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Summary 
 

 
Branched networks are ubiquitous in living systems. The dimensions and the geometry 

of these branched structures are key aspects of the efficiency of physiological 

processes. A resistive-capacitive model of an optimized pulsatile flow system based on 

Constructal Theory is presented, which aims to explain the performance of the human 

arterial tree. Optimal scaling laws for diameters and lengths emerged that are valid for 

dichotomous branching. The model together with data of the human arterial tree 

showed that impedances of some arteries tend to decrease with age. The estimated 

scaling between diameters of branching arteries is close to optimality. With respect to 

scaling of arterial length no such agreement was observed. An interpretation of the 

lifelong elongation of the ascending aorta is proposed. The model together with 

Starling equation, continuity of blood flow, and the specific properties of the 

exchanges in capillaries provide an explanation for the observed reduction of arterial 

distensibility with pulse frequency observed in carotid and radial arteries. 
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Resumo  

 

Contribuição para a modelação física do sistema circulatório - 

Optimização e evolução 

 
As redes ramificadas estão presentes nos sistemas vivos. As dimensões e a geometria 

dessas estruturas ramificadas são aspectos chave da eficiência dos processos 

fisiológicos. É apresentado um modelo resistivo-capacitivo de um sistema de 

escoamento pulsado optimizado com base na Teoria Constructal, com o objectivo de 

explicar a performance da rede arterial humana. São obtidas leis de escala óptima para 

diâmetros e comprimentos, válidas para ramificações dicotómicas. A associação do 

modelo com dados da rede arterial humana revelou que a impedância de algumas 

artérias tende a diminuir com a idade. A razão das escalas entre os diâmetros 

estimados das artérias apresenta valores quase optimizados. O mesmo não foi 

observado relativamente às leis de escala dos comprimentos das artérias. É proposta 

uma interpretação para o alongamento da aorta ascendente ao longo da vida. O 

modelo desenvolvido juntamente com a equação de Starling, a continuidade do fluxo 

sanguíneo, e as propriedades específicas das trocas nos capilares, permitem explicar a 

redução da distensibilidade arterial com a pulsação observada nas artérias carótida e 

radial.  
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CHAPTER 1   
 

 

Introduction 

 
 
1.1  Circulatory system as a physical system 

The circulatory system consists of a complex network of vessels, organized in a 

vascular tree, that distribute and drain blood from the different organs and tissues, in 

order to ensure their respective functions, and maintaining an adequate environment 

in tissues fluid for optimal survival and function of the cells. 

The circulatory system includes the heart that pumps the blood that circulates in a 

network of vessels covering the entire body allowing for systemic and pulmonary 

circulations (see Fig 1.1). Its main function is deliver oxygen and nutrients required to 

sustain metabolism throughout the body and to transport the associated wasted 

products away. It has to continuously supply blood flow and simultaneously adjust it 

accordingly to the various demands of the different parts of the organism.  

Blood is the fluid that transports the products related to metabolism. It is a complex 

heterogeneous suspension of blood cells, salts and coloids in liquid plasma, whose 

physical properties will be developed in §1.5. For more details please see [1]. 

Heart acts as a pump that creates the pressure gradient necessary to drive blood 

within vessels. In each contraction it supplies the required energy to maintain blood 

flow through all tissues in the body. Heart’s left part receives oxygenated blood from 

the lungs, and pumps it through peripheral organs (systemic circulation), while the 

right part receives the blood with the wasted products of metabolism and pumps it 

through the lungs (pulmonary circulation). Heart ensures the connection between 

systemic and the pulmonary circulations of the cardiovascular system. 
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Fig. 1.1  Simplified scheme representing the organization of the circulatory system (adapted 
from [1]). 

 

1.1.1  Cardiac cycle 

The network of blood vessels consists of large arteries, smaller arteries, arterioles, 

capillaries, venules and veins (Fig. 1.2). 

Aorta, the largest artery in human body, receives blood under high pressure from the 

heart’s left ventricle, and delivers it to various part of the organism. Arteries branch 

into arterioles, which are the last small branches of the arterial system and have the 

ability to regulate the blood flow through capillaries, accordingly to the needs of the 

tissues.  

It is at the capillary level, that oxygen and nutrients diffuse from the blood into the 

organs and muscles. As a consequence, blood becomes rich in wasted products 

(carbon dioxide, urea, creatinine); venules collect it from capillaries, merging gradually 

together to form veins.  

In the last stage of the systemic circulation, the vena cava transports the deoxygenated 

blood through the heart’s right ventricle, which in turn pumps it into the lungs – 

pulmonary circulation. Then, at the alveoli, oxygen is exchanged with the carbon 

dioxide. Blood returns to the left part of the heart, restarting a new cycle. In this 

mechanism blood passes by both circulations. 
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Fig. 1.2  Simplified scheme representing the organization of blood vessels in the circulatory 
system (adapted from [1]). 

 

Cardiac cycle consists then of two phases: the diastole and the systole. During diastole 

ventricles fill in with blood, while during systole ventricles contract and pump blood 

out of the heart. 

 

1.1.2  Vessels physiology 

Systemic arteries are composed of large arteries, smaller arteries and arterioles. They 

have a thick wall divided into three concentric layers: the tunicas intima (internal 

layer), media and adventitia (external layer) [2]. These layers are characterized by their 

predominant structure and cell types (for more detailed information please see 

chapter 4 of ref [2]). 

Arteries can be subdivided into three groups according to their elastic behavior: 

elastic, muscular (there are arteries that are intermediate between both types) and 

arterioles. Elastic arteries, which are the major distributing vessels, have relatively 

large diameters and are located close to the heart, such as the aorta, the common 

carotids or the subclavian arteries [3]. They have strong, highly elastic vascular walls, 

allowing for high velocity blood flow. 
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Muscular arteries, which comprise the main distributing branches of the arterial tree, 

are located at the periphery (except in the case of coronary arteries), such as radial or 

femoral arteries, and are characterized by less elastic walls [2].  

Arteriole’s walls are almost rigid and are muscular strong, having the ability of varying 

blood flow through the variation of the cross-sectional are, accordingly to the different 

demands of the tissues [1,4]. 

Arteries’ distensible nature is a fundamental characteristic because it provides the 

accommodation of heart’s pulsatile cardiac output in systole. The increase in vessel 

cross section allows for the storage of elastic energy, and consequently a creation of a 

forward negative pressure gradient, needed to keep blood flow during the diastole. 

All along the arterial network, the distensibility of arteries is gradually reduced, leading 

to a drop in blood pressure. The damping in pulse pressure results then in a smooth 

continuous blood flow through the arteriolar level. 

In contrast to the arteries, capillaries contain no muscle. Their walls are rigid and very 

thin, having numerous capillary pores permeable to the substances related to 

metabolism [1,4]. 

Venous system acts as a reservoir of blood. Because pressure is too low, veins’ walls 

are thin, but muscular enough to contract or expand, acting as an adjustable reservoir 

according to the needs of the circulation [1-4].  

To conclude this brief introduction, and to make the bridge to the next section, it is 

important to emphasize that the entire network in the circulatory system is composed 

of millions of vessels segments with different lengths and diameters, what puts at 

stake the question that many for long try to answer: is the design of the vascular tree 

and the way vessels randomly organized, or instead is the result of some kind of 

optimization that obeys to a physiological or a physical principle, and in such a case 

calls for quantitative laws to describe the  vascular structure? 

 

1.2  Scaling laws 

Hereafter, a brief resume is presented that fits these organizations in nature, both 

from the biological and physiological points of view.  
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Life is probably the physical system that exhibit more complexity and variety on Earth. 

It involves more than 27 orders of magnitude, with the metabolic power required to 

sustain life across that range, covering over 21 orders of magnitude. The variety of 

forms, processes, and dynamical behaviours found in all living scales, are the result of 

chemical substances and chemical reactions, common to all living organisms. The 

processes of synthesis and degradation of nutrients in cells are due to these reactions 

(cellular metabolism) that are the basis of life, once it allows the growth, maintenance 

and reproduction of cells, ensuring their structures and adapting to environment [5,6]. 

In contrast to the variety and complexity of living organisms, is the probably 

unexpected simplicity of scaling behavior related to fundamental biological processes 

and covering a wide range of phenomena, and body masses, as well. Scaling laws are 

the reflection of generic characteristics and physical principles which are independent 

of specific dynamics or special characteristics of particular systems. 

In biology, the observed scaling law obeys to a typically power law of the form [5-8]: 

                                                               = 0
bY Y M ,                                                                   (1.1) 

where Y0 is a normalization coefficient, M is body mass (independent variable), Y is 

some observable biological parameter and b represents the allometric scaling 

exponent. This exponent is verified to be approximately a multiple of ¼. Of the 

parameters that obey to this scaling law, among others are, metabolic rate, heart rate, 

growth rate, life span, lengths of aortas, tree height [9-11]. 

Kleiber (1930) had an important role in the study of basal metabolic rate [12], recoiling 

data of organisms extending in mass over about four orders of magnitude, concluding 

in his work that it scales as M¾ for mammals and birds. Since then Kleiber’s Law has 

been extended to a variety of organisms [7,13]. 

In order to provide a physical support to the biological empirical laws, the physicist 

West and the biologists Brown and Enquist, created a model that aims to explain the 

origin of allometric scaling laws [14]. This model was based in three assumptions: (i) a 

branching pattern is required along the network, in order to supply the distribution of 

nutrients through all tissues in the organism; (ii) the size of the smallest element of the 

network is fixed; (iii) minimization of energy is required in the mechanism of resources 
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distribution. They argued that “scaling laws arise from the interplay between physical 

and geometric constraints implicit in these three principles”. The concept of optimizing 

the pumping power for fluid flow (minimizing resistance to flow) carried out in this 

model, applied in circulatory and pulmonary systems of mammals resulted in the 

Kleiber’s Law empirical relation. 

Other models have been purposed, based on physical principles namely minimal 

generation of entropy, maximal generation of entropy, minimization of flow 

resistance, the three assumptions of West, Brown and Enquist model [15]. 

 

1.3  Constructal Theory 

1.3.1  Constructal Law 

A year before the presentation of West, Bryan and Enquist model, a new theory has 

been purposed by Adrian Bejan, called Constructal Theory that in its earlier stage was 

applied to engineering [16].  

Interesting here is that for the first time engineers participate in a discussion until then 

taken between physicists, biologists, zoologists and mathematicians, with a completely 

different point of view. Bejan says that the basis of his theory has origin in the attempt 

to solve a problem related to the minimization of thermal resistance between an 

entire heat generating volume and one point [10]. He found as the optimal solution “a 

tree network in which every single feature was a result, not an assumption”. He 

extended his conclusions to every natural (animate and inanimate) tree structure (eg. 

river basins, lungs, atmospheric circulation) assuming that they are the result of 

optimization of performance of volume-point flow. This theory somehow suggests that 

generation of flow configuration in nature (design in nature) is a manifestation of a 

universal physical phenomenon covered by a principle – Constructal Law – which 

states that “For a finite-size flow system to persist in time (to live) it must evolve such 

that it provides greater and greater access to the currents that flow through it” [10]. 

This means that evolution of the configuration of flow systems is predictable resulting 

of the way they find to improve their function, distribute imperfections and create 

geometries, evolving in time to minimum global flow resistance [10]. It is a kind of 

evolutionary principle based on the increase of flow access in time. 
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In nature it is not easy to find perfect geometric forms in animate systems. This means 

that they are far from equilibrium because they are alive. Their physical asymmetry 

(eg. quasicylindrical channels, quasispherical alveolus) and geometrical asymmetry 

(unequal distribution of stresses, temperature, pressure), i.e. their imperfections are 

the proof that they are alive (non-equilibrium) [17]. Despite this, these systems 

perform well by minimizing and balancing together the resistances found by internal 

and external streams under the existing global constraints. Therefore the flow system 

has to be free to morph, i.e. to change its configuration. The evolution of flow 

architecture is the result of the way that system found to achieve its global purpose 

under constraints. 

The Constructal Law may be useful in two distinct areas: 1) to predict and explain flow 

configurations in animate and inanimate systems found in nature [see Fig. 1.3(b)-(e)]; 

2) to be applied as a physical principle in engineering as a way of creating other 

architectures [see Fig. 1.3(a)]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.3 (a) dendritic architecture derived from the constructal law. Generation of flow 
configuration observed in nature: (b) Vegetation – from [17]; (c) Yukon delta (inanimate flow)-  
adapted from USGS site; (d) blood vessels - adapted from Science Photo Lib; (e) bronchial tree 
– from [17]; (f) animal locomotion (flying, running and swimming) - adapted from [21]. 

(c) (a) (b) 

(d) (e) (f) 
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The constructal theory, based on the principle of evolution of configuration generation 

for greater flow access in time, successfully anticipates the 23-level bifurcation (Fig. 

1.3c) of the lung [18], the scaling laws of all river basins [19] and macroscopic features 

(speed, frequencies, forces) of all types of animal locomotion (running, swimming, 

flying) [20]. 

Constructal theory has also been considered in the conception of a model of the long-

term behavior of the atmospheric and oceanic circulation (climate), the largest flow 

system on Earth. For a detailed analysis of the model and results please see [17,22]. 

This theory has also been considered in an interesting work [23] who aims to describe 

and predict the formation of different patterns within elements of the same species 

under distinct hydrodynamics conditions. The study covered stony corals, bacterial 

colonies and plant roots. Other applications of constructal law to animate and 

inanimate nature flows and more complete information may be found in refs 

[10,17,24]. 

Man-made flow systems (engineering) evolves similarly and are predictable based on 

the same principle that explains the evolution and architecture of natural flow 

systems. The increase of heat transfer in systems is one of the most active applications 

of constructal theory in engineering. A lot of industrial devices, as air conditioners, 

refrigeration systems, radiators, use a kind of tubes (fined or non-fined) arrangement 

as heat exchangers. In the design of these heat exchangers some features as the space 

available in the equipment must be considered. From the constructal theory point of 

view, the basis of the formulation of the problem is identifying the configuration which 

provides maximum heat transfer in a confined space.  

Other applications of engineering flow configurations with more complete information 

may be found in refs [10,17,24,25]. 

 
1.3.2  Constructal Theory and Thermodynamics 

Constructal Law states that if a flow system has freedom to change its configuration, it 

will show different configurations in time, in order to provide gradually better access 

routes to the flowing currents. Constructal theory is then assumed as an extension of 

thermodynamics [26] in the domain of non-equilibrium systems with flow 
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configuration. Actually let us take the example of an isolated thermodynamic system 

which has within a partition that suddenly breaks; in the beginning the system is in a 

state of internal non-uniformity - different parts are submitted to different pressure or 

temperature. According to the two laws of thermodynamics, this system tends to a 

state of equilibrium with: 1) no flows of matter or energy; 2) maximum entropy; 3) 

constant energy. In equilibrium there are no driving forces. Flow configurations in time 

are unknown. From the thermodynamic point of view the system is a black box. 

Constructal theory intends to cover the phenomenon of systems’ flow configurations 

evolution in time, before reaching the state of equilibrium.  

Open systems, like biological systems, are permanently in a non-equilibrium state. 

They are continuously exchanging energy and mass with the environment. Classical 

thermodynamics does not take in account flow configurations of non-equilibrium 

systems. From the constructal point of view, currents are organized in order to provide 

gradually better access routes between inlet and outlet flow currents, making it by 

minimizing global flow resistance. Bejan and Lorente demonstrated in ref [27] that 

non-equilibrium flow systems evolve in time toward an equilibrium configuration. They 

argued that “Equilibrium does not mean that the flow architecture stops changing. On 

the contrary, it is here at equilibrium that the flow geometry enjoys most freedom to 

change”. 

Thermodynamics studies equilibrium states whereas Constructal Theory studies the 

evolution of flow configurations towards the equilibrium. Equilibrium states arise from 

second law whereas equilibrium flow configurations arise from constructal law. This 

formal analogy between thermodynamics and constructal theory, concerning aspects 

as their concepts, statements and principles are described in Table 1.1. 

