂
´0
φ̂ = −ι0φ̂

nX
i=1

p̂geli

= −ι0φ̂
= −

sX
t=1

φ̂t,

and the second first-order condition can be written as
Ps

t=1 φ̂t = 0.

8A joint paper with R. J. Smith and A. D. Chesher examining some of these issues is currently
in preparation.

94



Furthermore, as

nX
i=1

p̂geli g
³
θ̂
´
=

nX
i=1

p̂geli

³
mi − ιθ̂

´
= 0,

then

nX
i=1

p̂geli mi = ιθ̂
nX
i=1

p̂geli

ιθ̂ =
nX
i=1

p̂geli mi

θ̂ =
1

10

10X
t=1

nX
i=1

p̂geli mti.
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Chapter 4

GEL Pearson-type specification

tests

4.1 Introduction

In this chapter we propose Pearson-type statistics suitable to test overidentifying

moment conditions and parametric restrictions in models estimated by GEL methods.

These new statistics are based on the comparison of two consistent estimators, under

the corresponding null hypothesis, of the unknown distribution of the data. For the

former class of tests those estimators are the empirical and the GEL distribution

functions, while in the latter case two GEL distributions estimated under different

assumptions are contrasted. We derive two types of Pearson-type tests. First, we show

that the classical Pearson χ2 statistic is directly applicable in the GEL framework,

after minor adaptations. The other approach involves the partition of the sample

space into several sets and the contrast between the empirical and the GEL implied

probabilities (or two GEL implied probabilities) estimated for each set, which forms

the basis for the second Pearson-type statistic we develop.

In the second part of this chapter we investigate, through aMonte Carlo simulation

analysis based on two of the settings considered by Imbens, Spady and Johnson

(1998), how Pearson-type statistics for overidentifying moment conditions perform
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in finite samples. We examine their size behaviour and compare it with some of the

existing alternatives: Hansen’s (1982) J test, cf. section 2.3.4, and the distance metric

and Wald statistics discussed in section 2.5.6. In the case of the J test evaluated

at the two-step GMM estimator, we consider also bootstrap approximations to its

small sample distribution. In particular, five bootstrap techniques already studied

in chapter 3 are utilized: the nonparametric (NP), recentered nonparametric (RNP),

first-stage GEL (FSGEL), GEL and recentered GEL (RGEL) bootstrap methods.

Note that the post-hoc GEL bootstrap, also analyzed in that chapter, is not applicable

in this context.

This chapter is organized as follows. Section 4.2 briefly reviews the concept of

GEL implied probabilities and formalizes its asymptotic relation to the empirical

distribution function. The Pearson-type tests for overidentifying moment conditions

are derived in section 4.3 while the case of parametric restrictions is considered in

section 4.4. The Monte Carlo simulation studies are discussed in section 4.5. Section

4.6 concludes.

4.2 GEL implied probabilities

Consider the moment conditions

EF [g (y, θ0)] = 0, (4.1)

where the distribution F ≡ F (y) with respect to which the expected value is taken

is assumed unknown. As discussed previously, in the GEL context there exists two

different ways of consistently estimating F . One of those estimators is the empirical

cumulative distribution function,

Fn (y) =
1

n

nX
i=1

1 (yi ≤ y) , (4.2)
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which gives constant weights dFn (y) =
1
n
to each observation. A more efficient

estimator is the GEL distribution,

F̂gel (y) =
nX
i=1

1 (yi ≤ y) pi
³
θ̂, φ̂
´
, (4.3)

where pi (·) ≡ pgeli (·), since it exploits the information contained in (4.1) by reweight-
ing each observation in such a way that the moment conditions are numerically im-

posed in the sample; cf. section 2.5.4. The weights assigned to each observation, the

GEL implied probabilities dF̂gel (y) = pi
³
θ̂, φ̂

´
, i = 1, ..., n, are estimated using the

formula

p̂i ≡ pi
³
θ̂, φ̂
´
=

πi

³
θ̂, φ̂

´
Pn

i=1 πi
³
θ̂, φ̂

´ , (4.4)

where πi
³
θ̂, φ̂
´
≡ ∇h

h
φ̂
0
g
³
yi, θ̂

´i
; cf. (2.69) and (2.65). Under the null hypothesis

that the moment conditions (4.1) hold in the population of interest, the probability

limit of φ̂ is 0, so πi

³
θ̂, 0
´
= ∇h (0), and, hence, the GEL probabilities pi

³
θ̂, 0
´
,

i = 1, ..., n, are equal to the empirical measures dFn (y) =
1
n
.

More rigorously, let ĝi ≡ g
³
yi, θ̂

´
and bi ≡ supθ∈Θ kg (yi, θ)k. From Newey and

Smith (2001, Proof of Lemma A1), max1≤i≤n bi ≡ Op

³
n
1
α

´
, where α > 2 is such that

E [supθ∈Θ kg (yi, θ)kα] < ∞. A second-order expansion Taylor series expansion for

πi

³
θ̂, φ̂

´
yields

∇h
³
φ̂
0
ĝi

´
= ∇h (0) +∇2h (0) φ̂0ĝi + 1

2
∇3h

³
φ̇
0
ĝi

´³
φ̂
0
ĝi

´2
, (4.5)

where 0 < φ̇ < φ̂. Now, max1≤i≤n
¯̄̄
∇3h

³
φ̇
0
ĝi
´
−∇3h (0)

¯̄̄
p→ 0 as supθ∈Θ,1≤i≤n¯̄̄

φ̇
0
g (yi, θ)

¯̄̄
p→ 0, see Newey and Smith (2001, Proof of Lemma A1). Therefore,

∇3h
³
φ̇
0
ĝi

´³
φ̂
0
ĝi

´2
= Op

³
n−(1−

2
α)
´
, (4.6)

as φ̂ = Op

³
n−

1
2

´
and kĝik = Op

³
n
1
α

´
. On the other hand, a first-order Taylor
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expansion gives

1Pn
i=1∇h

³
φ̂
0
ĝi
´ =

1

n∇h (0) −
1

n [∇h (0)]2
1

n

nX
i=1

∇2h
³
φ̇
0
ĝi

´
ĝ0iφ̂

=
1

n∇h (0)
£
1 +Op

¡
n−1

¢¤
, (4.7)

as max1≤i≤n
¯̄̄
∇2h

³
φ̇
0
ĝi

´
−∇2h (0)

¯̄̄
p→ 0 and 1

n

Pn
i=1 g

³
yi, θ̂

´
= Op

³
n−

1
2

´
.

Hence,

p̂i =

·
∇h (0) +∇2h (0) φ̂0ĝi + 1

2
∇3h

³
φ̇
0
ĝi
´³

φ̂
0
ĝi
´2¸ 1

n∇h (0)
£
1 +Op

¡
n−1

¢¤
=

1

n
+
1

n

∇2h (0)
∇h (0) φ̂

0
ĝi +

1

2

∇3h
³
φ̇
0
ĝi

´
n∇h (0)

³
φ̂
0
ĝi
´2
+Op

¡
n−2

¢
(4.8)

and, using (4.6),

√
n

µ
p̂i − 1

n

¶
=
∇2h (0)
∇h (0)

1

n
ĝ0i
√
nφ̂+Op

³
n−(

3
2
− 2
α)
´
. (4.9)

Equations (4.8) and (4.9), by expressing the asymptotic relationship between the

empirical and GEL probability density functions, form the basis for the construction

of the Pearson-type test statistics derived in the next sections.

4.3 Tests of overidentifying moment conditions

In this section we develop two classes of Pearson-type test statistics appropriate for

testing the moment conditions (4.1). First, we show that a very simple adaptation of

the standard Pearson statistic utilized in the parametric context allows its employ-

ment in the GEL framework as a test of overidentifying moment conditions. Then, we

derive an alternative Pearson-type statistic which is based on the contrast between

empirical and GEL probabilities estimated for each set into which the sample space

is divided.
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4.3.1 Classical Pearson statistics

Suppose that we have a dataset containing some ties, where the distinct value yi arises

ni ≥ 1 times. Let u be the number of ties. In a parametric context, we may wish to
test whether a given distribution function F̄ (y) correctly describes the data. To this

end, there are two versions of the Pearson statistic that are usually applied:

P ∗1 =
uX
i=1

(ei − ni)
2

ni
(4.10)

and

P ∗2 =
uX
i=1

(ei − ni)
2

ei
, (4.11)

where ni and ei ≡ n ·dF̄ (yi) denote, respectively, the actual and the expected number
of observations of the distinct value yi, i = 1, ..., u, under F̄ (y). In (4.11) it is assumed

that ei > 0 for all i = 1, ..., u. Both statistics have a limiting chi-square distribution

when F̄ (y) is indeed the true distribution of the data.

In the GEL framework, we can ignore the ties in the data and deal with the

probability associated with an observation, not a value; see inter alia Owen (2001).

In other words, we can act as if a single data point was observed in each cell of a

n-cell contingency table, that is, a GEL version of the above statistics may be directly

obtained by setting ni = 1, u = n and ei = np̂i, i = 1, ..., n. In fact, as we show next,

the corresponding versions of (4.10) and (4.11) that allow the hypothesis (4.1) to be

tested in models estimated by GEL methods are given by

P1 =
nX
i=1

(np̂i − 1)2 (4.12)

and

P2 =
nX
i=1

(np̂i − 1)2
np̂i

, (4.13)

which have a limiting chi-square distribution with s − k degrees of freedom.1 Note

1These Pearson statistics could also be used as distance metric in (2.48) and, therefore, be
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that, from (4.8), it follows that np̂i = 1 + Op

³
n−(

1
2
− 1
α)
´
, so (4.12) and (4.13) are

asymptotically equivalent.

To demonstrate that these statistics are appropriated for testing the moment

conditions (4.1), we show the asymptotic equivalence of P1 to a Wald test of overi-

dentifying moment conditions. The proof is very simple. In fact, from (4.8), and

using (4.6), it follows that

(np̂i − 1)2 =

∇2h (0)
∇h (0) φ̂

0
ĝi +

1

2

∇3h
³
φ̇
0
ĝi
´

∇h (0)
³
φ̂
0
ĝi

´2
+Op

¡
n−1

¢2

=

·∇2h (0)
∇h (0)

¸2 ³
φ̂
0
ĝi

´2
+
∇2h (0)
∇h (0) φ̂

0
ĝiOp

³
n−(1−

2
α)
´
+

1

4

∇3h
³
φ̇
0
ĝi

´
∇h (0)

³
φ̂
0
ĝi

´2
Op

³
n−(1−

2
α)
´
.

Summing over i = 1, ..., n,

nX
i=1

(np̂i − 1)2 = n

·∇2h (0)
∇h (0)

¸2
φ̂
0 1

n

nX
i=1

ĝiĝ
0
iφ̂+

∇2h (0)
∇h (0)

√
nφ̂

0 1√
n

nX
i=1

ĝiOp

³
n−(1−

2
α)
´
+

1

4
nφ̂

0 1

n

 nX
i=1

∇3h
³
φ̇
0
ĝi

´
∇h (0) ĝiĝ

0
i

 φ̂Op

³
n−(1−

2
α)
´

= n

·∇2h (0)
∇h (0)

¸2
φ̂
0
V̂nφ̂+Op

³
n−(1−

2
α)
´
,

as 1√
n

Pn
i=1 ĝi = Op (1) and 1

n

Pn
i=1

h
∇3h

³
φ̇
0
ĝi
´
ĝiĝ

0
i −∇3h (0)

i
p→ 0. Hence, P1 =

Wn+Op

³
n−(1−

2
α)
´
,where Wn denotes the Wald test statistic of overidentifying mo-

ment conditions given in (2.79).

applied to produce estimators for the parameters of interest in moment condition models. Actually,
the optimization of the program (2.48) based on P1 and P2 would yield the same estimators as
those produced by the choicesM1 (Fmd, Fn) andM1 (Fn, Fmd) in the Cressie-Read statistic (2.49),

respectively. Note that (4.13) may be written as P2 =
Pn

i=1

³
1
np̂i
− 1
´
.
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4.3.2 Alternative Pearson-type tests

In this sub-section we develop an alternative Pearson-type test of overidentifying

moment conditions. As discussed in section 4.2, the distribution F in (4.1) can be

consistently estimated, under the hypothesis that those moment conditions hold in

the population of interest, by either Fn (y) of (4.2) or F̂gel (y) of (4.3). Therefore, we

can think of testing the validity of the overidentifying moment conditions (4.1) by

testing for H0 : F̂gel (y)− Fn (y) = 0. Indeed, if the null model is correctly specified,

the limiting distribution of a test statistic based on the contrast F̂gel (y) − Fn (y)

should be centred at zero.

Derivation

Consider a first-order Taylor series expansion of
√
nF̂gel (y) around φ = 0:

√
nF̂gel (y) =

√
nFn (y) +

nX
i=1

1 (yi ≤ y)
∂pi

³
θ̂, 0
´0

∂φ0
√
nφ̂+Op

³
n−

1
2

´
(4.14)

As

∂pi (θ, φ)

∂φ0
=
∇πi (θ, φ) g (yi, θ)

Pn
i=1 πi (θ, φ)− πi (θ, φ)

Pn
i=1∇πi (θ, φ) g (yi, θ)

[
Pn

i=1 πi (θ, φ)]
2

(4.15)

and, thus,

∂pi
³
θ̂, 0
´

∂φ0
=
∇2h (0)
∇h (0)

1

n

"
g
³
yi, θ̂

´0
− 1

n

nX
i=1

g
³
yi, θ̂

´0#

=
∇2h (0)
∇h (0)

1

n
g
³
yi, θ̂

´0
, (4.16)

since 1
n

Pn
i=1 g

³
yi, θ̂

´
= Op

³
n−

1
2

´
, it follows that

√
nF̂gel (y) =

√
nFn (y) +

∇2h (0)
∇h (0)

1

n

nX
i=1

1 (yi ≤ y) g
³
yi, θ̂

´0√
nφ̂
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+Op

³
n−

1
2

´
=
√
nFn (y) +

∇2h (0)
∇h (0) b

0√nφ̂+Op

³
n−

1
2

´
, (4.17)

where the s-vector b ≡ EF [1 (yi ≤ y) g (yi, θ0)] is assumed to be nonzero. Moreover,

as
√
nφ̂ = − ∇h(0)

∇2h(0)V
−1M

√
ngn (θ0)+Op

³
n−

1
2

´
, see expression (2.66), equation (4.17)

can be written as:

√
n
h
F̂gel (y)− Fn (y)

i
= −b0V −1M√ngn (θ0) +Op

³
n−

1
2

´
. (4.18)

Now, consider a partition of the sample space of y into the sets Cj, j = 1, ..., L,

where L is finite. Define

Fn (Cj) =
1

n

nX
i=1

1 (yi ∈ Cj) (4.19)

and

F̂gel (Cj) =
nX
i=1

1 (yi ∈ Cj) pi
³
θ̂, φ̂

´
. (4.20)

Using a similar argument to that above, we have, corresponding to (4.18),

√
n
h
F̂gel (Cj)− Fn (Cj)

i
= −b0jV −1M

√
ngn (θ0) +Op

³
n−

1
2

´
, (4.21)

j = 1, ..., L. Stacking B ≡ (b1, ..., bL), an (s× L) matrix, and

F̂gel − Fn ≡


F̂gel (C1)− Fn (C1)

...

F̂gel (CL)− Fn (CL)

 , (4.22)

an L-vector, it follows that

√
n
³
F̂gel − Fn

´
= −B0V −1M

√
ngn (θ0) +Op

³
n−

1
2

´
. (4.23)
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Hence, under the null hypothesis that the moment conditions (4.1) hold in the pop-

ulation,
√
n
³
F̂gel − Fn

´
d→ N (0,Ψ) , (4.24)

where Ψ ≡ B0M 0V −1MB. Thus,

n
³
F̂gel − Fn

´0
Ψ−n

³
F̂gel − Fn

´
d→ χ2v, (4.25)

where Ψ−n ≡
³
B̂0
nM̂

0
nV̂

−1
n M̂nB̂n

´−
denotes a consistent estimator for a g-inverse of

Ψ, B̂n, V̂n and M̂n are consistent estimators for B, V and M , respectively, and

υ = rk (B0M 0V −1MB).

Let L ≥ s and assume that B is full row rank s. Then, υ = s−k and a generalized
inverse for Ψ is B0 (BB0)−1 V (BB0)−1B. Therefore, the Pearson-type test statistic

proposed in this section is given by

P3 = n
³
F̂gel − Fn

´0
B̂0
n

³
B̂nB̂

0
n

´−1
V̂n
³
B̂nB̂

0
n

´−1
B̂n

³
F̂gel − Fn

´
d→ χ2s−k. (4.26)

If L = s, the matrix B will be invertible and this test statistic can be simplified to

P3 = n
³
F̂gel − Fn

´0
B̂−1n V̂nB̂

−1
n

³
F̂gel − Fn

´
d→ χ2s−k. (4.27)

Asymptotic equivalence to alternative tests

In this sub-section we show that the Pearson-type test statistic P3 above developed

is asymptotically equivalent to all the other GEL tests of overidentifying moment

conditions discussed before. First, note that (4.23) can be rewritten both as

√
n
³
F̂gel − Fn

´
= −B0V −1

√
ngn

³
θ̂
´
+Op

³
n−

1
2

´
(4.28)

and
√
n
³
F̂gel − Fn

´
= −∇

2h (0)

∇h (0) B
0√nφ̂+Op

³
n−

1
2

´
. (4.29)
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Expression (4.28) follows from a Taylor series expansion of
√
ngn

³
θ̂
´
around

√
ngn (θ0),

√
ngn

³
θ̂
´
=
√
ngn (θ0) + G

√
n
³
θ̂ − θ0

´
+ Op

³
n−

1
2

´
, where

√
n
³
θ̂ − θ0

´
is replaced

by −ΣG0V −1
√
ngn (θ0), see (2.66), yielding

√
ngn

³
θ̂
´
=M

√
ngn (θ0) +Op

³
n−

1
2

´
. (4.30)

To obtain (4.29), note that
√
n∇

2h(0)
∇h(0) φ̂ = −V −1M√ngn (θ0) + Op

³
n−

1
2

´
, see also

(2.66).

