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Abstract

Network Intrusion Detection Systems (NIDSs) are in use probably ever since there
are computer networks, with the purpose of monitoring network traffic looking for
anomalies, undesired behaviors or a trace of known intrusions to keep both users, data,
hosts and services safe, ensuring computer networks are a secure place to work.

In this work, we developed a Network Intrusion Detection System (NIDS) called
NeMODe (NEtwork MOnitoring DEclarative approach), which provides a detection
mechanism based on Constraint Programming (CP) together with a Domain Specific
Language (DSL) crafted to model the specific intrusions using declarative methodolo-
gies, able to relate several network packets and look for intrusions which span several
network packets.

The main contributions of the work described in this thesis are:

• A declarative approach to Network Intrusion Detection Systems, including detec-
tion mechanisms based on several Constraint Programming approaches, allowing
the detection of network intrusions which span several network packets and spread
over time.

• A Domain Specific Language (DSL) based on Constraint Programming method-
ologies, used to describe the network intrusions which we are interested in finding
on the network traffic.

• A compiler for the DSL able to generate multiple detection mechanisms based on
Gecode, Adaptive Search and MiniSat.
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Linguagens Específicas de Domínio Declarativas
aplicadas à Monitorização de Redes

Sumário

Os Sistemas de Detecção de Intrusões em Redes de Computadores são provavelmente
usados desde que existem redes de computadores. Estes sistemas têm como objectivo
monitorizarem o tráfego de rede, procurando anomalias, comportamentos indesejáveis
ou vestígios de ataques conhecidos, por forma a manter utilizadores, dados, máquinas
e serviços seguros, garantindo que as redes de computadores são locais de trabalho
seguros.

Neste trabalho foi desenvolvido um Sistema de Detecção de Intrusões em Redes de
Computadores, chamado NeMODe (NEtwork MOnitoring DEclarative approach), que
fornece mecanismos de detecção baseados em Programação por Restrições, bem como
uma Linguagem Específica de Domínio criada para modelar ataques específicos, us-
ando para isso metodologias de programação declarativa, permitindo relacionar vários
pacotes de rede e procurar intrusões que se propagam por vários pacotes e ao longo do
tempo.

As principais contribuições do trabalho descrito nesta tese são:

• Uma abordagem declarativa aos Sistema de Detecção de Intrusões em Redes
de Computadores, incluindo mecanismos de detecção baseados em Programação
por Restrições, permitindo a detecção de ataques distribuídos ao longo de vários
pacotes e num intervalo de tempo.

• Uma Linguagem Específica de Domínio baseada nos conceitos de Programação
por Restrições, usada para descrever os ataques nos quais estamos interessados
em detectar.

• Um compilador para a Linguagem Específica de Domínio fornecida pelo sistema
NeMODe, capaz de gerar múltiplos detectores de ataques baseados em Gecode,
Adaptive Search e MiniSat.
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Preface

This thesis represents the work of almost 4 years of research (2007-2011) in the context
of my PhD program, which I decided to pursue mostly as a personal challenge and as
an opportunity of self-development.

Over these years of work, many lessons were learned. Perhaps the most important
thing to recall from this work, is that in research, nothing is guaranteed, the work
is constantly evolving and changing according to the results, and the final goals of a
research work can easily change and become completely different from the initial goals.
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Chapter 1

Introduction and Motivation

This Chapter introduces the work presented in this thesis and briefly men-
tions the tools and techniques used therein: Intrusion Detection Systems
(IDSs); Domain Specific Language (DSL) and Constraint Programming
(CP).

1.1 Introduction

This thesis is about a declarative approach to Network Intrusion Detection, called
NeMODe (NEtwork MOnitoring DEclarative approach), which relies on a declarative
programming paradigm to both describe the network intrusions as well as to perform
the detection of such intrusions.

The system provides a declarative description Domain Specific Language to model
the network intrusions to be found by the system. It is primarily designed to ease
the description of such intrusions in a very descriptive way. The language includes
a compiler able to generate three different detection mechanisms, based on different
Constraint Programming (CP) approaches.

The detection mechanism provided by NeMODe relies on Constraint Programming,
providing three different intrusion detection mechanisms based on different approaches
to Constraint Solving: Propagation, Constraint-Based Local Search (CBLS) and
Boolean Satisfiability Problems (SAT), allowing for the detection of intrusion signa-
tures which spread across several network packets over a period of time.

Part of the work presented in this thesis appeared before in joint publications with
Prof. Salvador Abreu(my supervisor), Prof. Daniel Diaz and Prof. Isabel Brito. I
thank all of them for letting me use the following common work: [1, 2, 3, 4, 5, 6, 7, 8].
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4 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Intrusion Detection Systems

IDSs are the first line of defense in present computer systems, essential to keep network
users as well as data safe from bad intentioned people which take advantage of some
service vulnerabilities to gain access to private data or perform some other kind of
attack.

Over the years, most of the work related to IDSs focused on performance, trying to
cope with increasingly higher speed of computer networks, leaving for second plan
both the intrusion description and detection mechanisms. Existing IDSs often rely on
complex pattern-matching algorithms capable of matching multiple patterns at once,
looking for the desired patterns in both network packet headers and payload. Custom
rule-based languages are commonly used to describe specific intrusions, stating what
patterns should not be found in a network packet.

Such systems, are designed to detect network intrusions whose signatures can be found
in a single network packet, and in most cases, are not able to detect network intrusions
with signatures spread over time or several network packets.

Although some IDSs allow the specification and detection of intrusions which span
several network packets, they usually need to resort to filters or plugins to do so.

1.3 Constraint Programming

Constraint Programming (CP) is one approach to declarative programming, by allowing
the description of the problem in terms of “how” the problem is modeled, instead of
“how” the problem is solved, widely used to solve combinatorial problems.

While using CP, a problem is modeled as a set of variables with a specific domain,
over which a set of relations and restrictions are specified, according to the needs of
the problem. Once the problem is solved, each variable is instantiated with a value
from its domain, respecting all restrictions and relations which have been specified,
thus reaching a valid solution.

Over the years, several approaches to CP have been developed and used. In this work
we use Constraint Programming systems based on Constraint Propagation; CBLS and
Boolean Satisfiability Problems (SAT).
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1.4 Domain Specific Languages

Domain Specific Languages (DSLs) are small, very expressive, programming languages,
specifically created for a specific application domain, contrary to General Purpose
Languages which are designed to be as versatile as possible.

DSLs are designed with the purpose of facilitating the way the problems are modeled,
enabling for non programmer users to write valid and efficient programs.

DSLs try to catch the essence of a specific application domain by capturing the per-
tinent semantics, abstractions and notions, providing a descriptive way of modeling
problems, leading users proficient in the application domain to use such programming
language in an easy and effective way.

There are two main types of DSLs; internal and external languages. Internal languages
are DSLs which are build into a General Purpose Language (GPL), using libraries
to extend the GPL to allow the use of the notions of the application domain, but
limited to the constructs and capabilities of the base GPL. External languages are
small programming languages built from scratch for a specific application domain,
thus free to use the desired language constructs, using standard programming language
development tools.

1.5 Using Constraints on Intrusion Detection

To maintain the quality and integrity of the services provided by a computer network,
some aspects must be verified in order to maintain security.

The description of those conditions, together with a verification that they are met
can be seen as an Intrusion Detection task. These conditions, specified in terms of
properties of parts of the (observed) network traffic, will amount to a specification of a
desired or an unwanted state of the network, such as that brought about by a system
intrusion or another form of malicious access.

Those conditions can naturally be described using a declarative programming approach,
such as Constraint Programming, enabling the description of these situations in a
declarative and expressive way. Using Constraint Programming in intrusion detection
allows to specify intrusion signatures as relations between several network entities,
enabling an easy way to describe and perform the detection of attacks that span several
network packets.
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1.6 Thesis outline

Chapter 1 introduces the work presented in this thesis and presents a brief introduction
on the concepts used in this work; Intrusion Detection System (IDS); Domain Specific
Language (DSL) and Constraint Programming (CP). We also motivate for the use of
Constraint Programming in Network Intrusion Detection.

We make a brief survey on the concepts used in this work, presenting some approaches
to Intrusion Detection System and Constraint Programming in Chap(s). 2 and 3, re-
spectively.

Chapter 4 describes how to model and perform Network Intrusion Detection using
Constraint Programming methods. It presents the architecture of the system as well
as the details of each network situation recognizer available in NeMODe.

In Chap. 5 we describe the Domain Specific Language provided by NeMODe which al-
lows the description of specific network attack signatures. We provide the specification
of the language and present some examples to demonstrate its use. We also include a
brief survey of Domain Specific Languages.

Chapter 6 presents an evolution of NeMODe, allowing the use of an adaptive network
traffic window, an important step towards live network traffic monitoring.

In Chap. 7 we present the experimental results of the work described in this thesis.
We present the results for each test case analyzed while using all recognizers available
in NeMODe. We also evaluate NeMODe and perform a comparison against other
Intrusion Detection Systems.

Last, we conclude and present possible future work lines in Chap. 8.



1.7. ROADMAP 7

1.7 Roadmap

In this section we provide a “roadmap” for reading this thesis which provides different
reading paths:

Table 1.1: Reading paths

Subject Chapter

Survey on Intrusion Detection Systems 1- 2

Survey on Constraint Programming 1- 3

Survey on Domain-Specific Languages 1- 5.1

Using Constraints for Intrusion Detection 1- 4- 5- 6- 7

A Domain-Specific Language for IDS 1- 5

All 1 to 8





Chapter 2

Network Intrusion Detection Systems

This Chapter introduces Network Intrusion Detection Systems. A brief his-
tory of IDSs is presented, allowing some insight into the most important
evolutionary steps of these systems. We also present the most important
types of IDSs, their characteristics as well as some important IDSs, both
historic and presently used systems.

2.1 Introduction

Computer networks are getting more complex, larger, and faster, providing more ser-
vices to their users to satisfy the demanding needs of users, which increasingly depend
on networks.

Due to the increasing use of computer networks, there is the need to ensure that both
users and data are safe while working in systems connected to a computer network.

There are a number of tools and approaches to ensure the safety of computer networks.
Firewalls are the first line of defense against network attacks, filtering network traffic
and performing access control, but they can are not sufficient for a large number of
intrusions.