Further we can relate entropy generation to constructal law; we note that the 

common feature shared by flows in nature and engineered systems is that they are 

both dissipative. These flows generally can be described as: 

                                                                
∆Φ=R

I
,                                                                    (1.2) 
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where R is the resistance to flow and ∆Φ corresponds to the potential driving the 

current I. These flows generate entropy at the rate = ∆Φɺ  /genS I T , where T is 

thermodynamic temperature. The resistance can be expressed as 

                                                              =
ɺ

2

 TgenS
R

I
.                                                                  (1.3) 

We can associate the maximization of internal flow access to the minimization of flow 

resistance. The analysis of Eq. (1.3) allows one to conclude that, at constant I, 

minimizing flow resistance corresponds to minimizing the entropy generation rate. 

Conversely, if we fix the forces (∆Φ) minimizing the resistance corresponds to 

maximizing the entropy generation rate [28]. 

In conclusion we can associate generation of entropy to the Second Law, and 

generation of flow architecture to Constructal Law [17]. 

 

Table 1.1  Analogy between the concepts, statements, and principles of thermodynamics and 
constructal theory [27]. 

Thermodynamics Constructal Theory 

State Flow architecture  (geometry, structure) 

Process Change of structure 

Properties (U, S, Vol, ….) 
Global objective and global constraints (R, L, 

V,…) 

Equilibrium state Equilibrium flow architecture 

Fundamental relation U (S, Vol, …) Fundamental relation R (L, V,…) 

Constrained equilibrium states Nonequilibrium architectures 

Removal of constraints Increased freedom to morph 

Energy minimum principle: 
 
    U minimum at constant S and Vol 

    S maximum at constant U and Vol 

 

Constructal principle (maximization of flow 
access): 
 
    R minimum at constant L and V 

    V minimum at constant R and L 

    L maximum at constant V and R 
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To complete §1.3 it should be noted that Constructal Law covers the three postulates 

of West et al. model [14]. Constructal theory is able to explain a broad diversity of flow 

architectures found in nature [21] – river basins, animal locomotion, turbulence – that 

stay out of the domain covered by West et al. model. Murray’s Law (see §1.4), a scaling 

law applied to dichotomous branching is also consequence of the application of 

Constructal Law to engineered systems [29]. 

Constructal Theory can be naturally assumed as a unifying principle that introduces the 

concept of “designedness” in nature not covered by first physical principles, and 

reveals be able to explain animate and inanimate flow configurations. Applied progress 

made based on this theory, with emphasis on the last decade may be found in ref [30].  

 

1.4  Murray’s Law 

A special class of scaling laws was studied by Murray. In 1926, he proposed a principle 

of minimum energy dissipation to explain the relation between diameters (father and 

daughter channels) in dichotomous branching. 

He assumed that the quantitative statement which includes the physiologic 

organization concept is a principle that states “that the cost of operation of 

physiological systems tends to be a minimum” [31-33]. Based on the principle of 

minimum work and balanced cooperation of the organs in the body, Murray’s law 

states that “the cube of the radius (or equivalently the diameters) of a parent vessel 

equals the sum of the cubes of the radii of the daughters”, applied to bifurcation 

channels with non-turbulent flows: 

                                                                  3 3 3
0 1 2D D D= +                                                           (1.4) 

where D0 is parent vessel diameter and D1 e D2 stands for the diameters of daughter 

vessels (Fig. 1.4).  

This law was firstly applied to circulatory and respiratory system, but later studies 

show that it holds for every branching laminar flow [10,29,33]. 
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Based on Constructal theory and considering Murray Law, Reis et al. [18] have 

successfully anticipated the verified 23-level bifurcation of the lungs. Also Wechsatol et 

al. [34] used Murray Law to find the optimal tree-shaped networks for fluid flow in a 

disc-shaped body, related to components of electronic cooling. 

This scaling law is also a consequence of Constructal Law [21]. 

 

 

1.5  Blood flow characteristics 

As seen before, in the circulatory system blood transports nutrients through the body 

tissues and then removes the associated waste products. It has to flow through a 

complex vascular network, in which diameters vary from approximately 3 cm in the 

aorta, down to about 6 µm at the capillary level.  

 

 

 

 

 

 

 

                 Fig. 1.5  Centrifuged Blood Sample (adapted from Wikipédia). 

Fig. 1.4  Representation of a dichotomous branching. 
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A flow rate has to be kept in circulation in order to guarantee the organism necessities. 

This rate strongly depends on, among others, the flow properties of the blood and its 

constituent characteristics. 

Blood is a suspension of plasma and cells. Plasma is a dilute electrolyte solution that 

makes up about 55% of whole blood volume in a normal human body; it contains 

minerals, glucose, proteins, hormones and carbon dioxide. Plasma serves as a protein 

reserve of human body. The remaining 45% are occupied by blood cells such as red 

blood cells (RBC - nearly 95% of whole cells), white blood cells (WBC - less than 0.15%) 

and platelets (5%) (see Fig. 1.5) [2].  

Red blood cells are dominant making up 40% by volume of whole blood. White blood 

cells and platelets occupy less than 1%.  

The high concentration of red blood cells is very important from the rheological point 

of view, especially due to the properties of these cells [35]. They are small semisolid 

particles, which are highly deformable [36]. At rest, red blood cells look like biconcave 

disks with a mean diameter of about 8.5 μm and a thickness of 2.5 μm (see Fig. 1.6) at 

the thickest point and about 1.0 μm or less in the center [1].  

They can pass through capillaries of diameter 5.0 μm, due to the flexibility of their 

membrane. 

 
1.5.1  Blood rheology  

Blood rheological properties are determined by its constituents. Blood viscosity 

depends on existing shear forces and is a function of: 1) hematocrit (volume 

percentage of RBC in blood); 2) plasma viscosity; 3) RBC aggregation and 4) RBC 

mechanical properties [37]. 

As a consequence of experimental data (see Fig 1.7), it was found that, in healthy 

conditions, bloods exhibits shear-thinning behavior, i.e. blood viscosity decreases to a 

minimum value with increasing shear rates, while it is higher at low shear rates [38,39]. 
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           Fig. 1.6  Shape of Red Blood Cells at rest (adapted from Wikipédia). 
 
 
 

Blood behaves as a Newtonian fluid at high shear rates above 100 s-1, with viscosity of 

about 4 to 5 Pa.s ×10-3, at a normal hematocrit  of 45% at 37 ºC [37,40]. At shear-rates 

below 100 s-1, blood viscosity increases exponentially with decreasing shear rate (see 

Fig 1.7) [38]. 

Blood viscosity behavior is explained based on RBC properties. They are highly 

deformable and therefore might change their shape under shear forces, in order to 

adapt to flow conditions (bulk flow or microcirculation); they squeeze through 

capillaries, having the ability to deform in almost any shape [1, 2]. 

Another property of normal RBCs is their particular tendency to aggregate in rouleaux 

(linear arrays) disposed like stacks of coins [2,35,41], behaving like a solid. The size of 

these aggregates is inversely proportional to shear forces having a strong influence in 

the definition of blood viscosity. 

So, at higher shear-rate these aggregates tends to break down and RBCs orient in the 

direction of the flow and consequently viscosity is lower. On the other hand, at low 

shear-rate and under low flow or almost static conditions, there is a trend of RBCs to 

aggregate, resulting in the disturbance of blood flow streamlines, increasing viscosity 

to higher values [1,2,35]. 

Some studies concluded another blood property related to the reduction of its 

apparent viscosity as the tube diameter becomes smaller [42]. Farhaeus and Lindqvist 

performed experiments with blood at high shear rates and verified that apparent 

viscosity is lower in small tubes when compared to larger tubes [41,43]. 
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Fig. 1.7  Blood viscosity as a function of shear rate (adapted from [35]). 

 

This  reduction in blood viscosity with decreasing vessel diameter reaches a minimum 

value around 6 to 8 µm; as the diameter becomes even smaller viscosity increases 

abruptly (see Fig 1.8) [42,44]. This is called Fahraeus-Lindqvist effect, and has its 

physical reason based on the formation of a cell-free layer near the tube wall, so that 

RBCs move along the central region, resulting in the decrease of flow resistance 

[35,41,45].  

Actually, since red blood cells are small semisolid particles, they affect the viscosity 

and the behavior of the fluid. Blood viscosity is not constant at all flow rates and 

exhibits mostly non-newtonian behavior at the microcirculatory level. 

 

 

 

 

 

 

 

 

 
Fig. 1.8  Variation of relative apparent viscosity with diameter in microvessel, showing 
Fahraeus-Lindqvist effect, for different values of hemathocrit (adapted from [2]). 
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However, in most arteries, where diameter is large compared to the RBCs size 

(diameter exceeding 1 mm), blood is usually exposed to high shear-rates (above 100s-1) 

and hence the non-Newtonian effects which are relevant at low shear-rates, disappear 

[46,47]. This condition, therefore excludes arterioles, venules, and capillaries, once 

they are generally considerably less than 1 mm in diameter. In tubes with diameter 

less than 1 mm, blood viscosity is dependent on shear-rate [2]. 

It is clear that blood viscosity depends on shear-rate. Since the most available 

information includes data of blood viscosity as a function of shear-rate, and our 

modeling of the arterial tree (§3) requires the assignment of a viscosity to each vessel 

diameter, we adopt the values in table 1.2 based on data in ref [48]. On our work we 

assign a shear-rate to a diameter and so a diameter to a viscosity. 

Table 1.2 was drawn on the basis of an estimate, that introduces little inaccuracy but 

which doesn’t affect directly the final conclusions, once that with our work we intend 

to analyse trends of the circulatory system, not to obtain accurate values. 

 

1.5.2  Reynolds number 

The Reynolds number (Re) is used in order to predict the flow regime (laminar or 

turbulent) that is associated with blood flow in arteries, through the expression:      

                                                             
ρ
η

=e

uD
R  .                                                                   (1.5) 

In healthy conditions, we can calculate Re, associated with a large artery, by 

considering the order of the values involved: blood density ρ ∼ 3 -310  kg m , blood 

average velocity 1 -110u ms−
∼ , vessel diameter 

-210D m∼ , and blood dynamic viscosity 

η ∼ -310  Pa s . Therefore, Reynolds number is of order ∼
310eR . 

 

       Table 1.2 Range of blood viscosity values and respective diameter vessel. 

Diameter (mm) Blood Viscosity (Pa.s×10
-3

) 

> 10 4 – 6 

5 – 10 6 – 9 

< 5 9 – 15 
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This result enables us to assume that in normal conditions blood flow in large arteries 

is typically laminar. Downstream in arterial tree, flow regime remains laminar as can be 

verified through Eq. (1.5). Actually, Reynolds number varies proportionally to D and u, 

which both decrease as arteries become smaller. Furthermore blood viscosity 

increases, resulting in a Reynolds number smaller than 103, therefore ensuring a 

laminar flow regime at almost arteries in healthy conditions. 

 

1.5.3   Hagen-Poiseuille Equation 

For simplicity we consider Navier-Stokes equation applied to a unidirectional blood 

flow: 

                                             ν
ρ

∂ + = − +
∂

1
 . grad u  grad P  u 

u
u lap

t
.                                  (1.6) 

 
We conclude that for the case of pulsatile blood flow in humans, the terms ∂u/∂t and 

u grad.u are about one and two orders of magnitude smaller, respectively, than the 

remaining terms in Eq. (1.6). Therefore, at a first approximation their contribution may 

be discarded. For detailed discussion of this point please see §3.2.         

Blood flow is then determined by: (i) the pressure gradient developed in the vessel 

(driving force); (ii) the friction force (brake) developed in the flow within the vessel. 

From the previous analysis, we may consider the simplest model of steady laminar 

flow i.e. the Hagen-Poiseuille equation applied to an axisymmetric flow in a circular 

tube (vessel) of diameter D and length L that reads: 

                                                             −= ∆
4

1
A

D
I k P

L
,                                                              (1.7) 

where I is the flow rate, µ π=128 /Ak  is a constant, µ is dynamic viscosity and PΔ  is 

pressure gradient along the vessel. 

Making an analogy to Ohm’s Law I P R/= ∆ , one concludes from Eq. (1.7) that the 

resistance to flow is 

                                                                  =
4A

L
R k

D
.                                                               (1.8) 
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We can verify that blood flow resistance increases with dynamic viscosity and 

decreases with diameter fourth-power. Clogging of an artery resulting in decrease of 

diameter leads to enormous increase in flow resistance, with bad consequences to the 

performance of the circulatory system.  

 

1.6  Models of the circulatory system 

In this section we aim to give a brief description of some models that have been 

developed to simulate blood flow in the cardiovascular system, and also their 

advantages and disadvantages. As reviewed in §1.1, the cardiovascular system consists 

of heart, systemic and pulmonary circulations (blood vessels), and has associated 

nervous and biochemical regulators which may alter vessel parameters (eg. 

distensibility, vessel diameter) as a way of regulating the variables of the system 

(pressure blood, flow rate), according to the needs of organism different parts 

(organs). The study and conception of cardiovascular models is an important tool, 

which reveals to be helpful in the understanding of the complex interactions and 

physiological functions permanently occurring in the human body [1]. 

Over time many models of the cardiovascular system have been developed [2,49] to 

study either single arteries or the circulatory of specific organs. 

These models are usually described by a set of mathematical equations relating some 

of the variables of the system, which in turn are dependent of the parameters of the 

system, as blood viscosity, vessel dimensions, distensibility, which are almost 

impossible to measure. 

The arterial system may be modelled by means of lumped models [50,51], distributed 

models [52,53] and tube models [54]. 

 

1.6.1  Lumped models (Windkessel model) 

The Windkessel model is the most popular lumped parameter or simplified model. 

When applied to arterial system it has several applications [49,56,57], namely as a way 

to understand some functions of the cardiovascular system, to predict some arterial 

parameters and to derive aortic flow from arterial pressure. 
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Fig. 1.9  Representation of two-element Windkessel model for the arterial system. (a) 
Conception: peripheral resistance is the sum of the resistances of small arteries, arterioles and 
capillaries; large arteries (remarkably the aorta) represent compliant part whose total 
compliance is the sum of the arteries’ compliance [55]; (b) Electrical analog. 

 

These kind of lumped models describe the whole arterial system as a function pressure 

- flow rate, staying out of this analysis the phenomena that occur within the arterial 

system, such as wave travel or reflection of waves [55], see Fig. 1.9. 

This model has successfully anticipated some results related to aortic pressure in 

function of time [55], see Fig. 1.10. More specifically it was found that in the diastole 

(when the aortic valve is closed) pressure decays exponentially with a characteristic 

time decay ( =τ RC ). He succeed to derive cardiac output and to estimate the total 

peripheral resistance [56].  

This model has the disadvantage of neglecting either the resistance of large arteries 

either the compliance of the smaller vessels, introducing a rough approximation. It fails 

to explain the pressure abruptly variation during systole [55]. 

 

 

 

 

 

 

 

 

      Fig. 1.10  Aortic pressure during a heart period 
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      Fig. 1.11  Electrical representation of three-element Windkessel model. 

 

A few years later (in the 1930s), and as a way to improve the two-element model, 

some researchers proposed the consideration of a third element, the characteristic 

impedance of the aorta (Zc).  This new term takes in account the local inertia and local 

compliance of the proximal ascending aorta, on the bases of wave transmission theory 

(for more detailed information please see [56]). 

Zc is connected in series as represented in Fig. 1.11, where is showed an electrical 

analog of three-element Windkessel model. 

The consideration of the third element improves the behavior of the model in the 

range of high frequencies [2,56]. This lumped model is very popular and is often 

considerate in the modeling of the systemic circulation. 