Using (4.25) and (4.28), we can demonstrate the asymptotic equivalence of the P3

and J tests. Indeed, substituting the latter expression into the former, we obtain:

P3 = nĝ0nV̂
−1
n B̂n

³
B̂0
nM̂

0
nV̂

−1
n M̂nB̂n

´−
B̂0
nV̂

−1
n ĝn +Op

³
n−

1
2

´
. (4.31)

Following Lemma 2.2.5d) of Rao and Mitra (1971), B̂n

³
B̂0
nM̂

0
nV̂

−1
n M̂nB̂n

´−
B̂0
n is a

generalized inverse for M̂ 0
nV̂

−1
n M̂n, since rk

³
B̂0
nM̂

0
nV̂

−1
n M̂nB̂n

´
= rk

³
M̂ 0

nV̂
−1
n M̂n

´
.

Thus, as V̂n is just another generalized inverse for M̂ 0
nV̂

−1
n M̂n, it follows that

P3 = nĝ0nV̂
−1
n ĝn +Op

³
n−

1
2

´
= Jn +Op

³
n−

1
2

´
. (4.32)

Similarly, substituting (4.29) into (4.25) and applying the same Lemma of Rao

and Mitra (1971), the asymptotic equivalence of the Pearson-type test to the Wald

test presented in (2.79) (and, hence, to the Pearson statistics P1 and P2) is proven:

P3 = n

·∇2h (0)
∇h (0)

¸2
φ̂
0
V̂nφ̂+Op

³
n−

1
2

´
= Wn +Op

³
n−

1
2

´
. (4.33)

The asymptotic equivalence of the Pearson-type test to the distance metric test

of (2.78) can be shown by demonstrating the equivalence of the latter to the Wald

statistic; see Smith (1997, pp. 510-511) for a proof.
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4.4 Tests of parametric restrictions

The same principles used to construct Pearson-type tests of overidentifying moment

conditions can be applied in other contexts. In this section we show how to develop

GEL Pearson-type statistics appropriate for testing parametric restrictions.

4.4.1 Constrained GEL estimation

Consider the null hypothesis

H0 : r (θ0) = 0, (4.34)

where r (·) is a known continuously differentiable q-vector of parametric restrictions,
where q < k. The (q × k) derivative matrix R (θ) ≡ ∇θr (θ) is assumed full row

rank q. Let
³
θ̂, φ̂

´
be the unconstrained estimators resulting from the optimization

of the GEL criterion Qgel (θ, φ) = h [φ0g (yi, θ)] and
³
θ̃, φ̃, ψ̃

´
the estimators of the

constrained model incorporating H0, which are obtained by optimizing the modified

GEL function Q∗gel (θ, φ, ψ) = h [φ0g (yi, θ) + ψ0r (θ)]; see Smith (1997) and section

2.5.6. Define

p̃∗i ≡ p∗i
³
θ̃, φ̃, ψ̃

´
=

πi

³
θ̃, φ̃, ψ̃

´
Pn

i=1 πi

³
θ̃, φ̃, ψ̃

´ , (4.35)

where πi
³
θ̃, φ̃, ψ̃

´
≡ ∇h

h
φ̃
0
g
³
yi, θ̃

´
+ ψ̃

0
r
³
θ̃
´i
, i = 1, ..., n.

In this setting, assuming that the moment conditions (4.1) hold in the population,

the empirical distribution function Fn (y) and the unconstrained GEL distribution

F̂gel (y) are still consistent estimators of the distribution F in (4.1), whether or not

H0 (4.34) holds. However, under H0 (4.34), a more efficient estimator is given by

F̃ ∗gel (y) =
nX
i=1

1 (yi ≤ y) p∗i
³
θ̃, φ̃, ψ̃

´
. (4.36)

The statistics suggested below for testing the parametric restrictions (4.34) are based

on the contrasts F̂gel (y)− F̃ ∗gel (y) or p̂i − p̃∗i , i = 1, ..., n. Before presenting them, we
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derive in the remaining of this sub-section the asymptotic relationship that occurs

between the GEL implied probabilities p̂i and p̃∗i , i = 1, ..., n.

Consider a Taylor expansion of
√
np̃∗i about

³
θ̃, 0, 0

´
:

√
np̃∗i =

√
np∗i

³
θ̃, 0, 0

´
+
∂p∗i

³
θ̃, 0, 0

´0
∂φ0

√
nφ̃+

∂p∗i
³
θ̃, 0, 0

´0
∂ψ0

√
nψ̃+Op

³
n−

3
2

´
. (4.37)

As

∂p∗i (θ, φ, ψ)
∂φ0

=
∇π∗i (θ, φ, ψ) g (yi, θ)

Pn
i=1 π

∗
i (θ, φ, ψ)− π∗i (θ, φ, ψ)

Pn
i=1∇π∗i (θ, φ, ψ) g (yi, θ)

[
Pn

i=1 π
∗
i (θ, φ, ψ)]

2

and

∂p∗i (θ, φ, ψ)
∂ψ0

=
∇π∗i (θ, φ, ψ)

Pn
i=1 π

∗
i (θ, φ, ψ)− π∗i (θ, φ, ψ)

Pn
i=1∇π∗i (θ, φ, ψ)

[
Pn

i=1 π
∗
i (θ, φ, ψ)]

2 r (θ) ,

it follows that, since π∗i (θ, φ, 0) = πi (θ, φ),

∂p∗i
³
θ̃, 0, 0

´
∂φ0

=
∇πi

³
θ̃, 0
´
g
³
yi, θ̃

´Pn
i=1 πi

³
θ̃, 0
´
− πi

³
θ̃, 0
´Pn

i=1∇πi
³
θ̃, 0
´
g
³
yi, θ̃

´
hPn

i=1 πi
³
θ̃, 0
´i2

=
∂pi

³
θ̃, 0
´

∂φ0
, (4.38)

and

∂p∗i
³
θ̃, 0, 0

´
∂ψ0

=
∇2h (0)Pn

i=1∇h (0)−∇h (0)
Pn

i=1∇2h (0)
[
Pn

i=1∇h (0)]2
r (θ)

=
n∇2h (0)∇h (0)− n∇h (0)∇2h (0)

[n∇h (0)]2 r (θ)

= 0. (4.39)
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Noting that p∗i
³
θ̃, 0, 0

´
= 1

n
and substituting (4.38) and (4.39) into (4.37) yields:

√
n

µ
p̃∗i −

1

n

¶
=
∇2h (0)
∇h (0)

1

n
g
³
yi, θ̃

´0√
nφ̃+Op

³
n−

3
2

´
. (4.40)

Finally, subtracting (4.40) from (4.9), with θ̃ and θ̂ replaced by θ0, produces:

√
n (p̂i − p̃∗i ) =

∇2h (0)
∇h (0)

1

n
g (yi, θ0)

0√n
³
φ̂− φ̃

´
+Op

³
n−

3
2

´
. (4.41)

4.4.2 Classical Pearson tests

In the present framework, classical-type Pearson statistics for testing (4.34), similar

to those derived in section 4.3.1, can be constructed. Corresponding to P1 (4.12), we

propose the statistic

P pr
1 =

nX
i=1

(np̂i − np̃∗i )
2 , (4.42)

which has a limiting chi-square distribution with q degrees of freedom. Indeed, from

(4.41) it follows that

n (p̂i − p̃∗i )
2 =

·∇2h (0)
∇h (0)

¸2
1

n

³
φ̂− φ̃

´0
g (yi, θ0) g (yi, θ0)

0
³
φ̂− φ̃

´
+Op

³
n−

5
2

´
nX
i=1

n (p̂i − p̃∗i )
2 =

·∇2h (0)
∇h (0)

¸2 ³
φ̂− φ̃

´0 1
n

nX
i=1

g (yi, θ0) g (yi, θ0)
0
³
φ̂− φ̃

´
+Op

³
n−

3
2

´
P pr
1 = n

·∇2h (0)
∇h (0)

¸2 ³
φ̂− φ̃

´0
V̂n
³
φ̂− φ̃

´
+Op

³
n−

1
2

´
= MCn +Op

³
n−

1
2

´
,

whereMCn denotes the minimum chi-square statistic of parametric restrictions given

in (2.97).

Corresponding to P2, we have the following two alternatives:

P pr
2a =

nX
i=1

(np̂i − np̃∗i )
2

np̂i
(4.43)
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and

P pr
2b =

nX
i=1

(np̂i − np̃∗i )
2

np̃i
. (4.44)

Both statistics also have a limiting chi-square distribution with q degrees of freedom.

The proof is similar to that presented above for P pr
1 since, from (4.9), np̂i = 1 +

Op

³
n−(

3
2
− 2
α)
´
and, from (4.40), np̃∗i = 1 +Op

³
n−

1
2

´
.

4.4.3 Alternative Pearson-type tests

By analogy with the overidentifying moment conditions case, a test statistic based

on the normalized contrast
√
n
h
F̂gel (y)− F̃ ∗gel (y)

i
constitutes an alternative way of

assessing the hypothesis H0 (4.34). Expanding F̃ ∗gel (y) about
³
θ̃, 0, 0

´
yields:

√
nF̃ ∗gel (y) =

√
nFn (y) +

nX
i=1

1 (yi ≤ y)
∂p∗i

³
θ̃, 0, 0

´0
∂φ0

√
nφ̃+

+
nX
i=1

1 (yi ≤ y)
∂p∗i

³
θ̃, 0, 0

´0
∂ψ0

√
nψ̃ +Op

³
n−

1
2

´
=
√
nFn (y) +

∇2h (0)
∇h (0)

1

n

nX
i=1

1 (yi ≤ y) g
³
yi, θ̃

´0√
nφ̃+

+Op

³
n−

1
2

´
; (4.45)

see (4.38) and (4.39). Hence, using the same notation as in sub-section 4.3.2, we have:

√
n
h
F̃ ∗gel (y)− Fn (y)

i
=
∇2h (0)
∇h (0) b

0√nφ̃+Op

³
n−

1
2

´
. (4.46)

Subtracting (4.46) from (4.17) produces:

√
n
h
F̂gel (y)− F̃ ∗gel (y)

i
=
∇2h (0)
∇h (0) b

0√n
³
φ̂− φ̃

´
+Op

³
n−

1
2

´
. (4.47)

Finally, as
√
nφ̂ = − ∇h(0)

∇2h(0) (V
−1 − V −1GΣG0V −1)

√
ngn (θ0) + Op

³
n−

1
2

´
, see (2.66),

and
√
nφ̃ = − ∇h(0)

∇2h(0) (V
−1 − V −1GΣPG0V −1)

√
ngn (θ0) + Op

³
n−

1
2

´
, see (2.88), it
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follows that

√
n
³
φ̂− φ̃

´
=
∇h (0)
∇2h (0)V

−1GΣ (I − P )G0V −1
√
ngn (θ0) +Op

³
n−

1
2

´
(4.48)

and, therefore,

√
n
h
F̂gel (y)− F̃ ∗gel (y)

i
= b0V −1GΣ (I − P )G0V −1

√
ngn (θ0) +Op

³
n−

1
2

´
. (4.49)

Now, consider a partition of the sample space of y into the sets Cj, j = 1, ..., L,

identical to that of the previous section. Define F̃ ∗gel (Cj) =
Pn

i=1 1 (yi ∈ Cj) p̃
∗
i and

F̂gel − F̃ ∗gel ≡


F̂gel (C1)− F̃ ∗gel (C1)

...

F̂gel (CL)− F̃ ∗gel (CL)

 . (4.50)

Then, noting that Σ (I − P )Σ−1G (I − P )0Σ = Σ (I − P ), it follows from (4.49) that

√
n
³
F̂gel − F̃ ∗gel

´
d→ N (0,Ψ) , (4.51)

where Ψ ≡ B0V −1GΣ (I − P )G0V −1B. Thus, a Pearson-type statistic for testing the

parametric restrictions (4.34) is given by

P pr
3 = n

³
F̂gel − F̃ ∗gel

´0
Ψ−n

³
F̂gel − F̃ ∗gel

´
d→ χ2q, (4.52)

where Ψ−n denotes a consistent estimator for a g-inverse of Ψ. Assuming that B is

full row rank s, a generalized inverse for Ψ is B0 (BB0)−1 V (BB0)−1B. In the case

that B is a square matrix (L = s), a generalized inverse for Ψ is simply B−1V B−1.
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4.5 Finite sample properties of tests of overidenti-

fying moment conditions: Monte Carlo inves-

tigation

In this section we investigate the finite sample properties of some of the Pearson-type

tests proposed in the previous sections. In particular, we examine the size behaviour

of the P1, P2 and P3 test statistics of overidentifying moment conditions suggested

in section 4.3 and assess how they perform comparatively to the J , Wald (W ) and

distance metric (DM) tests, see sections 2.3.4 and 2.5.6, and also to several bootstrap

versions of the first test.

4.5.1 Experimental designs

We follow closely the simulation study realized by Imbens, Spady and Johnson (1998)

to compare the finite sample properties of the aforementioned tests, using their first

two experimental designs as a basis for our investigation. The first model simulated is

a simplified version of an asset-pricing model, characterized by the moment indicators

for unit i

g (Xi, Zi, θ) =

 exp [−0.72− θ (Xi + Zi) + 3Zi]− 1
Zi {exp [−0.72− θ (Xi + Zi) + 3Zi]− 1}

 , (4.53)

where X and Z were generated independently from a N (0, 0.16) distribution and the

true value of θ is 3. The second Monte Carlo experiment is based on the moment

vector

g (Zi, θ) =

 Zi − θ

Z2i − θ2 − 2θ

 , (4.54)

where Z has a chi-square distribution with one degree of freedom and θ0 = 1. We

considered samples of 100, 200, 500 and 1000 observations, each one being replicated

10000 times.
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For the tests requiring evaluation at GEL estimators (W , DM , P1, P2 and P3),

we considered both EI and EL estimation. In both cases, consistent estimators for

the matrices needed to compute the W and P3 tests were obtained in three different

ways:

• gel(n): uses sample means to estimate consistently V and G, for example:

V̂n =
1

n

nX
i=1

g
³
yi, θ̂

´
g
³
yi, θ̂

´0
; (4.55)

• gel(s): uses the GEL implied probabilities p̂i, i = 1, ..., n, for both V and G, for

example:

V̂n =
nX
i=1

p̂ig
³
yi, θ̂

´
g
³
yi, θ̂

´0
; (4.56)

• gel(r): the matrix G is estimated as in gel (s) and Vg is estimated robustly as:

V̂n =
nX
i=1

p̂ig
³
yi, θ̂

´
g
³
yi, θ̂

´0 "
n

nX
i=1

p̂2i g
³
yi, θ̂

´
g
³
yi, θ̂

´0#−1
·

·
nX
i=1

p̂ig
³
yi, θ̂

´
g
³
yi, θ̂

´0
. (4.57)

The same three procedures were followed to compute the J test but, in addition, we

evaluate it also at two-step (J2s), repeatedly-iterated (Jri) and continuous-updating

(Jcu) GMM estimators, in which cases we only use a consistent estimator for the

matrix V based on, naturally, sample means.

In their Monte Carlo simulation study, Imbens, Spady and Johnson (1998) ana-

lyzed the finite sample behaviour of the following tests: J2s, Jri, Jcu, Jei(s), Wei(s),

Wei(r), DMei and DMel. In this section we replicate their results for the two experi-

mental designs described above and examine whether their conclusions remain valid

when other estimators are employed to evaluate the J and Wald tests. In particular,

we study the effects of using EL instead of EI estimation [Jel(s), Wel(s) and Wel(r)

tests], confirm the conjecture that robust estimation of the matrix V does not work
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well in the case of the J test [Jei(r) and Jel(r) tests], for reasons explained below, and

investigate the consequences of using sample means to estimate that same matrix

when GEL estimation is utilized [Jei(n), Jel(n), Wei(n) and Wel(n) tests].

The implementation of the P3 test requires the previous partition of the sample

space into L sets. In order to examine the sensitivity of this test to the number of

classes into which the observations are divided, we considered two different values for

L: 8 and 16. The definition of each set in each Monte Carlo sample was such that

each class contains, approximately, (100/L)% of the observations.

4.5.2 Main results

Tables 4.1 and 4.2, for the asset-pricing model, and 4.3 and 4.4, for the chi-squared

moments case, report the estimated size of each test at seven different levels of signif-

icance for the asset-pricing models. For each significance level, sample size and model

considered, the actual size closest to the nominal size is underlined. For the tests

analyzed there, these results conform with those presented by Imbens, Spady and

Johnson (1998).2 As can be immediately seen from tables 4.1 and 4.3, all tests are

significantly oversized in almost all cases, particularly for the chi-squared moments

model. Clearly, the Wei(r) test registered the best behaviour in most experiments,

the only exceptions being the largest nominal sizes, where the Jcu test, in the first

model, and theWel(r) test, in both models, achieved superior performances. However,

even for n = 1000 the Wei(r) test is still slightly oversized for most significance levels.