Network Intrusion Detection Systems (NIDSs) are at another level of defense, being
one of the most important tools to prevent network intrusions, attacks or other type of
malicious actions which could compromise the safety of users or data. NIDS focus on
traffic monitoring, trying to inspect network traffic, looking for anomalies or undesirable
communications.

Intrusion Detection Systems (IDSs) have been the subject of study for years, with
the purpose of preventing and detecting intrusions to ensure the safety of computer

9
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networks. Most of the academic work related to IDS consists in the development of
faster detection methods [9], still, over the years a number of different approaches to
IDSs have been used, with focus on new methods both to describe and detect network
attacks.

2.1.1 Approaches to Intrusion Detection Systems

A number of approaches to Network Intrusion Detection Systems have been introduced
and evolved over time. Although several approaches can be used, the first academic
works related to IDSs classifies them in two major categories [10, 11]:

1. signature based

2. anomaly based

Intrusion Detection based on Signatures

Signatures are the central aspect of signature based IDSs, also known as misuse detec-
tion [11], since the desired network attacks to be monitored are described through a
representation of specific properties which identifies the desired network attack.

Each network intrusion present specific characteristics, leaving a trail which identifies
and makes proof of the attack. These characteristics can be either specific data in the
payload of network packets, specific data in the headers of network packets, or relations
between several network packets with special characteristics. These characteristics
which identify the network attacks, are called intrusion signatures.

Intrusion signatures are used to represent what is considered to be a licit or illicit
behavior in the network.

The signatures are then matched against the network traffic in order to perform the
detection of the designated network situations, a method analog to the detection of
virus in computer systems.

IDSs based on signatures present some disadvantages, the most important being that
they are not able to detect unknown intrusions: those which have no signatures in the
IDS database [10].

With this approach to IDS, signatures which model attacks are explicitly programed,
usually in terms of rules, containing the description of what should be found in the
network traffic to recognize the specific signature, thus triggering the corresponding
alarm. This approach to Network Intrusion Detection is very similar to a default
permit security policy [12].
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Several approaches have been used in signature based IDSs, either in the representation
of the network attack signatures or in the detection mechanism itself.

Follows the most widely used approaches [10]:

State modeling The underlying idea of state modeling is to describe the desired net-
work intrusions as a set of states. Such states are then looked for in the network
traffic, which, when found, identify the specific intrusion. Several types of state
modeling exist, State transition and Petri nets are some, just to mention some.

Expert systems IDSs based on expert systems rely on a set of rules describing the
desired attacks or the behavior of the attacker. The expert system is then re-
sponsible to reason about the security of a given network. This method is very
powerful, but IDSs performance is low.

String matching Intrusion Detection Systems based on string matching use regular
string matching techniques and algorithms to perform sub-string matching in data
found on the network traffic, which identify specific network signatures. The
signatures are string patterns which identify the desired attack, which should
be found in the network traffic. Usually complex and efficient multi-pattern
matching algorithms are used, making this approach very efficient, but not very
flexible.

Anomaly Based IDSs

Anomaly or behavior analysis is another widely used type of Intrusion Detection Sys-
tems, approaching the problem from another point of view. Instead of looking for
specific or known network intrusions, it searches for anomalies in the network traffic.

On Anomaly based IDSs, the normal behavior of the network is usually modeled
through the use of statistical methods and data mining approaches. According to
the normal network behavior model, the current network behavior is analyzed, and if
it deviates from the model more than a predetermined level, then there is a likelihood
that the network is under attack.

This type of IDSs is very flexible but presents some problems, the most significant
is the incapacity to detect network attacks which don’t change the behavior of the
network in a sufficient scale to trigger the alarms. One other issue, is the large number
of false positives, due to a more “strict” network behavior discipline which may be used
to identify as much “abnormal” behavior as possible [10].

Anomaly based IDSs need to acquire the network behavior and transform it into a
model, which can be compared with the current network behavior. Several methods
exist to acquire such behavior, but most of them fall in 3 main classes [10]:
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Self-Learning Anomaly based IDSs which follows a Self-Learning approach observe
and analyze the network traffic over a period of time, learning from example the
normal behavior of the network, simultaneously building a model which repre-
sents the normal behavior of the network.

Programmed The programmed anomaly based IDSs rely on someone who is capa-
ble of teaching the system, by programming the desired anomalous events. In
this approach, the system administrator is responsible for deciding which events
should be considered anomalous and understood as a network attack.

Default deny Anomaly based Intrusion Detection Systems which fit in the default
deny class resemble in many aspects the default deny security policy, which for-
mulates the events which are allowable. Every other event is forbidden or consid-
ered illegal. In this class of IDSs, the circumstances which identify the allowable
events are explicitly stated, everything else is considered as an intrusion.

2.2 History of Intrusion Detection Systems

Before the introduction of Intrusion Detection Systems, the conventional security meth-
ods which were used to secure hosts relied in “closing” the hosts to secure them from
the “outer” world, enclosing them in a protective “shield”.

These security methods relied on access control, using Identification & Authentication
mechanism requiring users to identify and authenticate themselves to gain access to
the system [13].

As an alternative to those security methods to improve security, the Intrusion Detection
concept was introduced around the mid-’80s [14], upon which many Intrusion Detection
Systems were created.

2.2.1 Host based IDSs

These first IDSs were only able to monitor a single host, monitoring audit trails pro-
duced by the host operating system, looking for network attacks or other type of
undesired access, rather than directly monitoring the network traffic.

IDSs which are not able to monitor network traffic, but are able to monitor more than
one host at the same time, are also considered host based IDSs.

Systems such as AT&T’s ComputerWatch [15], the HAYSTACK system [16], IDES [17],
the ISOA system [18, 19], MIDAS [20], just to mention some, were some of the first
IDS systems, performing host intrusion detection within a single host.
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AT&T’s ComputerWatch

AT&T’s ComputerWatch [15] is a Host Intrusion Detection System, with no real-time
capabilities, having as primary purpose to assist the system administrators responsible
for the hosts security. Besides assisting the system administrators, it also has some
intrusion detection capabilities, although in very limited way.

ComputerWatch manages to assist system administrators by summarizing the large au-
dit trails produced by the hosts without removing relevant information about undesired
attacks, thus greatly reducing the amount of information to be analyzed by the sys-
tem’s administrators, indicating which events should be analyzed in more detail. These
summarized audit trails can be interactive, analyzed by the system administrator as
they are being produced, or produced in a batch for later review.

ComputerWatch was designed for the UNIX System V/MLS, and was based on expert
systems to both summarize the audit trails, enhancing the security sensitive information
and perform intrusion detection, with rules for detecting anomalies or simple intrusions.

The HAYSTACK system

The HAYSTACK system [16] is an Intrusion Detection System based on host audit
trails, representing the system user’s behavior and was designed for the Unisys (Sperry)
1100/60 mainframe, running the OS/1100 operating system. It summarizes the hosts
audit trails, transforming them into much smaller traces, containing only relevant in-
formation about user behavior, anomalous events and security incidents, thus allowing
the detection of intrusions.

The system was able to detect some types of attacks or security issues; such as break-in
attempts, masquerade attacks, penetration of security system or information leakage.
To achieve this, HAYSTACK uses behavioral constraints representing the desired be-
havior as well as the security policies, imposed by system administrators.

HAYSTACK provides three different ways to help system administrators in detecting
a possible intrusion or attack:

Notable Events Events which might modify the security policy and state, delivered
to the system administrator, which then decides whether there is some kind of
intrusion or malicious access.

Special Monitoring Special events are marked by the system administrator for mon-
itoring, such as when a particular user id is used or when a file is accessed.

Statistical Analysis HAYSTACK also employs statistical analysis to perform intru-
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sion detection; setting “suspicious quotients” which measures how the user be-
havior resembles a specific intrusion; and looking for a significant deviation on
the user behavior when compared to user’s recent behaviors.

The IDES system

Intrusion-Detection Expert System(IDES) [17] is a system-independent, real-time In-
trusion Detection System, running independently in a central system which processes
data audit trails collected from monitored hosts.

IDES relies on expert systems and statistical methods. A rule-based, forward-chaining
expert system is used to model known intrusions, systems vulnerabilities and other
specific security problems, while statistic methods are used to detect anomalous user
behavior.

Both statistical methods and expert system use the same input to produce the reports.
Such files are statistical representations of the host audit files.

User behavior is observed, adaptively learning the behavior of the users using statistical
methods, and keeping a historic record of the users behaviors. The learned normal and
historic behaviors are then compared against current user behavior, and if it deviates
too much from what is expected, the behavior is considered as an intrusion. Also, if
some of the expert system rules which models undesired behaviors, known intrusions
or known vulnerabilities are triggered, the behavior is also considered an intrusion and
reported.

The ISOA system

ISOA [18, 19] is an Intrusion Detection System designed for Unix workstations, allowing
system administrators to perform automated and interactive audit trails, helping with
the detection of intrusions by presenting graphical alerts, advices and explaining the
possible threats.

It is based on the notion of indicators which are the records of the audit trails. The
current indicators, representing current events found in audit trail are correlated with
expected indicators, representing the expected events of both users and hosts. This
correlation is achieved with an expert system and statistical methods.

The indicators are organized as a hierarchy of security level concerns, so that when
the indicators are found in the audit trails, the security level concerns rises. When
the security level concern reaches some predetermined level, the system makes a more
detailed analysis of the given user or host.
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Profiles representing the expected user and hosts behaviors which include historical
events, are checked against the current events through the use of statistical methods
to identify the deviation between expected and verified behaviors, according to prede-
termined threshold defined in such profiles.

ISOA provides two types of Intrusion Detection, one in real time, performed at the
same time the audit data is being produced, triggering further investigations if certain
events are found and comparing the current parameters or behaviors with the ones
that should be found. A second type of intrusion detection is performed after the user
terminates the session, by checking session statistics against the predetermined profiles.

The MIDAS system

The MIDAS system [20], which stands for Multics Intrusion Detection and Alerting
System, is a real time Intrusion Detection System based on expert systems and statis-
tical analysis, which was used in the Multics operating system.

This system is used to perform a characterization of the normal behavior of both
users and systems using audit files. Both system and users are then monitored for a
significant deviation of their behavior.

The behaviors and activities of both user and system are kept over time, represented as
statistical profiles. This allows MIDAS to compare the current behavior and activities
with the historic of both users and system, deciding if there is a significant deviation,
indicating the possibility of an attack.