The proposal of introducing a fourth element to this model [58], was intended as a way 

of reducing some errors introduced by the characteristic impedance at low 

frequencies. An inertial term (L) was introduced in parallel with the characteristic 

impedance (see Fig. 1.12). 

This element represents the sum of the inertances associated to the arterial segments. 

Thus, total inertance and total compliance of the arterial system, corresponds to each 

arterial segment, while in the previous model the characteristic impedance was only 

associated to proximal ascending aorta [55]. Westerhof et al. [58] concluded that this 

model was better than the three-element, as a lumped model of the systemic 

circulation or as a model to estimate vascular properties. 
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Fig. 1.12  Electrical representation of fourth-element Windkessel model. 
 

 

1.6.2  Distributed models and tube models 

Windkessel models give a general description of the arterial tree as a whole, therefore 

not allowing the study of pressure or flow wave propagation along the vascular tree. 

Modelling the phenomena of wave propagation in the arterial system requires the use 

of tube models or distributed models [56].  

Distributed models account to the detailed vascular geometry. Basis of these models is 

formed by breaking up the arterial tree into several segments (see Fig. 1.13) of known 

geometry and mechanical properties [59]. The description of the wave transmission 

characteristics related to each arterial segment, may be described using Womersley 

oscillatory flow theory or electrical transmission line theory (for more detailed 

information please see [59] and chapter 8 of [56]). These models can also be based on 

the Navier-Stokes equations for the conservation of mass and momentum, in one-

dimension form, written as a function of pressure, blood flow and cross sectional area, 

and can be solved by using different numerical techniques [56]. 

 

 

 

 

 

 

 

Fig. 1.13  Representation of the human arterial tree. Each segment represents an artery 
(adapted from [60]). 
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These models provide good descriptions of the arterial system, for the reason that 

they consider the geometry of each vessel and the general anatomy. Distributed 

models enable the study of aortic impedance and the factor determining it [59]. They 

also allow the understanding of pressures and flows in different parts of the organism 

[56]. These models have the disadvantage of requiring a wide number of parameters 

related to geometry and elasticity of each segment, becoming a little limited. 

Another kind of model which reveals to be simple and with the advantage of 

considering the phenomena of wave propagation, is the single tube and the 

asymmetric T-tube models [56, 60]. They prove to be much easier to translate into a 

code when compared to the geometrically exact models [59]. 

Single tube models consider the combination of a tube representing the aorta 

connected to a peripheral resistance or Windkessel (as a model of the peripheral 

beds). The simplicity of this model has its main drawback when considering that all 

distal reflections came from a single point [56]. 

On the other hand, asymmetric T-tube models seem to better describe the arterial tree 

in terms of aortic input impedance and wave reflections [56]. They consist of two 

parallel tubes: a short one accounting the arterial tree related to head and arms, and a 

long one with larger size representing the thoracic and abdominal aorta and their 

branches including the legs [56]. The two tubes terminate either with a resistance of 

the terminal bed.  

The choice of the model depends on whether is the detailed required or its main 

purpose. Distributed models are commonly used as analytical tools once they are 

realistic in the simulation of a wide of physiological and pathological situations. They 

allow the estimation of parameters of arterial tree based on in vivo data [61]. Lumped 

models are adopted namely to understand the influence of total arterial compliance 

on integrated quantities, as aortic pressure or cardiac output [55]. 

In next section it is presented our modelling of the circulatory system, as well as its 

main features and the purpose of its application. 
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1.7  Modelling of the circulatory system used in this thesis 

The definition of our model of the circulatory system is based on Constructal Theory. 

Constructal method consists of optimization of the system at every scale, i.e. by 

optimizing performance by vessel to vessel we reach optimization of the overall 

system. As stated by constructal law, the method proceeds from the simple to the 

complex, so the starting point is the optimization of the element and then, step by 

step, towards optimization of the global system.  

Our modelling consists of representing each vessel by a RC model. Although some 

models of the circulatory system referred at §1.5.3 are based on RC models, our 

purpose is quite different once we intend to optimize the arterial tree by starting from 

each element (vessel). In almost available models the resistance or capacitance values 

results of some kind of vessel network, which is distinct from ours in which each single 

artery is represented by a RC model. 

As stated in §1.1, blood vessels are generally more or less distensible, which reveals to 

be an important property. Actually, due to the high resistance to flow observed in  

microcirculation (blood flow in capillaries and the interstitial space) a relatively high 

perfusion pressure is required for the transport of blood, that can be achieved only if 

the vessels’ walls are elastic therefore avoiding heart´s overloading due to pumping 

[61,63]. 

Blood flow in the arterial tree is markedly pulsatile. The cardiac cycle, represented in 

Fig. 1.14, consists of two distinct parts: 1) systole corresponding to blood pumping out 

of the heart, while ventricles contract; 2) diastole during which ventricles fill with 

blood. 

The distension of the arterial wall during the propagation of the peak of the pressure 

wave, thereby increasing the cross section of the vessel and lowering the resistance, 

also allows storage of elastic energy, which makes it possible the maintenance of a 

negative pressure gradient along the vessel, needed to keep the flow in the diastole.  
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Fig. 1.14 Representation of the effect of the systole and diastole in vessel distensibility. 

 

Then, vessel distensibility is a relevant parameter in the formulation of our model. In 

this way we define the capacitance of storage or vascular capacitance C as the linear 

relationship between volume variation and pressure variation, i.e.  

                                                                  = dV
C

dP
                                                                    (1.9) 

We further define the distensibility coefficient ( )β −= 1A dA dP , where A stands for 

the channel cross sectional area. 

Considering a cylindrical vessel of diameter D and length L, the respective volume is                

π= 2 / 4V D L . The capacitance or compliance may be expressed as ( )π= ∂ ∂( / 2)C DL D P   

By simplifying the expression, we can write ( )( )β = ∂ ∂2 D D P . Then the compliance of 

the vessel [Eq. (1.9)] can be expressed as a function of distensibility coefficient β as: 

                                                                 = 2
BC k D L ,                                                              (1.10) 

where kB is a constant ( πβ= / 4Bk ).   

Because it combines the effect of the usual resistance with the capacitive effect of the 

vessel walls, we found that an equivalent parallel RC circuit, Fig. 1.15, is the most 

suitable model for describing pulsating flow.  

Following the discussion in §1.5.3, we identify the value of resistance with that of 

Poiseuille flow [Eq. (1.8)] while the capacitance part is defined by Eq. (1.10). In the 

representation of Fig. 1.15 the capacitor discharge corresponds to the artery elastic 

recoil that “pushes” the flow at diastole. 
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Fig. 1.15 Representation of an RC circuit simulating a vessel. 

 
The RC circuit total impedance Z is given by, 

                                                             = +1 1 1

cZ R X
,                                                              (1.11) 

where R is resistance to flow and =cX 1 / ( iωC )  is capacitive reactance (C is 

capacitance and ω angular pulse frequency).  

Therefore Eq. (1.11) reads, 

                                                           ω= +1 1
i C

Z R
.                                                               (1.12) 

The modulus of the impedance is then, 

                                                      
ω

=
+ 2 2 21

R
Z

R C

,                                                         (1.13) 

where −= 4 AR k L D , = 2
BC k D L  with µ π=128 /Ak  and πβ= / 4Bk . 

Though D is a function of time, here it stands for the average of D over a cycle. 

This model will be applied to the human arterial tree to enable the study of the 

arteries’ behavior under pulsatile flow. 

 
1.8  Outline of the thesis 

This thesis is composed of five chapters, and includes three papers that have been 

submitted to scientific journals. Chapter 1 is a general introduction to the thesis, 

where concepts and theories related to the circulatory system, blood rheology, 

Constructal Theory and some cardiovascular system models, are briefly presented.  

Chapter 2 presents the development of a model of a pulsatile flow system aiming at 

finding the respective scaling laws viewed as extensions of Murray’s Law for 

continuous flow. Each channel in the system network is represented as a resistive-
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capacitive model (RC), and its resistance to flow is approached in terms of a mean 

impedance (impedance modulus). Hereafter, we define the total impedance modulus 

to flow of a dichotomous branching of cylindrical channels. Based on Constructal 

theory, the global impedance of the channels that converge in a bifurcation is 

minimized under constant global volume of the flow tree, and then with the additional 

condition of minimization under constant pressure head. The main objective is to 

define the optimal scaling laws of diameters and lengths of branching cylindrical 

channels, and to interpret the results both by comparing with Murray’s law, and by 

analysing the effects of distensibility on the optimal performance of the system. 

In chapter 3 the previous developed model will be applied specifically to the human 

arterial tree with the aim of understanding the behaviour of some arteries in different 

aspects, namely their impedance during lifetime and the influence of heart rate on 

impedance. In the light of the developed model, it will be also carried out the study of 

some arterial segments, namely to investigate if its structure is optimized relatively to 

blood flow, and then comparing the results with observed data. Finally an 

interpretation of the verified lifelong elongation of the ascending aorta is presented. 

The whole study is carried out with data of healthy subjects. 

Chapter 4 presents an explanation to the observed reduction of arterial distensibility 

with heart rate, in the radial and carotid arteries, based on the model developed in 

chapter 2.  The main purpose is actually to explore once again the applicability of this 

model to the human arterial tree, by using observed physiological data found in 

literature. 

Chapter 5 presents the general conclusions of the work developed in this thesis. 

In the end of each chapter of this thesis the respective bibliography is presented. 
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CHAPTER 2 
 
 

Scaling relations of branching pulsatile flows* 
 
 

 

Abstract 

Apparently complex flow structures obey to scaling laws that enable to make it viable 

the study of their configuration and flow dynamics. This is the case of flow structures 

that exhibit several branching levels and are thought to perform optimally. 

Here we present the scaling laws of diameters and lengths of branching cylindrical 

channels with pulsatile flows, and compare them with other relations published in the 

literature. It is shown that, under constant global volume of the flow tree, and for zero 

pulse frequency these scaling laws reduce to Murrays’s law of consecutive diameters. 

Optimal scaling depends on pulse frequency, distensibility of the channel walls, and 

asymmetry of the daughter vessels. In case that in addition to global volume of the 

flow tree, the pressure head is also kept constant, a similar scaling law of channel 

lengths emerges that holds together with the law of diameter scaling. The effect of 

channel distensibility is shown to be somehow important, such that for achieving 

optimal performance (lowest impedance) channels with lower relative distensibility 

must have their diameter increased. Results are compared with those of other models 

for the case of some arteries. 

 

Keywords: branching flows, scaling, Murray’s law, pulsatile flow, Constructal theory. 

 

 

 

*Carla Silva, A. Heitor Reis, ”Scaling relations of branching pulsatile flows”, International 
Journal of Thermal Sciences, 88, 77-83 (2015). 
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2.1  Introduction 

Murray’s Law [1-3] which states that the “cube of the radius of a parent vessel equals 

the sum of the cubes of the radii of the daughters” stays as a landmark scaling law of 

geometries of branching channels with non-turbulent flows (see Fig. 2.1). It was 

originally proposed by Cecil D. Murray (1926) for the circulatory and respiratory 

systems, yet later on has been proved to hold for every branching laminar flow [3,4]. 

Murray stated in his original work [2] that physiologic organization should be based on 

principle and pointed out minimum work and balanced cooperation of the organs in 

the body as the best candidate for such a principle. Sherman [3] provided a full 

derivation of Murray’s law based on that principle. Allometric scaling laws are common 

in biology and, with the purpose of their explanation, approaches have been 

developed based on optimal performance of the whole system, either through 

minimization of energy dissipation [5] or through flow configuration that enables 

maximum flow access [6]. West and co-workers [5] presented a general model of 

allometric scaling relations (WBE model) in that the ratio between the diameters of 

consecutive arteries, ����/��, is ���/� for arteries, and ���/	 for small vessels (n 

stands for branching ratio), regardless of the length of the vessels. 

Murray’s Law has also been considered in the context of engineered systems. About a 

decade ago, Bejan and coworkers [4] proved that Murray’s law may be deduced from a 

general principle  - the Constructal Law (1997) – which states: "For a finite-size system 

to persist in time (to live), it must evolve in such a way that it provides easier access to 

the imposed currents that flow through it." (see for instance ref. [7]).  Said another 

way, Constructal Law entails evolution of flow architecture in such a way that under 

the existing constraints the distribution of flow resistances evolves in time to achieve 

minimum global flow resistance. 

Under the conjecture that Nature has optimized in time the living structures, Reis and 

coworkers [8] applied both Murray’s Law and Constructal Law to successfully 

anticipate some architectural features of the lung tree.  More complete information 

about the successful application of the Constructal Law may be found in Bejan [6], Reis 

[9], and Bejan and Lorente [10].  
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However, we note that with respect to optimal performance Mauroy et al. [11] have 

put forward the idea that “the optimal system is dangerously sensitive to fluctuations 

or physiological variability, such that physical optimality cannot be the only criterion 

for design”. 

With respect to optimal scaling in asymmetric branching, Bejan [7] has shown that 

                                                    ( ) 1/3
31 1 1

0 2 2

1 ,
D D L

D D L
ξ

−
= + = ,                                              (2.1) 

where ξ= =2 1 2 1 ,D D L L is the asymmetry factor of daughter vessels, and the 

subscripts 0, 1, 2 represent the parent and each one of the daughter vessels, 

respectively.  The Eq. (2.1) which relates homothety coefficient with asymmetry factor 

further adds to the study of scaling in asymmetric flows, which are shown to be 

important for achieving optimal performance of flow trees [12]. 

In the following we will further extend this analysis to find out the scaling relations of 

branching pulsatile flows. 

 

2.2  Pulsatile flows 

Flows that develop in circulatory trees are ubiquitous in Nature. In some animals, 

namely the vertebrates, blood is rhythmically pumped through the entire body at a 

broad range of pulse rates. It is recognized that pulsatile flow performs best than 

continuous flow because it induces lower overall resistances [13] and also better blood 

perfusion [14]. 

Fig. 2.1 Branching channels with distensible walls (D – diameter; L – length). 
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The most complete model of pulsatile flows, was put forward by Womersley [15] who 

solved Navier-Stokes equation in channel with elastic walls and periodic pressure 

forcing, and provided formulas for the pressure wave, and the radial and longitudinal 

components of the velocity field in the arteries. This work that stays as a landmark in 

the field was used as one of the basis of the WBE model [5]. 

Since then, other works have appeared that modelled pulsating flows in rigid channels 

[16]. Noteworthy are those of Nield and Kuznetzov [17], Siegel and Perlmutter [18] and 

Faghri et al. [19], albeit these studies were also carried out under the “rigid channel” 

assumption. Models using analogy with electric circuits date back to about several 

years ago. Remarkable by its complexity are those of Tsitlik et al. [20], Avolio [21], or 

recently that of Mirzaee et al. [22]. 

With the purpose of optimizing branching structures with pulsatile flows, in what 

follows we will further explore the parallel RC model. Though Womersley's equations 

describe pulsatile flows accurately, they are quite complex, and not easy to handle 

analytically in the study of branching vessels. This is why we use an RC model as a 

suitable description of pulsatile flow. In this model the flow induced by the pressure 

wave “charges the capacitor” (the arterial elastic walls) while it is braked by a 

“Poiseuille resistance” in the flow direction. The rationale for using Poiseuille flow, 

rather than considering a more complex model based on the Navier-Stokes equation is 

explained in the following. 

Let us start from Navier-Stokes equation for unidirectional flow: 

1.  -   u t u grad u grad P lap uρ ν−∂ ∂ + = + . In the case of pulsatile flow in arteries, the 

inertial terms may be discarded because they are, at least, of one order of magnitude 

smaller than the other terms, as it is shown through scale analysis. In this way, let u 

denote average blood velocity, τ  characteristic time related to pulse wave frequency, 

Lc the characteristic length in the flow direction, D vessel diameter, ρ  blood density, 

P∆  pressure variation along the vessel and ν blood kinematic viscosity. Then, by 

assuming the following scale values for large arteries: 1 110u ms− −
∼ , 1sτ ∼ , 1cL m∼ , 

310D m−
∼ , 310P Pa∆ ∼  and 5 2 110 m sν − −

∼ , the orders of magnitude (in 2ms− ) of the 

terms in the Navier-Stokes equation are: 110u t
−∂ ∂ ∼ , 2. 10u gradu

−
∼ , 1 1gradPρ −

∼ , 
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 1lap uν ∼ , therefore justifying the use of Poiseuille flow as a first approach in the 

study of the human arterial system.  Models that include the term u t∂ ∂  lead to 

greater complexity in the calculations but did not cause a change in the conclusions. 