The J test evaluated at two-step GMM estimators, the most widely applied test to

assess overidentifying moment condition models, has a disastrous behaviour in these

experiments, in the asset-pricing model being the worst of all versions of the J test

based on sample mean estimators for the matrix V [J2s, Jri, Jcu, Jei(n) and Jel(n)]. The

DM tests also produced very modest results, with that based on the EL objective

2There is the following correspondence between the notation used here and that utilized by
Imbens, Spady and Johnson (1998): J2s = TAM

g1 , Jri = TAM
g2 , Jcu = TAM

g3 , Jei(s) = TAM
et , Wei(s) =

TLM
et(s), Wei(r) = TLM

et(r), DMei = TCF
klic(et) and DMel = TCF

lr(el).
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function performing substantially better than that using the EI criterion, particularly

for the chi-squared moments model and for the smallest nominal sizes.

As noted by Imbens, Spady and Johnson (1998), robust estimation of the matrix

V decisively influences the performance of the tests. However, the extraordinary

benefits reported by them for the Wei(r) statistic do not extend to all the other tests.

They do not extend even to the Wel(r) test for the smallest nominal sizes considered.

The behaviour of the J test also deteriorates considerably. Although a theoretical

analysis of the effects of using the gel (r) method is not available, it is evident why

the W and the J tests are affected in opposite ways: the matrix V appears in the

expression of those tests in an inverse way.

When the J test is evaluated at GEL estimators, it is relatively invariant to the

use of EI or EL estimation. In both cases the robust version of the J test is clearly

the worst and the actual sizes of the tests based on sample means, Jei(n) and Jel(n),

are very similar. The only important divergence appears when the Jei(s) and Jel(s)

tests are considered. In both models the utilization of the GEL implied probabilities

in the estimation of the covariance matrix V produced substantially better results

in the EL case. For this reason, while the Jel(s) statistic is the best of the J tests

based on EL estimators, in the EI case the best performances are shared by the Jei(n)

(pricing-asset model) and Jei(s) (chi-squared model) tests.

With regard to the Wald statistics, there are significant differences between eval-

uation at EI or EL estimators. Wei(r) is undoubtedly the best performer, being

surpassed byWel(r) only for 10% (sometimes) and 20% (always) levels of significance.

For the smallest nominal sizes, the actual sizes of the Wel(r) statistic are much higher

than those of the ei (r) version in both models. The same happens with the el (n)

version relative to the ei (n) one. In contradistinction, EL evaluation leads to better

performances when based on the gel (s) method. Clearly, as also found for the J

test, direct application of the GEL probabilities to estimate the covariance matrix V

works much better in the EL case. Therefore, while robust estimation of V is always

recommended when calculating Wald tests based on EI estimators, in the EL case the
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Table 4.1: Monte Carlo estimated sizes for J, W and DM tests of overidentifying moment conditions: asset-pricing model (10 000 replications) 
 
 

n Size J W DM 
  2s(n) ri(n) cu(n) ei(n) ei(s) ei(r) el(n) el(s) el(r)  ei(n) ei(s) ei(r) el(n) el(s) el(r) ei el 

100 20.0% 26.7 26.1 24.0 25.5 29.8 29.2 25.9 28.3 28.5 29.9 25.3 26.9 28.1 28.3 24.8 27.2 27.9
 10.0% 17.5 16.7 12.8 15.9 19.6 20.1 16.4 17.6 19.3 19.8 16.1 14.8 18.7 17.6 15.3 16.9 17.0
 5.0% 12.2 11.3 7.2 10.6 13.7 14.6 11.2 11.2 14.0 13.8 11.0 8.3 13.6 11.2 10.4 11.0 11.1
 2.5% 9.5 8.5 4.5 7.8 9.9 11.5 8.3 7.4 10.8 10.3 8.3 4.6 10.4 7.4 7.6 7.7 7.3
 1.0% 6.9 5.9 2.5 5.2 6.9 8.7 5.7 4.3 8.1 7.3 5.8 2.2 7.6 4.3 5.3 5.0 4.1
 0.5% 5.7 4.4 1.6 3.7 5.4 7.2 4.2 2.9 7.0 5.6 4.4 1.3 6.1 2.9 4.0 3.6 2.8
 0.1% 3.9 2.3 0.7 1.7 3.3 4.7 2.1 1.1 4.6 3.5 2.4 0.4 4.0 1.1 2.7 1.8 1.2

200 20.0% 25.3 25.1 24.2 24.8 28.0 27.7 25.0 26.8 27.2 28.1 24.7 25.7 26.0 26.8 23.6 26.0 26.8
 10.0% 15.0 14.7 13.3 14.4 17.3 18.0 14.7 15.7 17.3 17.4 14.5 13.6 16.5 15.7 13.9 15.2 15.5
 5.0% 9.9 9.5 7.6 9.2 11.2 12.5 9.5 9.4 11.9 11.3 9.5 7.1 11.2 9.4 8.9 9.3 9.1
 2.5% 6.8 6.6 4.5 6.2 7.8 9.1 6.5 5.8 8.5 7.8 6.5 3.8 8.1 5.8 6.6 5.8 5.6
 1.0% 4.6 4.3 2.4 4.0 5.0 6.2 4.3 2.9 6.0 5.0 4.3 1.5 5.9 2.9 4.6 3.6 3.0
 0.5% 3.5 3.1 1.4 2.9 3.5 4.9 3.1 1.9 4.8 3.6 3.1 0.9 4.8 1.9 3.6 2.5 1.9
 0.1% 1.9 1.5 0.4 1.3 2.0 3.0 1.5 0.7 3.0 2.1 1.6 0.2 3.2 0.7 2.1 1.1 0.7

500 20.0% 23.1 23.0 22.7 22.8 25.6 25.4 22.9 24.7 25.1 25.7 22.9 23.7 24.2 24.7 22.1 24.0 24.4
 10.0% 13.1 13.0 12.4 12.8 15.0 15.6 13.0 13.5 15.0 15.0 13.0 12.0 14.4 13.5 12.4 13.4 13.6
 5.0% 8.0 7.9 7.3 7.6 9.3 10.1 7.8 7.9 9.7 9.4 7.8 6.3 9.3 7.9 7.9 7.8 7.7
 2.5% 5.0 4.9 4.1 4.7 6.2 6.9 4.9 4.6 6.6 6.2 4.9 3.4 6.6 4.6 5.4 4.7 4.6
 1.0% 3.0 3.0 2.3 2.9 3.7 4.4 3.0 2.4 4.2 3.7 3.0 1.3 4.5 2.4 3.7 2.5 2.2
 0.5% 2.1 2.1 1.5 1.9 2.4 3.3 2.1 1.4 3.2 2.5 2.0 0.6 3.7 1.4 2.8 1.6 1.3
 0.1% 0.8 0.9 0.4 0.7 1.1 1.7 0.8 0.5 1.8 1.2 0.8 0.1 2.4 0.5 1.8 0.5 0.4

1000 20.0% 21.8 21.8 21.6 21.7 23.5 23.5 21.9 22.6 23.2 23.5 21.8 22.0 22.3 22.6 20.8 22.5 22.7
 10.0% 11.9 11.8 11.6 11.8 13.2 13.9 11.9 12.1 13.6 13.3 11.9 11.2 12.5 12.1 11.2 12.3 12.3
 5.0% 6.7 6.8 6.5 6.7 8.0 8.5 6.8 7.1 8.3 8.1 6.8 5.9 8.0 7.1 6.6 6.9 6.8
 2.5% 4.4 4.3 4.1 4.3 4.8 5.5 4.4 3.9 5.4 5.0 4.4 3.0 5.2 3.9 4.3 4.1 3.9
 1.0% 2.4 2.4 2.3 2.4 2.5 3.5 2.4 1.8 3.4 2.6 2.4 1.2 3.4 1.8 2.5 2.2 1.9
 0.5% 1.7 1.7 1.6 1.7 1.7 2.4 1.7 1.0 2.5 1.7 1.7 0.6 2.4 1.0 1.9 1.3 1.0
 0.1% 0.7 0.7 0.6 0.6 0.7 1.2 0.6 0.3 1.3 0.7 0.7 0.1 1.5 0.3 1.0 0.5 0.3

      Note: The actual size closest to the nominal size of all tests contained in Tables 4.1 and 4.2 is underlined. 



 
 

Table 4.2: Monte Carlo estimated sizes for Pearson-type tests of overidentifying moment conditions: asset-pricing model (10 000 replications) 
 

n Size P1 P2 P3 (L=8) P3 (L=16) 
  ei el ei el ei(n) ei(s) ei(r) el(n) el(s) el(r) ei(n) ei(s) ei(r) el(n) el(s) el(r) 

100 20.0% 26.7 28.6 30.4 28.3 25.2 22.4 20.2 25.8 22.9 21.8 25.1 22.5 20.2 25.4 22.9 21.2
 10.0% 17.0 19.3 20.4 17.6 14.3 15.4 9.3 14.0 14.7 8.3 14.2 15.6 9.7 13.7 15.0 8.1
 5.0% 11.8 14.0 14.6 11.2 8.4 10.9 3.8 7.3 10.2 2.1 8.6 11.1 4.6 7.3 10.4 2.3
 2.5% 8.9 10.8 10.9 7.4 5.0 7.9 1.1 3.8 6.9 0.3 5.3 8.2 1.7 3.7 7.5 0.4
 1.0% 6.4 8.1 7.9 4.3 2.4 4.7 0.1 1.4 4.0 0.0 2.7 5.2 0.3 1.6 4.5 0.0
 0.5% 5.0 7.0 6.2 2.9 1.4 2.7 0.0 0.6 2.3 0.0 1.6 3.5 0.1 0.8 2.8 0.0
 0.1% 2.8 4.6 4.3 1.1 0.3 0.6 0.0 0.1 0.5 0.0 0.6 1.1 0.0 0.1 0.9 0.0

200 20.0% 25.5 27.2 28.5 26.8 25.4 21.6 21.5 25.5 23.3 22.6 25.0 21.5 21.2 25.3 22.8 22.3
 10.0% 15.4 17.3 18.1 15.7 14.3 14.2 10.2 14.1 13.3 10.5 14.1 14.3 10.1 13.7 13.3 9.9
 5.0% 10.0 11.9 12.0 9.4 8.1 10.0 4.8 7.6 8.8 4.3 8.1 10.1 4.8 7.3 8.8 3.9
 2.5% 7.0 8.5 8.7 5.8 4.7 7.1 2.4 4.3 6.0 1.3 4.7 7.2 2.5 4.0 5.9 1.1
 1.0% 4.7 6.0 5.7 2.9 2.5 4.7 0.8 1.9 3.6 0.3 2.5 4.8 0.9 1.6 3.7 0.3
 0.5% 3.5 4.8 4.3 1.9 1.5 3.3 0.3 1.0 2.6 0.1 1.5 3.4 0.4 0.8 2.4 0.1
 0.1% 1.9 3.0 2.7 0.7 0.5 1.3 0.0 0.3 1.0 0.0 0.5 1.5 0.0 0.3 1.0 0.0

500 20.0% 23.6 25.1 26.0 24.7 24.2 21.0 21.6 24.3 22.8 22.2 24.0 21.0 21.3 24.0 22.5 22.0
 10.0% 13.5 15.0 15.6 13.5 13.5 12.4 10.4 13.3 12.6 11.0 13.4 12.3 10.4 12.8 12.3 10.6
 5.0% 8.3 9.7 9.9 7.9 7.7 8.1 5.1 7.7 7.2 5.6 7.5 8.1 4.9 7.4 7.0 5.2
 2.5% 5.3 6.6 6.8 4.6 4.5 5.6 2.5 4.6 4.5 2.6 4.4 5.5 2.5 4.1 4.4 2.4
 1.0% 3.3 4.2 4.2 2.4 2.4 3.6 1.0 2.3 2.7 1.0 2.3 3.6 1.0 2.0 2.6 0.7
 0.5% 2.3 3.2 3.1 1.4 1.4 2.6 0.4 1.4 1.8 0.4 1.3 2.6 0.5 1.1 1.7 0.3
 0.1% 1.0 1.8 1.7 0.5 0.4 1.2 0.1 0.5 0.7 0.1 0.4 1.1 0.1 0.4 0.6 0.0

1000 20.0% 22.1 23.2 23.8 22.6 22.9 20.8 21.1 22.6 22.0 21.2 22.9 20.7 20.9 22.5 21.7 21.1
 10.0% 12.3 13.6 13.6 12.1 12.6 11.5 10.2 12.3 11.9 10.5 12.4 11.5 10.1 12.1 11.7 10.2
 5.0% 7.2 8.3 8.4 7.1 7.1 7.1 5.2 7.0 6.5 5.6 7.0 7.0 5.2 6.9 6.3 5.3
 2.5% 4.6 5.4 5.4 3.9 4.2 4.8 2.7 4.0 4.0 2.6 4.0 4.7 2.7 3.8 4.0 2.5
 1.0% 2.6 3.4 3.0 1.8 2.2 3.0 1.1 2.0 2.3 1.0 2.1 3.0 1.0 1.8 2.2 0.9
 0.5% 1.8 2.5 2.1 1.0 1.2 2.1 0.6 1.2 1.5 0.5 1.2 2.0 0.5 1.0 1.4 0.4
 0.1% 0.7 1.3 1.0 0.3 0.4 1.0 0.1 0.4 0.5 0.1 0.4 1.0 0.1 0.3 0.5 0.1

               Note: The actual size closest to the nominal size of all tests contained in Tables 4.1 and 4.2 is underlined. 



 
Table 4.3: Monte Carlo estimated sizes for J, W and DM tests of overidentifying moment conditions: chi-squared moments model (10 000 

replications) 
 
 

n Size J W DM 
  2s(n) ri(n) cu(n) ei(n) ei(s) ei(r) el(n) el(s) el(r)  ei(n) ei(s) ei(r) el(n) el(s) el(r) ei el 

100 20.0% 34.6 34.6 34.6 34.7 38.0 38.0 35.0 36.5 37.2 37.7 34.1 35.1 33.8 36.5 31.2 35.7 36.3
 10.0% 27.0 26.9 26.9 27.2 28.0 30.1 27.5 25.9 29.5 27.6 27.0 23.4 25.4 25.9 22.8 26.5 26.0
 5.0% 22.3 22.3 22.3 22.6 21.5 25.2 23.1 19.3 24.9 21.3 22.3 16.9 20.3 19.3 17.8 20.7 19.3
 2.5% 18.8 18.8 18.8 19.1 17.6 21.7 19.8 14.8 21.8 17.6 19.3 12.7 16.7 14.8 14.4 17.1 15.5
 1.0% 15.5 15.5 15.5 15.8 13.4 18.2 16.7 11.1 18.9 13.5 16.2 9.6 13.4 11.1 11.3 13.9 11.5
 0.5% 13.4 13.4 13.4 13.8 11.5 16.4 14.7 9.0 17.3 11.7 14.2 8.0 11.8 9.0 9.5 12.0 9.9
 0.1% 9.8 9.8 9.8 10.2 8.1 13.0 11.3 5.9 14.3 8.6 10.8 5.4 8.9 5.9 7.3 8.9 6.8

200 20.0% 29.0 29.0 29.0 29.0 30.9 31.9 29.1 29.6 31.2 30.5 28.5 28.2 26.0 29.6 23.1 29.6 30.0
 10.0% 20.9 20.9 20.9 21.0 21.1 23.8 21.1 19.5 22.9 20.8 20.8 16.8 17.4 19.5 14.7 20.2 19.8
 5.0% 16.4 16.4 16.4 16.5 14.6 19.0 16.8 12.9 18.4 14.4 16.5 10.5 12.8 12.9 10.8 15.1 13.6
 2.5% 13.8 13.8 13.8 13.8 11.0 15.8 14.1 8.9 15.7 10.9 13.9 6.9 9.8 8.9 8.5 11.7 9.7
 1.0% 10.4 10.4 10.4 10.6 7.6 12.7 11.0 5.8 13.1 7.6 10.6 4.4 7.8 5.8 6.3 8.7 6.5
 0.5% 9.1 9.0 9.0 9.2 6.1 10.8 9.5 4.1 11.3 6.1 9.2 3.1 6.5 4.1 5.3 7.2 5.1
 0.1% 6.3 6.3 6.3 6.5 3.5 8.4 6.9 2.1 9.0 3.5 6.6 1.7 4.7 2.1 3.8 4.7 2.9

500 20.0% 25.4 25.4 25.4 25.4 26.3 27.9 25.5 25.3 27.3 26.1 25.2 24.0 21.7 25.3 19.1 26.4 26.1
 10.0% 16.4 16.4 16.4 16.5 15.6 18.8 16.5 14.4 18.3 15.4 16.3 12.5 13.1 14.4 11.3 15.7 14.8
 5.0% 11.5 11.5 11.5 11.5 9.8 13.3 11.6 8.7 13.0 9.7 11.4 6.9 9.0 8.7 7.8 10.2 9.1
 2.5% 8.6 8.6 8.6 8.6 6.6 10.3 8.6 5.3 10.2 6.5 8.5 3.7 6.7 5.3 5.8 7.1 5.9
 1.0% 6.3 6.3 6.3 6.4 3.7 7.5 6.4 2.7 7.7 3.6 6.3 1.7 4.9 2.7 4.0 5.0 3.3
 0.5% 5.2 5.2 5.2 5.2 2.6 6.2 5.3 1.8 6.5 2.6 5.2 1.0 4.0 1.8 3.2 3.6 2.3
 0.1% 3.0 3.0 3.0 3.1 1.2 4.2 3.2 0.7 4.7 1.2 3.1 0.3 2.7 0.7 2.0 2.0 1.0

1000 20.0% 23.2 23.2 23.2 23.2 24.4 25.1 23.3 23.6 24.6 24.2 23.1 22.5 20.8 23.6 18.8 23.8 23.5
 10.0% 14.0 14.0 14.0 14.1 13.9 16.0 14.1 12.9 15.7 13.7 14.0 11.6 12.0 12.9 10.7 13.9 13.2
 5.0% 9.1 9.1 9.1 9.1 8.4 10.8 9.1 7.4 10.3 8.3 9.1 6.1 8.0 7.4 7.0 8.5 7.9
 2.5% 6.5 6.5 6.5 6.5 5.0 7.9 6.5 4.1 7.7 4.8 6.4 2.9 5.8 4.1 5.2 5.6 4.5
 1.0% 4.3 4.3 4.3 4.3 2.7 5.3 4.3 2.0 5.5 2.7 4.2 1.1 4.2 2.0 3.6 3.2 2.2
 0.5% 3.2 3.2 3.2 3.2 1.7 4.1 3.2 1.2 4.3 1.7 3.2 0.6 3.4 1.2 2.8 2.1 1.3
 0.1% 1.7 1.7 1.7 1.7 0.7 2.2 1.7 0.4 2.5 0.7 1.7 0.1 2.1 0.4 1.6 0.9 0.4

      Note: The actual size closest to the nominal size of all tests contained in Tables 4.3 and 4.4 is underlined. 



