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Outline
Population growth in a random environment can be modeled using 

stochastic differential equations (SDE).

Instead of considering specific models, we will study a general model in 

what concerns extinction and existence and existence of stationary 

densities. That model is a generalization of previously studied specific 

models.

Which stochastic calculus is more appropriate: Itô or Stratonovich?

Extension to general harvesting models

Further generalization to density-dependent noise intensities.

Time to extinction

Application (including estimation and prediction)
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Deterministic model
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Examples
Malthusian g(N) = r
Logistic g(N) = r (1-N/K)
Gompertz g(N) = r ln (K/N)
………………………………………

N(t)  Population size at time t > 0

g(N) (per capita) growth rate (when population size is N)

G(N)= g(N) N  total growth rate
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Randomly fluctuating environment
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Effect of environmental random fluctuations on the growth rate

What has appeared in the literature

• Additive noise  Add noise to the growth rate of a specific model

Example: logistic model

• Add noise to a parameter of a specific model

Example: Add noise to the  r in the logistic model

Sometimes unrealistic model
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Randomly fluctuating environment
Several specific models (specific functions g(N)) have been proposed in 
the literature starting with Levins (1969) and, for the case of harvesting, 
with Beddington and May (1977). 

Question: Are the properties obtained model specific or real properties of 
the population?

Our work:

• See if you can obtain properties for general models (arbitrary functions 
g(N) satisfying only biologically determined assumptions and some mild 
technical assumptions). We seek properties on extinction or non-extinction 
and on existence of stationary densities.

• We consider realistic noise intensities

•First: additive noise (constant noise intensities)

•Later: density-dependent noise intensities that are positive for positive 
population sizes
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General SDE model with constant noise intensity
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Assumptions on 

• continuously differentiable strictly decreasing
• the limit                                                      
•
• G(0+) = 0  
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process Wiener standard0∫= t dsstW )()( ε
g(N) “average” growth rate
G(N)=g(N)N total “average” growth rate
σ >0 noise intensity (constant)
V(N)=σN total noise intensity
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Stochastic integration
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Decompositions with diameter converging to 0

Intermediate points

The Riemann-Stieltjes sums 

have m.s. limits that depend on the choice of the intermediate points. 
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Stochastic integration
Itô integral (non-anticipative choice τi,n=ti -1,n )

Nice probabilistic properties. Does not follow ordinary calculus rules.

Itô chain rule for  Y(t) = h(t,N(t)) with h(t,x) of class C1,2

Stratonovich integral

We will use Stratonovich calculus.
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General growth model with constant noise intensity

The solution exists and is unique up to an explosion time

The solution is a homogeneous diffusion process with

Diffusion coefficient

Drift coefficient

Note: With Itô calculus
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General growth model with constant noise intensity

Scale density

Scale function

Speed density 

Speed function   
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General growth model with constant noise intensity

( )NtNg
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Boundary N=0 is non-attractive
if there is a right-neighborhood R=]0,y[ of zero such that, for any 0<x<n∈R,

Tz - first passage time by z

Necessary and sufficient condition
This implies (Karlin and Taylor 1981) non-extinction a.s.

Similarly, for non-attractiveness of the boundary

With our assumptions we prove that:

The boundary              is non-attractive (which implies non-explosion, i.e., 
existence and uniqueness of the solution for all times).

The boundary N = 0   is attractive if g(0+) < 0 and non-attractive if g(0+) > 0.
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General growth model with constant noise intensity

When both boundaries are non-attractive and 

the process is ergodic and there is a stationary density given by

With our assumptions, we prove that happens when g(0+)>0.

CONCLUSIONS:
When g(0+) < 0, extinction occurs a.s.
When g(0+) > 0, there is a zero probability of extinction and there is a 
stationary density 

(the mode of which approximately coincides with the deterministic 
equilibrium when the noise intensity is small).
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General growth model with constant noise intensity

What happens if we use Itô calculus?

CONCLUSIONS:
When g(0+) < σ2/2, extinction occurs a.s.
When g(0+) > σ2/2, there is a zero probability of extinction and there is a 
stationary density 

So, we can have extinction even when the “average” growth rate at low 
densities is positive.

Which calculus is right?

Recipes
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Resolution of the controversy 
for constant noise intensity ( )NtNg

dt
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Deterministic model (σ =0)

(per capita) growth rate R(x) when population size is x at time t 

Stochastic models

Arithmetic average growth rate Ra (x) when population size is x at time t
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Resolution of the controversy 
for constant noise intensity

Geometric average growth rate Rg (x) when population size is x at time t

CONCLUSION (Braumann 2007a)

g(x) means two different “average” growth rates under the two calculi.

It is the arithmetic average growth rate when we use Itô calculus.

It is the geometric average growth rate when we use Stratonovich calculus.

Taking into account the difference between the two averages, the two calculi 
completely coincide. 

In both, we have extinction or stationary density according to whether the 
geometric average growth rate at low densities Rg(0+) is negative or positive.
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Harvesting models with constant noise intensity
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h(N)   harvesting effort (when population size is N)
H(N)= h(N)N yield (total harvesting rate)
q(N)=g(N)−h(N) net growth rate

Assumptions on 

• continuously differentiable non-negative
• the limit              can be weakened
• H(0+) = 0 

),[),(:)( +∞+∞⋅ 00 ah
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CONCLUSIONS (Braumann 1999b)
When q(0+) < 0, extinction occurs a.s.
When q(0+) > 0, there is 0 probability of extinction and there is a stationary density 

(the mode of which approximately coincides with the deterministic 
equilibrium when the noise intensity is small). 