For example, the RLC model developed by Jager and co-workers [23] accounts for the 

"sleeve effect”, which arises from the interaction between viscous and inertial terms in 

the Navier-Stokes equation. However, in the same study [23] it was shown that the 

“sleeve effect” is important in some arteries at frequencies higher than 15 rad s-1, 

which is somehow beyond the normal range of the human pulse frequency. 

In real systems, pressure waves of some frequency travel all along the circulatory 

trees. Energy in circulatory trees travels in the form of enthalpy plus mechanical 

energy of the bulk fluid, and in the form of elastic energy of the vessel walls. 

As the basis for building up a model of a pulsatile flow driven by a pressure difference 

∆P in a vessel of length L and diameter D, one starts from the Hagen-Poiseuille 

equation in the form:  

                                                              − −= ∆1 1 4
AI k L D P ,                                                          (2.2) 

where I is current (m3 s-1), 128 /Ak µ π= , in which µ  is dynamic viscosity of the fluid. 

In pulsatile flow, both P∆  and D are functions of time, and therefore the same 

happens with the conductance 1 1 4
p AK k L D

− −= . In what follows the variables , ,D L V

standing for geometric features of vessels with pulsatile flow represent values 

averaged over a cycle.  In this way, as a first approximation we will consider the actual 

conductance in the channel as the sum of the average conductance (corresponding to 

diameter D) plus the deviation corresponding to diameter variation with pressure, i.e. 

                                   ( )( )β− −= + = + ∆1 1 4
0

( ) ' 1 2p AK t K K k L D dP dt t ,                                (2.3) 

where ( )( )β = ∂ ∂2 D D P  is the distensibility coefficient and t∆  is the time elapsed 

after the channel diameter has reached the average value. The Eq. (2.3) shows that the 

conductance is the sum of two terms: the first one corresponds to the inverse of the 

usual resistance while the second one is equivalent to the inverse of a capacitive 
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resistance. This aspect is made clearer if we consider = ∆( ) ( ) ( )pI t K t P t  together with Eq. 

(2.3) to obtain:  

                                     ( )β− − − −≈ ∆ + ∆ ∆1 1 4 1 1 4
0

2 ( )A AI k L D P k L D t P dP dt .                                (2.4) 

Eq. (2.4) shows that the flow in a channel with elastic walls is composed of two terms: 

one corresponds to a resistive current,  

                                                   − −= ∆1 1 4
r AI k L D P ,                                                                    (2.5) 

while the other matches up a capacitive current,  

                                                  ( )c rI I t dP dt
0

2 ( )β= ∆  ,                                                         (2.6) 

with capacitance β∆ )t(I2C r= , (see Fig.2.2). 

As the global conductance is the sum of the respective conductances, one concludes 

that an equivalent parallel RC circuit is the model suitable for describing pulsatile flow 

(see Fig.2.3). 

 

 

2.3  Minimization of impedance in branching pulsatile flows 

As pressure increases in the channel, the elastic walls are strained to accommodate 

more fluid. The capacitance C, which has the same meaning as compliance in vessel 

physiology, is defined as C dV dP/= . For a cylindrical channel, with volume

2 / 4V D Lπ= , one obtains: 

                                                         = 2
BC k D L ,                                                                        (2.7) 

with πβ= / 4Bk . 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 2.2 Channel wall distensibility is accounted for by an analog to electric capacitance, while 
flow resistance is that of Hagen-Poiseuille flow. 
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Fig. 2.3 Pulsatile flow as an analogue to a parallel RC circuit. 

 

The Eq. (2.7) provides the opportunity for conferring some significance to t∆  in Eq. 

(2.6). Then, by putting together 2 ( )rC I t β= ∆  and 2
BC k D L= we get 2( / 8) / rC D L Iπ= . 

Therefore, t∆  would stand for the time required for the averaged current rI  to fill half 

of the channel volume. However, we note that Eq. (2.3) was put forward simply with 

the purpose of justifying the existence a capacitive flow, together with a resistive flow 

in the case of a deformable channel, and will not be used in what follows. 

Additionally, the resistance is given by [see Eq. (2.5)]: 

                                                           −= 4
AR k LD .                                                                    (2.8) 

Let us consider a channel with elastic walls with a pressure wave of frequencyω . By 

analogy with the electric circuit model (Fig. 2.3), the total impedance Z of such channel 

reads:  

                                                    ( )ω
−

= +
1/2

2 2 21Z R R C ,                                                      (2.9) 

which with Eqs. (2.7) and (2.8) and D/Lx = , 3
Dy = , BAkkk =  becomes:  

                                   ( )ω
−−= +

1/2
1 2 2 41AZ k xy k x ,  ω=2 ˆ1 /kx                                      (2.10) 

where ω̂  represents the characteristic frequency of the channel. 

 

2.3.1   Minimization of global impedance under constant volume 

Now, let us consider a channel that branches in two different channels, as represented 

in Fig. 2.1. For the vast majority of flow systems in the conditions described above 

(Eqs.(3.7) and (3.8)) we have (see Appendix).  

                                             ( ) 11 1

0 1 2T
Z Z Z Z

−− −= + + .                                                    (2.11) 
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By taking into account Eq. (2.10), the Eq. (2.11) reads:  

                  

( )
( ) ( )

11/2 1/22 2 4 2 2 41
1 1 2 20 0

1/2 1 12 2 4
1 1 2 20 0

1 1

1

A

T
A A

k x k xk x y
Z

k x y k x yk x

ω ω

ω

−
−

− −

 + + = + + 
 +
 

.                (2.12) 

The volume of a cylindrical vessel is LD)4/(V
2π= . With π/V4V~ = , the total volume 

TV~  occupied by the flow system is,  

                                          2 2 2
0 0 1 1 2 2 0 0 1 1 2 2TV D L D L D L x y x y x y= + + = + +ɶ  .                          (2.13) 

In Eqs. (2.12) and (2.13) x and y are free variables that describe the branching 

structure. The condition of easiest flow access is achieved with the minimization of the 

global flow impedance under constant global volume of the channels, TVɶ ,   

                                                                - 0TT
d Z dVλ =ɶ ,                                                     (2.14) 

where λ  is a constant. 

We chose the aspect ratios {x0, x1, x2} as design variables subject to optimization for 

the reason that /x L D=  defines channel geometry better than either D or L alone. 

By minimizing the global impedance 
T

Z  [Eq. (2.12)] under constant volume with 

respect to each of design variables {x0, x1, x2} one obtains, respectively:  

                                         ( )1/2 2 2 4 3/2
0 0 0 02

0

2Ak
A k x A

y
λ ω− −= − ,                                                 (2.15) 

                                         ( )
2

1/2 2 2 4 1/2
1 1 1 12

1

2Ak B
A k x A

x
λ ω −= −  ,                                              (2.16) 

                                         ( )
2

1/2 2 2 4 1/2
2 2 2 22

2

2Ak B
A k x A

x
λ ω −= −  ,                                              (2.17) 

where 4
i

2
i

2
i xk1A ω+= , i = 0, 1, 2, and ( ) 11/2 1 1/2 1

1 1 1 2 2 2B A x y A x y
−− −= + . Therefore, with 

the definition of Ai , and Eqs. (2.16) and (2.17) one obtains:  

                           ( )( ) ( )( )1/2 1/21/2 1/2 1/2 1/2
1 1 1 2 2 22 1 2 1A A A A A A

− −− −− − = − − .                   (2.18) 
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A solution to Eq. (2.18) is, 

                                                                1 2A A= .                                                                   (2.19) 

This first result, indicates that for minimal resistance to flow the characteristic 

frequencies  2ˆ 1 / 1 /i i i i iR C k xω = =  [see Eq. (2.10)] of the two daughter channels must 

be equal. 

By using 2 2 41i i iA k xω= +  together with Eqs. (2.16), (2.17) and (2.19) one obtains:  

                                                    ( ) 1/3
1/6 31

0

1
D

D
θ ξ

−
= + ,                                                      (2.20) 

                                                    ( ) 1/3
1/6 32

0

1
D

D
θ ξ

−−= + ,                                                    (2.21) 

where  

                                     ( ) ( )3/2 1/2 3/2 1/2
0 02 2i iA A A Aθ − − − −= − − , i = 1, 2                            (2.22) 

and 2 1/L Lξ =  stands for branching asymmetry. Taking together the eqs. (2.20) and 

(2.21) one has, 

                                                 ( )3 1/2 3 3
0 1 2D D Dθ −= + .                                                           (2.23) 

For non-pulsatile flow ( 1iA = ; 1θ = ) the Eq. (2.23) reduces to the known form of 

Murray’s Law:  

                                                         3 3 3
0 1 2D D D= +  .                                                                (2.24) 

Additionally, from Eq. (2.20) and Eq. (2.21) we obtain the following relationship: 

                                                         2 2

1 1

,
D L

D L
ξ= =                                                                   (2.25) 

or, in view of Eq. (2.19): 

                                                      1 2x x= ; 1 2β β= .                                                              (2.26) 

The equations (2.26) show that in optimal flow branching the daughter channels share 

the same aspect ratio x and distensibility coefficient β.  
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By using the Eqs. (2.19)-(2.21), and (2.26) as the results of the optimization, and 

2ˆ 1 /i i ik xω = , and 2 2 41i i iA k xω= + , we obtain the minimal impedance from Eq. (2.12) in 

the form 

                                 ( )1/3
3 11

2 1/2,
0 0 0 0 0

4
1 1

ˆT opt
o

L
Z

LL D A
ξ φ

πβ ω
− 

= + + 
 

,                           (2.27) 

where  

                                                     

1/2

2/3 1

0

A

A
φ θ

 
=  

 
.                                                              (2.28) 

Now we are able to assess the effect of pulsation on the impedance of the bifurcation 

represented in Fig. 2.1.  By noting that non-pulsatile flow corresponds to 1 0 1A A= =  

and 1θ = , therefore 
T

Z reduces to the usual resistance R, we can represent the ratio 

T
Z R  as a function of frequency as shown in Fig. 2.4 for various values of 1 0ˆ ˆχ ω ω= , 

and for the particular case of symmetric branching 1ξ =  and  1 00.5L L= . For the same 

/x L D= , we note that 1χ <  stands for a daughter channel of higher distensibility with 

relation to the father channel 1 0( 1)β β > , while 1χ >  represents just the reverse. As 

shown in Fig. 2.4 the effect of pulsation becomes significant as the pulse frequency 

approaches the characteristic vessel frequency 0ω̂ , namely for 0ˆ 0.1ω ω > . In the case 

when the daughter channel is less distensible ( 1)χ > pulse frequency significantly 

reduces flow impedance, an effect that for the same /x L D=  increases with the 

inverse of the distensibility ratio 0 1 1 0ˆ ˆβ β ω ω χ= =  (see Fig. 2.4). On the contrary, in 

the case when the daughter channel is more distensible pulse frequency increases 

impedance as the pulse frequency falls in the vicinity of the characteristic parent 

channel frequency 0ˆ .ω  
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Fig. 2.4  The effect of the relative characteristic frequencies of parent ( 0ω̂ ) and daughter 

channel 1ˆ( )ω , (with 1 0ˆ ˆχ ω ω= =0.8, 0.5, 0.3, 1, 1.25, 3.3), on impedance as function of pulse 

frequency. 

 

2.3.2   Minimization of global impedance under constant volume and pressure head 

Reis [9] has shown that minimal global flow resistance in a branching tree under 

constant total pressure head, ∆P, is achieved with a tree configuration in which total 

flow resistances allocated to flow are the same at each branching level. This means 

that in the best performing (optimal) flow system design both the overall resistance 

and pressure drop distribute in such a way that their respective values do not change 

from a branching level to the next one. This result enables generalize the scaling laws 

of channel length for pulsatile flow. The Eq. (2.27) shows that the minimal impedance 

of the branching channel is the sum of two terms: the first one corresponds to the 

father channel while the second one stands for the global impedance of the branching 

channels. Because they must have the same value one obtains: 

                                                  ( ) 1/3
31 1

o

L

L
φ ξ

−
= + ,                                                              (2.29) 

where we used Ai as defined above. Similarly, one obtains: 

χ = 1 

χ = 1.25 

χ = 3.3 

χ = 0.3 

χ= 0.5 
χ = 0.8 


/
�� 
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                                                 ( ) 1/3
32 1

o

L

L
φ ξ

−−= + .                                                             (2.30) 

To conclude, in case that both volume and pressure head are kept constant, the global 

impedance of an optimal tree with N-1 branching levels with pulsatile flow of 

frequency ω reads,  

                                              
2 1/2,

0 0 0 0 0

4

ˆT opt
Z N

L D Aπβ ω
= ,                                                   (2.31) 

where ( ) 1
2 2

0 0 0 0ˆ k L Dω
−

= is the characteristic frequency of the parent channel. 

 

2.3.3   Scaling of unstrained channel diameters with different distensibilities 

We recall that D in Eqs. (2.20-2.25) refers to channel diameters averaged over a cycle. 

Because average channel diameter D may be expressed in terms of its unstrained value 

usD  plus a term corresponding to an average dilation, i.e. ( )1 / 2usD D Pβ += + , where

( ) ( )usP P D P D
+ = − , the Eqs. (2.20) and (2.21) read: 

 
( )
( ) ( ) 1/30 1/6 31

0 1

1 / 2
1

1 / 2

us

us

PD

D P

β
θ ξ

β

+
−

+

+
= +

+
, 

( )
( ) ( ) 1/30 1/6 32

0 2

1 / 2
1

1 / 2

us

us

PD

D P

β
θ ξ

β

+
−−

+

+
= +

+
.       (2.32) 

As a consequence the unstrained diameters ratios of parent to daughter channels will 

be affected as function of channel distensibilities and the pressure excursion during 

the pulse [see Eqs. (2.32)].  
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Fig. 2.5 shows the unstrained diameter ratios ( 1 0us usD D ) as function of frequency for 

the case when 1.25χ = , and for various values of 0Pβ + . With χ  fixed, because

( )( )2 2
1 0 0 1 0 1ˆ ˆ x xχ ω ω β β= =  [see Eqs. (2.7)-(2.10)], note that the ratio 0 1β β  

depends only upon the ratio 2 2
0 1x x  , therefore making it possible to explore both the 

cases when 1 0β β>  and 01 ββ < . We observe that for optimal performance (lowest 

impedance) the unstrained diameter ratios must decrease with 0Pβ + , which means 

that decreasing distensibility of parent channel leads to increase in its diameter. The 

same behavior is observed for the case when 0.8χ =  (see Fig. 2.6). Specifically for

0ˆ 0.1ω ω >  the unstrained diameter ratios ( 1 0us usD D ) increase with pulse frequency 

when 1.25χ = , and decrease with pulse frequency when 0.8χ = . 

 

Fig. 2.5  Daughter to parent unstrained diameter ratios as function of pulse frequency for 

various channel distensibilities for the case when . 
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The human arterial system is an example of a tree with pulsatile flow in which the 

average pressure head varies in time. Therefore, optimal scaling of such a tree is 

described by the Eqs. (2.19)-(2.28) and (2.32). 

A key aspect of scaling that match minimal impedance in branching channels with 

pulsatile flow, and with variable pressure head, is that scaling depends upon pulse 

frequency. For non-pulsatile flow ( 0=ω , 1iA = ) in channels with asymmetric 

branching the Eqs. (2.20)-(2.21) reduce to the already known scaling for continuous 

flow Eq. (2.1). 