 
 

Table 4.4: Monte Carlo estimated sizes for Pearson-type tests of overidentifying moment conditions: chi-squared moments model (10 000 
replications) 

 
n Size P1 P2 P3 (L=8) P3 (L=16) 
  ei el ei el ei(n) ei(s) ei(r) el(n) el(s) el(r) ei(n) ei(s) ei(r) el(n) el(s) el(r) 

100 20.0% 35.6 37.2 38.4 36.5 32.8 33.7 27.9 30.3 32.7 22.1 34.3 34.9 29.8 34.3 33.7 29.9
 10.0% 27.9 29.5 28.5 25.9 21.6 28.0 17.1 16.7 25.6 9.2 24.4 29.7 20.6 21.8 28.4 11.5
 5.0% 23.5 24.9 22.1 19.3 15.3 23.4 10.5 9.8 20.6 4.3 18.0 25.6 14.6 13.5 24.1 4.6
 2.5% 20.0 21.8 18.2 14.8 11.0 19.6 6.3 6.1 16.6 2.1 14.3 22.2 9.9 8.6 20.7 2.3
 1.0% 17.1 18.9 14.2 11.1 7.6 15.3 3.1 3.7 12.4 0.9 10.4 18.6 5.3 5.1 17.3 1.1
 0.5% 15.2 17.3 12.2 9.0 5.7 12.6 1.8 2.7 9.6 0.5 8.4 16.3 3.0 3.6 15.0 0.6
 0.1% 12.0 14.3 9.0 5.9 3.1 6.1 0.1 1.4 2.1 0.0 4.8 12.1 0.5 2.0 10.9 0.0

200 20.0% 29.8 31.3 31.3 29.6 28.0 27.7 23.5 26.1 27.6 20.4 29.0 28.6 24.9 28.7 27.8 25.9
 10.0% 21.5 22.9 21.8 19.5 17.6 21.8 13.2 14.1 19.1 8.2 19.2 23.2 15.8 17.5 21.1 11.4
 5.0% 17.2 18.4 15.5 12.9 11.1 17.8 7.6 7.6 14.8 3.5 13.4 19.4 10.4 10.9 17.4 4.6
 2.5% 14.4 15.7 11.7 8.9 7.4 15.0 4.4 4.5 11.5 1.6 9.6 16.6 7.1 6.7 14.8 1.5
 1.0% 11.5 13.1 8.4 5.8 4.6 11.7 2.1 2.4 8.4 0.6 6.6 13.9 4.1 3.3 11.8 0.4
 0.5% 9.8 11.3 6.8 4.1 3.1 9.7 1.3 1.5 6.7 0.3 5.2 11.8 2.6 2.1 9.9 0.1
 0.1% 7.4 9.0 4.1 2.1 1.5 6.7 0.3 0.5 3.9 0.1 2.8 8.9 1.0 0.8 7.2 0.0

500 20.0% 26.0 27.3 26.8 25.3 25.4 23.8 22.6 23.4 25.0 20.5 26.0 24.0 23.2 24.8 24.9 22.2
 10.0% 17.2 18.3 16.1 14.4 14.1 17.0 11.1 12.6 14.7 9.2 15.2 17.7 11.8 13.8 15.8 10.6
 5.0% 12.0 13.0 10.5 8.7 8.5 12.7 5.8 7.0 9.4 4.2 9.5 13.8 6.9 8.1 11.0 5.0
 2.5% 9.1 10.2 7.2 5.3 5.3 9.9 3.2 4.0 6.8 2.1 6.2 11.0 4.4 4.8 8.4 2.0
 1.0% 6.6 7.7 4.5 2.7 2.8 7.3 1.3 1.8 4.7 0.9 3.8 8.4 2.3 2.2 6.1 0.7
 0.5% 5.6 6.5 3.1 1.8 1.8 6.0 0.7 1.3 3.5 0.5 2.5 6.9 1.4 1.3 5.1 0.5
 0.1% 3.6 4.7 1.6 0.7 0.6 3.9 0.2 0.5 1.8 0.1 1.2 4.9 0.4 0.5 3.1 0.1

1000 20.0% 23.6 24.6 24.7 23.6 23.5 21.8 21.6 22.3 23.1 20.3 23.7 22.0 21.9 23.1 23.1 21.2
 10.0% 14.6 15.7 14.4 12.9 13.1 13.9 10.7 12.1 13.0 9.8 13.6 14.4 11.2 12.6 13.5 10.3
 5.0% 9.5 10.3 9.0 7.4 7.7 9.8 5.4 6.7 7.7 4.9 8.2 10.5 6.0 7.3 8.5 5.2
 2.5% 6.8 7.7 5.5 4.1 4.3 7.5 2.4 3.9 5.0 2.7 4.9 8.1 3.2 4.1 6.0 2.5
 1.0% 4.6 5.5 3.1 2.0 2.1 5.4 1.0 2.1 2.7 1.3 2.5 6.0 1.5 2.0 3.8 1.0
 0.5% 3.5 4.3 2.1 1.2 1.2 4.1 0.6 1.4 1.9 0.7 1.5 4.7 0.9 1.3 2.8 0.5
 0.1% 1.9 2.5 1.0 0.4 0.4 2.2 0.1 0.5 0.8 0.2 0.5 2.7 0.4 0.4 1.3 0.1

             Note: The actual size closest to the nominal size of all tests contained in Tables 4.3 and 4.4 is underlined. 



choice of an estimator for that matrix must depend on the level of significance that

the practitioner chooses to use: in both models, the utilization of the el (r) method

is preferable for the largest nominal sizes, whereas the el (s) method performs better

for smaller significance levels.

The estimated sizes for the Pearson-type statistics are reported in tables 4.2 and

4.4. The P1 and P2 tests perform very modestly, being substantially oversized in all

cases. Their size behaviour does not differ much from that described for the other

tests.3 However, the P3 statistic shows a very promising performance. Whichever the

number of classes considered, the general effects of evaluating this test at different

estimators are similar in all cases. Analogously to the W test, the least number of

rejections of the null hypothesis occurs when robust estimation of V is employed.

This is not surprising since the matrix V appears in their expressions in a similar

form. However, while this was always beneficial for the W test, the P3 test becomes

sometimes quite undersized, particularly for the smallest nominal sizes and sample

sizes considered.

Figure 4.1 displays QQ-plots comparing the six versions of the P3 test for the

L = 8 case. Vertical coordinates are Monte Carlo estimates of quantiles of the finite

sample distribution of those statistics and horizontal coordinates are quantiles of a

chi-square variable with one degree of freedom. The vertical solid line marks the

asymptotic critical value for a nominal size of 0.05. Clearly, the best performances

are obtained by P
ei(r)
3 and P

el(r)
3 . Note how for n ≥ 500 (first model) or n = 1000

(second model) the estimated quantiles of these tests are very close to the asymptotic

ones while the other versions of P3 are still significantly oversized. Notice also how,

for small sample sizes, all three EL versions of the P3 test tend to reject the null

hypothesis significantly less than the corresponding EI variants.

3The sizes estimated for the EL version of the P2 test are numerically equal to those calculated for
the Jel(s) and Wel(s) statistics which is due to the particular form assumed by the EL probabilities:

p̂i = n−1
h
1+ φ̂

0
g
³
yi, θ̂

´i−1
, i = 1, ..., n, see (2.54). For example, as φ̂

0
g
³
yi, θ̂

´
= np̂i − 1 and V is

estimated by
Pn

i=1 p̂ig
³
yi, θ̂

´
g
³
yi, θ̂

´0
, we have Wn = nφ̂

0
V̂nφ̂ =

Pn
i=1

φ̂
0
g(yi,θ̂)g(yi,θ̂)

0
φ̂

1+φ̂
0
g(yi,θ̂)

= P2.
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Figure 4.1: QQ-plots of P3 tests of overidentifying moment conditions (L=8; 10 000 replications)

Notes: P3ei(n) (dotted line), P3ei(s) (dot-dashed line), P3ei(r) (dashed line), P3el(n) (three-dot-dashed line), P3el(s) (two-dashed line), P3el(r) (frequent-dotted line).

a) Asset-pricing model

b) Chi-squared moments model



The performance of the P3 test does not seem to depend significantly on L on

small samples. This is particularly evident for the asset-pricing model case. For the

chi-squared moments model the differences between the L = 8 and L = 16 cases are

more important being, however, attenuated as the sample size increases. Figure 4.2

illustrates this situation, displaying QQ-plots for the P ei(r)
3 test for the two distinct

values of L simulated.

Figure 4.3 compares the robust forms of the W and P3 tests (for L = 8), both

evaluated at EI and EL estimators. Recall that theWei(r) statistic registered the best

behaviour of all tests analyzed in the previous sub-section. From Figure 4.3 we see

that the P3 test clearly performs better for both models, its actual quantiles being in

most cases closer to the asymptotic ones. Furthermore, while the P3 test is relatively

indifferent to the use of EI or EL estimation, at least for larger sample sizes, in the

case of the Wald test EL estimation does not work well, even for n = 1000.

4.5.3 Alternative bootstrap J2s tests

The Monte Carlo experiments in the previous sub-section confirmed that, at least for

these sorts of models, first-order asymptotic theory does not provide a good approxi-

mation to the distribution of the J2s statistic, the most applied test of overidentifying

moment conditions. The alternative tests considered performed substantially better,

especially the P3 test proposed in this chapter. In this section we investigate other

alternatives, namely the ability of bootstrap techniques to improve the size properties

of the J2s test. Due to the computation time involved, only the 10%, 5% and 1%

bootstrap critical values were calculated and the n = 100 case analyzed.

The general procedures implemented to obtain the bootstrap critical values can

be summarized as follows:

1. Calculate the two-step GMM estimator using the original data and utilize it to

evaluate the J test;

2. Generate B = 100 bootstrap samples of size n = 100 by sampling the original
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Figure 4.2: QQ-plots of ei(r) P3 tests of overidentifying moment conditions (10 000 replications)

Notes: L=8 (dotted line), L=16 (dot-dashed line).

a) Asset-pricing model

b) Chi-squared moments model
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Figure 4.3: QQ-plots of robust forms of Wald and P3 (L=8) tests of overidentifying moment conditions (10 000 replications)

Notes: Wei(r) (dotted line), Wel(r) (dot-dashed line), P3ei(r) (dashed line), P3el(r) (three-dot-dashed line).

a) Asset-pricing model

b) Chi-squared moments model



data randomly with replacement according to the chosen resampling distribu-

tion function F ∗;

3. For each bootstrap sample compute the corresponding two-step GMM estimator

and use it to obtain bootstrap versions of the J test;

4. Calculate the 1 − α quantiles of the empirical distribution of the bootstrap

versions of the tests in order to obtain bootstrap critical values;

5. Determine whether the null hypotheses of the tests are rejected using the boot-

strap critical values.

By repeating these steps 10000 times we estimated the levels of the tests using

bootstrap critical values. We analyzed five different techniques to obtain the boot-

strap critical values, namely the NP, RNP, FSEL, EL and REL bootstrap methods,

discussed in chapter 3.

The results of the experiments are shown in Table 4.5. Whichever bootstrap

method is used, the empirical levels of this test are less than when asymptotic critical

values were used. However, their behaviour is still not satisfactory. On the one

hand, the J2s test never rejects the null hypotheses when it is based on NP bootstrap

critical values. As discussed in chapter 3, this failure results from the fact that,

instead of imposing the null hypotheses (4.1), the empirical distribution corresponds

to an alternative hypothesis where the moment conditions (4.1) do not hold. As

Brown, Newey and May (1997, p.8) pointed out, “the overidentification test should

tend to reject when the estimated sample moment conditions are far from zero, but

it is exactly those cases where bootstrapping from the empirical distribution should

yield large critical values, because they correspond to cases where the moments are

far from their null hypothesis value of zero”. Ziliak (1997) presents further evidence

of the severe size distortions that result from the application of the NP bootstrap to

obtain critical values for the J2s test.

On the other hand, the other four bootstrap methods provide a nice improve-

ment over the size behaviour of the J2s test, especially for the asset-pricing model.
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Table 4.5: Monte Carlo estimated sizes for the J2s test of overidentifying moment
conditions using bootstrap critical values (10 000 replications; 100 observations; 100
bootstrap samples)

Size Asymp. Bootstrap method
NP RNP FSEL EL REL

Asset-pricing model
10% 17.5 0.0 13.5 14.5 14.8 11.3
5% 12.2 0.0 8.4 10.5 10.5 6.6
1% 6.9 0.0 4.2 6.2 5.7 2.7

Chi-squared moments model
10% 27.0 0.0 23.2 24.3 24.6 24.5
5% 22.3 0.0 19.0 19.4 19.9 19.5
1% 15.5 0.0 13.6 12.4 13.8 12.8

Indeed, in this case, the utilization of bootstrap critical values allows the differences

between the empirical and the nominal levels of this test to be reduced by 46-54%

(RNP bootstrap), 12-40% (FSEL bootstrap), 20-36% (EL bootstrap) and 71-83%

(REL bootstrap). For the chi-squared moments model the reductions are much more

modest: 13-22% (RNP bootstrap), 16-21% (FSEL bootstrap), 12-14% (EL bootstrap)

and 16-19% (REL bootstrap). However, even for the first model, the size distortions

of the J2s test are not completely eliminated. Moreover, as we saw in Tables 4.1-

4.4, there are some tests (namely some versions of the P3 tests, in both cases, and

the robust forms of the Wald test, for the second model) with better size properties,

particularly for the 1% level. As these tests are based on asymptotic critical val-

ues, being, therefore, less time consuming, there seems to be little point in using the

bootstrap J2s test simulated in this sub-section.

4.6 Summary

In this chapter we developed new Pearson-type statistics suitable for testing overi-

dentifying moment conditions and parametric restrictions. One of those statistics,

the P3 test, performed very well in two Monte Carlo simulation studies concerning

tests of overidentifying moment conditions. Its size behaviour, when based on robust

estimation of the matrix V , seems to be superior to that of both alternative tests
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based on asymptotic critical values and the J2s test based on bootstrap critical val-

ues. Moreover, the P3 statistic does not seem to be sensitive to the number of classes

into which the sample space is divided.
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Chapter 5

Non-nested hypothesis tests

5.1 Introduction

This chapter is concerned with tests for non-nested hypothesis of models which are

specified solely in terms of moment conditions. To the best of our knowledge, there

are relatively few papers which address testing non-nested hypothesis in a moment

condition framework. This issue has been investigated by Singleton (1985), Ghysels

and Hall (1990b) and Smith (1992), who detail various tests based on efficient two-

step GMM estimation. Although all of these tests may also be evaluated at GEL

estimators with no alteration to their first order asymptotic properties, they do not

utilize all the information provided by the GEL method. Cox-type non-nested tests

[Cox (1961, 1962)] requiring evaluation at GEL estimators were, therefore, suggested

in Smith (1997).

In this chapter we propose a number of new tests that integrate and complement

the works of those authors. On the one hand, we derive generalized statistics that

include most of the existing tests as particular cases. On the other hand, most of

the tests that we suggest require evaluation at GEL estimators and are based on the

encompassing principle of Mizon and Richard (1986). Thus, they will constitute an

important alternative method for the assessment of moment condition models against

specific non-nested alternatives.