Itô and Stratonovich: Braumann (2007c). 
Optimal harvesting (Lungu e Oksendal 1997, Alvarez e Shepp 1997, Alvarez 2000)
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General growth model with density-dependent noise intensity

Assumptions on                                       :

• strictly positive twice continuously differentiable

• V(0+)=0, where V(N)=σ (N)N

(A)                                     for some x0>0;

(B) for some y0>0.

(C) |σ(N)/g(N)| is bounded in a right neighborhood of 0.

(D) |σ(N)/g(N)| is bounded in a neighborhood of +∞.
If noise intensity is bounded, it satisfies (A), (B), (C) and (D).
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General growth model with density-dependent noise intensity

CONCLUSION (Braumann 2007b)

g(x) means two different “average” growth rates under the two calculi.
It is the arithmetic average growth rate when we use Itô calculus.
It is the φ−average growth rate when we use Stratonovich calculus 

(coincides with the geometric average when N approaches 0).
Taking into account the difference between the two averages, the two 

calculi completely coincide.
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General growth model with density-dependent noise intensity

In terms of Y, the drift coefficient is, with y=φ(x),

Therefore

Apply φ to both sides, expand about y and notice that 

to obtain                                                       from which the result follows            
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General growth model with density-dependent noise intensity

)(Nσ
With the assumptions made, the same conclusions hold:

• When the geometric average growth rate at low densities is negative, 
extinction occurs a.s.

• When the geometric average growth rate at low densities is positive, there is 
a zero probability of extinction and there is a stationary density 

For harvesting models see Braumann 2001
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Time to extinction
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with the assumptions made on g and g(0+)>0.

There is no “mathematical” extinction and there is a stationary density.

What about a population of 0.4 individuals? What about Allee effects?

Set extinction threshold a>0. We assume a<N0.

Note: To study pest outbreaks, we could also consider a>N0

“Realistic” extinction occurs if ever N(t) reaches the threshold

Since the process is ergodic it will do it (sooner or later) with probability 
one.

So, “realistic” extinction occurs a.s.

How long does it take? (Braumann 1985, Carlos and Braumann 2005,2006)
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Time to extinction

{ }atNtTa =>= )(:inf 0 we call extinction time

To the first passage time
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Time to extinction
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Time to extinction
We can also obtain an ODE for the Laplace transform 

Solving the equation and inverting the Laplace transform, one obtains the 

p.d.f. of  Tab
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Time to extinction
Since the process is ergodic, if we let               , we obtain as limit of Vk(x)

So, we obtain (after some indeterminations are removed)
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Application
Gompertz model with additive noise
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Application
Extinction has 0 probability of occurring and there is a stationary density 
proportional to m(n) with support n>0, the mode of which is Kexp(σ2/(2r)).

Change of variable

y = ln (n/K)  

Y(t) = ln ( N(t) /K ) has stationary density proportional to m(n) dn/dy, which one 
immediately sees to be Gaussian with mean 0 and variance σ2/(2r).

We can obtain the transient p.d.f. of Y(t) 

Y(t) satisfies the SDE
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Application
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Gráfico de r E[Ta]  como função de N0/a. Aqui R=r /σ2 e  d=a/K.

x1090
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Gráfico de r DP[Ta]  como função de N0/a. Aqui R=r /σ2 e  d=a/K.

x1090
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Case of logistic model
If we use instead the logistic model with additive noise
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Case of logistic model
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x1090

Gráfico de r E[Ta]  como função de N0/a. Aqui R=r /σ2 e  d=a/K.
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Application of Gompertz additive noise model
to Gause´s 1934 data on Paramecia caudatum
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Estimation for Gompertz additive noise model

Assume we have observations in a single trajectory at times

t0 = 0< t1 < t2 < ...< tk

N0, N1, N2 , ... , Nk com Ni =N(ti )      Y0, Y1, Y2 , ... , Yk com Yi =Y(ti )=ln(Ni /K)

n0=N0 , n1 , n2 , ..., nk concrete observations     y0, y1, y2 , ... , yk com yi =ln(ni /K)
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Estimation for Gompertz additive noise
model

and so

from which one obtains

From the Markov property, we obtain the log-likelihood function
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Estimation for Gompertz additive noise model
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For small sample sizes, bootstrap methods are advisable.
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Prediction for Gompertz additive noise model

For prediction of population size at a future time t > tk it is better to work 
with the Gaussian random variable Y(t).

A good predictor is
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Conclusions
•We have studied general models of population growth in random environments 
so that properties obtained are not model specific. We have first considered 
constant noise intensity and then allowed density-dependent noise intensity.

•For the general model considered, we have shown that “mathematical” 
extinction occurs if the geometric average growth rate at low population 
densities is negative. If it is positive, “mathematical” extinction does not occur 
and there is a stationary density.

•”Realistic” extinction (population dropping to a positive low extinction threshold) 
allways occurs and one can obtain explicit expressions for the moments of the 
extinction time (the extinction time pd.f. can also be obtained numerically). We 
have applied to the Gompertz model with additive noise and obtain graphs of 
the mean and standard deviation of the extinction time. The same ideas can 
apply to high threshold crossing times (study of pest outbreaks).

•For the same specific model we have illustrated using real data the issues of 
parameter estimation and prediction.
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Conclusions
•We have also resolved the controversy on whether to use Itô or Stratonovich
calculus, which was a major obstacle to the use of these models.

Indeed, we have shown that it was due to the implicit wrong assumption that the 
deterministic term of the SDE meant the same average growth rate under the 
two calculi. We have shown that it means two different averages and that, 
taking into account the difference between them, the two calculi give completely 
coincidental results.

•We have also considered the case of harvesting models.
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