The Eqs. [(2.20)-(2.23)] and [(2.29)-(2.30)] represent a generalization of Murray’s Law 

for pulsatile flow in a channel with branching asymmetry. Asymmetry of branching is 

accounted for the parameter 2 1/L Lξ = , which through Eq. (2.20) and Eq. (2.21) assigns 

a smaller diameter to the shorter branch. On the other hand, the global impedance of 

the pulsatile flow tree depends upon the pulse frequencyω . This is a new and very 

Fig. 2.6  Daughter to parent unstrained diameter ratios as function of pulse frequency for 

various channel distensibilities for the case when 0.8χ = . 
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important result that will be explored in a subsequent study of the human circulatory 

system viewed as a flow tree with pulsatile flow.  

2.3.4   Comparison of the results of the models of Murray, WBE and this model 

In order to compare the predictions of the model above developed with those of other 

models that present scaling relations for diameters in dichotomous branching, we start 

from the general scaling relation: 

                                                       1  (1 )n

n

D
a

D

αε −+ = +                                                            (2.33) 

where as a rule 1ε =  appears in the scaling relations of dichotomous branching, α  is 

the scaling exponent, and a is an additional parameter. To the parameters in Eq. (2.33) 

Murray's law assigns the fixed values: 1a = , 1ε =  and 1 / 3α = , while in the WBE 

model [5] 1a = , 1ε = , and 1 / 2α =  for the branching levels up to a nonspecified level 

k, while 1 / 3α =  “for large k, corresponding to small vessels” [5]. In the present 

model, 1/6a θ= , 3ε ξ=  or 3ε ξ −=  (depending on the degree of asymmetry of 

daughter vessels), and 1 / 3α =  (see Eqs. (2.20) and (2.21)). For the sake of 

comparison we further define the variable 

                                                           1ln n

n

D

D
ψ + 

=  
 

                                                              (2.34) 

Therefore, Murray's law is represented by (1 / 3)ln2 0.231ψ = − = , in the WBE model 

(1 / 2)ln2 0.347ψ = − = , or for large branching order k, (1 / 3)ln2 0.231ψ = − = . In the 

present model, ( )3(1 / 6)ln (1 / 3)ln 1ψ θ ξ ±= − + . 

To calculate ψ  we used the extensive dataset of diameters, lengths and distensibilities 

of arteries provided in Ref. [24]. We kept the identification number of the each arterial 

segments used in Fig. 2 and Table 2 of Ref. [24]. The ratio of lengths 2 1/L Lξ = respects 

to arterial segments that converge at a bifurcation. On the values given in Ref. [24] we 

have no absolute guarantee that some of these segments do not have small (or very 

small) intermediate branches. 
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This can occur especially in very long segments in which it is likely to find small 

branches not represented in Fig. 2 and Table 2 of Ref. [24]. A sign of this is that the 

proximal and distal diameters of these segments differ a lot. For this reason, the data 

for lengths of arterial segments are used with some caution. We chose arterial 

segments that correspond to dichotomous branching in which parent and daughter 

vessels are clearly defined. In total 22 arteries were included in the calculation of ψ . 

Table 2.1 Diameter scaling between parent and daughter human arterial segments, as 

observed, and predicted through ψ by the scaling relations defined by Murray's law, WBE 
model, and present model (see Eq. (2.34)). 

Artery 
Distensibility 

coefficient (Pa
-1

) 

Diameter 

(mm) 

Lenght 

(mm) 
x ξξξξ ψψψψobserv ψψψψMurray ψψψψWBE 

ψψψψ 

this model 

4 subclavian A 2.176 9.0 34.0 3.778 0.353     

7 subclavian B 1.643 8.1 422.0 52.099  -0.105 -0.231 -0.347 -0.016 

6 vertebral 1.095 3.7 149.0 40.270  -0.889 -0.231 -0.347 -1.057 

7 subclavian B 1.643 4.7 422.0 89.787 0.285     

8 radial 1.118 3.7 235.0 63.514  -0.239 -0.231 -0.347 -0.008 

9 ulnar A 1.148 3.7 67.0 18.108  -0.239 -0.231 -0.347 -1.262 

9 ulnar A 1.148 3.4 67.0 19.706 2.165     

10 interosseous 0.810 2.1 79.0 37.619  -0.482 -0.231 -0.347 -0.804 

11 ulnar B 1.043 3.2 171.0 53.438  -0.061 -0.231 -0.347 -0.032 

14 aortic arch 2 3.361 20.8 39.0 1.875 0.654     

18 thoracic aorta 1 3.196 18.9 52.0 2.751  -0.096 -0.231 -0.347 -0-082 

19 subclavian A 2.108 11.0 34.0 3.091  -0.637 -0.231 -0.347 -0.507 

41 abdominal aorta 2.221 10.4 20.0 1.923 1.000     

42 common iliac 1.793 7.9 59.0 7.468  -0.275 -0.231 -0.347 -0.231 

43 common iliac 1.793 7.9 59.0 7.468  -0.275 -0.231 -0.347 -0.231 

42 common iliac 1.793 7.0 59.0 8.429 0.347     

50 external iliac 1.613 6.4 144.0 22.500  -0-090 -0.231 -0.347 -0.014 

51 inner iliac 1.238 4.0 50.0 12.500  -0.560 -0.231 -0.347 -1.070 

37 abdominal aorta C 2.371 11.8 20.0 1.695 3.313     

38 renal 1.448 5.2 32.0 6.154  -0.819 -0.231 -0.347 -1.207 

39 abdominal aorta D 2.303 11.6 106.0 9.138  -0.017 -0.231 -0.347 -0.009 

50 external iliac 1.613 6.1 144.0 23.607 0.284     

52 femoral 1.328 5.2 443.0 85.192  -0.160 -0.231 -0.347 -0.008 

53 deep femoral 1.208 4.0 126.0 31.500  -0.422 -0.231 -0.347 -1.266 

52 femoral 1.328 3.8 443.0 116.579 0.936     

55 anterior tibial 0.930 2.6 343.0 131.923  -0.379 -0.231 -0.347 -0.199 

54 posterior tibial 1.035 3.1 321.0 103.548  -0.204 -0.231 -0.347 -0.265 
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Table 2.1 presents the ψ  values as predicted by Murray's law, the WBE model, and the 

present model. For the most part of the cases the present model predicts the observed 

values with better approximation than Murrays' law, or the WBE model. This is 

especially true for the cases of asymmetric branching. The cases in which predictions 

deviate a lot from the observed values respect to very long vessels, i.e. those that are 

likely to present very small branches not considered in the dataset used. 

Based on the present model, a recently published study of the arterial structure [25] 

also showed that, in general arterial lengths are not optimized with respect to 

hemodynamic performance, and then an explanation was offered for the elongation of 

the ascending aorta in healthy people during lifetime. The same study also showed 

that impedance of the ascending aorta, descending aorta and carotid artery decreases 

during body growth, therefore suggesting a trend for improvement of hemodynamic 

performance during that period of life. 

2.4  Conclusions 

In this study, based on the minimization of global impedance, the scaling laws of 

lengths and diameters of the parent and daughter channels in a branching channel are 

generalized to the case of pulsatile flow.  

It is shown that in case of constant tree volume, scaling depends both upon the pulse 

frequency and the branching asymmetry. Another important parameter that 

influences optimal scaling is the coefficient of distensibility of the channel walls, which 

is a parameter widely used in the characterization of the arteries in the circulatory 

tree.    

In the limit of zero pulse frequency these scaling laws match Murray’s law of diameters 

and also the scaling laws of lengths of branching channels with minimal global flow 

resistance under the existing constraints. 

We also show that if the additional constraint of constant global pressure head is 

imposed to the flow in parent and daughter channels, the optimal ratio of daughter to 

parent channels lengths follows a law similar to that of channel diameters. 
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In case that the daughter channel has lower relative distensibility global impedance 

decreases with pulse frequency. Conversely, if the daughter channel is more 

distensible pulse frequency increases impedance as the pulse frequency falls in the 

vicinity of the characteristic frequency of the parent channel. 

The effect of the relative distensibility of parent and daughter channels is shown to be 

important. In this way, the channel with lower relative distensibility must have their 

diameter increased to perform optimally, i.e. to achieve minimal impedance.  

For the case of the human arterial trees, the predictions of the present model were 

compared with those of Murray's law, and the WBE model, and especially in the cases 

of asymmetric branching provided a better approximation to the observed values. 
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Appendix 

The impedance is represented by a phase vector (phasor), Z. For a channel that 

branches in two different channels (Fig.2.1) the overall impedance reads. 

                                                      ( ) 11 1
0 1 2TZ Z Z Z

−− −= + + ,                                                    (A1) 

where ( )/ 1i i i iZ R j R Cω= + , i=0, 1, 2, and with 1j = − . In polar coordinates, the 

generic phasor reads: 

                                                      ( )cos sini i i iZ Z jφ φ= + ,                                                    (A2) 

with arctan( )i i iR Cφ ω= . For the flow system of Fig. 2.1, from Eqs.(2.7) and (2.8), we get 

                                                      arctan(32 )i xφ ω βµ= ,                                                        (A3) 

We assume that in (A2) the imaginary part of iZ  may be neglected if sin iφ  is of order 

10-2. In that case, cos 1iφ ≈ . Then, for a flow system that condition implies 

                                                      43.2 10xω βµ −< × .                                                             (A4) 
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The inequality (A4) is verified for the vast majority of flow systems. For example, for 

the human arterial system, 2 5 3 510.10 .10 .10 10xω βµ − − −≈ ≈ . 

Therefore, in such conditions, Eq.(A1) reduces to  

                                                      ( ) 11 1

0 1 2T
Z Z Z Z

−− −≅ + + .                                              (A5) 

With sin iφ of order 210− , when the two members of (A5) are set equal, the associated 

relative error is of order 410− . 
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CHAPTER 3 
 
 

 

Structure and adaption of arteries to pulsatile flow – The case 

of the ascending aorta
*
 

 
 

 
Purpose 

The objectives are: i) assess the development of the impedance of some arteries 

during the first decades of life; ii) determine the influence of pulse rate in arterial 

impedance; iii) compare the structure of some arterial segments with optimized 

structures with respect to blood flow; iv) explain the elongation of the lifelong 

ascending aorta in healthy subjects. 

Methods 

A model of the arterial network previously developed by the authors, together with 

data of lengths, diameters, and distensibilities of arterial segments reported in the 

literature were used. The impedances of the aorta and carotid artery were calculated 

based on that model. Similarly, the impedances of various arteries corresponding to 

heart rates of 65 b.p.m. and 120 b.p.m. were calculated. Values observed in arterial 

segments were compared with the respective optimal values from the viewpoint of 

hemodynamic performance. This allowed drawing conclusions on the arterial 

segments that might be critical with regard to hemodynamics. 

 

 

 

 
*Carla Silva and A. Heitor Reis, "Structure and adaptation of arteries to pulsatile flow: The 
case of the ascending aorta", Med. Phys. 41, 063701 (2014). 
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Results 

It was found that in healthy people impedances of the aorta and the carotid artery 

decrease markedly with age especially during body growth. It was also found that 

impedances of the main arteries do not significantly change with heart rate, even if 

sharp changes in arterial distensibility are observed. With respect to optimal flow 

performance, it was found that scaling between diameters of branching arteries is 

generally close to optimality, while the corresponding length scaling is far from 

optimality. It was also found that the ascending aorta and aortic arch are among those 

arterial segments whose lengths are much smaller than the optimum values. An 

explanation is offered for the age associated elongation of the aorta in healthy people. 

Conclusions 

In healthy subjects the human arterial system continues to optimize its performance at 

least until the age of 60. [http://dx.doi.org/10.1016/j.jbiomech.2014.07.025] 

Keywords: adaptation arteries pulsatile flow, elongation ascending aorta. 

 

3.1  Introduction 

As part of the circulatory system, the heart rhythmically pumps blood throughout the 

arterial tree. In the arterial tree of chordate animals the flow of blood is pulsatile in the 

sense that flow rate varies periodically around a mean value.  

We may question whether pulsatile flow presents advantages over continuous flow in 

the transport of blood to tissues? Indeed we can point to at least two reasons: (1) 

Studies have shown the benefits of pulsatile flow in kidney function, lymph flow, and  

oxygen consumption, which are increased during pulsatile perfusion [1,2]; (2) pulsatile 

flow with distention of the arterial wall allows reducing peak pressure and also the 

energy expended by the heart to pump blood. Because the arterial wall distends 

during the propagation of the peak of the pressure wave, thereby increasing the cross 

section of the vessel, not only the flow resistance is reduced as also it allows storage of 

elastic energy, which makes it possible to maintain a negative gradient along the vessel 

needed to keep the flow subsequent to systole. This is especially true for the arteries 

that accommodate blood surging from the left ventricles during systole (aorta, 
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brachiocephalic, right and left common carotid arteries, right and left subclavian 

arteries, right and left vertebral arteries, right and left common iliac arteries) (see ref. 

[3]). 

Besides, blood also presents unique rheological properties. In fact, blood viscosity 

decreases with shear rate. This attribute together with dilation of the arterial wall 

which is increased at the sites of high shear rate (through production of nitric oxide) 

facilitates blood flow when it is at peak. These features are part of a much complex 

control system that operates on the cardiovascular system through the conjugate 

action of the cardio-acceleratory, cardio-inhibitory, and vasomotor centers, and that 

provides blood to individual organs and tissues according to immediate needs. 

The human circulatory system operates under a large set of constraints, ranging from 

the shape of the body, the location of its organs and tissues to the temporary needs 

related to physiology or human activity. Many works have been devoted to modeling 

of the circulatory system (see for instance refs. [4-10], and namely in recent years 

[3,11-13]. 

Here we analyze what would be the optimal structure of certain parts of the human 

circulatory system as if it had the freedom to change their morphology to optimize its 

performance. To carry out this exercise is important because freedom to morph exists 

at some degree during growth in childhood and adolescence, and also during the 

entire lifetime in some vessels that are not specially constrained by the nearby organs 

and tissues as it is the case of the ascending aorta. As we show in this paper, it seems 

likely the shape of the ascending aorta is adjusted during lifetime in order to facilitate 

blood flow. 

We also analyze the importance of pulsatile flow frequency on blood flow impedance.  

With this purpose we use the resistive-capacitive (RC) model developed by Silva and 

Reis [14] which provides relationships that involve pulse frequency (heart rate), vessel 

diameter and length, arterial distensibility, and blood viscosity. 
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3.2  Blood flow impedance throughout lifetime 

In the case of pulsatile flow in a vessel, the ratio of inlet/outlet pressure difference to 

flow rate measures its impedance, i.e. the extent to which the vessel resists the 

passage of a pulsed flow of blood. In case of a vessel of diameter D and length L, 

(aspect ratio /x L D= ) with pulsatile flow of radial frequency ω, impedance reads (see 

ref. [14]): 

                                                ( ) 1/2
1 2 2ˆ1AZ k xy ω ω

−−= + ,                                                 (3.1) 

where 128 /Ak µ π= , µ  is dynamic viscosity of the fluid, 3
y D= , / 4Ak k πβ= , 

( )( )2 D D Pβ = ∂ ∂ is the distensibility coefficient of the vessel wall, P is pressure, and 

2ˆ 1 / kxω =  represents the characteristic frequency of the vessel. From Eq. (3.1) it is 

evident that impedance decreases with frequency (heart rate) and vessel diameter, 

and increases with vessel length and characteristic frequency. Because characteristic 

frequency varies inversely with β, impedance decreases with the distensibility 

coefficient of the vessel wall, therefore showing the importance of this parameter to 

ease blood flow.  