The expert system used in MIDAS is organized in a series of chained hierarchical rules.
These rules can trigger more specific rules of a higher hierarchical level, denoting an
increase of the probability of an attack. The expert system rules used to model the
desired network intrusions are organized in 3 types:

Immediate Attack Rules Rules with no statistical information, identifying indi-
vidual events which are known to be anomalous.

User Anomaly Rules Statistical profiles are used by such rules to determine if there
is a significant deviation from previously, historic, observed user behaviors.

System State Rules Rules are similar to the User Anomaly Rules, regarding the
entire system instead of users.
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USTAT

USTAT, presented in [21], is a real-time Intrusion Detection System based on State
Transition Analysis for UNIX systems, based on STAT [22], a previous State Transition
Analysis Tool, which, when introduced, was a new way for modeling intrusion, and
actually used in the development of real-time intrusion detection tools.

USTAT was developed for SunOS 4, and relied in audit trails produced by the C2
Basic Security Module of SunOS as source to detect the desired attacks. USTAT has
the particularity of only keeping track of critical actions that must occur for a specific
intrusion to be successful.

In USTAT, the attacks were described by a set of goals and transitions based on state-
transition diagrams, and, if a specified event is triggered, an attack state is considered
an intrusion.

2.2.2 Network based IDSs

Host based IDSs were limited to monitoring one host at a time and weren’t able to
analyze network traffic. A second generation of IDSs were introduced, capable of
monitoring several hosts connected through a network. These systems became known
as Network Intrusion Detection Systems.

Systems such as IDES and ISOA, described in Sect. 2.2.1, rely on audit trails generated
by the target host, and thus unable to monitor network traffic, they were also considered
NIDSs, since they are capable of monitoring several hosts connected through a network,
by transferring the audit trails to a centralized location. Such systems can be considered
as either host or network based IDSs.

Other systems apply different approaches to Network Intrusion Detection, using either
network traffic monitoring only, or combining network traffic monitoring with audit
trails. Systems as such as NADIR [23], NSM [24], DIDS [25], are representative IDSs
with network traffic monitoring capabilities. We now detail these further.

The NADIR system

NADIR [23] is an IDS based on an automated expert system with built-in rules which
describe the illegal events, producing reports which help system administrators to
review audit files while looking for anomalous events.

NADIR was implemented as the Integrated Computing Network(ICN) of Los Alamos
National Laboratory(LANL), which was comprised of hundreds of users using hundreds
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of hosts, connected to different parts of the network operating at different security
levels. Such network sections are connected by three main nodes which provide user
authentication and access control, store data, authenticate and record all file access.
Each of these nodes produce audit records, which are then sent over to NADIR.

Based on these records, NADIR generates weekly reports for both user and network
activity, which are then compared against built-in expert rules modeling the security
policy as well as illegal or suspicious behaviors. Such rules are developed by security
experts. NADIR assigns a level of interest for each rule that has been triggered,
presenting the results to the system administrators in either a detailed raw format,
or in a graphical format which highlights the most suspicious events. It also provides
tools for further investigations of the events that deserve more attention.

The NSM system

The Network Security Monitor(NSM) [24] is a significant departure from other Intru-
sion Detection Systems of its time as the detection mechanism relies entirely on network
traffic monitoring instead of audit trails analysis.

This type of intrusion detection presents a variety of advantages over systems which
relies on audit trails analysis [13]. These are the most significant:

1. Systems based on audit trails tend to work only with one Operating System
at the same time, since audit trails are Operating System dependent. Network
traffic monitoring allows to monitor network protocols used my most Operating
Systems, thus, it allows to monitor hosts using different Operating Systems at
the same time.

2. Audit trails usually are not readily available, the Operating System can delay
its writing or might need to be transferred to be analyzed. Using network traffic
monitoring, the system has immediate access to the data, as soon as it gets on
the network.

3. Audit trails are vulnerable, as they can be tampered with, or the administrator
might simply turn them off. The use of network monitoring avoids this problems,
since the user has no control over the system.

NSM models the network in a hierarchically structured Interconnected Environment
Model(ICEM), which is composed by 6 interconnected layers, from the lower level bit
stream layer, up to the higher level layer which models state of the entire network.

These layers are all interconnected in order to relate all possible information that can
be acquired from the network traffic, relating, network packets, unidirectional data
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streams, bidirectional data streams, network activities of single hosts, how the hosts
are connected and the behavior of the entire system.

Expert systems are used by NSM to analyze network traffic, using as input a number of
network related information, such as the network model(ICEM), profiles with expected
traffic behavior consisting of data paths and service profiles, knowledge about each
service available on the network, the authentication level required by each service, the
level of security of each host and signatures of past attacks.

DIDS

The Distributed Intrusion Detection System(DIDS) [25] was the first IDS combining
distributed network monitoring and audit trail reduction with a centralized data anal-
ysis.

DIDS was designed having as its main priority to overcome the deficiencies presented
by NSM, such as not being able to monitor attacks which access the network through
a dial-up line, and extends the monitoring from a Local Area Network (LAN) to the
Wide Area Network (WAN) level.

In a network monitored by DIDS, a monitor is installed on each host connected to the
network, and each network segment has an individual monitor, thus augmenting the
network data with data captured in each host.

Both host and network monitors are responsible for collecting evidence of any suspicious
activity, reporting “interesting” events, which could be related to network attacks to
a central “director”. Based on expert systems, the “director” analyzes the reports,
evaluating the evidences collected by the monitors, and decides if there is any kind of
threat.

DIDS relies on aggregate information to perform intrusion detection, i.e.: even if the
activity on a single host doesn’t seem suspicious, when aggregated with data from other
hosts, it may reveal a questionable event.

NetSTAT

NetSTAT, described in [26], is much like USTAT [21], previously described in Sect. 2.2.1,
also following the approach of STAT [22], using state transition analysis to approach
intrusion detection.

The primary goal of NetSTAT was to improve USTAT, extending the state transition
analysis to network based-intrusions, allowing to use the USTAT IDS approach no
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monitor network traffic.

NetSTAT follows an approach based on formal models, where the network attacks are
modeled as state transition diagrams, and each state and transition are specific to the
network environment, modeled through the use of hypergraphs.

NetSTAT is a distributed application, capable of operating on complex networks com-
posed of several sub-networks. It is composed by: a network fact base, which stores
and manages the relevant information about the network security; the state transition
scenario database, which manages the state transition representation used to model
the desired intrusions; the probes which monitor the network traffic at specific network
locations; and the analyzer, used by the network administrator to configure all the
system.

2.3 Modern IDSs

Presently, Snort [27, 28] is one of the most widely used Network Intrusion Detection
Systems, providing a rule-based description of the network attacks and relying on
multi-pattern matching algorithms to perform intrusion detection.

Bro [29] is another modern and frequently used Network Intrusion Detection System,
although not as much as Snort. Bro follows an approach slightly different from Snort,
combining two of the most used approaches in Network Intrusion Detection Systems:
misuse and anomaly detection, bringing together the best of the two approaches.

Both Snort and Bro are rule-based systems, since the known network attacks or network
state are described through the use of rules.

2.3.1 Snort

Snort [27, 28] is a widely used, open-source, lightweight and cross-platform IDS, based
on the libpcap [30] sniffer and logger, providing real time alerting capabilities to inform
the network administrators of a possible intrusion.

Snort relies on efficient pattern-matching techniques to detect the desired intrusion
signature, being designed to monitor small TCP networks, where it is not feasible to
use large and expensive commercial IDS. In particular, Snort uses a multi-pattern
matching algorithm, an optimized version of the Aho-Corasick algorithm [31], which
allows the efficient detection of multiple network attack signatures at once, without
sacrificing the performance of the system.
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To describe the signatures of the desired network intrusions or attacks, Snort provides
a simple rule based language which relies on specifying tests and actions over single
network packets. Snort ships with a very complete set of rules which covers most of
the known network intrusions or attacks, making it very easy to start using Snort.

Snort presents some pre-processors that help relate separate network packets; Stream4
is such a pre-processor: it gives Snort the ability to be stateful, allowing the trace of
network packets on its session and use its state on the given session to create a rule
that describes the desired signature. The Flow pre-processor also allows snort rules to
relate with other rules by using the flowbits keyword, allowing one rule to set some
flag, and another other rule can check if that flag is set, and, if so, complete the rule
to describe the desired signature.

These two pre-processors help Snort to describe network attack signatures that span
several network packets, but they do so in a very limited way, not allowing the de-
scription of more complex relations between packets, such as the temporal distance
between two packets. Also, the way that the relation between several rules is expressed
is awkward, counter-intuitive and error-prone.

2.3.2 Bro

Bro [29] is another a widely used, open source IDS, with a clear separation between
the mechanism and policy and with a high degree of extensibility.

Bro is a peculiar IDS, as it is neither fundamentally anomaly based nor signature based:
it supports both approaches to Intrusion Detection. Bro is event driven, abstracting the
network packets. An event engine performs the low-level processing, which then passes
the events to a higher level policy layer, where the network administrator defines the
specific network policies using a specific scripting language. It also provides a signature
matcher, allowing the use of Snort rules by means of a specific signature converter.

Bro’s signatures are described in a specially built and flexible signature language, script
based, having in mind the network intrusion detection domain, providing specific data
types for intrusion detection, such as Internet Protocol (IP) addresses and port num-
bers.

This signature language allows one to describe network attack signatures mostly as a
pattern of bytes, which should be found in the network packets payload to detect the
specified signature. The use of such network signatures is a straightforward process for
some attacks, but in other cases, it’s harder to specify signatures of this type, leading
to a much broader specification, which could result in a high number of false positives.

To prevent this scenario, Bro makes uses of context [32], providing two levels of context,
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one at the low level, using regular expressions instead of fixed patterns, and another,
higher level, which takes advantage of semantic information which is brought by both
protocol analysis and the scripting language.

Bro provides application layer analyzers for some protocols/applications; such as Fin-
ger, File Transfer Protocol (FTP), Portmapper, Ident, Telnet and Rlogin [33]. Besides
these protocols, it can easily be extended to provide other application specific process-
ing, allowing the use of specific properties of these applications either in the policy or
the signature specification. Bro also provides analyzers for specific network situations,
such as Scan Detection, SYN-Floods, and Stepping Stones.