127



According to the encompassing principle, the validity of a given model against a

rival formulation may be tested by examining whether or not the former model can

predict the relevant behaviour of the latter. We consider two different approaches to

this question. First, we derive parametric encompassing tests, which are based on the

usual approach of contrasting two consistent estimators, under the null hypothesis,

of the pseudo true values of the parameters of the alternative model. Our second ap-

proach permits the construction of simpler tests, requiring only a single estimation of

the alternative model. These tests, which we term generalized moment encompassing

tests, involve the comparison of two consistent estimators, under the null hypothesis,

of a statistic which may represent a particular feature of interest of the competing

alternative model. Accordingly, a wide class of encompassing tests is defined. A par-

ticular variant in this class, based on the contrast between two consistent estimators

of the moment indicators of the alternative model, provides a simple method of im-

plementing Ghysels and Hall’s (1990b) idea for constructing a moment-based test in

the GMM framework. Moreover, unlike Ghysels and Hall’s (1990b) test, ours does

not require the introduction of auxiliary (and, possibly, erroneous) assumptions in

addition to those given by the moment conditions. Some of Smith’s (1997) Cox-type

tests may also be viewed as members of this class.

This chapter is organized as follows. Section 5.2 introduces some notation, briefly

outlines the competing hypothesis and gives general forms for Cox-type and encompassing-

type non-nested test statistics. The Cox-type tests of Singleton (1985) and Smith

(1992, 1997) are reviewed in section 5.3. Section 5.4 discusses Smith’s (1992) GMM

parametric encompassing statistic together with a new statistic based on GEL esti-

mators. The new class of moment encompassing statistics is presented in section 5.5.

The finite sample properties of some of these tests are investigated in a Monte Carlo

simulation study in section 5.6. Section 5.7 concludes.
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5.2 Non-nested hypothesis and tests

This and the following sections of this chapter are concerned with non-nested tests for

the comparison of rival models based on differing moment conditions. The moment

indicators associated with the competing moment condition models may be different

in functional form and according to included conditioning variables. The main em-

phasis in these sections is non-nested tests based on the GEL approach described in

the preceding chapters; however, tests based on GMM are also considered.

5.2.1 Non-nested hypothesis

A notation similar to that utilized in the previous chapters is employed to characterize

the alternative models, an additional subscript (g or q) being used in some cases

to distinguish between them. Thus, denote the model embodied in the moment

conditions

Eg [g (y, θ0)] = 0 (5.1)

by Hg, where g (·) is an sg-vector of moment indicators known up to the kg-element

parameter vector θ, sg ≥ kg, and Eg [·] denotes expectation taken with respect to
the unknown distribution of y under Hg. Consider a rival model Hq based on the

sq-vector of moment indicators q (y, β), where β is a kq-vector of unknown parameters

and sq ≥ kq. The corresponding moment conditions defining Hq are

Eq [q (yi , β0)] = 0, (5.2)

where β0 ∈ B, with the parameter space B compact, and Eq [·] denotes expectation
taken with respect to the unknown distribution of y under Hq. Throughout this

chapter Hg is always considered as the null hypothesis that we aim to test against

Hq. All tests discussed below are based on this assumption but, as usual with this

kind of tests, just interchanging the roles of the hypothesis, we can find appropriate

tests for assessing Hq against Hg.
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Let Vgn (θ) ≡ 1
n

Pn
i=1 g (yi, θ) g (yi, θ)

0. Following section 2.3.3, the two-step Hg-

efficient GMM estimator θ̂ for θ0 minimizes gn (θ)
0
h
Vgn

³
θ̂
1
´i−1

gn (θ), where Vgn
³
θ̂
1
´

is a positive semi-definite Hg-consistent estimator for Vg ≡ Eg

£
g (y, θ0) g (y, θ0)

0¤ and
θ̂
1
denotes a preliminary Hg-consistent estimator for θ0. Similarly, define qn (β) ≡ 1

nPn
i=1 q (yi, β) and Vqn (β) ≡ 1

n

Pn
i=1 q (yi, β) q (yi, β)

0. Then, the two-step Hq-efficient

GMM estimator β̂ for β0 minimizes qn (β)
0
h
Vqn

³
β̂
1
´i−1

qn (β), where Vqn
³
β̂
1
´
is, un-

der Hq, a positive semi-definite consistent estimator for Vq ≡ Eq

£
q (y, β0) q (y, β0)

0¤,
the limiting covariance matrix of the random vector qn (β0), and β̂

1
denotes a prelim-

inary Hq-consistent estimator for β0.

With regard to GEL estimation, the parameters of the Hg model are obtained by

optimizing

Rg (θ, φ) =
nX
i=1

h [φ0g (y, θ)] , (5.3)

while the GEL criterion appropriate for Hq is

Rq (β, µ) =
nX
i=1

h [µ0q (y, β)] , (5.4)

where φ and µ are sg- and sq-vectors of auxiliary parameters, respectively; see section

2.5.3. In order to create convenient and simple forms for the non-nested tests discussed

in later sections, the carrier function h (·) is chosen identically in both cases.
Of particular importance for the construction of non-nested tests of Hg against

Hq is the asymptotic behaviour of Hq-estimators and associated statistics under Hg.

For GEL, let µ∗ and β∗ denote the saddle point of Eg {h [µ0q (y, β)]}, which is also the
probability limit of the estimated normalized GEL criterion 1

n
Rq

³
β̂, µ̂

´
under Hg.1

Hence, µ̂
p→ µ∗ and β̂

p→ β∗, where
p→ denotes convergence in probability, and µ∗ and

β∗ are the pseudo-true values of the GEL estimators µ̂ and β̂ under Hg. To avoid the

possibility of observational equivalence between the Hg- and Hq-GEL criteria under

1That is, Eg {∇h [µ0∗q (y, β∗)] q (y, β∗)} = 0 and Eg

n
∇h [µ0∗q (y, β∗)] ∂q(y,β∗)

0

∂β0 µ∗
o
= 0; cf. (2.64)

and (2.65).
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Hg and, hence, to allow non-degenerate comparisons to be made, it is assumed that

Eg {h [µ0∗q (y, β∗)]} < h (0), which ensures that µ∗ 6= 0. For GMM, β̂ p→ β∗ under Hg,

with the GMM pseudo-true value β∗ solving Qg (β∗)
0 [Vqg (β∗∗)]

−1Eg [q (y, β∗)] = 0,

where Qg (β) ≡ Eg

h
∂q(y,β∗)

∂β0

i
, Vqg (β) ≡ Eg

£
q (y, β∗) q (y, β∗)

0¤ and β̂
1 p→ β∗∗, the

pseudo-true value of β̂
1
under Hg.

5.2.2 Generalized non-nested tests

As will be seen in the next sub-sections and as observed by Smith (1997), non-nested

test statistics for moment condition models are expressible, at least in an asymptotic

sense, as linear combinations of the estimated sampleHg-moment vector gn
³
θ̂
´
as this

vector represents the sole information feasible and available for inference purposes.

Therefore, following Singleton (1985), let ĉn denote a (sg × sm) random matrix that

converges, under Hg, to a nonstochastic, non-zero vector cg, ĉn
p→ cg, and carries

information concerning the alternative Hq. Assume that M 0
Gcg 6= 0, where MG ≡

Isg − G
¡
G0V −1g G

¢−1
G0V −1g . Consider the statistic ĉ0ngn

³
θ̂
´
, where θ̂ denotes either

a two-step Hg-efficient GMM estimator or a GEL estimator. Under Hg, noting from

(4.30) that
√
ngn

³
θ̂
´
=MG

√
ngn (θ0) +Op

³
n−

1
2

´
, it follows that

√
nĉ0ngn

³
θ̂
´

d→ N
¡
0, c0gMGVgM

0
Gcg
¢
. (5.5)

Cox-type non-nested statistics are univariate in construction, sm = 1, and, there-

fore, a general form of Cox-type statistic to test Hg against Hq is

GCn =
³
ĉ0nM̂GV̂gnM̂

0
Gĉn
´− 1

2 √
nĉ0ngn

³
θ̂
´

d→ N (0, 1) (5.6)

under Hg, where V̂gn ≡ Vgn

³
θ̂
´
and M̂G = Isg − Ĝn

³
Ĝ0
nV̂

−1
gn Ĝn

´−1
Ĝ0
nV̂

−1
gn with Ĝn

and V̂gn Hg-consistent estimators for G and Vg. A test of Hg may then be based on a

two-sided test constructed from (5.6) using critical values from the standard normal

distribution.
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Encompassing-type non-nested statistics possess a multivariate basis and, thus, a

general form for an encompassing-type statistic to test Hg against Hq is

GEn = ngn
³
θ̂
´0
ĉnΨ̂

−
g ĉ

0
ngn

³
θ̂
´

d→ χ2rk(Ψg), (5.7)

under Hg, where Ψ̂−g denotes a Hg-consistent estimator for a generalized inverse of

Ψg ≡ c0gMGVgM
0
Gcg. A test of Hg may then be based on (5.7) using critical values

from the chi-square distribution with rk (Ψg) degrees of freedom.

5.3 Non-nested Cox-type tests

5.3.1 GMM non-nested Cox-type tests

For the case of equal numbers of moment conditions under both Hg and Hq, that is,

sg = sq, Singleton (1985) proposed a GCn statistic with cg = V −1g Eg [q (yi, β∗)]. He

showed that this choice produces an asymptotically locally most powerful test statis-

tic against the sequence of local alternatives Hgn : Eg [g (y, θ0)] = υ (ζn)Eg [q (y, β∗)],

where ζn = ζ0 + n−1/2η, η 6= 0, υ (ζ0) = 0, υ (ζn) 6= 0 and ∇υ (ζ0) 6= 0; cf.

Singleton [1985, eq. (29), pp. 403-404]. He suggested estimating cg by ĉn =

V −1gn

h
qn

³
β̂
´
− gn

³
θ̂
´i
which has the merit of possessing a non-zero probability limit

under both Hg and Hq. Another possible choice, analyzed in our Monte Carlo study

in section 5.6, is ĉn = V̂ −1gn qn

³
β̂
´
, since gn

³
θ̂
´
converges in probability to zero under

Hg. The main drawback of Singleton’s (1985) test is the requirement of the existence

of the same number of moment conditions in both the competing models. Conversely,

its computation is very simple and quick.

To deal with situations in which sg 6= sq, Smith (1992) contrasts Hg-consistent

estimators of the probability limit of the Hq-GMM criterion function evaluated at the

corresponding pseudo-true value; viz. Eg [q (yi, β∗)]
0 [Vqg (β∗∗)]

−1Eg [q (y, β∗)]. Smith’s

(1992) test statistic reduces to choosing cg = A0g [Vqg (β∗)]
−1Eg [q (yi, β∗)] in (5.6),

where Ag is some finite and non-null (sq × sg) matrix with rk (Ag) = min (sg, sq),
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and ĉ = Â0gnV̂
−1
qn qn

³
β̂
´
, where Âgn is a Hg-consistent estimator for Ag and V̂qn ≡

Vqn
³
β̂
´
.2 Another possible choice, analyzed in our Monte Carlo study in section 5.6,

is ĉn = Â0gnV̂
−1
qn

h
qn

³
β̂
´
− Âgngn

³
θ̂
´i
, which is similar in spirit to Singleton’s (1985)

suggestion.

5.3.2 GEL non-nested Cox-type tests

Smith (1997) proposed some Cox-type tests based on theHq-GEL criterion (5.4) using

a contrast between consistent estimators for its probability limit Eg {h [µ0∗q (y, β∗)]}
under Hg. The normalized optimized criterion 1

n
Rq

³
β̂, µ̂

´
provides one such estima-

tor. A second estimator is obtained from optimization of the reweighted Hq-GEL

criterion

R∗q (β, µ) =
nX
i=1

p̂gih [µ
0q (yi, β)] , (5.8)

where p̂gi ≡
∇h[φ̂0g(y,θ̂)]
n
i=1∇h[φ̂

0
g(y,θ̂)]

, i = 1, ..., n, denotes the Hg-implied probability mea-

sures used throughout this thesis; cf. section 2.5.4. Denote the corresponding sad-

dle point estimators for β and µ by β̃ and µ̃, respectively. Because, under Hg,

p̂gi =
1
n

h
1 +Op

³
n−

1
2

´i
, i = 1, ..., n, see (4.9), β̃ and µ̃ are also consistent estima-

tors for β∗ and µ∗, respectively, rendering R∗q
³
β̃, µ̃

´
as a consistent estimator for

Eg {h [µ0∗q (y, β∗)]}. Under Hg, the normalized contrast of optimized GEL criteria

√
n

·
1

n
Rq

³
β̂, µ̂

´
−R∗q

³
β̃, µ̃

´¸
d→ N

¡
0, ξ0gM

0
GV

−1
g MGξg

¢
(5.9)

ifMGξg 6= 0, where ξg ≡ Eg {g (yi, θ0) h [µ0∗q (yi, β∗)]}; see Smith (1997). Hence, under
Hg, the GEL non-nested Cox-type statistic for Hg against Hq is given by

Cn =
³
ξ̂
0
nM̂

0
GV̂

−1
gn M̂Gξ̂n

´− 1
2 √

n

·
1

n
Rq

³
β̂, µ̂

´
− R∗q

³
β̃, µ̃

´¸
d→ N (0, 1) , (5.10)

2A possible choice is Ag = Eg

£
q (y, β∗) g (y, θ0)

0¤V −1g , which solves the minimization problem

minβ,AEg

n
[q (y, β)−Ag (y, θ)]0 [Vq (β)]

−1 [q (y, β)−Ag (y, θ)]
o
, so that the alternative Hq is “clos-

est” to Hg. Thus, Âgn =
1
n

Pn
i=1

·
q
³
y, β̂

´
g
³
y, θ̂
´0¸

V̂ −1g ; cf. section 5.6.1 and Smith (1992).
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where ξ̂n is a Hg-consistent estimator for ξg. For example, ξ̂n =
1
n

Pn
i=1 g

³
yi, θ̂

´
h
h
µ̂0q
³
yi, β̂

´i
, ξ̂n =

Pn
i=1 p̂

g
i g
³
yi, θ̂

´
h
h
µ̂0q
³
yi, β̂

´i
, ξ̂n =

1
n

Pn
i=1 g

³
yi, θ̂

´
h
h
µ̃0q
³
yi, β̃

´i
or ξ̂n =

Pn
i=1 p̂

g
i g
³
yi, θ̂

´
h
h
µ̃0q
³
yi, β̃

´i
.

The limit distribution (5.10) of Cn is obtained via a first-order Taylor expansion of

the contrast about (θ0, 0) and
³
β̂, µ̂

´
. This expansion suggests two further statistics

which are asymptotically equivalent tests to Cn under Hg: a linearized Cox-type

statistic

LCn = −∇
2h (0)

∇h (0)
³
ξ̂
0
nM̂

0
GV̂

−1
gn M̂Gξ̂n

´− 1
2

ξ̂
0
n

√
nφ̂, (5.11)

and a simplified Cox-type statistic

SCn =
³
ξ̂
0
nM̂

0
GV̂

−1
gn M̂Gξ̂n

´− 1
2 √

n

·
1

n
Rq

³
β̂, µ̂

´
− R∗q

³
β̂, µ̂

´¸
, (5.12)

both of which require one less optimization than Cn; see Smith (1997). The form

of LCn indicates that, asymptotically, these GEL statistics correspond to choosing

cg = V −1g ξg in GCn of (5.6); recall from (2.66) and (4.30) that

√
n
∇2h (0)
∇h (0) φ̂ = −V

−1
g

√
ngn

³
θ̂
´
+Op

³
n−

1
2

´
. (5.13)

5.4 Parametric encompassing tests

5.4.1 GMM parametric encompassing tests

Smith (1992) proposes a GMM parametric encompassing (PE) test based on the

contrast of two Hg-consistent estimators for the pseudo true value β∗. One is the

standard efficient two-step GMM estimator β̂, the other is obtained from a Taylor’s

series expansion of the first-order conditions defining β̂ around β∗, being given by

β̂∗ = β̂ −
³
Q̂0
nV̂

−1
qn Q̂n

´−1
Q̂0

nV̂
−1
qn Âgngn

³
θ̂
´
, (5.14)
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where Q̂n ≡
Pn

i=1

∂q(yi,β̂)
∂β0 is a consistent estimator for Qg ≡ Qg (β∗). From (5.14),

the resultant GMM PE test statistic is

En = n
³
β̂ − β̂∗

´0
Ω̂−g
³
β̂ − β̂∗

´
, (5.15)

where Ω̂−g denotes a Hg-consistent estimator for a g-inverse of Ωg =
¡
Q0

gV
−1
qg Qg

¢−1
Q0
gV

−1
qg AgMGVgM

0
GA

0
gV

−1
qg Qg

¡
Q0

gV
−1
qg Qg

¢−1
, Vqg ≡ Vqg (β∗). Under Hg, this statistic

has a limiting chi-squared distribution with rk (Ω) ≤ min (kq, sg − kg) degrees of

freedom. See Smith (1992).

Using (5.14), the statistic En may also be written as

En = ngn
³
θ̂
´0
Â0gnV̂

−1
qn Q̂nΨ̂

−
g Q̂

0
nV̂

−1
qn Âgngn

³
θ̂
´
, (5.16)

where Ψ̂−g denotes aHg-consistent estimator for a g-inverse ofΨg = Q0
gV

−1
qg AgMGVgM

0
G

A0gV
−1
qg Qg. From (5.16), it is clear that En corresponds to choosing cg = A0gV

−1
qg Qg in

GEn of (5.7).