Impedance as calculated from Eq. (3.1) results from a RC model of pulsatile flow [14] 

based on the Navier-Stokes equation for unidirectional flow:

1.  -   u t u grad u grad P lap uρ ν−∂ ∂ + = + , in which the inertial terms have been 

discarded because they are, at least, of one order of magnitude smaller than the other 

terms, as it is shown through scale analysis. In this way, let u  denote average blood 

velocity, τ  characteristic time related to pulse wave frequency, Lc the characteristic 

length in the flow direction, D vessel diameter, ρ  blood density, P∆  pressure variation 

along the vessel and ν blood kinematic viscosity. Then, by assuming the following scale 

values for large arteries: 1 110u ms− −
∼ , 1sτ ∼ , 1cL m∼ , 310D m−

∼ , 310P Pa∆ ∼  and 

5 2 110 m sν − −
∼ , the orders of magnitude (in 2ms− ) of the terms in the Navier-Stokes 

equation are: 110u t
−∂ ∂ ∼ , 2. 10u gradu

−
∼ , 1 1gradPρ −

∼ ,  1lap uν ∼ , therefore 

justifying the use of the RC model [14] as a first approach in the study of the human 

arterial system.  Models that include the term u t∂ ∂  lead to greater complexity in the 
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calculations but did not cause a change in the conclusions. For example, the RLC model 

developed by Jager and co-workers [5] accounts for the "sleeve effect”, which arises 

from the interaction between viscous and inertial terms in the Navier-Stokes equation. 

However, in the same study [5] it was shown that the “sleeve effect” is important in 

some arteries at frequencies higher than 15 rad s-1, which is somehow beyond the 

normal range of the human pulse frequency. 

Therefore, Eq. (3.1) enables calculation of blood flow impedances of some arteries for 

which data are available, namely the aorta and the carotid artery.  With this purpose 

we used the normal values of cross-sectional area and distensibility of the aortas of 

healthy children and young adults that serve as a reference for the detection of 

pathological changes of the aorta in case of disease [15]. We also used data of normal 

length of the aorta of healthy adults (aged from 19 to 79 years), which exhibits a nearly 

linear increase with age [16] therefore allowing the estimation of the values in the 

range 0-18 years.  

With respect to the carotid artery we used data of normal diameters [17] and 

distensibilities [18], and of normal lengths [16] found in the literature. Blood viscosity 

changes with shear stress, therefore is not easy to assign it a definite value in pulsatile 

flow. However, we used the values in ref. [19] to assign an average value to each 

vessel, according to the respective diameter. The heart rate considered was 65 beats 

per minute (b.p.m.). The relative error affecting the calculation of impedances is given 

by: [ ] 2ˆ ˆ ˆ( ) (4 ) ( ) ( ) ( )Z Z D D L L ω ω ω ω∆ ≈ ∆ + ∆ + ∆ . Because 2 4ˆ( / ) 10ω ω −
∼ , the 

contribution of the characteristic frequency to the error may be neglected.  The 

relative error ( ) /D D∆  is of order 10-1 (see [15], [17]), while ( ) /L L∆  is of order 10-1 or 

smaller [16].  
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Therefore, the relative error affecting the impedances calculated from Eq. (3.1) may 

reach 50%. However, this exercise is important because it allows verify if changes in 

impedance of the aorta of healthy humans occur during lifetime. The results for the 

ascending aorta, the descending aorta, and the carotid artery are shown in Figs. 3.1 

and 3.2, respectively.   

It is shown that the descending aorta presents the highest relative impedance, 

followed by the carotid, and then by the ascending aorta. In fact, this hierarchy of 

impedances was expected because, in a flow tree, daughter vessels present 

impedances higher than that of parent vessel.  
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Fig. 3.1  Impedances of the ascending aorta and the descending aorta between birth and thirty 
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Fig. 3 2  Impedances of the carotid artery between twenty and sixty years of age. 
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We also observe that in healthy humans the impedances of theses arteries noticeably 

decrease with age, a trend that due to the magnitude of the values involved is not 

invalidated by the somewhat high relative error affecting the calculations. However, 

there are some differences: the impedances of both the ascending and the descending 

aorta show a continuous reduction that is very pronounced during growth of the 

human body (0-20 years), and less marked between 20 and 30 years of age. Due to 

lack of data we were not able to estimate aorta impedances subsequent to the third 

decade of life. After birth and until the fourth decade, the impedance of the carotid 

decreases linearly with age, and then it keeps decreasing until the age of 60.  

O'Rourke, J. Hashimoto [11] found that at all heart rates the average ascending aortic 

impedance at the age of 80 is higher than at the age of 20. In fact, our study on 

impedance of the ascending aorta is focused on the period between birth and the age 

of 30.  What our results show (Fig. 3.1) is that in healthy people the ascending aortic 

impedance decreases in that period. We believe that at the age of 80 arterial stiffening 

(together other aging processes) dominates over the processes that might be in place 

to improve arterial performance.    

Then a question arises: why the impedances of the main vessels decrease with age? 

One can find a rationalization in the thought that Nature optimizes the human arterial 

tree in time, as it is observed in many natural systems. In fact, there is a large body of 

works that point to this direction.  This tendency was summarized in a principle of 

maximization of “global flow access” known as the Constructal Law, which was first put 

forward in 1997 by Bejan [20] in the form: “For a finite-size system to persist in time 

(to live), it must evolve in such a way that it provides easier access to the imposed 

(global) currents that flow through it”. The Constructal Law entails generation of flow 

configuration such that it provides the highest global conductivity compatible with the 

existing constraints, and has successfully explained shapes and patterns of many both 

animate [21,22] and inanimate [23-25] systems (see also some Constructal Law 

reviews [26-29]). 
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3.3  Pulse frequency and blood flow impedance in the peripheral arteries 

Another aspect that deserves attention is the importance of pulse frequency on 

impedance.  By using Eq. (3.1) together with the data of diameter, length and 

distensibility of each vessel provided in ref. [3] to study the influence of pulse 

frequency on the arterial impedance of 43 arterial segments. The study was conducted 

through comparing arterial impedances corresponding to 65 and 120 b.p.m.. 

By using vessel distensibilities presented in ref. [3], for the most part of the arteries 

studied no noticeable differences were found in the respective impedances at each of 

these heart rates.  This is due to the fact that the characteristic frequency ω̂  is much 

higher than 65 b.p.m., i.e. ˆω ω <<1. The few exceptions found, respect to some 

peripheral arteries (subclavian, radial, femoral, ulnar, posterior tibial, anterior tibial) 

whose impedances decreased significantly as heart rate changed from 65 to 120 b.p.m. 

(see Table 3.1).  

As in the case of Figs. 3.1 and 3.2, the relative error affecting the impedances in Table 

3.1 is of order 50%, mainly due to the contributions of the relative errors respecting to 

arterial diameters and lengths.  However, the trend observed when the heart rate 

changes from 65 b.p.m. to 120 b.p.m. is due mainly to the term [ ] 2ˆ ˆ ˆ( ) ( )ω ω ω ω∆ , for 

the reason that the characteristic frequency of the arteries in Table 3.1 is now close to 

the radial frequency ω corresponding to 120 b.p.m.. 

                  
                 Table 3.1 Arterial impedances (Pa m-3 s) of some peripheral arteries 
                 as function of heart rate. 

 
Heart Rate 

Arteries 65 b.p.m. 120 b.p.m. 

subclavian B 2.3937E+07 2.3840E+07 

radial 4.5824E+08 4.5403E+08 

femoral 1.9486E+08 1.8873E+08 

ulnar B 7.2940E+08 7.2500E+08 

posterior tibial 1.5063E+09 1.3992E+09 

anterior tibial 3.3816E+09 2.8940E+09 
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Especially, the decrease in impedance is higher in the major arteries of the legs 

(femoral, posterior tibial, anterior tibial).  However, some studies show that arterial 

distensibility decrease with heart rate [30,31]. Unfortunately, few data relating 

distensibility with heart rate are found in the literature. With regard to peripheral 

arteries data of the distensibilities of the radial and carotid arteries corresponding to 

63, 90, and 110 b.p.m. were found in a seminal study by Giannattasio and co-workers 

[30]. If those data are used in Eq. (3.1) it is found that both the radial and carotid 

artery impedances do not change significantly from 63 to 110 b.p.m..  An explanation 

based on performance optimization that involves the characteristics of the end 

capillaries of the tissues bathed by those arteries will be provided in a next paper by 

the authors.  

 

3.4  Optimal design versus actual shape of the arteries 

Murray’s Law [32-34] which states that the “cube of the radius of a parent vessel 

equals the sum of the cubes of the radii of the daughters” stays as a landmark scaling 

law of geometries of branching channels with non-turbulent flows was originally 

proposed by Cecil D. Murray (1926) for the circulatory and respiratory systems, but 

was later proven to be valid for all laminar branching flows [3,4,21,27].  

In a previous work [14], based on minimization of global impedances, the authors 

derived scaling laws that generalize Murray's law for branching pulsatile flow. Hence, 

with respect to diameters the optimal scaling reads:  

( ) 1/3
1/6 31

0

1
D

D
θ ξ

−
= + ,               ( ) 1/3

1/6 32

0

1
D

D
θ ξ

−−= + ,                                       (3.2) 

where 0D  is diameter of parent vessel, while 1D  and 2D  refer to diameters of daughter 

vessels,  and  

                            ( ) ( )3/2 1/2 3/2 1/2
0 02 2i iA A A Aθ − − − −= − − ,i=1,2 ,                                         (3.3) 

with 2 2 41i i iA k xω= + , i=0,1,2, and 2 1/L Lξ =  standing for branching asymmetry. 

In a similar way, optimal scaling for artery lengths reads:  
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( ) 1/3
31 1

o

L

L
φ ξ

−
= + ,                    ( ) 1/3

32 1
o

L

L
φ ξ

−−= + ,                                              (3.4) 

where 0L  is length of parent vessel, 1L and 2L  refer to lengths of daughter vessels,  and  

                                       

1/2

2/3 1

0

A

A
φ θ

 
=  

 
.                                                                 (3.5) 

As discussed in §3.3, except for some peripheral arteries (subclavian, radial, femoral, 

ulnar, posterior tibial, anterior tibial) the characteristic frequency ω̂  is much higher 

than that corresponding to 65 b.p.m., i.e. ˆω ω <<1, and therefore optimal scaling is not 

much different from that of continuous flow. However, in Eq. (3.2) and Eq. (3.4), the 

asymmetry parameter ξ  assigns smaller diameters and lengths, respectively, to the 

smaller daughter arteries. In effect, from Eq. (3.2) and Eq. (3.4), one obtains: 

                                        2 2

1 1

.
D L

D L
ξ= =                                                                         (3.6) 

We tested the scaling laws [Eqs (3.2) and (3.4)] by using the real values of various 

arterial bifurcations. For this purpose we used the extensive dataset of diameters, 

lengths and distensibilities of arteries provided in ref. [3]. We kept the identification 

number of the various arterial segments used in Fig. 3.2 and Table 3.2 of ref. [3]. The 

lengths in Eq. (3.4) respect to arterial segments that converge at a bifurcation. On the 

values given in ref. [3] we have no absolute guarantee that some of these segments do 

not have small (or very small) intermediate branches. This can occur especially in very 

long segments in which it is likely to find small branches. A sign of this is that the 

proximal and distal diameters of these segments differ a lot. For this reason, the data 

for lengths of arterial segments are used with some caution. Because the relative error 

affecting data of both diameters and lengths is of order 10%, while ξ presents a 

relative error of same order, diameters and lengths of daughter vessels calculated 

through Eq. (3.2) and Eq. (3.4) is of order 20%. The results are shown in Table 3.2.   

In general, the diameters of daughter vessels calculated through Eqs. (3.2) are close to 

the measured ones. Yet, there are some exceptions (ulnar A, inner iliac, deep femoral, 

external carotid, and “sup. thy. asc. ph. lyng. fac. occ”). These daughter vessels have 

long parent vessels which may have small branchings, and therefore the respective 

data lengths might not be eligible in terms of the Eqs. (3.2).  
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We also evaluated optimal length scaling and compared the calculated lengths of 

daughter vessels with the real ones. Here we can observe few agreements together 

with many discrepancies. As discussed before, there is some uncertainty about the 

data of lengths of the arterial segments used in the calculation, namely if they 

correspond to segment free of small lateral branchings. This is especially true for the 

longer segments, as for instance the femoral artery  (443 mm) in which the proximal 

diameter (5.2 mm) is much different from the distal diameter (3.8 mm) therefore 

indicating that many small branchings are likely to occur along the artery.  

 Table 3.2 Observed average diameters and lengths of parent (in bold) and daughter vessels 
(within brackets), and values of daughter vessels (in italic) for optimal hemodynamic 
performance. The numbers identify vessels according to the scheme in ref. [3]. (p) -proximal 
diameter, (d) - distal diameter. 

Artery 
Diameter 

(mm) 

Lenght 

(mm) 
Artery 

Diameter 

(mm) 

Length 

(mm) 

3 brachiocephalic (d) 18.0 34 50 external iliac (d) 6.1 144 

4 subclavian A (p) 6.4 [11.5] 12.1 [34] 52 femoral (p) 5.8 [5.2] 138.3 [443] 

5 common carotid (p) 17.7 [13.5] 33.5 [94] 53 deep femoral (p) 1.7 [4.0] 39.3 [126] 

4 subclavian A (d) 9.0 34 52 femoral (d) 3.8 443 

7 subclavian B (p) 8.8 [8.1] 33.4 [422] 55 anterior tibial (p) 2.8 [2.6] 339.8 [343] 

6 vertebral (p) 3.1 [3.7] 11.8 [149] 54 posterior tibial (p) 2.7 [3.1] 318.0 [321] 

7 subclavian B (d) 4.7 422 15 common carotid (d) 6.0 139 

8 radial (p) 5.0 [3.7] 441.8 [235] 16 internal carotid (p) 6.0 [5.3] 138.4 [178] 

9 ulnar A (p) 1.4 [3.7] 125.9 [67] 17 external carotid (p) 1.4 [4.7] 31.9 [41] 

9 ulnar A(d) 3.4 67 17 external carotid (d) 4.3 41 

10 interosseous (p) 1.5 [2.1] 30.0 [79] 85 external carotid (p) 2.4 [4.0] 23.2 [61] 

11 ulnar B (p) 3.3 [3.2] 64.9 [171] 
86 sup. thy. asc. 
ph.lyng.(p) 

4.0 [2.0] 38.4 [101] 

14 aortic arch 2 (d) 20.8 39 85 external carotid(d) 3.5 61 

18 thoracic aorta 1 (p) 19.2 [19.0] 35.9 [52] 89 superficial temporal (p) 2.2 [3.2] 37.5 [61] 

19 subclavian A (p) 12.5 [8.5] 23.5 [34] 90  maxillary (p) 3.2 [2.2] 55.9 [91] 

41 abdominal aorta (d) 10.4 20 89 superficial temporal (d) 3.0 61 

42 common iliac (p) 8.2 [7.9] 15.9 [59] 93 superftemp frontal (p) 2.4 [2.2] 48 [100] 

43 common iliac (left)(p) 8.2 [7.9] 15.9 [59] 94 superftemp parietal (p) 2.4 [2.2] 48,5 [101] 

42 common iliac (d) 7.0 59 73 middle cerebral M1 (d) 2.8 8 

50 external iliac (p) 6.9 [6.4] 58.2 [144] 74 MCA M2 sup. (p) 2.2 [2.0] 6.4 [71] 

51 inner iliac (p) 2.4 [4.0] 20.2 [50] 75 MCA M" inf. (p) 2.2 [2.0] 6.3 [70] 
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The scaling defined by the equations (3.2) and (3.4) is optimized with respect to fluid 

(blood) dynamics only.  However, many other constraints are in place, namely the 

distribution of organs in the body, together with their needs of blood supply, which 

were not considered in the derivation of those equations.  Nevertheless, the exercise 

of comparing the actual values with the respective optimal values as regards blood 

flow is important since it identifies the arteries where blood flow is not optimized and 

where hemodynamics might affect arterial performance. Among such arterial 

segments are the ascending aorta, and the aortic arch that will be the object of the 

next section. In Table 3.2, we can identify other arterial segments that share such 

condition: common carotid, subclavian A, radial, ulnar A, inner iliac, deep femoral, 

external carotid, and “sup. thy. asc. ph. lyng. fac. occ. The segments that deviate from 

the optimal are likely to present increased hemodynamic resistances, namely through 

increased shear stresses affecting vessel walls. Interestingly, the human body has 

control mechanisms that deal with this problem through increased production of nitric 

oxide in the vessel walls where shear stress is higher [35]. 