Bro manages to reconstruct TCP sessions as well as track the connection state, thus
having the capability of relate several network packets, although in a limited way. It
is also able to perform time and event based correlation [34], thus allowing for a finer-
grained relationship between packets, although this is made at the event level, being a
complex and laborious task.

2.4 The quest for performance

Most of the work related to Intrusion Detection Systems tend to focus on performance
improvement in terms of detection speed, allowing to perform intrusion detection in
present computer networks, with increasingly higher speeds, reaching several Gbit/s.

To cope with such network speeds and still be able to perform Intrusion Detection in a
live network link, several approaches have been taken. Attig and Lockwood [35] imple-
mented a framework capable of scanning network packet headers and payload content
in dedicated hardware, using Field-programmable gate arrays (FPGAs), allowing the
intrusion detection in fast networks.

Gnort [36] is another approach to the increasingly higher speeds of today’s computer
networks. In this case, Graphical Processor Units (GPUs) are used to improve the
pattern-matching operations of Snort, allowing it to deal with faster network speeds.

The quest for performance in Network Intrusion Detection Systems to monitor fast
networks has also been addressed by using different pattern-matching algorithms or, in
some cases, combining several algorithms to obtain a faster result. The work presented
by Coit et al. [37] implements a variation of the multi pattern-matching algorithm
Aho-Corasick in Snort, combining it with the Boyer-Moore algorithm. The new algo-
rithm allows Snort to monitor live network traffic at much higher speeds than it would
otherwise.

We now proceed with a more detail description of these systems.
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2.4.1 Using FPGAs in IDS

Attig and Lockwood [35] proposed a framework with the capability of scanning network
packet headers and payload content using FPGAs.

In particular, this work is capable of processing Snort rules in hardware. This frame-
work allows future modules to be added so that all necessary Snort features are sup-
ported. These capabilities allows one to use all Snort features to perform rule-based
processing at multi-gigabit speeds.

This work combines rule processing together with content scanning, defining the rule
processing. This combination is achieved through a rule processing unit, operating in
real time, determining if there is a match against any rule, which receives as input both
packet header and content match information.

This system forwards the traffic through several modules, first through a TCP Flow
Assembler, which re-assembles and orders the TCP packets. These packets are then
passed to the Header Processors, verifying the header of each packet; then to the
Content Scanners, verifying the packets payload.

If there is a matching header or signature, both packet header and content are forwarded
to the Rule Processor, which checks if some rule is matched against the network packets.
Here, a rule consists of an action, an header, and 0 to n signatures. A rule match
happens when the header and all associated signatures are detected.

To model the system, the rules are programmed dynamically using special control
packets from an administration console on the network.

2.4.2 Gnort

Gnort [36] explores the capabilities of modern GPUs, to perform Intrusion Detection,
more specifically by offloading the pattern-matching operations from the CPU onto the
graphic card, which are becoming increasingly powerful.

Gnort is based in the Snort open-source IDS, adapted so that its pattern matching
operations are transferred to the Graphics Processing Units(GPUs), thus increasing
the throughput of the system.

The system uses the multi-pattern matching Aho-Corasick algorithm, also used in
Snort, ported to run on graphic cards, boosting the performance up to a factor of
three, when compared to Snort running in a computer equipped with a 3.40 GHz Intel
Pentium 4 and 2GB of RAM.

Gnort comprises three main tasks: first the network packets are transferred to the
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GPUs into batches; then the GPUs perform the pattern matching through the use of
several threads; and finally, the results of the pattern matching techniques are trans-
ferred back to Snort.

Gnort was implemented to run in NVIDIA GeForce 8 series(G80) video cards, more
specifically a NVIDIA GeForce 8600GT using the Compute Unified Device Architecture
(CUDA) SDK.

2.4.3 Speeding up Snort

Coit et al. [37] implemented a variation of the Aho-Corasick algorithm, used in Snort
to perform pattern matching, by combining the Aho-Corasick and the Boyer-Moore
algorithms in order to improve the overall performance of Snort.

More specifically, this is a Boyer-Moore algorithm applied to a set of keywords held in
an Aho-Corasick-like keyword tree, which overlays common prefixes of the keyword.

This algorithm, which the authors call AC_BM, can improve the performance of Snort,
regarding the speed of network traffic analysis, from 1.02 up to 3.22 times, depending
on the network traffic type and rule set used. Such performance gains have the cost of
an increase in memory use, 3 times more that in the Snort original pattern matching
algorithm.

2.5 Other approaches

One limitation which is found in most Intrusion Detection Systems, more evident in
widely used systems, is the lack of a method to describe intrusion signatures which
span a long period of time, or which spread across several network packets.

Still, there are some systems which allow the specification of such signatures, but in
a very limited way and with a very counter-intuitive description, usually achieved by
means of pre-processors or built-in modules, purposely built for some tasks.

These approaches are very distant from the conceptual level of the application, with
focus in a single problem, using a very specific terminology, instead of focusing in the
overall abstract problem of Network Intrusion Detection.

Despite the focus of the IDS community on performance, some works have been devel-
oped which draw on other aspects, some using declarative approaches, either to model
the desired intrusions or even for the detection mechanism.
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We now present some of these: a declarative stateful intrusion detection based on
temporal logic [38]; Sutekh [39], a rule-based system using logical operations to model
the intrusions; IDIOT [40, 41, 42], a pattern-matching IDS based on Colored Petri-
Nets; and LAMBDA [43], a specially built language to describe attacks, through the
use of logical formulas.

2.5.1 Declarative Stateful Intrusion Detection

A declarative approach to stateful Intrusion Detection based on temporal logic is pre-
sented by Couture et al. [38]. It keeps track of context, thus allowing to model network
intrusion signatures involving several network packets, a feature which lacks in most
other network intrusion detection systems.

This work is based in a propositional logic extension, which allows the specification of
temporary properties, properties between a given set of events which can be understood
as knowledge gathered from the events.

Intrusions are modeled as a sequence of events, where events are packets with specific
properties considered relevant for the given attack.

This system is capable of expressing timing, safety, and repetition properties, very
relevant features to intrusion detection, thus allowing the expression of signatures which
span several network packets by allowing a relation between them to be stated.

To express intrusion signatures, the authors use the syntax of propositional logic, ex-
tended with a temporal operator used to reach past network packet in the network
traffic. Using this syntax, the expression of the desired intrusion signature is very
compact, but yet remains challenging for network administrators.

2.5.2 Sutekh

In [39], Pouzol and Ducasé propose a declarative signature specification language named
Sutekh, with precisely described semantics, allowing to reproduce rules for existing
rule-based IDSs, using an algorithm based on the construction of a state-transition
diagram.

Sutekh is a declarative signature specification language providing sequence, alternative,
partial order, negation, event correlation via logical variables unification, condition
verification and alert triggering, using a declarative semantics to describe the sequence
of events in the network traffic corresponding to a network signature.
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Sutekh does not provide an intrusion detection mechanism, instead, it produces rules
for existing rule-based Intrusion Detection Systems from the rules specified in the
Sutekh language. To do so, the authors defined an algorithm to build a state-transition
diagram, called SigGraph, representing the evolution of the detection process. Based on
this diagram, rules for different existent IDSs can be generated, such as for ASAX [44]
or EMERALD [45].

2.5.3 IDIOT - Intrusion Detection with Colored Petri Nets

In [40, 41], Kumar and Spafford present an approach and an implementation of a model
to perform Intrusion Detection using pattern matching based on graphs, providing a
clean separation of the various components.

The system can be viewed as three basic abstractions: the Information Trail, which
encapsulates the audit trail; the Signature Layer, providing a system independent signa-
ture representation; and theMatching Engine, which encapsulates the pattern matching
detection technique. The evolution of this work was latter named IDIOT [42].

In this case, the intrusion signatures are represented as specialized graphs, more specif-
ically, using an adaptation of Colored Petri Nets, having guards which are the context
where the signatures are matched, and vertices being the system states. The intrusion
signatures represent the sequence of events and the context of the desired network
signature.

The signature representation is achieved in a straightforward syntax which directly
maps the signature in the graph.

2.5.4 LAMBDA

LAMBDA [43] is a language to describe attacks in general, not only, but also including
network attacks or intrusions. Attacks in LAMBDA are described by means of condi-
tions and effects through the use of logical formulas related to the computer systems
state, providing a description of the desired attack from the attackers point of view.

This language allows the description of generic attack operations, independently of the
detection mechanism and the operating system used. This generic description is then
complemented with detection mechanism elements.

The attacks are described as a combination of actions and a set of statements related
to the target system. More specifically, the main components of the attack description
are: a set of conditions which must be verified for the desired attack to be succeeded;
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the effects of a successful attack, which are the consequences of one attack to the
system; and a scenario, describing how the attacker combines the actions necessary to
achieve the desired network attack. This description of the attacks is very powerful,
allowing the description to be from the attacker’s point of view. Besides these main
components, the description of an attack also includes the actions to take when an
attack is detected.

One of the main concerns with LAMBDA was to use a declarative approach in the
definition of the language. Another concern of LAMBDA was to be modular, allowing
the use of rules previously defined in other network attacks, to describe new ones.

2.6 Conclusion

In this chapter we introduced the concept of Intrusion Detection, covering the most
relevant types of IDSs, types of detection and characteristics of some IDSs, and gave a
brief account of the history of IDSs.

We saw several types of Intrusion Detection Systems, using different approaches to
describe the desired network signatures or network status as well as for the detection
mechanisms. However, most of these systems fall in two major types of types of
approaches: the signature based and the behavior based.

Although there are many approaches to IDSs, the most widely used systems are often
rule-based, where the intrusions or attacks are described though the use of rules, relying
on pattern matching techniques as a detection mechanism, usually resorting to complex
multi-pattern matching algorithms, allowing the simultaneously detection of multiple
signatures without sacrificing performance.

Another conclusion which can be drawn from this chapter is that, over the years,
the studies in the area of IDSs have focused in enhancing the current pattern-matching
algorithms to be able to cope with the increasingly network speeds, either by combining
several pattern matching algorithms or by implementing pattern matching algorithms
in alternative hardware. Still, there is work in either the description or detection
mechanisms underlying the IDS, but in much smaller numbers.