5.4.2 GEL parametric encompassing tests

In this sub-section we derive a GEL PE test statistic based on the normalized contrast

between µ̂ and µ̃ and β̂ and β̃:

√
n

 β̂ − β̃

µ̂− µ̃

 . (5.17)

To evaluate the limiting distribution of (5.17), we need to examine the first or-

der conditions defining
³
β̂, µ̂

´
and

³
β̃, µ̃

´
. The Hq-GEL criterion Rq (β, µ) and the

reweighted GEL criterion R∗q (β, µ) have first-order conditions

nX
i=1

∇h
h
µ̂0q
³
yi, β̂

´i ∂q(yi,β̂)
0

∂β0 µ̂

q
³
yi, β̂

´
 = 0 (5.18)
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and
nX
i=1

p̂gi∇h
h
µ̂0q
³
yi, β̂

´i ∂q(yi,β̃)
0

∂β0 µ̃

q
³
yi, β̃

´
 = 0, (5.19)

respectively. Expanding both sets of moment conditions about (β∗, µ∗) yields 0

0

 = n−
1
2

nX
i=1

∇h [µ0∗q (yi, β∗)]
 ∂q(yi,β∗)

0

∂β0 µ∗

q (yi, β∗)

+Kg

√
n

 β̂ − β∗

µ̂− µ∗

+Op

³
n−

1
2

´
(5.20)

and 0

0

 =
√
n

nX
i=1

p̂gi∇h [µ0∗q (yi, β∗)]
 ∂q(yi,β∗)

0

∂β0 µ∗

q (yi, β∗)

+Kg

√
n

 β̃ − β∗

µ̃− µ∗

+Op

³
n−

1
2

´
,

(5.21)

where

Kg ≡ Eg

∇h [µ0∗q (yi, β∗)]
 Psq

j=1
∂2qj(yi,β∗)

∂β∂β0 µ∗j
∂q(yi,β∗)

0

∂β0

∂q(yi,β∗)
∂β0 0


+Eg

∇2h [µ0∗q (yi, β∗)]
 ∂q(yi,β∗)

0

∂β
µ∗

q (yi, β∗)

 h µ0∗
∂q(yi,β∗)

∂β0 q (yi, β∗)
0
i .(5.22)

Subtracting (5.21) from (5.20) produces

√
n

 β̂ − β̃

µ̂− µ̃

 =
√
nK−1

g

nX
i=1

µ
p̂gi −

1

n

¶
∇h [µ0∗q (yi, β∗)]

 ∂q(yi,β∗)
0

∂β
µ∗

q (yi, β∗)

+Op

³
n−

1
2

´

= K−1
g

nX
i=1

∇h [µ0∗q (yi, β∗)]
 ∂q(yi,β∗)

0

∂β0 µ∗

q (yi, β∗)

√nµp̂gi − 1n
¶

+Op

³
n−

1
2

´
. (5.23)

Now, substituting ∇2h(0)
∇h(0)

1
n
g (yi, θ0)

0√nφ̂ + Op

³
n−

3
2

´
for
√
n
¡
p̂gi − 1

n

¢
in (5.23), see
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(4.9), it follows that, under Hg,

√
n

 β̂ − β̃

µ̂− µ̃

 =
∇2h (0)
∇h (0) K

−1
g Wg

√
nφ̂+Op

³
n−

1
2

´
, (5.24)

where

Wg = Eg

∇h [µ0∗q (yi, β∗)]
 ∂q(yi,β∗)

0

∂β0 µ∗

q (yi, β∗)

 g (yi, θ0)0
 . (5.25)

Hence, the GEL PE test statistic is given by

PEn = n

 β̂ − β̃

µ̂− µ̃

0

K̂gnΨ̂
−
g K̂gn

 β̂ − β̃

µ̂− µ̃

 , (5.26)

where K̂gn denotes a Hg-consistent estimators for Kg and Ψ̂−g is a Hg-consistent

estimator for a g-inverse of Ψg ≡ WgM
0
GV

−1
g MGW

0
g which is assumed non-null. The

statistic PEn has a limiting chi-square distribution under Hg with degrees of freedom

equal to rk (Ψg) whose critical values provide a basis for a test of Hg against Hq.

Comparing (5.24) and (5.13), this test corresponds asymptotically to the choice cg =

V −1g W 0
g in the GEn statistic (5.7).

A linearized statistic which is asymptotically equivalent to PEn and avoids the

necessity of providing the estimator K̂gn and the GEL estimators β̃ and µ̃ is obtained

by noting from (5.23) that

Kg

√
n

 β̂ − β̃

µ̂− µ̃

 =
√
n

nX
i=1

µ
p̂gi −

1

n

¶
∇h

h
µ̂0q
³
yi, β̂

´i ∂q(yi,β̂)
0

∂β0 µ̂

q
³
yi, β̂

´
+Op

³
n−

1
2

´

=
√
n

nX
i=1

p̂gi∇h
h
µ̂0q
³
yi, β̂

´i ∂q(yi,β̂)
0

∂β0 µ̂

q
³
yi, β̂

´
+Op

³
n−

1
2

´
(5.27)

[see also the first-order conditions (5.18)], which may be regarded as a re-weighted

Hq-score and has a limiting normal distribution with variance matrix Ψg. Other
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encompassing statistics may be based on sub-vectors of (5.27), for example,

√
n

nX
i=1

µ
p̂gi −

1

n

¶
∇h

h
µ̂0q
³
yi, β̂

´i
q
³
yi, β̂

´
=
√
n

nX
i=1

p̂gi∇h
h
µ̂0q
³
yi, β̂

´i
q
³
yi, β̂

´
+Op

³
n−

1
2

´
.

(5.28)

5.5 Moment encompassing tests

5.5.1 GMM moment encompassing tests

Ghysels and Hall (1990b) suggested a moment encompassing (ME) test forHg against

Hq using a contrast of two Hg-consistent estimators for Eg [q (yi, β∗)]. Their test sta-

tistic is based on the difference between qn
³
β̂
´
and 1

n

Pn
i=1Eg [q (yi, β∗)]. The imple-

mentation of this statistic requires the specification of the data generation process of

the maintained model in order to simulate 1
n

Pn
i=1Eg [q (yi, β∗)], which runs counter

the spirit of GMM estimation and inference. Consequently, Ghysels and Hall’s (1990b)

statistic may reject Hg not due to the falsity of Hg but rather because the additional

assumptions made might not hold in the population. Moreover, their statistic is

computationally very intensive [see Ghysels and Hall (1990b), pp. 288-289].

5.5.2 GEL generalized moment encompassing tests

In this sub-section we outline a general class of moment-based test statistics. Again,

the basis for GEL ME tests arises from noting that n
¡
p̂gi − 1

n

¢
= Op

³
n−

1
2

´
under Hg,

i = 1, ..., n. Consider an sm-vector of moment indicators mq (yi, θ, φ, β, µ) which, typ-

ically, but not necessarily, is obtained from the Hq-moment condition model. Simple

Hg-consistent estimators for Eg [mq (yi, θ0, 0, β∗, µ∗)] are provided by

m̂qn =
1

n

nX
i=1

mq

³
yi, θ̂, φ̂, β̂, µ̂

´
(5.29)
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and

m̂∗
qn =

nX
i=1

p̂gimq

³
yi, θ̂, φ̂, β̂, µ̂

´
, (5.30)

the latter of which circumvents the necessity in Ghysels and Hall’s (1990b) statistic of

specifying the distribution of the random variable Y under Hg; see sub-section 5.5.3

below. The consequent contrast underlying GEL ME statistics is

√
n
¡
m̂qn − m̂∗

qn

¢
= −√n

nX
i=1

mq

³
yi, θ̂, φ̂, β̂, µ̂

´µ
p̂gi −

1

n

¶
. (5.31)

If the null hypothesis Hg is correct, the limiting distribution of the contrast (5.31)

should be centred at zero.

The limiting distribution of (5.31) is straightforward to derive. From (4.9), it

follows that

√
n
¡
m̂qn − m̂∗

qn

¢
= −∇

2h (0)

∇h (0)
1

n

nX
i=1

mq

³
yi, θ̂, φ̂, β̂, µ̂

´
g (yi, θ0)

0√nφ̂+Op

³
n−

1
2

´
.

(5.32)

A further expansion of mq

³
yi, θ̂, φ̂, β̂, µ̂

´
about (θ0, 0, β∗, µ∗) yields, under Hg,

√
n
¡
m̂qn − m̂∗

qn

¢
= −∇

2h (0)

∇h (0)
1

n

nX
i=1

mq (θ0, 0, β∗, µ∗) g (yi, θ0)
0√nφ̂+Op

³
n−

1
2

´
= −∇

2h (0)

∇h (0) Γg
√
nφ̂+Op

³
n−

1
2

´
, (5.33)

where Γg ≡ Eg

£
mq (yi, θ0, 0, β∗, µ∗) g (yi, θ0)

0¤ is a (sm × sg) matrix and it is assumed

that rk (Γg) = sm and MGΓ
0
g 6= 0. Therefore, under Hg, recalling from (2.68) that

√
nφ̂

d→ N

½
0,
h
∇h(0)
∇2h(0)

i2
M 0

GV
−1
g MG

¾
, it follows that

√
n
¡
m̂qn − m̂∗

qn

¢ d→ N (0,Ψg) , (5.34)

where Ψg ≡ ΓgM
0
GV

−1
g MGΓ

0
g, and a general form for GEL ME statistics is then given
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by

GMEn = n
¡
m̂qn − m̂∗

qn

¢0
Ψ̂−g

¡
m̂qn − m̂∗

qn

¢
, (5.35)

where Ψ̂−g denotes an Hg-consistent estimator for a g-inverse of Ψg; for example, Γg

may be consistently estimated by Γ̂gn =
1
n

Pn
i=1mq

³
yi, θ̂, φ̂, β̂, µ̂

´
g
³
yi, θ̂

´0
or Γ̂gn =Pn

i=1 p̂
g
imq

³
yi, θ̂, φ̂, β̂, µ̂

´
g
³
yi, θ̂

´0
. Under Hg, the generalized ME statistic GMEn

has a limiting chi-squared distribution with rk (Ψg) degrees of freedom. A test of

Hg may then be based on GMEn of (5.35) using critical values from the chi-square

distribution with rk (Ψg) degrees of freedom.

From (5.33), a first order Hg-asymptotically equivalent form is given by the lin-

earized statistic:

LGMEn = n

·∇2h (0)
∇h (0)

¸2
φ̂
0
Γ̂0nΨ̂

−
g Γ̂nφ̂. (5.36)

The form of this statistic shows that, asymptotically, these GEL statistics correspond

to the choice cg = V −1g Γ0g in the GEn statistic (5.7); see also (5.13).

The GMEn and LGMEn statistics (5.35) and (5.36) may be used to generate

more familiar statistics. For example, choosing mq (yi, θ, φ, β, µ) = g (yi, θ) and, thus,

sm = sg, results in m̂qn = gn

³
θ̂
´
and m̂∗

qn = 0. Hence, GMEn of (5.35) reduces

to Hansen’s (1982) J statistic for overidentifying moment restrictions as Γg = Vg,

Γ̂gn = V̂gn and V −1g is a g-inverse for ΓgM 0
GV

−1
g MGΓ

0
g = MGVgM

0
G. In this sense,

therefore, the generalized ME statistic may be regarded as a generalization of Hansen’s

(1982) J statistic. An interesting form for LGMEn arises when sm = sg and, thus,

Γg is non-singular. In this case,

LGMEn = n

·∇2h (0)
∇h (0)

¸2
φ̂
0
Γ̂0n
³
Γ̂nM̂

0
GnV̂

−1
gn M̂GnΓ̂

0
n

´−
Γ̂nφ̂

= n

·∇2h (0)
∇h (0)

¸2
φ̂
0 ³
M̂ 0

GnV̂
−1
gn M̂Gn

´−
φ̂

= n

·∇2h (0)
∇h (0)

¸2
φ̂
0
V̂gnφ̂, (5.37)

which is a GEL Wald-type test for overidentifying moment conditions; see section
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2.5.6.

5.5.3 GEL moment encompassing tests

In the non-nested test framework, the choice of mq (yi, θ, φ, β, µ) may be determined

to maximize power against Hq in a particular direction or against a particular feature

of the Hq competing specification. For example, the statistics LCn and SCn of (5.11)

and (5.12) are obtained by choosing mq (yi, θ, φ, β, µ) = h [µ0q (yi, β)] and, hence,

sm = 1 and Γg = ξ0g.

The above difficulties experienced by Ghysels and Hall (1990b) occasioned by the

estimator 1
n

Pn
i=1Eg [q (yi, β∗)] may simply be avoided in the GEL framework using

the GMEn and LGMEn statistics (5.35) and (5.36). Analogously to Ghysels and

Hall’s (1990b) ME statistic, choosing mq (yi, θ, φ, β, µ) = q (yi, β) yields for m̂qn and

m̂∗
qn respectively

qn
³
β̂
´
=
1

n

nX
i=1

q
³
yi, β̂

´
(5.38)

and

q∗n
³
β̂
´
=

nX
i=1

p̂gi q
³
yi, β̂

´
, (5.39)

and the resultant GEL ME statistic

MEn = n
h
qn

³
β̂
´
− q∗n

³
β̂
´i0

Ψ̂−g
h
qn

³
β̂
´
− q∗n

³
β̂
´i
, (5.40)

where Γg ≡ Eg

£
q (yi, β∗) g (yi, θ0)

0¤ and may be estimated by Γ̂gn =
1
n

Pn
i=1 q

³
yi, β̂

´
g
³
yi, θ̂

´0
. Under Hg,MEn has a limiting chi-square distribution with rk (Ψg) degrees

of freedom. Note that this statistic does not involve an estimator for µ∗ unlike PEn

of (5.26). Moreover, estimation of µ∗ may be avoided altogether as any Hg consistent,

not necessarily GEL, estimator for β∗ may be substituted in (5.40). A linearized ME

statistic LMEn may also be constructed according to (5.36).
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5.6 Simulation evidence

This section explores the finite sample size and power properties of some of the non-

nested test statistics discussed above in a linear instrumental variable (IV) model

context using Monte Carlo methods.

The tests considered in these simulation experiments fall into two groups: those as-

sociated with GMM andGEL. In the first group, we analyze Singleton’s (1985) test us-

ing two different estimators for Eg [q (yi, β∗)] given by qn
³
β̂
´
and

h
qn

³
β̂
´
− gn

³
θ̂
´i
,

labelled S and AS respectively; Smith’s (1992) Cox-type test based on qn
³
β̂
´
andh

qn

³
β̂
´
− Âgngn

³
θ̂
´i
, labelled C and AC respectively; and Smith’s (1992) encom-

passing test (5.16) tests, labelled E; see sections 5.3.1 and 5.4.1. For comparison

purposes, we also consider Hansen’s (1982) J test of overidentifying moment con-

ditions; see section 2.3.4. The group of GEL-based tests includes Smith’s (1997)

linearized Cox (LC) and simplified Cox (SC) tests of (5.11) and (5.12), respectively;

the linearized form of the PE statistic (PE) of (5.26) obtained using (5.27); and the

ME statistic (ME) of (5.40) and its linearized counterpart (LME); see sections 5.3.2,

5.4.2 and 5.5.3.

The Hg-consistent matrix estimators necessary for the computation of the GEL-

based tests (namely, Ĝn and V̂gn, for all tests, ξ̂n, for the GEL Cox-type tests, Ŵgn for

the PE test and Γ̂gn for both ME and LME tests) were obtained via the gel(s) and

gel(r)methods described in section 4.5.1. All tests in the GMM group were calculated

using the methods gel(n) and gel(s). EL estimation is considered. The EL implied

probabilities are given by p̂gi =
1
n

h
1 + φ̂

0
g
³
yi, θ̂

´i−1
and p̂qi =

1
n

h
1 + µ̂0q

³
yi, β̂

´i−1
,

i = 1, ..., n. Hence, SC = LC and PE = ME = LME, results which are specific to

EL estimation and arise because of the particular form of the EL implied probabilities;

see footnote 3 in page 119.

Two questions are of special interest: (a) is the Hg-asymptotic distribution a

reliable guide to the finite sample distribution of the tests? (b) how do the tests

perform comparatively in terms of power?
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5.6.1 Linear instrumental variable models

Consider two competing regression models

Hg : y = Xgθ0 + ug, (5.41)

Hq : y = Xqβ0 + uq, (5.42)

where y = (y1, ..., yn)
0, Xg = (xg1, ..., xgn)

0 and Xq = (xq1, ..., xqn)
0 are an n-vector and

(n× kg) and (n× kq) matrices of observations on a scalar dependent variable and kg-

and kq-dimensioned regressor variables, respectively. In all experiments, Hg (5.41) is

always the null hypothesis with Hq (5.42) the alternative hypothesis. It is assumed

that, under Hg (resp. Hq), the regressor matrix Xg (resp. Xq) and the error term

ug (resp. uq) are asymptotically correlated rendering least squares estimation of θ0

(resp. β0) inconsistent. Consequently, we assume the availability of n observations

on sg (resp. sq) IVs Zg = (zg1, ..., zgn)
0 [resp. Zq = (zq1, ..., zqn)

0], where sg > kg (resp.

sq > kq), such that, under Hg, Eg

¡
1
n
Z 0gug

¢
= 0 and, under Hq, Eq

¡
1
n
Z 0quq

¢
= 0. The

n observations comprising y, Xg, Xq, Zg and Zq are assumed to be independently

distributed.