 

3.5  The elongation of the ascending aorta 

As referred before the ascending aorta is not optimized, as its length does not scale 

optimally [see Eq. (3.4)] with those of the aortic arch and the thoracic aorta A (see Fig. 

3.3). In fact, while Eq. (3.4) calls for smaller lengths of daughter vessel segments with 

respect to parent ones, in the aorta occurs just the reverse. One may wonder why the 

chief vessel in the human body is not optimized with respect to blood flow. We believe 

that the special morphology of the aorta is the result of a trade-off among many 

objectives it has to comply with. In fact, in the small space allocated to it, the aorta has 

to divert the blood flow to the head, the arms, and organs in the thorax prior to 

redirecting the remaining flow to the rest of the body. This confers the aorta its special 

morphology, while it leaves it vulnerable to an extreme hemodynamic stress.  
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To investigate the optimal morphology of the aorta with respect to hemodynamics we 

used Eq. (3.2) and Eq. (3.4). Then, by considering the diameter and length of the 

thoracic aorta, together with the diameter of the aortic arch B, we calculated the 

optimal length of the aortic arch B (See Fig. 3.3). 

              

Then, in a similar way, by using the respective vessel diameter we successively 

calculated the lengths of the aortic arch A, and the ascending aorta. The values of the 

distensibilities, diameters and lengths of those vessels were taken from ref. [3]. The 

results are shown in Table 3.3. 

We observe that in order to perform optimally all these arterial segments would have 

to be longer. This is especially noticeable for the aortic arch A - which would have to be 

more than three times longer - and the ascending aorta that should have its length 

doubled. 

 

 

Fig. 3.3  Aorta segments and branches: 95 – ascending aorta; 3 – brachiocephalic; 2 – aortic 
arch A; 15 – common carotid; 14 – aortic arch B; 19 – subclavian A; 18 – thoracic aorta A. The 
numbers identify vessels according to the scheme in ref. [3]. 
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                  Table 3.3  Optimal average diameters and lengths of  
                    several segments of the aorta taking thoracic aorta A 

                                               as the reference. 

Artery D 

(mm) 

L 

(mm) 

Lop 

(mm) 

18 thoracic aorta A 19.5 52 … 

14 aortic arch B 21.1 39 56.2 

2 aortic arch A 24.6 20 65.5 

95 ascending aorta 29.4 40 78.3 

 

Studies on the variation of the length of the ascending aorta have shown that the aorta 

lengthens with age, even in healthy humans, primarily due to the elongation of the 

ascending aorta. The lengths of the descending aorta and carotid and iliac arteries 

were not associated with age [16]. In that study it was shown that the average length 

of the ascending aorta (defined as from aortic annulus to apex of arch) increased from 

44 to 98 mm between 20 and 80 years of age, according to the regression formula 

0.9 26.1L Y= + mm where Y stands for years of age. 

 In a comment to these results O’Rourke and coworkers [36] suggested that the 

elongation of the ascending aorta was due to pulsatile strain in the longitudinal 

direction of the proximal aorta that is greater than pulsatile strain in the 

circumferential direction, therefore one would expect greater lengthening with age in 

the longitudinal direction than increase in diameter.  

Here we offer an alternative explanation based on the fact that both the ascending 

aorta and the aortic arch are not optimized with respect to blood flow dynamics. 

Because, contrarily to other arterial segments that cannot morph in time for the 

reason that either they are associated to skeletal muscle or to bones of fixed length (as 

for instance the arteries: radial, ulnar A, inner iliac, deep femoral), the ascending aorta 

is quite free to morph because it is slightly constrained by adjacent tissues.  As an 

approximate measure of the length from aortic annulus to apex of arch we add the 

optimal values of the aortic arch A and the ascending aorta to get 143.8 mm (see Table 

3.3), value that is the reference for optimal hemodynamics (minimum impedance). 

Therefore, in our view the elongation of the ascending aorta corresponds to 

optimization of the aortic morphology during lifetime towards an increasingly better 
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hemodynamic performance. In this way, the aorta uses the freedom to morph for 

reducing the shear stresses associated to blood flow, and consequently the stresses 

that are induced in the arterial wall. 

Morphing in time is a characteristic of the human body that seeks for better 

performance through adaptation either to external or internal constraints.  

3.6  Conclusions 

Based on data of arterial diameter and length, and distensibility coefficient after birth 

and at up to the age of thirty years it its shown that in healthy humans flow 

impedances of the ascending aorta and descending aorta decrease markedly in this 

period, while by using similar data for the period 0-60 years of age it is shown that 

impedance of the carotid artery keeps decreasing in this period. 

It is also shown that flow impedances of arteries do not significantly change with heart 

rate. Despite distensibilities of some peripheral arteries - subclavian, radial, femoral, 

ulnar, posterior tibial, anterior tibial – decrease as heart rate increases from 65 to 120 

b.p.m. their respective impedances do not significantly change with heart rate.  

By applying the scaling laws for minimum flow impedance it is shown that artery 

diameters are in general quite close to the optimal values, while artery lengths are not. 

Among the arteries whose lengths are far from the optimal values are the ascending 

aorta, aortic arch, common carotid, subclavian A, radial, ulnar A, inner iliac, deep 

femoral, external carotid, and “sup. thy. asc. ph. lyng. fac. occ.”. This aspect was 

explained by the fact that arteries have to deliver blood to organs that are distributed 

in the body according to overall body performance, and therefore most of the times do 

not comply with optimal performance with respect to blood flow. On the other hand, 

may be subject to additional stresses because they are not optimized 

hemodynamically.  

Finally, it is shown that the normal lengths of the ascending aorta and the aortic arch 

are smaller than their optimal lengths. The optimal length of the ascending aorta plus 

the aortic arch is found to be 143.8 mm. We interpreted the results of the study by 

Sugawara and co-workers [16] that showed that in healthy individuals the average 

length of the ascending aorta (defined as from aortic annulus to apex of arch) 
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increased from 44 to 98 mm between 20 and 80 years of age, as the tendency of this 

flow system to optimize its performance in time taking advantage of its freedom to 

morph due to be slightly constrained by adjacent tissues. This tendency has also been 

observed in many natural both animate and inanimate systems, and is known as the 

Constructal Law. 

The results of this study may be extended to other animals provided that the relevant 

data are available. 
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CHAPTER 4 
 

 

Heart rate, arterial distensibility, and optimal performance of 

the arterial tree*
 

 

 

Abstract 

In this study we explore the ability of a previously developed model of pulsatile flow 

for explaining the observed reduction of arterial distensibility with heart rate. The 

parameters relevant for the analysis are arterial wall distensibility together with 

permeability and reflection coefficients of the end capillaries. A non-specific artery and 

the ensemble of tissues supplied by that artery were considered in the model. The 

blood current within that artery was equalized to the sum of all microcurrents in the 

tissues supplied by that artery. A formula emerged that relates changes in arterial 

distensibility with heart rate, and also with some particular aspects of microcirculation. 

Then, that formula was tested with data of distensibilities of the radial and carotid 

arteries observed at the heart rates of 63, 90, and 110 b.p.m. The formula correctly 

predicted the trend of decreased distensibility with heart rate for both arteries. 

Moreover, due to the fact that the carotid artery supplies the brain, and because the 

Blood–Brain barrier is highly restrictive to colloids in the blood, for the carotid artery 

the formula predicted a less marked decrease in distensibility than in the case of the 

radial artery feeding muscle tissue, which has a greater permeability to colloids, a 

trend that was confirmed by data. It was found that reduction of arterial distensibility 

with heart rate was greater in arteries that supply end capillaries with high 

permeability and low reflection coefficients. 

 
* Carla Silva, A. Heitor Reis, ”Heart rate, arterial distensibility, and optimal performance of the 
arterial tree”, Journal of Biomechanics, 47, 2878–2882 (2014). 
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Keywords: pulsatile flow, heart rate, arterial distensibility. 

 
4.1  Introduction 

It has been long recognized that pulsatile blood flow performs best than continuous 

flow because it induces lower total peripheral resistance and mean arterial pressure 

[1], and also better blood perfusion [2]. The distensibility coefficient of the vessel wall 

is defined as ( )( )β = ∂ ∂2 D D P  where P is pressure within the vessel, and D is vessel 

diameter. Henceforth the term distensibility is used to mean distensibility coefficient. 

On the other hand, a recent model of pulsatile flow predicts that if distensibility is kept 

constant, arterial impedance must decrease with pulse frequency [3]. Actually, if pulse 

frequency (heart rate) and therefore blood current is increases in response to needs of 

organs in the body, then it makes sense that arterial impedance is lowered to ease the 

access of blood. On the other hand, if arterial impedance decreases with distensibility 

[3] one would expect that increased blood current would lead to decreased arterial 

impedance with heart rate. 

However, many studies have shown that in humans arterial distensibility varies 

inversely with heart rate [4-9]. The same effect has been observed in rats [10]. Though, 

according to the model above referred [3] increased heart rate leads to lower arterial 

impedance, the observed increased arterial stiffness with heart rate actually increases 

impedance. Apparently, this behavior does not make sense because easing blood flow 

is sought to be the objective of the circulatory system.  

An extended search in the pertinent literature also revealed some studies that 

concluded that arterial stiffness was not affected by heart rate [11, 12]. However, 

these two studies have some particularities: in [11] arterial stiffness changes with 

heart rate were indirectly estimated through the augmentation index calculated from 

the blood pressure waveform, while in [12] arterial stiffness was “determined before 

and 10 min after graded arm-cycling exercise”. 

On the other hand some other studies [13, 14, 15] found that whole body arterial 

compliance (WBAC) and then arterial distensibility was increased after cycling and 

treadmill exercise with relation to the values prior to exercise. This is a different result 
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that compares arterial distensibility before and after the period in which heart rate is 

increased.  

The decrease of arterial distensibility with heart rate is somewhat counter-intuitive, 

and challenges the current paradigm of human physiology. From the physiological 

point of view, no explanation has yet been presented. In the following we offer an 

explanation based on the assumption of optimal hemodynamic performance of the 

arterial tree, and show that increase in arterial stiffness with heart rate may be 

understood as the adjustment of the arterial tree on the way for global optimization of 

its performance. For this purpose we first take a closer look to microcirculation in the 

capillaries forming the end of the arterial tree. 

 

4.2  Microcirculation and Starling forces 

Blood is transported downstream in the arterial tree until it reaches the end capillaries 

that bridge arteriole and venule ends, which deliver it to the interstitial fluid that 

bathes every cell (see Fig. 4.1). Capillaries have opening of various widths according to 

the tissue to which blood is supplied. Many capillaries may turn impermeable to the 

bigger colloids in the blood, namely the proteins, therefore regulating their delivery to 

the interstitial fluid. Special classes of proteins called albumins constitute about 50% of 

human plasma protein and are very important as carriers of hydrophobic substances 

(e. g. lipid soluble hormones, bile salts, free fatty acids) [16]. Water and other small 

molecules are generally free to pass through capillary openings. 

In this way, filtration occurs along the capillary driven by the difference in hydrostatic 

pressure ∆ = −ci c iP P P  between the capillary (Pc) and the interstitial space (Pi), 

therefore increasing the concentration of colloids that are not allowed to pass into the 

interstitial fluid. As the result a colloid osmotic pressure - oncotic pressure difference 

ci c i∆Π = Π − Π  - develops between the interstitial fluid and the blood within the 

capillaries, which opposes the pressure gradient that drives the blood from the 

capillaries to the interstitial space (i.e. the space between cells that is bathed by the 

interstitial fluid). Within the capillary, hydrostatic pressure decreases from Pa (at the 

end of the arteriole) to Pv (at the beginning of the venule), ∆ = −c a vP P P . 
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Fig. 4.1  Microcirculation: blood enters the capillary at the arteriolar end (a), water, salts and 
colloids are driven into the interstitial space by the capillary gradient, and return into the 
capillary driven by the oncotic gradient at the venular end (v). 

Hence, the blood leaving the end of the arteriole splits into two currents: one of them 

flows within the interstitial space; another one flows within the capillary. Both currents 

merge together at the entrance of the venula.  

The current flowing into the interstitial space may be described by Starling’s equation 

[17, 18]:  

                                               σ= ∆ − ∆Πci ci ci ci cii K P ,                                                (4.1) 

where cii  is the net current between the capillary and the interstitial space, cik  and σ ci

respectively stand for filtration coefficient and reflection coefficient of the capillary 

section in which cii  exists, Πc  and Πi represent oncotic pressure of the colloids in the 

capillary and the interstitial space, respectively. Though in the literature, cik  and σ ci

are termed “coefficients”, in fact they represent conductances that are proportional to 

the extension of the capillary in which exchange of fluids occur. The reflection 

coefficient is null for a capillary wall permeable to all colloids in the blood. The first 

term in the r.h.s of equation (4.1) represents the current from the capillary to the 

interstitial space while the second one stands for the current from the interstitial space 

onto the capillary that is driven by oncotic pressure gradient.  At the arteriolar end the 

hydrostatic driven current dominates, hence there is a net influx to the interstitial 

space, while the opposite occurs at the venular end where a net outflow towards the 

capillary (see Fig.4.2). 
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Fig. 4.2  Variation of capillary hydrostatic pressure (Pc), interstitial hydrostatic pressure (Pi), 

capillary oncotic pressure (Πc), and interstitial oncotic pressure (Πi), between arteriolar (a) and 

venular (v) ends of the capillary. Πc increases within the capillary due to loss of fluid to the 

interstitial space. Pi and Πi are constant in the interstitial space [17,18]. 

 

The current within the capillary is driven by the hydrostatic pressure difference 

∆ = −c a vP P P  and is given by: 

                                                  = ∆ /c c ci P Z ,                                                              (4.2) 

where cZ  stands for capillary impedance.  In this way, the total current leaving the 

arteriolar end is given by: 

                                            σ= + = ∆ − ∆Π + ∆ /i c ci ci ci ci c ci i i K P P Z .                                   (4.3) 

On the other hand, the total current entering the venular end is composed of the 

current from the interstitial space into the capillary: 

                                 ( ) σ= + = ∆ − ∆ + ∆Π + ∆ /v ic c ic c ci ci ci c ci i i K P P P Z  ,                            (4.4) 

where ≠ic ciK K  and σ σ≠ic ci  respectively stand for filtration coefficient and reflection 

coefficient of the capillary section in which cii  exists.  Note that here we have 

considered the general case in which ci icK K≠  and ci icσ σ≠ . Additionally, due to mass 

conservation for the steady state one has:  

                                                                = +v lymphi i i ,                                                            (4.5) 

where lymphi  stands for the rate at which lymph is drained from the interstitial space to 

the lymphatic circulation. Therefore, from Eqs. (4.3-4.5) one obtains: 
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                                 ( ) ( )σ σ= + ∆ − ∆ − + ∆Πlymph ic ci ci ic c ci ic cii K K P K P .                            (4.6) 

In the tissues that do not possess lymphatic circulation (e.g. brain, eyes) special 

overflow drainage systems allow for the removal of excess fluid [17].   