Although there are effectively some Network Intrusion Detection Systems which provide
native mechanisms, designed from scratch to allow the description of intrusions which
spread across several network packets, most IDSs are either capable of using signatures
which only involve one network packet, or, when allowing to specify a relation between
several network packets, this relation is achieved in a very basic and limited way, often
using ad-hoc tools, specifically made to achieve those relations.



Chapter 3

Constraint Programming

In this Chapter we introduce the Constraint Programming (CP) paradigm,
an approach to Declarative Programming. We present several instances of
CP, including Propagation Based Solvers, Constraint-Based Local Search
and Boolean Satisfiability Solvers, as well as the constraint solvers used in
our work.

3.1 Introduction

Constraint Programming (CP) [46, 47, 48] is an approach to declarative programming
paradigm, used to solve large and complex real world problems, mostly, but not only,
of combinatorial search nature. This approach to declarative programming is widely
used in the areas of planning and scheduling, but also used in a variety of areas.

Constraint Programming consists in the formulation of a solution to a problem as a
CSP [46], in which a number of variables are introduced, with well-specified domains,
describing the desired state of the system. A set of relations, called constraints, is
then imposed on the variables which make up the problem. These constraints are
understood to have to hold true, resulting in a solution to the CSP.

CP relies on a declarative way to model problems, in a way that we describe the
problem instead of specifying how the problem should be solved. Such description is
achieved by specifying a set of relations and properties that must be verified, a key
aspect characteristic of Constraint Programming.

The word “constraint” is central to Constraint Programming, since the major part of
modeling a CSP is achieved by stating constraints over a set of variables. A constraint
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is simply a way to specify logical relations between several entities, variables, each
taking values from specific domains.

3.1.1 History of Constraint Programming

Constraint Programming originated back in the sixties and seventies in Artificial Intel-
ligence area. One of the first problems modeled as a Constraint Satisfaction Problem
problem was probably the scene labeling [49], with the goal of identifying 3D scenes
using lines from 2D drawings. Another first application of constraints was Sketchpad
interactive graphics [50], an interactive graphics application, which allows the user
to draw and manipulate constrained geometric figures, contributing in a large scale
for the development of local propagation methods and constraint compiling. Other
early important contributions to CP were the systems Alice [51], CONSTRAINTS [52]
and ThingLab [53]; systems which back on those days were able to provide the most
important features of CP [54], including:

• Declarative problem modeling

• Propagation of effects

• Efficient search

Although Constraint Programming could already be found in such systems, the most
important step towards CP was taken when Gallaire [55] and Jaffar and Lassez [56]
reached the conclusion that logic programming was a particular type of Constraint
Programming, since the central idea of Logic Programming and Declarative Program-
ming is that problems should be modeled not by specifying how they should be solved,
but rather describing the problem itself, the same underlying ideology of CP. This
conclusion led to combining Constraint Programming and Logic Programming, origi-
nating the concept of Constraint Logic Programming (CLP), one of the widely used
approaches to Constraint Programming. CHIP(Constraint Handling in PROLOG) [57]
and GNU Prolog [58] are examples of CLP systems.

Although Constraint Logic Programming was one of the first successful implemen-
tations of Constraint Programming, it is also possible to use CP in general purpose
programming languages or special declarative programming languages. Ilog Solver [59]
was an example of such a system, a library for Constraint Programming in C++.

3.1.2 Discrete and Continuous CSPs

There are two major types of Constraint Satisfaction Problem: discrete and contin-
uous [46]. Discrete CSPs are commonly used to solve problems of a combinatorial
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nature. Continuous Constraint Satisfaction Problems or CCSPs, are also widely used,
but in a different application, mostly for solving non-linear systems and optimization
problems.

The primary differences of these types of constraints is the domain of the variables of
the CSP: in discrete CSPs, variable have a finite and discrete domain; while in the
continuous CSPs, also known as interval CSPs, variables have a continuous domain, a
continuous range of values, usually an interval of real numbers.

Another major difference between these two types of Constraint Satisfaction Problems
is the techniques used to solve the problems. Discrete constraints rely mostly on
graph theory and integer programming, while continuous constraints are fundamentally
based in numerical analysis, using numerical or symbolic algorithms and interval-based
techniques.

Although these two types of CSPs use different techniques to solve problems, they share
some aspects, since propagation algorithms are commonly used in both approaches to
reduce the domain of the variables [60].

3.1.3 Modeling in Constraint Programming

The formulation of a problem as a Constraint Satisfaction Problem is intrinsically
related to the approach used by the type of the constraint solver to be used, since
several approaches to CP are significantly different from each other. The chosen solver
can it self influence how a problem is modeled as a CSP. Although different solvers
and approaches to model a CSP require different techniques, the concept to model the
problem remains the same, independently of the tool being used.

Modeling a problem as a CSP, consists in deciding which are the variables of the
problem; the domain of each variable; and which properties and relations among the
variables should hold to model the problem.

When a solution to a CSP is found, it consists of an assignment of values to each
variable, taken from their individual domain, respecting both properties and relations
stated over the CSP. According to the problem and the needs of the user, one or more
outcomes for the solving process can be sought for:

• one solution, with no preference for which one

• the best solution, according to some objective function

• all possible solutions

• whether there exists a solution
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Listing 1 presents a formal representation of a CSP P = (V,D,C), a triple of variables
V , domains D and constraints C representing the problem. V represents the variables
of the problem; D the domains of each variable; C the constraints which restrict the
values of the variables and establishes relations between them. Expression 3.5 requires
each variable Vi ∈ V to take values from the respective domain Di ∈ D.

Listing 1 CSP - Formal representation

P = (V,D,C) (3.1)

V = {V1, . . . , Vn} (3.2)

D = {D1, . . . , Dn} (3.3)

C = {C1(Vi, . . . , Vj), . . . , Cm(Vi, . . . , vj)} (3.4)

∀ Vi ∈ V ⇒ Vi ∈ Di (3.5)

3.1.4 Constraint Solving Techniques

To reach a solution of a CSP, several techniques can be used, systematic search and
consistency techniques are the ones most widely used.

Systematic search is an exhaustive method to reach a solution of a CSP, making a
systematic exploration of the search place. Although a trivial algorithm is possible, it’s
not efficient, however, such algorithms are very important in Constraint Satisfaction,
as they are the basis for more advanced and efficient ones.

Consistency-checking technique is yet another important approach to reach a solution
of a CSP. This approach is based in removing values from the domain of the variables
which are inconsistent with the constraints specified to model the problem. There are
many consistency algorithms, but most of them are not complete, as such, usually this
technique is never used alone, being complemented with other approaches.

These two approaches to Constraint Satisfaction can be used independently, but a
common approach is to combine the two: search and consistency techniques. Constraint
Propagation is such a technique [46].

The algorithms used to solve constraints can be either complete or incomplete. Com-
plete algorithms are capable of finding a solution if it exists, and if doesn’t exist, are
capable of stating and proving that there is no solution to such problem, i.e. they
explore the entire search space. As for the incomplete algorithms they are usually
capable of finding a solution, although if there is no solution to such problem, they
are not capable of proving there is no solution. Usually Constraint Propagation, which
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may rely on backtracking search is complete, while other approaches, such as local
search are incomplete.

3.2 Propagation Based Solvers

Propagation [46] is one of the approaches most widely used in Constraint Programming.
Using Propagation based solvers, the problem is described by stating constraints over
variables. A constraint states what values are allowed to be assigned to each variable.
The constraint solver will then propagate all the constraints and reduce the domain of
each problem variable in order to satisfy all the constraints and instantiate the variables
of the problem with valid values, thus, reaching a solution to the CSP.

Constraint Satisfaction Problems are usually NP-complete, normally solved through
the use of backtracking search techniques, trying to fix a partial solution by extending
it into a global, consistent solution. The idea of Constraint Propagation is to transform
a given CSP into a smaller, tighter and simpler but equivalent CSP, thus reducing the
search space used in the search mechanism. Constraint Propagation is achieved by
repeatedly reducing the domain of variables, always keeping the equivalence between
the original and resulting CSP by ensuring that constraints do not get falsified.

3.2.1 Constraint Propagation Algorithms

To achieve the reduction of variable domains, there are a number of known atomic
reduction steps. An atomic reduction step is scheduled by the constraint propagation
algorithm which tries to select the best reduction step for the purpose of reaching a
property called local consistency [61].

The concept of local consistency is a central aspect to constraint programming. If a CSP
is locally consistent it contains some parts which are considered consistent according
to the constraints which defines the CSP.

The most popular definition of local consistency is called hyper-arc consistency, also
known as Generalized Arc Consistency (GAC), which, when dealing with binary con-
straints, is known as arc consistency. Basically, this definition means that for each
variable in each constraint, all values of the variable’s domain be part of a tuple which
satisfies the constraints, in other words, each value of each domain must be part of a
solution of the CSP. If all constraints in a given CSP are arc consistent, the CSP is
also arc consistent.



32 CHAPTER 3. CONSTRAINT PROGRAMMING

There are many arc consistency algorithms, the most well known is AC3 [53], first
presented as a binary system, and latter extended to an hyper-arc consistency or GAC
algorithm, originating the GAC3 [62]. AC3 is not optimal regarding time complexity,
thus, a new improved algorithm was later presented, the AC4 [63, 64]. While AC3
needs to redo much of the work when revisiting a node, AC4 stores a maximum amount
of information, avoiding recomputation, keeping track of all values supported for the
constraints. AC6 [65] is an evolution of AC4, standing in between AC3 and AC4, using
the best techniques of both algorithms, keeping the optimal complexity of AC4 but
stopping the search of support values as soon as one is found, just as in AC3.

3.2.2 Search Algorithms

Although some CSPs can be solved by using only Constraint Propagation, the vast
majority of problems can not be solved using only this method: there is the need
to complement these algorithms with other techniques. Due to this characteristic,
Constraint Propagation is interwoven with a search algorithm [66] until a solution to
the CSP is found.

The search algorithms are usually top-down, repeatedly expanding a node in the bottom
level of a search-tree until a failure is found. When this occurs, it backtracks to an
upper level in the search tree and then resumes the node expansion. The expansion of
these nodes is known as the branching strategy.