In the notation of this chapter, we have, for Hg, g (yi, θ) ≡ zgi
¡
y − x0giθ

¢
, i =

1, ..., n, gn
³
θ̂
´
≡ 1

n
Z 0gûg, ûg ≡ M̂Gy, M̂G ≡ Isg − Z 0gXg

³
X 0

gZgV̂
−1
gn Z 0gXg

´−1
X 0

gZgV̂
−1
gn

and Ĝn ≡ − 1
n
Z 0gXg. For Hq, q (yi, β) ≡ zqi

¡
y − x0qiβ

¢
, i = 1, ..., n, qn

³
θ̂
´
≡ 1

n
Z 0qûq,

ûg ≡ M̂Qy, M̂Q ≡ Isq − Z 0qXq

³
X 0

qZqV̂
−1
qn Z 0qXq

´−1
X 0

qZqV̂
−1
qn and Q̂n ≡ − 1

n
Z 0qXq. Uti-

lizing efficient GMM estimation, explicit expressions can be found for the estimators:

Hg : θ̂ =
³
X 0

gZgV̂gnZ
0
gXg

´−1
X 0

gZgV̂gnZ
0
gy, (5.43)

Hq : β̂ =
³
X 0

qZqV̂qnZ
0
qXq

´−1
X 0

qZqV̂qnZ
0
qy. (5.44)

The implementation of the GMM non-nested tests C, AC, and E requires a

choice of the matrix Ag and its associated estimator Âgn; see section 5.3.1. Smith

(1992) suggested two forms for Âgn in the IV context: Â1gn =
1
n
Z 0qZgV̂

−1
gn and Â2gn =
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Z 0qZg

¡
Z 0gZg

¢−1
. We only consider the latter choice. Indeed, the simulation design,

described in more detail below, assumes homoskedastic errors under both Hg and

Hq. Hence, if V̂ −1gn were set as n 1
σ̂2gn

¡
Z 0gZg

¢−1
, where σ̂2gn is the IV estimator for the

variance of the elements of the error vector ug, Â2gn = σ̂2gnÂ
1
gn, so identical results for

the C and E statistics would be obtained for both choices of Âgn. However, the AC

statistic is not invariant to scale transformations when based on Â1gn. Therefore, only

the matrix Â2gn is used in our experiments.

Numerous factors affect the performance of non-nested tests when applied to IV

models. We concentrate on two main aspects: (a) when the Hg instruments are

invalid under Hq (Design I); (b) when the forms of the Hg and Hq regressions differ

(Design II). In both cases, we considered two sample sizes, n = 200 and n = 400.

Each Monte Carlo experiment comprised 2000 replications.

5.6.2 Monte Carlo experiment I

In both null and alternative IV regression models, to aid the interpretability of the

simulation results, the number of regressors comprising Xg and Xq was fixed to be

unity, kg = kq = 1. To make the use of IVs necessary, the regressors of the null and

the alternative models were generated according to the design

Xg = �+ τµ+ λug (5.45)

Xq = µ+ ψuq, (5.46)

where random n-vectors � and µ and error vectors ug and uq are independent N (0, In)

vectors. The parameters λ, τ and ψ are the covariances between, respectively, Xg and

ug, Xg and Xq and Xq and uq. These parameters allow the corresponding correlations

ρxug = λ
¡
1 + τ 2 + λ2

¢−1/2
, (5.47)

ρxx = τ
£¡
1 + ψ2

¢ ¡
1 + τ2 + λ2

¢¤−1/2
, (5.48)
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and

ρxuq = ψ
¡
1 + ψ2

¢−1/2
, (5.49)

to be controlled. The dependent variable y was generated under the null hypotheses

Hg (5.41) and under the alternative hypotheses Hq (5.42) with θ0 = β0 = 1.

The Hg matrix of IVs Zg, sg = 4, was generated via

Zgj = ϕ1�+ ςj, j = 1, 2, (5.50)

Zgj = ϕ2�+ σuq + ςj, j = 3, 4, (5.51)

where ςj ∼ IN (0, In), j = 1, ..., 4, are independent of �, µ, ug and uq. The parameter

ϕ1 in the first set of IVs (5.50) allow a degree of control over the correlation ρxzg

between Zgj, j = 1, 2, and the regressor Xg:

ρxzgj = ϕ1
£¡
1 + ϕ21

¢ ¡
1 + τ2 + λ2

¢¤−1/2
, j = 1, 2. (5.52)

For the second set of IVs (5.51),

ρxzgj = ϕ2
£¡
1 + ϕ22 + σ2

¢ ¡
1 + τ 2 + λ2

¢¤−1/2
, j = 3, 4, (5.53)

with ϕ2 set to equate ρxzgj , j = 1, 2, and ρxzgj , j = 3, 4.

The IVs Zq, sq = 4, of the alternative model Hq were generated to ensure their

correlation with both sets of regressors Xg and Xq and no correlation with the error

terms ug and uq:

Zqj = γµ+ ωj, j = 1, ..., 4, (5.54)

where ωj ∼ IN (0, In), j = 1, ..., 4, are independent of ςj, j = 1, ..., 4, �, µ, ug and

uq. The parameter γ, which represents the covariance between the IVs Zq and the

Hq regressor Xq, enables control of their correlation ρxzq via:

ρxzq = γ
£¡
1 + γ2

¢ ¡
1 + ψ2

¢¤−1/2
. (5.55)
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Although all IVs Zgj, j = 1, ..., 4, from (5.50) and (5.51) are valid instruments

under Hg, only the IVs Zgj, j = 1, 2, are also valid under the alternative hypotheses

Hq. As the structures of the two competing models Hg and Hq are rather similar,

the IVs Zgj, j = 3, 4, from (5.51), should be the main source of misspecification of

the Hg model (5.41) when the alternative hypothesis Hq model (5.42) is correct. We

anticipate, therefore, that the ability of the various tests to reject the false Hg model

will decisively depend on the degree of misspecification of these IVs Zgj, j = 3, 4,

measured by their correlation with the error term uq:

ρzguq = σ
¡
1 + ϕ22 + σ2

¢−1/2
. (5.56)

Table 5.1 reports empirical sizes for each of the various non-nested statistics de-

tailed above applied to test the IV models Hg (5.41) against Hq (5.42). The nominal

size for all tests is 0.05 based on critical values taken from their Hg asymptotic distri-

butions. To relate the behaviour of the tests to the quality of the instruments utilized,

two distinct values of ρxug (0.3 and 0.6) and ρxzg (0.25 and 0.5) were considered. To

check the effect of different degrees of proximity between the regressors of the two

competing models, we simulated experiments for two distinct values of ρxx: 0.2 and

0.4. We fixed ψ = 1, γ = 1 and σ = 0 in these experiments.

From Table 5.1, for tests in the GMM group, size behaviour for both sample sizes

does not appear to be markedly affected by the correlation between the regressor Xg

and IVs Zg (ρxzg), except for E and J at n = 200. These two statistics seem also

sensitive to the feedback from ug to Xg (ρxug). The C and AC tests had the best

performances, with empirical sizes close to the nominal ones in all cases. Overall, the

adjustment to the Cox statistic suggested in section 5.3.1 does not appear to affect

size behaviour particularly. In contradistinction, the adjusted statistic AS is quite

oversized in all cases, even when n = 400, while the S test seems a little undersized

when the proximity between the competing models is higher (ρxx = 0.4). The AS

statistic is also sensitive to the correlation between regressors across models and, in

146



Table 5.1: Monte Carlo estimated sizes (%) for a nominal size of 5% for non-nested hypothesis tests: design I (2000 replications) 
 

n ρxug ρxzg ρxx S AS C AC E J SC/LC PE/ME 
    gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) el(s) el(r) el(s) el(r)

200 0.3 0.25 0.2 5.1 5.2 9.5 9.3 4.7 5.0 4.5 4.7 5.8 6.1 5.1 5.3 6.0 5.1 7.1 5.3
   0.4 3.8 3.7 8.2 7.8 4.5 5.1 4.4 4.9 5.6 6.0 5.1 5.2 6.0 5.4 7.1 5.5
  0.50 0.2 4.9 5.2 9.4 9.3 4.8 5.5 4.5 5.2 5.3 5.8 5.2 5.2 6.0 5.1 7.6 5.7
   0.4 3.9 4.3 7.7 7.8 4.6 5.3 4.5 5.0 5.6 5.8 5.4 5.2 6.0 5.3 7.8 5.8
 0.6 0.25 0.2 5.2 5.0 11.2 11.4 5.3 5.3 5.3 5.3 6.5 6.2 6.1 5.3 5.6 5.0 7.2 5.5
   0.4 4.2 4.0 10.1 10.4 5.3 5.4 5.0 5.3 6.4 5.8 6.4 5.2 5.9 5.0 7.5 5.6
  0.50 0.2 5.1 4.9 11.4 11.4 5.0 5.6 5.0 5.4 6.0 5.8 5.6 5.3 5.7 5.2 7.6 5.9
   0.4 4.0 4.2 10.4 10.6 5.8 5.5 5.2 5.1 5.6 6.0 5.8 5.6 6.2 5.3 7.6 5.9

400 0.3 0.25 0.2 4.5 4.7 10.7 10.7 4.4 4.8 4.4 4.9 4.4 4.6 4.7 4.7 5.3 4.6 5.3 4.2
   0.4 4.5 4.5 9.4 9.5 4.3 4.9 4.4 5.0 4.2 4.5 4.6 4.6 4.5 4.3 5.6 4.1
  0.50 0.2 4.7 4.5 10.4 10.5 4.1 4.4 4.5 4.4 4.3 4.4 4.7 4.8 5.2 4.8 5.3 4.3
   0.4 4.4 4.6 9.6 9.5 4.1 4.2 4.1 4.2 4.2 4.5 4.8 4.8 4.6 4.2 5.5 4.3
 0.6 0.25 0.2 4.6 4.5 8.8 8.7 4.9 4.7 4.7 5.0 4.5 4.5 5.0 4.8 5.5 5.0 5.3 4.1
   0.4 4.7 4.4 7.7 7.5 4.7 4.5 4.5 4.4 4.6 4.6 5.0 4.6 5.1 4.6 5.5 4.1
  0.50 0.2 4.5 4.5 8.7 8.8 4.5 4.5 4.3 4.6 4.5 4.4 4.8 4.8 5.5 5.2 5.3 4.3
   0.4 4.6 4.5 7.5 7.6 4.2 4.2 4.1 4.1 4.5 4.4 4.9 4.8 5.3 4.9 5.4 4.2

             Note: the values underlined are significantly different from the nominal size at the 5% level (95% confidence interval limits: 4.045 and 5.955). 



addition, to the correlation between ug and Xg. Clearly, high feedbacks (ρxug = 0.7)

from ug to Xg have a very negative effect on its behaviour.

For the GEL group of tests, evaluated at EL estimators, there seems to be no

major influence of the control variables, apart from the sample size n, on the behaviour

of the tests. The most decisive influence appears via the estimation method for the

variance matrix Vg. When the tests are based on el(s), they are significantly oversized

when n = 200, particularly the encompassing tests. If robust estimation of Vg is

employed, el(r), their size performance improves quite dramatically, now being fairly

well approximated by the nominal size 0.05 which conforms to the results reported

by Imbens, Spady and Johnson (1998) and in chapter 4. Preliminary experiments,

not reported here, indicate that evaluation of GMM tests using el(r) produces worse

results than those obtained using el(s), presumably because of the inverse manner in

which Vg appears in these tests relative to GEL tests; see chapter 4. The beneficial

effect of robust estimation of Vg for the PE/ME/LME tests is emphasized in Figure

5.1, which displays a QQ-plot for the case corresponding to the first row of Table 5.1.

As it can be clearly seen, the robust forms of these tests are uniformly better.

Table 5.2 reports the empirical (size-corrected) powers of the above statistics which

are the percentage of times the statistics exceeded the 0.05 nominal critical values

obtained from their Hg empirical distribution. Two different values for ρxuq (0.3 and

0.6) and ρxzq (0.25 and 0.50) are simulated with different degrees of proximity between

the competing models (ρxx = 0.2 and 0.4). The correlations ρxug and ρxzg are both

fixed at 0.5. Table 5.2 has an additional column indicating the value of ρzguq (0.1

and 0.2) in each experiment. As expected, for the reasons given above, the crucial

determinant of power for all tests is the value of ρzguq with the other correlations

having minor effects. Although the AS statistic appears most powerful, owing to

the rather excessive sizes displayed in Table 5.1 it cannot be viewed as providing a

reliable test of Hg against Hq. The performances of the J and PE/ME/LME tests

appear uniformly superior to the S, C, AC, E, and SC/LC tests. The Cox-type test

AC performs only slightly better than the unadjusted C.
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Figure 5.1: QQ-plots for PE/ME/LME non-nested hypothesis tests



 
 

Table 5.2: Monte Carlo estimated (size-corrected) powers (%) for a nominal size of 5% for non-nested hypothesis: design I (2000 replications) 
 

n ρxuq ρxzq ρxx ρzguq S AS C AC E J SC/LC PE/ME 
     gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) el(s) el(r) el(s) el(r)

200 0.3 0.25 0.2 0.1 13.8 14.0 24.5 24.0 14.8 14.7 16.2 16.1 13.9 13.8 19.6 19.5 14.2 14.1 19.8 18.9
    0.2 35.8 36.5 73.7 75.4 39.4 36.6 40.4 39.5 36.0 35.9 69.4 69.9 35.3 33.4 63.9 58.6
   0.4 0.1 12.7 12.6 20.4 20.5 13.4 13.4 14.8 14.7 12.6 12.9 16.9 17.9 13.0 12.5 17.7 17.1
    0.2 31.6 31.2 66.7 66.4 35.1 33.1 36.6 36.2 32.4 31.5 61.4 62.8 31.4 28.9 56.5 51.5
  0.50 0.2 0.1 13.9 13.6 24.6 24.2 14.3 14.9 16.0 17.1 17.2 17.3 19.6 19.5 14.4 13.6 19.8 18.9
    0.2 35.5 35.6 73.7 75.5 38.7 35.9 40.6 40.6 36.7 36.1 69.4 69.9 37.3 34.9 63.9 58.6
   0.4 0.1 12.5 12.1 20.8 20.7 13.7 13.5 14.8 16.1 16.3 16.2 16.9 17.9 12.4 12.2 17.7 17.1
    0.2 31.1 31.1 66.3 66.2 35.1 33.0 36.4 36.1 33.6 32.9 61.4 62.8 32.2 30.2 56.5 51.5
 0.6 0.25 0.2 0.1 17.6 17.6 34.1 35.0 16.9 17.0 19.9 20.1 16.3 16.4 26.0 26.6 16.9 16.0 25.0 23.5
    0.2 43.5 44.5 89.0 88.6 44.7 43.9 50.9 48.2 43.7 43.8 84.3 84.9 42.2 38.9 78.0 71.6
   0.4 0.1 14.2 14.7 27.4 26.0 15.0 14.0 18.0 17.2 14.4 14.7 20.3 21.2 14.3 13.5 21.7 19.9
    0.2 35.4 36.4 76.7 77.7 39.5 36.4 43.3 42.8 37.7 36.3 70.3 71.0 36.3 34.1 65.6 59.3
  0.50 0.2 0.1 17.8 17.8 34.0 34.1 16.2 17.2 20.0 20.1 19.3 18.3 26.0 26.6 16.7 15.9 25.0 23.5
    0.2 43.7 44.1 88.7 88.8 44.3 44.3 50.9 50.3 43.2 41.2 84.3 84.9 43.6 40.6 78.0 71.6
   0.4 0.1 14.1 14.1 27.3 25.8 14.4 15.0 18.2 17.7 16.7 16.2 20.3 21.2 14.7 13.6 21.7 19.9
    0.2 36.2 35.9 77.2 78.3 39.0 37.1 44.5 45.0 36.8 35.1 70.3 71.0 37.4 36.1 65.6 59.3

400 0.3 0.25 0.2 0.1 26.8 26.8 44.0 43.6 26.2 25.3 29.1 28.0 29.1 28.2 42.2 42.5 23.9 22.7 42.1 40.9
    0.2 56.5 55.8 96.6 96.6 58.7 57.5 60.1 58.9 56.8 55.3 97.1 97.1 56.5 53.9 95.2 93.0
   0.4 0.1 24.6 24.7 36.4 37.5 23.4 23.3 26.3 25.8 27.8 25.5 37.7 37.8 21.1 20.8 37.4 36.8
    0.2 51.9 52.0 93.1 93.5 54.1 53.6 56.6 55.5 53.3 52.2 93.1 93.3 52.0 51.0 91.4 89.6
  0.50 0.2 0.1 26.8 26.1 44.7 44.1 26.9 24.5 29.1 28.6 29.5 27.9 42.2 42.5 23.6 23.1 42.1 40.9
    0.2 56.6 56.4 96.6 96.7 58.5 56.9 58.8 58.7 55.3 53.9 97.1 97.1 57.3 54.6 95.2 93.0
   0.4 0.1 23.7 24.2 37.8 37.4 22.4 22.2 26.3 26.5 27.7 26.5 37.7 37.8 20.6 20.5 37.4 36.8
    0.2 51.9 52.5 93.0 93.5 52.9 52.4 55.6 54.5 52.1 51.1 93.1 93.3 53.4 51.7 91.4 89.6
 0.6 0.25 0.2 0.1 32.8 32.7 60.4 59.8 33.3 32.8 35.0 34.9 33.1 31.7 55.4 55.3 31.6 31.0 53.7 51.8
    0.2 62.7 62.7 99.6 99.6 64.5 63.6 68.2 67.7 62.4 60.4 99.4 99.5 63.7 60.9 98.8 97.2
   0.4 0.1 27.4 27.2 47.1 47.5 26.8 26.7 30.1 29.8 29.0 27.9 44.1 44.8 25.0 24.7 44.1 42.8
    0.2 57.2 56.8 97.2 97.1 58.0 58.1 62.7 60.7 57.7 56.6 97.0 97.0 57.1 54.7 95.6 93.4
  0.50 0.2 0.1 32.6 32.5 57.9 59.2 32.7 32.4 35.4 36.0 32.4 33.0 55.4 55.3 31.8 30.7 53.7 51.8
    0.2 62.7 62.6 99.4 99.5 63.6 63.9 68.5 67.9 61.3 62.2 99.4 99.5 64.0 60.9 98.8 97.2
   0.4 0.1 27.8 27.5 47.1 46.5 26.3 25.8 30.2 29.7 29.2 28.7 44.1 44.8 25.3 25.0 44.1 42.8
    0.2 57.4 57.2 97.3 97.2 58.5 57.2 61.9 61.2 56.2 56.8 97.0 97.0 56.9 54.5 95.6 93.4

 



5.6.3 Monte Carlo experiment II

In these second set of experiments the number of regressors comprising Xq was in-

creased to kq = 2 and all the instruments of the null modelHg are now also valid under

the alternative hypothesis Hq, that is, ρzguq = 0. Hence, a difference in regression

functions is now the main possible source of misspecification.