 
 
4.3  Heart rate and optimal performance of the arterial tree 

Let us consider an artery that feeds blood to the tissues downstream (Fig. 4.3). In an 

artery of diameter D and length L, (aspect ratio = /x L D ), with pulsatile flow of 

frequencyω , under pressure difference ∆P  the average current I  reads (see [3]): 

                                     = ∆ /I P Z , with ( )ω ω
−−= +

1/21 2 2ˆ1
A

Z k xy ,                                   (4.7) 

where 1128Ak µπ −= , µ  is dynamic viscosity of the fluid, = 3y D , πβ= / 4Ak k , 

( )( )β = ∂ ∂2 D D P is the distensibility coefficient of the vessel wall, P  is pressure, and 

ω = 2ˆ 1 / kx  represents the characteristic frequency of the vessel.  
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Fig. 4.3  Artery with blood current I and downstream tissues bathed by I. Exchange of blood 
components occurs through the capillary that connects arteriolar and venular ends. 
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The blood current I  in that artery equals the sum of the blood currents leaving every 

arteriolar end in the tissues feed by that artery:  

                                                        =∑ n

n

I i ,                                                               (4.8) 

or, according to equation (4.3):  

                                 ( )ci ci ci ci c c n
n

I K P P Z/σ= ∆ − ∆Π + ∆∑ .                                    (4.9) 

The pressure drop along the capillary is proportional the absolute value of pressure 

drop along the artery, i.e. θ∆ = ∆cP P . For an optimally performing tree θ =1 . In such a 

tree the same pressure drop occurs at level of branching (see [19]). In this way, by 

using Eqs. (4.5-4.9) one obtains: 

( ) ( )σ σ σ θ− − ∆Π
 = + − + + +   ∆ ∆ 

∑1 1lymphci
k ci ic ci k k ic c

n n

i
Z a a a K Z

P P
,               (4.10) 

where ( )= +k ci ci ica K K K . Besides we note that ≃c cZ R because the flow in capillaries 

is almost steady because in there the pressure wave is very much attenuated.  As a 

consequence, the variation of the impedance with pulse rate is negligible, i.e. 

ω∂ ∂ ≃ 0cZ . 

By taking the derivate of both member of Eq. (4.10) with respect to radial frequency ω  

one obtains: 

                                               1
f

f

β γ
β

∂ − −
∂
≃ ,                                                          (4.11) 

with 

( )
1/22 2

2 2

ˆ ˆ ˆ( )
1 1

lymph
k ci ic ci k

n
n

i Rff f P f f P
a a

P P f P f ff f
γ σ σ σ β

     ∆Π ∂ ∆ ∂  = + − + + + +          ∆ ∆ ∆ ∂ ∂      
∑

                                                                                                                                                (4.11a) 

where β  is distensibility coefficient, 2f ω π= , f̂ ˆ 2ω π=  stand for normal heart rate 

and characteristic frequency, respectively, and −= 1
AR k xy stands for flow resistance of 

the artery [see Eq. (4.7)].  The last term in the r.h.s of Eq. (4.11a) depends on 2 2f̂ f , 

which may be significant in some arteries (e.g. the carotid, see §4.4), and also on 
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P f∂ ∂ . However, the data in ref. [6] do not show a clear trend with respect to change 

in arterial pressure with heart rate, and more likely show that 0P f∂ ∂ ∼ , therefore 

indicating that the last term in the r.h.s of Eq. (4.11a) may be neglected. In this way, γ  

may be considered as approximately constant, what allows Eq. (4.11) to be integrated 

by using the average value <γ>. Then, by integrating both members of Eq. (4.11) with 

respect to f one finds: 

                                               

1

0
0

f

f

γ

β β
− −< >

 
=  

 
,                                                   (4.12) 

where β0  and 0f are reference values. Because ( ) 0P f∂ ∆ ∂ > , <γ> is generally positive. 

On the other hand, for arteries that supply tissues without lymphatic vessels = 0lymphi , 

and also tissues exist for which the reflection coefficient σ  is very high, while 

permeability ciK  (and then ka ) approaches zero. This is the case of the brain for which

0≈ka , and σ ci  is very high, and therefore a less pronounced decrease in arterial 

distensibility with heart rate is expected to occur with the carotid as compared with 

the arteries that supply tissues with small values of reflection coefficient (e.g. the 

skeletal muscle).   

 
 

4.4  The cases of the carotid and radial arteries 

Very few data of arterial distensibility at various heart rates are found in the literature. 

To our knowledge only Giannattasio and co-workers [6] published in 2003 data of 

distensibilities of the carotid and radial arteries at heart rates of 63, 90 and 110 b.p.m. 

(beats per minute). In the following we will analyse those data in the light of Eq.(4.12). 

As regards the value of <γ> respecting the carotid and radial arteries we observe that 

the first one supplies the brain whose tissues have a very high refection coefficient due 

to the highly selective barrier that separates the circulating blood from 

the extracellular fluid in the brain. Conversely, the radial artery that supplies the 

skeletal muscle in the arm presents a much lower reflection coefficient.  
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                        Table 4.1  Arterial distensibilities at various heart rates from ref. [6]  

                and parameter <γ> [see. Eq. (4.12)].  

 

 

 

 

 

 

 

On the other hand, by using the definition of characteristic radial frequency 2ˆ 1 / kxω =

[see Eq. (4.7)], together with the pertinent values taken from ref. [20] it is found that 

the characteristic frequencies of the carotid and radial arteries, ˆ ˆ / 2f ω π= , are 3020 

and 736 b.p.m., respectively. As a consequence the ratio f̂ f corresponding to the 

carotid artery is about 40 times larger than that of the radial artery.  

By using the data of [6], and fitting Eq. (4.12) to a logarithmic scale: 

( ) ( ) ( )0 0ln 1 ln f fβ β γ− + < >≃ , one obtains the values of <γ> shown on Table 4.1. 

These results deserve scrutiny in the light of Eq. (4.11a). 

 

4.4.1   Radial artery 

The radial artery supplies the skeletal muscle in the arm, which has high permeability

ciK  ( ≈ .ka 0 5 ), and very low reflection coefficient,σ ci , therefore from Eq.(4.11a) we 

conclude that <γ> must be positive. Moreover lymphi  may be significant in the arm thus 

adding a positive contribution to the already positive value of <γ>.  The value 

0.531γ< >=  found for the radial artery from patient data [6] is in accordance with the 

tendency anticipated from Eq. (4.11a).  

Heart rate 

(b.p.m.) 

Distensibility (1/(mm Hg) ×10
-3

) 

radial artery carotid artery 

63 0.69 1.40 

90 0.36 1.13 

110 0.30 0.91 

<γ> γγγγ = 0.531 γγγγ = -0.254 
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4.4.2   Carotid artery 

This artery supplies the brain, whose capillaries due to the Blood-Brain Barrier have 

very low permeability ciK , (and then ≈ka 0 ) together with a very high reflection 

coefficientσ ci . On the other hand, as referred above, though small drainage might 

occur by a special system [17], the brain has no lymphatic vessels, then = 0lymphi . By 

taking into account all these aspects we conclude that <γ> must be negative.  In 

addition, the ratio 
22f̂ f  is high therefore modulating the value of <γ>, accordingly. By 

using data from the same ref. [6] we found .0 254γ< >= − , which due to the properties 

of the carotid artery is also in accordance with Eq. (4.11) and Eq. (4.12).  

In this way, the reduction of arterial distensibility with heart rate appears as the result 

of the adjustment of the artery that supplies some part of the body to the particular 

features of the microcirculatory tree (end capillaries) and the interstitial space in that 

part of the body.  Mircoli and co-workers [10] found that in rats “in predominantly 

elastic-type arteries, the stiffening effect of tachycardia is exerted independently of 

sympathetic modulation”.  In fact, and in line with this finding no external control by 

any system external to the arterial tree (e.g. the sympathetic nervous system) was 

invoked in the analysis above developed, rather the effect of arterial stiffening with 

heart rate sprang of the continuity of blood flow [Eq. (4.8)] together with the 

coefficients that characterize the exchanges that occur between the end capillaries 

and the interstitial space [Eq. (4.9)]. 

 

4.5  Conclusions 

In this paper, we showed that the effect of reduction of arterial distensibility with 

heart rate may be understood based on the physical properties of the arterial tree that 

supplies some tissues and the particular properties of blood exchanges between the 

end capillaries and the interstitial space in those tissues. The parameters that are 

relevant for the analysis are arterial wall distensibility, permeability and reflection 

coefficients of the end capillaries, which together account for arterial vasoactivity. 

It was found that reduction of arterial distensibility with heart rate was greater in 

arteries that supply blood to end capillaries with high permeability coefficients 
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together with low reflection coefficients. This trend was confirmed through the use of 

data of distensibilities at the heart rates of 63, 90 and 110 b.p.m respecting the radial 

and carotid arteries. 

In line with findings that showed that the effect of arterial stiffening with heart rate 

was virtually independent of sympathetic modulation, the present results showed that 

the assumption of continuity of blood flow together with the coefficients that 

characterize the exchanges between the end capillaries and the interstitial space may 

be sufficient to explain the observed effects. 
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CHAPTER 5 
 

 

Conclusions 

 

 
This thesis presents a model of a pulsatile flow system of branching channels that was 

developed with the purpose of studying some particular characteristics of human 

arterial tree. A RC model was designed to represent each channel of the branching 

tree, and to define the global impedance of a dichotomous branching. Based on the 

idea that flow structures exhibiting several branching levels are thought to perform 

optimally – Constructal Theory - the minimization of global flow impedance of the flow 

tree under constant global volume, was carried out. Scaling laws of diameters of a 

pulsatile flow system emerge, which in the limit of continuous flow (absence of pulse 

frequency) successfully reduce to Murray’s Law of consecutive diameters. It was found 

that these optimal scaling varies with both pulse frequency and channel wall’s 

distensibility, and is also dependent on the asymmetry factor of the daughter 

channels. In addition, if the process of minimization of flow impedance under constant 

pressure head is also considered, scaling laws for channel lengths emerge, following a 

law similar to that of channel diameters. This general model, based on the processes of 

minimization allows understanding the influence of the coefficients of distensibility of 

parent and daughter channels, because the results suggested that the channel with 

lower relative distensibility must have its diameter increased in order to perform 

optimally. Therefore the distensibility of blood vessels is a parameter of great 

importance in the characterization of arterial tree performance. 

Then, the developed model was applied to the arterial tree. Based on the Navier-

Stokes equation for a unidirectional flow, a scaling analysis was performed 

demonstrating that an RC model is suitable to represent behaviour of arterial vessels. 

The modulus of flow impedance of a cylindrical channel was considered in the analysis 
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of the arterial impedance behaviour with age. The study was carried out with respect 

to the ascending aorta, descending aorta and carotid artery, for which data was 

available, and results clearly demonstrates that arterial impedance tends to decrease 

with age for the assessed arteries. In the aortas the decrease is more pronounced 

during growth (first two decades of life). Due to lack of data the study respects to the 

period between birth and the age of 30. Regarding the carotid artery, it was found that 

its impedance tends to decrease linearly until the age of 40, keeping decreasing until 

the 7th decade. These results of arterial impedances also show that the ascending aorta 

presents lower impedance as compared to the descending and carotid arteries, in 

agreement with what would be expected in a flow tree; daughter vessels (descending 

aorta and carotid artery) present impedances with higher values when compared with 

their parent vessel (ascending aorta).  It is clear that these results are in agreement 

with Constructal Law which states that: "For a finite-size system to persist in time (to 

live), it must evolve in such a way that it provides easier access to the imposed 

currents that flow through it." This means that flow architectures evolve in such a way 

that under the existing constraints, the distribution of flow resistances change in time 

in order to achieve minimum global flow resistance, and which was just observed in 

the aortas and carotid artery. It appears that Nature (human arterial tree in this case) 

might have developed some internal mechanism of optimization.  

The analysis of the variation of arterial impedance with heart rate showed that 

changes in arterial impedance were not significant. Even when variation of 

distensibility with pulse frequency, (which is significant in some arteries), is considered, 

the same conclusions were achieved. 

Still on the vascular tree, the optimal scaling laws for diameters and lengths for a 

pulsatile flow system were used in order to assess if the human arterial tree is 

optimized from the point of view of blood flow performance. The idea was to examine 

what would be the optimal dimensions of some arterial segments as if they were free 

to change their morphologies to optimize performance, leaving out the real set of 

constraints of the circulatory system, namely the body size, the location of organs, or 

temporary needs of some part of the organism. The results showed that the optimal 

diameters of daughter vessels are mostly close to those observed.  
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With respect to channel length scaling, in general no such agreement was observed. 

Nevertheless, some ambiguity exists with respect to channel lengths listed in the 

literature. It was verified that some particular daughter channels have long parent 

vessels, usually exhibit small branches and therefore do not fully comply with the 

conditions of applicability of the scaling law that followed from the RC model. Indeed, 

there was some uncertainty in the calculation involving data of arterial segments 

lengths, especially for longer segments such as the case of the femoral artery whose 

proximal diameter (5.2 mm) and distal diameter (3.8 mm) differ considerably, strongly 

suggesting the presence of many small branches along the artery. This aspect may also 

justify the few agreements observed in length scaling, more precisely in the 

comparison of daughter length estimated values to the real ones. As discussed before 

there are many constraints in the human body that are not taken in account in the 

process of deduction of optimal scaling laws, and that might explain some 

discrepancies. However, we conclude that the comparison of real values with optimal 

values can be taken as for identifying the arteries where blood flow is not optimized 

and where hemodynamics might affect their performance.  

In addition, the analysis focused on the ascending aorta and aortic arch. It was found 

that the sum of the optimal length of these two arteries is estimated to be 143.8 mm, 

which is much higher than the real one (60 mm). This discrepancy in those values, 

might help explain the results of the study by Sugawara and co-workers who showed 

that between 20 and 80 years in healthy subjects the average length of the ascending 

aorta (defined from aortic annulus to apex arch) tends to increase from 44 to 98 mm. 

This aspect further confirms the thought that the arterial flow system tends to 

optimize its performance in time. In this case, the ascending aorta that is in a cavity 

slightly constrained by nearby tissues is quite free to morph, actually. This tendency of 

natural flow system to change its configuration in time, is observed in many animate 

and inanimate systems, and ads credit to Constructal theory. 

Finally, the model was used to explain the observed reduction of arterial distensibility 

with pulse frequency that is verified in some arteries. A non-specific artery together 

with the ensemble of tissues fed by that artery was analysed. Flow continuity was 

assumed in the sense that the blood flow current within the artery equals the sum of 
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all microcurrents flowing in the related tissues. To model the microcurrents which exist 

between the capillaries and the interstitial fluid in which blood bathes the tissues, 

Starling equation was take in account. Under the consideration of optimal 

performance, a formula emerges relating changes in arterial distensibility with heart 

rate, and also with some particular characteristics of microcirculation such as 

permeability and reflection coefficients of the end of the capillaries. The formula was 

tested in carotid and radial arteries, with data of distensibilities at heart rates of 63, 90 

and 110 b.p.m.. The radial artery supplies the skeletal muscle in the arm, has high 

permeability and very low reflection coefficient, while carotid artery that supplies the 

brain, has capillaries with very low permeability and a very high reflection coefficient 

due to the Blood-Brain Barrier. The results suggested that the phenomena of reduction 

of arterial distensibility with heart rate, was more pronounced in arteries supplying 

blood to end capillaries, with both high permeability and low reflection coefficients. 

From the results it was concluded that the assumption of continuity of blood flow (at 

capillary level) together with the special properties of the exchanges that occur 

between the end capillaries and the interstitial space may be enough to explain the 

different degree of distensibility reduction, in agreement with findings that showed 

that this effect is independent of sympathetic modulation. 

In this work the general purpose was of observing the trends of some physiological 

properties of the arterial tree, and then giving a physical explanation based on an 

optimized model of a pulsatile flow system. This model was developed in the light of 

Constructal Theory, which was applied for the first time to the circulatory system, 

adding to other fields of application of this theory. 

 

 
 

 

 

 