The most basic backtracking search algorithm is very simple and naive, but very in-
efficient, still it is used as the basis of more complex and efficient algorithms. This
algorithm is rather simple; it starts by assigning a value to a variable taken from the
variable’s domain, and then checks if this value in the current solution violates any
constraint. If some constraint is violated, a new value is assigned to the variable. Once
all values have been tried and there are still violation to some constraints, the algo-
rithm backtracks to the previous variable, assigning it with a new value which hasn’t
been previously used. The algorithm terminates when either a solution is found; all
solutions are found; or all values have been tested against all variables, indicating there
is no solution to the problem.

Forward checking [67] is a look-ahead search algorithm, able to check constraints be-
tween past and future variables, opposed to the backtracking algorithm, which is only
capable of checking constraints in the current and past variables. When a value is
assigned to a variable by the forward checking algorithm, any value of the domain of
a future variable which conflicts with the current assignment is temporarily removed
from the domain of the future variable. With this approach, if in a given instance, a
future variable presents an empty domain, it means the current partial solution is in-
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consistent, allowing the process to prune the search tree much sooner than the simpler
backtracking algorithm.

Maintaining Arc Consistency(MAC) [68] is another look-ahead search algorithm, look-
ing further ahead than forward checking when a value is assigned to a variable. Besides
checking values against future variables, it checks values of future variables against
each other. This way, any value which is not supported in the domain of other a future
variable is immediately removed, as well as the ones which are not supported in the
current assignment. This approach reduces the domain of future variables even more
than forward checking.

3.2.3 Gecode

Gecode (GC) [69] is a very efficient, award winning constraint solver library based on
constraint propagation. It is an open source system, implemented in C++, designed to
be interfaced with other systems or programming languages and available for most used
systems: GNU/Linux, Windows, and Mac. Gecode is widely used in both research and
education, as it is the state-of-the-art in constraint programming and most importantly
is an efficient and free open-source platform.

Since Gecode was designed primarily to be interfaced with other systems, several inter-
faces were developed by third party developers, e.g.: Gecode/J [70], a Java interface, a
project which is still available but no longer maintained; Gecode/R [71], a Ruby inter-
face to Gecode; AliceML [72], a dialect of Standard ML with constraint programming
capabilities, using Gecode for constraint solving; GeOz [73] a project that integrates
Gecode into the Mozart/oz environment; the Monadic Constraint Programming Frame-
work [74] which allows to perform constraint programming in Haskell through the use
of Gecode; GeLisp [75], a portable wrapper of Gecode to Lisp; among others.

Gecode is composed of a small and generic kernel which coordinates all constraint
propagation needed to reach a solution. It provides simple interfaces for the variable
domains, search heuristics and search engines, allowing the use of both Finite Domain
Integers and Finite Domain Sets. The kernel interface allows an easy adaption of any
these components to the specific needs of the problem being modeled.

Standard search algorithms are used in Gecode, such as depth-first search, limited dis-
crepancy search, branch-and-bound optimization and Depth-first search (DFS) restart
optimization. Gecode also allows for parallel search in distributed environments.

Gecode implements the most widely used constraints, enough to model most problems,
nevertheless, sometimes there is the need to implement custom constraints to satisfy
the needs of a specific problem. Due to the Gecode design architecture, it is very easy
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to implement new constraints, either by combining the constraints provided by Gecode
and/or writing custom propagators which implement constraints specific to the needs
of a given CSP.

3.3 Constraint-Based Local Search

Local Search [76] is the approach most widely used to solve combinatorial optimization
problems, and it is suitable to solve Constraint Satisfaction Problems. In fact, Local
Search is a very important approach to solve CSPs, as it is able to tackle very large
and complex problems found in real-life applications.

Constraint-Based Local Search (CBLS) [77] combines Local Search techniques with
Constraint Programming, using CP to model the problems in terms of constraints and
requires heuristic functions to be defined for use in the Local Search component.

Although these are not complete methods to solve a CSP, as they are unable to guar-
antee completeness or optimality, these methods are widely used in Constraint Pro-
gramming, because their sheer performance is sometimes the only way to solve complex
problems.

The basic idea of Local Search is quite simple: it starts with an initial, candidate solu-
tion to the problem, generally randomly generated or through the use of some heuris-
tics, which is then iteratively improved though minor modifications until a termination
criterion is satisfied, according the specification of the CSP. When the criterion is
satisfied, a solution is declared found.

The incremental modifications to the candidate solutions are usually guided by heuristic
functions related to the constraints which model the problem, helping in the process
of choosing the starting point for the next minor change to the solution.

Local Search may stagnate in local minima, unable to reach a valid solution. To prevent
stagnation, various methods may be used, such as randomized iterative improvement,
evolutionary algorithms, simulated annealing or tabu-search, to name a few.

Although CBLS algorithms are relatively simple to implement, they present very good
performance figures and flexibility to adapt to changes in the specification of the prob-
lem, although the tuning of heuristic functions is a very sensitive aspect.
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3.3.1 Local Search Algorithms

There are a number Local Search methods, but the simplest one, the basis for many
complex and efficient algorithms, is the hill-climbing algorithm: it starts with a can-
didate solution, and at each step, selects a position to be improved from the current
neighborhood through the use of heuristic functions. This process is then repeated
until a satisfactory solution is found.

There are many hill-climbing based algorithms. TheMin Conflicts Heuristic (MCH) [46],
although the most simple, is a widely used Local Search algorithm: MCH iteratively
assigns different values to each variable in order to minimize the number of violated
constraints. More specifically, the algorithm starts by assigning random values to the
variables, building the initial candidate solution, then, at each step, a randomly chosen
variable still involved in conflicts is assigned with the value which minimizes the con-
flicts over it. This process is repeated until a solution is found, an objective solution
is satisfied, or the maximum number of iterations has been reached.

3.3.2 Preventing local minima stagnation

Hill-climbing algorithms suffer from stagnation, as they may get stuck on local minima.
This problem is the main limitation of this approach to CSP solving, but many methods
can be used to avoid this problem. A simple and widely used method to avoid such
stagnation in hill-climbing based algorithms is to restart the solving process after a
specified amount of max steps have been performed.

Randomized Interactive Improvement

Another method which can be used to avoid local minima, is to occasionally allow the
algorithm to select a step which doesn’t improve the current solution, through random
methods. The Randomized Interactive Improvement [46] is an extension to the hill-
clinging algorithm, where, with a user-specified fixed probability, a randomly chosen
step is selected for the next step, instead of selecting the step which best improves the
current solution. This method, also called random walk step is also applied to many
other Local Search algorithms.

Tabu Search

Tabu Search [46] is yet another common method to avoid local minima stagnation in
hill-climbing based algorithms through the use of short term memory, preventing the
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search algorithm to visit a recently visited position during a specific number of steps.
Although TabuSearch helps hill-climbing algorithms in avoiding being stuck at local
minima, they present an undesirable side-effect: some parts of the search space can be
easily overlooked. This can be minimized by the specification of a criterion which allows
TabuSeach to visit recently visited positions, thus, resuming the normal operation of
the hill-climbing algorithm, contradicting the tabu-search on certain occasions.

Dynamic Local Search

Dynamic Local Search [46], also known as Penalty-Based Local Search is yet another
method to escape from local minima in hill-climbing based algorithms. This technique
is obtained by modifying the heuristic functions when the search is about to stagnate
in a local minima. Such modifications of the evaluation heuristic functions is achieved
by the use of penalty weights which are related to specific properties of the candidate
solution and to the constraints used to model the CSP.

3.3.3 Adaptive-Search

Adaptive Search (AS) [78] is a generic, domain-independent algorithm, for solving
Constraint Satisfaction Problem, based on Local Search [76], not limited to a specific
type of constraints and able to use a large class of constraints.

AS takes into account the structure of the problem, using variable-based information to
design general heuristics which help solve the problem, guiding the solver more precisely
than global objective functions, such as the number of constraints violated. To prevent
stagnation on local minima, Adaptive Search uses a memory based mechanism similar
to Tabu Search.

Adaptive Search is a peculiar solver, as it is designed to solve problems which can to
be modeled as a permutation, i.e. in a problem modeled with N variables, each variable
domain is D = {I, . . . , I + N − 1}, where I is the lower value that each variable can
take. A solution to such problem is a permutation of D. In effect, AS has an implicit
“all-different” global constraint.

The iterative improvements to each candidate solution in AS are achieved by selecting
one element of the solution and then swapping its value with that of one of its local
neighbors. Both variables are chosen by means of a series of heuristics that match the
problem being solved.

In general, Adaptive Search work as follows; start with a randomly generated candidate
solution, then, at each step, compute the amount of error of each variable according
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to the constraints used to model the problem. The variable which presents the highest
error is selected. Then, the cost of a new solution is evaluated considering all possible
values that can be assigned to the selected variable. The value which provides the best
next solution is assigned to the culprit variable, by means of a swap, and the process
is repeated until a solution is found or a maximum number of steps has been reached.
If no better solution is found, the variable is marked tabu and is ignored during a
predefined number of steps.

In Adaptive Search, the constraints which model the problem are represented as er-
ror functions which inform “by how-much” each constraint is being violated. Besides
the error functions which model the constraints, there are other heuristic functions
which help solve the problem, the most important are the Cost_of_Solution and
Cost_on_Variable. These error functions are then used to model the constraints,
which guide the solver towards a solution.

Cost_of_Solution computes the amount of error of a candidate solution, while function
Cost_on_Variable informs the algorithm about the cost of changing the value of a
variable in the present candidate solution. These heuristic functions are used together
to help find the culprit variable, the variable which brings most violations to the current
candidate solution, thus, the variable which must see its value modified. The new value
to be assigned to this variable is the one which minimizes the total number of violations,
selected through the use of the same heuristic functions which model the constraints.

The specification of a CSP in Adaptive Search is achieved by implementing the heuristic
functions:

1. Cost_of_Solution

2. Cost_on_Variable

Part of the CSP is modeled in Cost_of_Solution, where all necessary constraints to
model the problem are given. This description of the problem has two purposes: on
one hand, inform the amount of error of a given solution, on the other, inform if the
solution is valid, i.e. the solution has a zero error value. The rest of the CSP is modeled
via Cost_on_Variable, stating the constraints related to a specific variable given as
parameter to the function Cost_on_Variable, allowing to compute the amount of error
of a specific variable in a given candidate solution.