The regressors of both models were generated in a similar way to Design I. Thus,

Xg and Xq are given by

Xg = �+ τµ1 + λug, (5.57)

Xqj = µj + ψuq, j = 1, 2, (5.58)

where �, µ1, µ2, ug and uq are independent N (0, In) vectors. The Hg matrix of IVs

Zg, sg = 4, are generated as

Zgj = ϕ1�+ µ1 + µ2 + ςj, j = 1, 2, (5.59)

Zgj = ϕ2�+ µ1 + ςj, j = 3, 4, (5.60)

and the Hq matrix of IVs Zq, sq = 4, as

Zqj = γµ1 + ωj, j = 1, 2, (5.61)

Zqj = γµ2 + ωj, j = 3, 4, (5.62)

where ςj and ωj, j = 1, ..., 4, are independent N (0, In) vectors generated indepen-

dently of �, µ1, µ2, ug and uq.

The parameters λ, τ , ψ, ϕ1, ϕ2 and γ control correlations in a similar manner to

the previous sub-section with the above formulas still appropriate with the exception

of those concerning the correlation between the regressor and the instruments in the

Hg model, which are now given by

ρxzgj = (ϕ1 + τ)
£¡
3 + ϕ21

¢ ¡
1 + τ 2 + λ2

¢¤−1/2
, j = 1, 2 (5.63)
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and

ρxzgj = (ϕ2 + τ )
£¡
2 + ϕ22

¢ ¡
1 + τ2 + λ2

¢¤−1/2
, j = 3, 4. (5.64)

Table 5.3 reports the empirical sizes obtained in this second set of experiments.

We considered the same control variables of the first experimental design with ranges:

ρxug (0.3 and 0.6), ρxzg (0.3 and 0.6) and ρxx (0.25 and 0.5). We also fixed ρxuq =

0.5 = ρxzq = 0.5. As can be seen from Table 5.3, most of the conclusions achieved

in the previous sub-section are still valid. Thus, the superior performance of the

robust forms of the GEL-based tests relative to their standard versions is once again

clear. The over-rejection of the AS test is now even more apparent as well as its

sensitiveness to the correlation between Xg and ug. The poor performance of the E

test when that correlation is higher becomes evident as well as the influence of ρxzg .

The C and el (s) J tests continue to exhibit empirical sizes close to the nominal ones.

In contradiction, the size characteristics of AC deteriorated significantly over those

in Table 5.3. Like the E test, the size behaviour of the AC test is worse for higher

values of ρxug and improves with larger correlations between the regressor Xg and the

instruments Zg.

Table 5.4 reports (size-corrected) powers. As before, we fixed ρxug = ρxzg = 0.5.

The power of all tests seem to be negatively related to estimation accuracy under

Hq, ρxuq , and to model proximity, ρxx. The most important difference relative to the

previous study is that the power of the AC test is now more than twice that of the

unadjusted version C in almost all cases and is the most powerful test in this second

set of experiments. Unfortunately, as seen in Table 5.3, this good power performance

came at the expense of a poor size behaviour. The AS, E, J and PE/ME/LME

tests also perform well, with rather moderate power for the S, C and SC/LC tests.
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Table 5.3: Monte Carlo estimated sizes (%) for a nominal size of 5% for non-nested hypothesis tests: design II (2000 replications) 
 

n ρxug ρxzg ρxx S AS C AC E J SC/LC PE/ME 
    gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) el(s) el(r) el(s) el(r)

200 0.3 0.3 0.25 5.0 5.3 14.5 14.3 4.7 5.1 8.0 8.0 4.8 5.5 4.8 4.7 6.1 5.2 7.4 5.6
   0.50 5.3 5.5 14.0 13.6 4.7 5.7 7.7 7.6 5.2 6.1 4.6 4.5 6.0 5.3 7.2 5.4
  0.6 0.25 4.9 5.5 13.9 13.8 4.9 5.6 6.7 7.3 4.4 5.6 4.6 4.7 5.9 5.0 7.8 6.1
   0.50 5.3 5.5 13.4 13.2 4.5 5.4 6.5 7.1 5.0 5.5 4.6 4.8 6.1 5.1 8.2 6.2
 0.6 0.3 0.25 5.3 5.3 16.1 16.6 5.1 5.1 10.1 7.2 7.9 8.1 5.8 4.7 6.1 5.5 7.7 5.7
   0.50 5.3 5.4 16.2 16.2 4.8 5.4 9.1 6.7 8.8 9.5 5.9 4.6 6.3 5.4 7.6 5.6
  0.6 0.25 5.2 5.4 15.8 16.4 4.7 5.6 7.0 6.6 5.5 6.4 4.8 4.7 5.7 5.1 8.1 6.2
   0.50 5.7 5.6 15.7 16.2 4.5 5.6 6.9 6.9 6.7 7.3 5.0 5.1 6.3 5.4 8.3 6.4

400 0.3 0.3 0.25 4.2 4.1 12.4 12.2 4.0 4.4 6.9 6.5 5.0 5.9 4.8 4.6 5.3 4.9 4.9 3.9
   0.50 4.3 4.0 11.1 10.9 4.5 4.6 6.4 6.6 5.1 5.8 4.5 4.5 5.3 4.9 4.8 3.9
  0.6 0.25 4.2 4.1 12.3 12.0 4.3 4.3 6.1 6.1 4.7 5.8 4.4 4.5 5.4 4.9 5.3 4.2
   0.50 4.6 4.0 11.4 11.3 4.5 4.4 6.1 6.4 4.6 5.0 4.3 4.5 5.3 4.7 5.4 4.2
 0.6 0.3 0.25 4.3 4.3 14.2 14.0 4.4 4.3 7.9 6.1 7.1 7.3 5.2 4.6 5.6 5.0 5.0 4.1
   0.50 4.5 3.7 13.2 13.1 4.6 4.4 7.6 6.1 7.9 8.4 4.9 4.5 5.3 4.7 5.0 4.0
  0.6 0.25 4.1 4.0 14.5 14.3 4.2 4.3 6.2 5.9 5.4 6.1 4.5 4.5 5.6 5.2 5.2 4.2
   0.50 4.3 4.1 13.8 13.4 4.2 4.2 6.7 6.2 5.8 6.9 4.5 4.5 5.2 5.0 5.5 4.6

             Note: the values underlined are significantly different from the nominal size at the 5% level (95% confidence interval limits: 4.045 and 5.955). 



Table 5.4: Monte Carlo estimated (size-corrected) powers (%) for a nominal size of 5% for non-nested hypothesis tests: design II (2000 replications) 
 

n ρxuq ρxzq ρxx S AS C AC E J SC/LC PE/ME 
    gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) gmm el(s) el(s) el(r) el(s) el(r)

200 0.3 0.3 0.25 40.0 37.5 68.5 67.5 31.2 31.5 74.6 71.0 70.5 62.8 68.2 67.9 33.8 32.1 58.2 52.9
   0.50 38.3 36.3 63.0 59.9 29.0 29.8 70.9 65.4 67.7 65.0 64.0 63.1 32.4 30.4 54.2 48.8
  0.6 0.25 39.8 37.0 68.9 67.7 32.4 37.1 73.7 73.2 70.4 68.5 68.2 67.9 34.2 32.4 58.2 52.9
   0.50 37.7 35.3 62.2 59.2 30.9 33.3 69.1 67.4 69.9 64.9 64.0 63.1 33.6 31.6 54.2 48.8
 0.6 0.3 0.25 25.2 24.2 56.1 54.9 23.4 22.0 54.3 53.8 45.9 43.9 41.3 41.5 23.0 21.4 36.6 35.2
   0.50 22.4 21.7 35.6 34.4 22.9 19.5 40.4 38.5 38.6 36.1 34.5 35.2 19.8 18.6 30.9 28.3
  0.6 0.25 25.1 18.6 56.6 56.9 23.2 25.4 51.1 50.2 46.7 44.7 41.3 41.5 23.8 22.8 36.6 35.2
   0.50 22.0 15.0 35.5 35.9 23.1 23.3 39.2 39.8 37.2 33.5 34.5 35.2 19.6 19.0 30.9 28.3

400 0.3 0.3 0.25 58.4 58.1 94.2 94.2 44.7 49.0 95.5 95.1 95.4 78.6 93.7 93.7 52.3 50.4 90.9 89.0
   0.50 56.2 55.8 91.1 91.3 42.2 47.8 93.1 92.5 94.1 77.9 91.4 91.2 50.8 48.9 88.7 86.5
  0.6 0.25 58.3 57.4 94.3 94.2 45.1 57.2 96.4 95.9 94.8 35.1 93.7 93.7 51.9 49.8 90.9 89.0
   0.50 56.6 55.1 91.3 91.2 42.5 54.2 93.7 94.4 94.5 59.5 91.4 91.2 51.4 49.0 88.7 86.5
 0.6 0.3 0.25 43.7 44.0 84.8 84.9 41.4 35.0 82.1 83.1 76.3 34.8 74.4 74.3 37.9 36.7 69.4 68.2
   0.50 40.3 39.8 64.5 64.0 34.2 31.9 68.4 69.2 69.5 35.0 63.7 64.0 32.3 31.2 59.1 57.7
  0.6 0.25 43.7 36.1 84.3 85.6 40.4 41.8 78.7 79.4 71.3 7.5 74.4 74.3 38.3 37.2 69.4 68.2
   0.50 40.2 34.5 66.1 67.5 35.1 39.0 68.9 70.1 68.5 20.9 63.7 64.0 32.8 32.0 59.1 57.7



5.7 Conclusion

This chapter has proposed a number of new non-nested test statistics for evaluating

competing models specified solely in terms of moment conditions. A simple modifi-

cation of Smith’s (1992) GMM-based Cox-type test, which is similar in construction

to that of Singleton (1985), is given, which appears to lead, in some cases, to signif-

icantly improved power properties but with concomitant poorer size characteristics.

Furthermore, and this is the main contribution of this chapter, a parametric and a

class of moment encompassing tests are also suggested within the GEL framework.

Simulation experiments for competing linear instrumental variable models indicate

that GEL-based encompassing tests using a robust estimator for the variance matrix

of the moment indicators are particularly efficacious.

The generalized moment encompassing tests can be implemented in a number of

different ways, accordingly to the statistic chosen to represent a specific characteristic

of the rival model. Here, we compared two of the possible choices for that statistic,

one based on the moment indicators, which give rise to the moment encompassing

test, and the other based on the objective function, which produces Smith’s (1997)

SC and LC tests. Naturally, different choices would produce tests with different

finite sample properties, so a future avenue for research is to explore the possibility

of constructing tests with better small sample properties by changing the feature of

the competing model that is contrasted.
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Chapter 6

Conclusion

6.1 Main findings

The study of GMM and alternative estimation methods for moment condition models

is, nowadays, one of the most popular research topics in theoretical econometrics. In

this thesis we focused mainly on the analysis of GMM and GEL estimators and related

statistics, achieving three major contributions to this subject.

First, through the realization of two extensive Monte Carlo simulation studies,

we examined the small sample bias of two classes of alternative estimators that are

theoretically appropriate for estimating models defined solely in terms of moment

conditions. The first class includes the first-order asymptotically equivalent GMM,

CU-GMMand GEL estimators, while the second contains six distinct bootstrap GMM

estimators, three of which were developed in this thesis. The three bootstrap tech-

niques that we propose use the GEL implied probabilities to construct the bootstrap

samples, which are, thus, generated in a more efficient way than in the three bootstrap

methods previously suggested by other authors. Our simulation results, involving co-

variance structure and instrumental variable models, popular applications of GMM,

show clearly that there are much better methods to estimate moment condition mod-

els than conventional GMM estimation. Indeed, this estimation method produced

the worst results in almost all cases. In contrast, the PHGEL bootstrap behaved in
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a very promising manner, being the method with less mean bias in most cases. The

RGEL bootstrap, also derived in this thesis, despite behaving more modestly in the

second set of experiments, produced also better results than the remaining bootstrap

methods. Considering only the non-bootstrap methods, the EL estimator had the

best performance. For this class of estimators, we found that Newey and Smith’s

(2000) results seem to be a good guide for their small sample behaviour.

Our second major investigation concerned the development of Pearson-type test

statistics suitable for testing both overidentifying moment conditions and parametric

restrictions in models estimated by GEL methods. We derived two classes of Pearson-

type statistics, both based on the comparison of two consistent estimators, under the

corresponding null hypothesis in assessment, of the unknown distribution of the data.

The first class includes tests that are very similar in form to the classical Pearson

χ2 statistics. The other requires the partition of the sample space in several sets,

the contrast between the empirical and the GEL implied probabilities (or two GEL

implied probabilities) estimated for each set forming the basis for the test. The two

Monte Carlo simulation studies realized, concerning tests of overidentifying moment

conditions, revealed a very promising performance of the latter Pearson-type statistic

relative to both bootstrap versions of the J test and alternative tests. The best

results were obtained when robust estimation of the variance matrix of the moment

indicators was employed.

A number of new non-nested hypothesis tests that integrate and complement the

work of other authors constitute our last major contribution to the econometrics of

moment condition models. On the one hand, we derived generalized statistics that

include most of the existing tests as particular cases. On the other hand, we devel-

oped GEL parametric and moment encompassing tests that enlarge substantially the

number of tests available to the practitioner to assess non-nested moment condition

models. One of our suggestions provides a simple method of implementing Ghysels

and Hall’s (1990) idea for constructing a moment-based test in the GMM framework,

without requiring the introduction of auxiliary assumptions in addition to those given
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by the moment conditions. Simulation experiments for competing non-nested linear

instrumental variable models indicate that GEL-based encompassing tests using a

robust estimator for the variance matrix of the moment indicators are particularly

efficacious.

6.2 Future Research

The findings from this thesis provide some avenues for future research in the econo-

metric analysis of moment condition models. This is especially true for the investi-

gation undertaken in chapter 3, a natural extension of it being the examination of

the ability of bootstrap methods to eliminate the finite sample bias of CU-GMM and

GEL estimators. Although theoretically simple, such extension will require a great

amount of computer time and power. A more interesting topic of investigation is per-

haps the analysis of alternative methods for obtaining bias-corrected GMM and GEL

estimators. We are already investigating, in a joint paper with R. J. Smith and A.

D. Chesher, the small sample properties of such corrected estimators when based on

Newey and Smith’s (2000) asymptotic bias functions. We consider two approaches.

One uses those expressions evaluated at the corresponding estimator to obtain an

estimate of its bias; by directly subtracting this estimate from the standard estimator

we are able to calculate a bias-corrected estimator. The second approach, based on

the work of Firth (1993), utilizes Newey and Smith’s (2000) expressions to correct the

first-order conditions defining the estimator, which can be or not previously evaluated

at it; solving these modified first-order conditions other bias-corrected estimators are

obtained.

All major contributions of this thesis are based in some way on the utilization

of the GEL implied probabilities to estimate some features of the data. In fact, we

showed how to employ them to construct the three new bootstrap techniques, the

Pearson-type statistics and the parametric and moment encompassing non-nested

tests. However, more applications of these probabilities are certainly possible. For

158



example, in a parametric context, it should be relatively straightforward to assess

distributional assumptions using a GEL Kolmogorov-Smirnov-type statistic based on

the comparison of the GEL and the assumed cumulative distribution functions.

Finally, the extension of all methods and statistics concerning GEL estimation

for a time-series framework is also an interesting and important avenue for future

research. Indeed, only Kitamura and Stutzer (1997) and Smith (1997, 2001) have

dealt with this issue, proposing the smoothing of the observations before the opti-

mization. However, the performance in practice of such GEL estimators remains to

be examined.
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