3.4 Boolean Satisfiability Problems

Another method of solving Constraint Satisfaction Problems is to transform the CSP
into a Boolean Satisfiability Problem (SAT) [79] in order to take advantage of exist-
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ing free and efficient SAT solvers [80]. A Boolean Satisfiability Problem consists in
determining if there exists a valid assignment to all variables of a Boolean function,
also known as a propositional formula, such that the boolean function is satisfiable, i.e.
evaluating to true.

SAT is a prominent approach to the specification and solving of complex and practical
problems in many areas, such as planing, circuit testing and software verification,
automatic test generation, logic synthesis, among others. As a consequence, many
efficient algorithms have been proposed and implemented.

These algorithms can be either complete or incomplete. In complete algorithms, the
solvers are able to tell if there is a solution to a SAT problem and which one, as well as
proving that a solution does not exist, if that is the case. As for the incomplete methods,
while they are not capable of determining if there is effectively a solution which satisfies
the given SAT, their performance makes them interesting in applications where it is
not necessary to prove unsatisfiability.

SAT solvers date back to 1960, when Davis and Putnam [81] proposed an algorithm for
Boolean SAT, which became known as Davis-Putman algorithm(DP). This algorithm
was then enhanced to solve a problem of excessive memory usage, resulting in the
Davis-Logeman-Loveland algorithm, also known as DPLL.

Over the years, many SAT solvers have been developed, but most of them rely on the
DP or DPLL algorithms, combined with Local Search methods. This gives rise to new
efficient methods to solve SAT problems. Although these algorithms are quite efficient,
there are many problems which push them over the limit, leading to the development
of new methods to improve the DPLL by optimizing some of its aspects. This brought
about a new generation of solvers, such as Chaff [82], which allowed to solve real life
problems, industry originated, consisting of millions of variables.

The propositional formula, or boolean formula, used to encode a SAT problem is usually
presented in the form of a product of sums, also known as Conjunctive Normal Form
(CNF) [79], which is a conjunction of clauses, each clause being a disjunction of literals,
and each literal a boolean variable or its negation.

3.4.1 SAT Encodings

As previously mentioned, in order to model a problem with SAT, we need to represent
it as a CNF formula. This modeling can be achieved in a different number of ways,
called encodings.

Most the available encodings use the same process to represent variables, they assign a
boolean variable to every possible value of each CSP variable [80], so that, for each CSP
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variable i, and for each value v of its domain, there will be a logical value xi,v, which,
when true, means the value v has been assigned to the CSP variable i. If variable xi,v
has been assigned with a true value in a solution to such CSP, the value v has been
assigned to variable i. On the contrary, if it has been assigned with a false value, it
means the variable v can not be assigned to variable i in order to satisfy the CSP.

There are many methods to encode a CSP as a SAT problem, the most common ones
being:

1. Direct Encoding

2. Support Encoding

3. Log Encoding

Direct Encoding

One of the most popular encoding is the direct encoding [83]. The direct encoding, uses
the variable representation described above.

The direct encoding is composed by 3 types of clauses:

1. at-least-one clauses

2. at-most-one clauses

3. constraints clauses

The at-least-one and at-most-one clauses are used to model the variables of the CSP.
The at-least-one clauses are used to indicate which values may be assigned to each
CSP variable. In fact, there should be one at-least-one clause for each CSP variable i,
imposing that at least one value v of its domain should be assigned to i, thus specifying
the domain of each variable. Listing 2 represents the at-least-one clauses for CSP
variable xi, where 1 . . . n are the values found in the domain of xi.

Listing 2 at_least_one clauses

xi,1 ∨ xi,2 ∨ . . . ∨ xi,n (3.6)

The at-most-one clauses are used to make sure that only one value is assigned to a
CSP variable, forbidding two values to be assigned to a variable at the same time.
Listing 3 represents the at-most-one clauses for CSP variable i, where 1 . . . n are the
values found in the domain of i.
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Listing 3 at_most_one clauses

(¬xi,1 ∨ ¬xi,2) ∧ (¬xi,1 ∨ ¬xi,3) ∧ . . . ∧ (¬xi,1 ∨ ¬xi,n) (3.7)

(¬xi,2 ∨ ¬xi,3) ∧ . . . ∧ (¬xi,2 ∨ ¬xi,n) (3.8)
...

(¬xi,n−1 ∨ ¬xi,n) (3.9)

The constraint clauses are the ones which actually model the problem. In the direct
encoding the constraints are modeled by specifying the pairs of inconsistent assign-
ments through the use of conflict clauses. Listing 4 represents two inconsistent value
assignments, indicating that when value v is assigned to the CSP variable xi, value w
cannot be assigned to the CSP variable xj and vice-versa. Such conflict clauses must
be specified for all inconsistent value assignments of all variables of the CSP.

Listing 4 conflict clauses

¬xi,v ∨ ¬xj,w (3.10)

Support Encoding

The support encoding [84, 85] is very similar to the direct encoding: variable domains
are represented in the same way, through the use the at-least-one and at-most-one
clauses. As for the constraints, these are represented using support clauses instead of
conflict clauses.

Support clauses are achieved by specifying which assignments are compatible with
a specific assignment, thus indicating which values may be assigned to which CSP
variables when a specific value is assigned to a given CSP variable. These support
clauses can be represented in CNF as in Listing 5, which states that if value v is
assigned to CSP variable xi, values w1, w2, . . . , wk can be assigned to variable xj.

Listing 5 support clauses

¬xi,v ∨ xj,w1 ∨ xj,w2 ∨ . . . ∨ xj,wk
(3.11)
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Log Encoding

The log encoding [86, 80] is very different from the direct and support encodings. The
major difference is the way the domain of each CSP variable is specified.

In this case, for each CSP variable, there are m = [log2 d] boolean variables, where d
is the size of the variable domain, and each of the 2m combinations represent a value
assignment. In a log encoding, for each CSP variable i, there are xbi boolean variables,
with xbi = 1, if and only if the bit b of the value assigned to a CSP variable i is set to
1.

Log encoding does not use at-most-one and at-least-one clauses, meanwhile, if the
cardinality of the variable domains is not a power of two, there is the need to prohibit
the values which do not belong to the variable domains, achieved though the use of
prohibited-value clauses.

The constraint clauses are usually specified in terms of conflict causes in the same as
in the direct encoding, but using the variable representation of the log encoding.

Considering two CSP variables, xi and xj, with domains {0, 1, 2}, 2 bits are necessary
to represent the variable domain values, but since the cardinality of the domain is not
a power of 2, there is the need to prohibit the value 3, which does not belong to the
variable domains. To do so, we must create prohibited-value clauses, as in Listing 6
which represents i=3 and j=3.

Listing 6 log-encoding prohibited-value clauses

¬x0i ∨ ¬x1i (3.12)

¬x0j ∨ ¬x1j (3.13)

Using the same example, but considering the combination of assignments [i = 2, j = 1]

is prohibited in a solution to a given problem, we can model the constraints as in
Listing 7.

Listing 7 log-encoding - conflict clauses

x0i ∨ ¬x1i ∨ ¬x0j ∨ x1j (3.14)
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3.4.2 SAT Solver Implementations

Several SAT solvers participate in regularly staged competitions which rank their per-
formance. MiniSat [87] is a widely used SAT solver which has been getting very good
results in these events [88].

MiniSat is implemented so as to be a small, complete and efficient SAT solver. The
major concerns of the MiniSat authors were to provide a tool that could be easily
changed to match the needs of the user and also one that could be easily interfaced
with other tools.

MiniSat is a conflict-driven SAT solver, inspired in both Satzoo [89] and Satnik [90],
rethinking and simplifying these two solvers without sacrificing the performance. More
specifically, MiniSat is based in the widely known DPLL algorithm, relying on conflict-
driven backtracking [91], and boolean constraint propagation using watched literals [82].

As mentioned earlier, MiniSat is a very extensible tool, allowing its easy integration
with other applications. MiniSat provides a simple C++ API which allows other ap-
plications to model a SAT problem directly into MiniSat, without the need to generate
intermediate CNF files which would have to be parsed.

Thanks to this API, modeling a SAT problem in MiniSat is quite simple. This is
achieved by calling API functions which allows to add new variables, new clauses and
run the solver. In particular, the function newVar() creates a new variable, the function
addClause() is used to add clauses which model the problem, and finally, the function
solve() is used to obtain a solution to the problem, if it exists. The solve() function
returns FALSE if there is no solution to the problem, TRUE otherwise. If a solution is
found, it can be accessed though the public vector “model”.

3.5 Conclusion

In this Chapter we introduced the Constraint Programming paradigm, a major ap-
proach to Declarative Programming with a focus on complex combinatorial problems.
We covered the basic concepts and presented a brief history of CP, including the most
important evolutions since it was introduced.

We also presented different approaches to Constraint Programming, including Con-
straint Propagation, Constraint-Based Local Search and Boolean Satisfiability Solvers:
the approaches used in the work presented in this thesis.

We have also briefly introduced the specific solvers used in our work: Gecode, Adaptive
Search and MiniSat.



Chapter 4

Modeling Intrusion Detection with
Constraints

This Chapter describes how to model and perform Network Intrusion De-
tection, using a signature based approach to Network Intrusion Detection,
resorting to Constraint Programming methodologies. We describe the archi-
tecture of the system as well as details of each detection mechanism available
in NeMODe.

4.1 Introduction

Network Intrusion Detection Systems are one of the most important tools in computer
network management to maintain the security, integrity and quality of computer net-
works and keep data safe. To maintain the quality and integrity of the services provided
by a computer network, some aspects must be verified in order to maintain the security
of data.

The description of those conditions, together with a verification that they are met
can be seen as an Intrusion Detection task. These conditions, specified in terms of
properties of parts of the (observed) network traffic, will amount to a specification of a
desired or an unwanted state of the network, such as that brought about by a system
intrusion or another form of malicious access.

Those conditions can naturally be described using a declarative programming approach,
such as Constraint Programming [46], using Constraint Propagation methods [46],
Constraint Based Local Search (CBLS) [76], or systems and mechanisms based on
Boolean Satisfiability Problems(SAT) [79], enabling the description of these situations
in a declarative and expressive way.

43



44 CHAPTER 4. INTRUSION DETECTION WITH CONSTRAINTS

Using Constraint Programming to perform Network Intrusion detection allows to spec-
ify network intrusion signatures as relations between several network entities, enabling
an easy way to describe and perform the detection of network attacks that span several
network attacks.

4.2 Overall Architecture

The NeMODe system [2] is built to be a parallel intrusion detection system based
on the Constraint Programming paradigm, by being able to run in parallel several
detection mechanisms, based on different constraint programming methodologies in
order to take advantage of the best solution produced, so, its architecture must reflect
this parallelism as well as the various detection mechanisms available in the system.

NeMODe is composed of three major interconnected components; 1) a compiler, 2) a
set of detection mechanisms based on Constraint Programming, and 3) a best solution
selector.

The system is composed of two inputs and one output. As inputs, the system receives
the description of a specific network situation and the network traffic. As output, the
systems outputs the best match found to the problem, i.e. a set of network packets
that prove the existence of the attack, if it exists on the network traffic.

The intrusion to be detected is described in a custom built language for the NeMODe
system, with terminology related to computer network, talking about network entities
and relations between those entities.

The description of the intrusion is then fed to the compiler, which parses it into a
semantic model and generates code for each of the intrusion detection mechanisms
available on the system, according to the described network situation. At present, the
compiler generates code for Gecode, Adaptive Search and MiniSat.

After all recognizers have been generated, each back-end receives as input the network
traffic and produces a valid solution, if the intrusion described as a NeMODe pro-
gram exists on the network traffic that was given as input to each back-end detection
mechanism.

In a final stage, when all back-end detection mechanisms have been generated, each
one will provide a solution that identifies the specific network situation. From those
solutions, there is the need to choose one. Since every solution provided by any of the
solvers is a valid solution, the system may simply choose the first solution as the best
solution to the problem.
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Figure 4.1: NeMODe system architecture

Fig. 4.1 represents the architecture of the system, including the compiler, the detection
mechanisms and the solution selector. It also represents the data flow between each
component.

4.3 Modeling intrusions as a CSP

Our approach to intrusion detection relies on being able to describe the desired net-
work attack signatures as a CSP and then identify the set of packets that match the
target network situation in the network traffic, through the use of several detection
mechanisms based on constraint programming, such as: Gecode, a Propagation based
solver; Adaptive Search, a Constraint Based Local search algorithm and MiniSat, a
solver for Boolean Satisfiability Problems.

In order to be able to use Constraint Programming on Network Intrusion Detection,
the intrusion signature to be detected needs to be modeled as a Constraint Satisfaction
Problem (CSP), by stating relations between a set of variables with a specific domain.
This CSP is composed by:

• a set of variables V , representing the network packets;

• the domains D for the variables V ;

• a set of constraints C, which relates the variables to describe the network situa-
tion.

On this CSP, each network packet variable is a tuple of integer variables, representing
the significant fields of a network packet necessary to model the intrusion signatures
that we are interested in.

The domains of the network packet variables, D, are the values actually seen on the
network traffic window, a set of tuples of integer values, each tuple representing a
network packet actually observed on the network traffic window and each integer value
representing the fields that are relevant to network monitoring.
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The payload of each packet is stored separately in an array containing the payload of
all packets seen on the traffic window.

A solution to such a CSP, if it exists, is the set of packets that correspond to the
network intrusion described by the CSP.

Listing 8 Representation of a network CSP

CSP = (V,D,C) (4.1)

V = {V1, V2, . . . , Vn}, ∀Vi ∈ V : Vi = (X1, X2, . . . , Xz) (4.2)

D = {D1, D2, . . . , Dm}, ∀Di ∈ D : Di = (Y1, Y2, . . . , Yz) (4.3)

Data = {Data1, . . . , Datam},
∀ Datai ∈ Data, ∀ Di ∈ D : payload(Di) = Datai (4.4)

C = {C1(Vi, . . . , Vj), . . . , Ck(Vi, . . . , Vj)}
∀Ck ∈ C : Ck = {CF1(Vi, . . . , Vj), . . . , CFl(Vi, . . . , Vj)} (4.5)

Listing 8 shows a network CSP, represented by the triple CSP = (V,D,C), where V is
a set of network packet variables, and each Vi = (X1, X2, . . . , Xz) is a network packet
variable, composed by a set of integer variables; D is the set of domains which are the
packets found in the network traffic, where each packet Di = (Y1, Y2, . . . , Yz) is a set
of integer values, representing a network packet found in the network traffic. Data are
the payloads of all packets found in the network traffic, where the payload of packet
Di is Datai; and C is the set of constraints which describes the attack to be detected,
where each constraint Ck is mapped into a composition of library and network specific
constraints.

4.3.1 Problem Variables

To model a Network Intrusion Detection problem as a CSP, the variables of the prob-
lems represent fields in network packets, which, when assigned some value, will identify
the network packets that make up the network signature used, the trail left by the at-
tacker.

A very important step in describing a Network Intrusion Detection problem as a CSP
is to decide of how many variables the problem will be composed of. This will be tied
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to the number of packets necessary to identify the desired intrusion: those used in the
signature of the attack, which will constitute the proof of the attack.

4.3.2 Variable domain

A very important step in modeling the Network Intrusion Detection problem as a
CSP is to ensure that a network packet variable has the correct domain, otherwise the
solver can produce valid solutions according to the problem description, but which do
not occur in the network traffic being analyzed.

The domain of the network packet variables must be the network packets actually seen
on the network traffic, so that the variables can only take values that make sense, the
ones that correspond to real network traffic, this way, a solution that is valid according
to the problem specification is also valid according to the given network traffic, since
the solution will be a subset of the network traffic.

Listing 9 shows a formal representation of a network packet domain, where Vi is a
network packet; D is the domain of the packets, the packets found in the network
traffic; and expression 4.8 states that packet Vi must belong to the current network
traffic.

Listing 9 Domain of variable Vi

Vi = (V1, V2, . . . , Vz) (4.6)

D = {D1, D2, . . . , Dm}, ∀Di ∈ d : Di = (Y1, Y2, . . . , Yz) (4.7)

∀Vi ∈ V, ∀D = network_traffic : Vi ∈ D (4.8)

4.3.3 Constraints

One of the major steps in modeling a Network Intrusion Detection problem as a CSP
is to state constraints over the network packet variables in order to describe relations
between the network packet variables, so we can model the desired network situation.

Most solvers provide built-in constraints which can be combined in order to model most
of the constraints and relations necessary in a Network Intrusion Detection problem,
such as the ones that force a packet to verify some property or relation with some
other packets. Other constraints, such as the ones that require a packet to contain
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a specific datum in the payload or state some relations between the payload of two
network packets can’t be implemented using the built-in constraints available in the
solvers, since they usually don’t have the capability of working with strings, thus not
being able to state constraints over strings. In these specific situations, we have to
create custom network constraints to describe these relations.

4.3.4 Network Entities

To model Network Intrusion Detection problems, NeMODe provides, as network enti-
ties to model network attacks, several network packet types, as well as some individual
fields, essential to model Network Intrusion Detection problems. At this time, NeMODe
provides 3 types of network packets, although this can easily be extended to cope with
other packet types. The ones that were needed in our experiments are:

1. Transmission Control Protocol (TCP) packets

2. User Datagram Protocol (UDP) packets

3. Address Resolution Protocol (ARP) packets

Each of these is represented as an Array of 25 Integer values, the size of the larger
network type, ARP packets. While the ARP packets use all 25 fields, other network
packets don’t, as they have less fields, so, these extra fields are ignored. The network
payload of both UDP and TCP packets are represented separately as a String. Besides
the fields found on the network packet, we decided to add an extra identification field
which identifies the packet and helps relate the packet with its payload.

The TCP packets use 23 Integer fields of the 25 available and the UDP use 14.
Although NeMODe is prepared to use these network packet types with these number
of fields, it can easily be extended to cope with more fields on each network packet
type.

TCP and UDP network packet share the first 14 fields, the fields related with packet
time-stamp and source/destination. These fields are listed in Table 4.1.

UDP packets use only the fields described in Table 4.1, but TCP packets need some
extra fields to represent the TCP specific fields: the TCP flags and the acknowledgment
number. Table 4.2 presents the extra TCP fields as well as its position in the array
which represents the network packet.

As for the ARP packets, they are represented as an Array of 23 Integers, represent-
ing the fields necessary to model the problems we experimented. Table 4.3 presents
the fields used to represent the ARP packets as well as their position in the Array
representing the network packets.
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Array position Packet Field

0 Packet ID

1 Packet type - TCP, UDP or ARP

2 Time-stamp(seconds)

3 Time-stamp(microseconds)

4 1st octet of the Source Address

5 2nd octet of the Source Address

6 3rd octet of the Source Address

7 4th octet of the Source Address

8 Source Port

9 1st octet of the Destination Address

10 2nd octet of the Destination Address

11 3rd octet of the Destination Address

12 4th octet of the Destination Address

13 Destination Port

Table 4.1: TCP and UDP Shared Fields

This representation is used for both the network packet variables and packets in the
traffic, although, depending on the back-end detection mechanism used of the solver,
the internal representation of the network packet variables may differ due to specific
limitations of the solvers used by these detection mechanisms. Further on, we explain
the details of the variable representation on each of available detection mechanism.

Network Traffic

NeMODe needs to represent the network traffic internally so it can detect the desired
network signatures. We decided to do this as a set of packets, each one represented as
in Sect. 4.3.4, using Arrays to represent such set. So, the network traffic is represented
by an Array of Arrays of 25 Integer, the number of fields of the larger network packet
type.

Besides the network packet fields described above, there is the need to represent the
TCP and UDP payload, which is essentially treated as a String. So, we decided to
store the payload of the network packets in a separate Array of Strings, each String
representing the payload of one packet. The connection between the network packet
and its payload is achieved by the internal network packet identification number, which
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Array position Packet Field

14 CWR

15 ECE

16 URG

17 ACK

18 PSH

19 RST

20 SYN

21 FIN

22 Acknowledgment Number

Table 4.2: TCP Extra Fields

is its position in the set representing the network traffic and will be used to reference
the packet payload. So, the payload of packet traffic[i] is payload[i].

Listing 10 represents the network traffic together with the packet payload, where
traffic represent the traffic, payload the payloads found in the network traffic, and
n the number of packets in the traffic.

Listing 10 Reified Constraints

traffic = [ [V0,0, . . . , V0,22], . . . , [Vn,0, . . . , Vn,22] ] (4.9)

payloads = [ P0, . . . , Pn] (4.10)

4.4 Modeling with Propagation Based Solvers

Propagation Based systems relies on functions which reduce variable domains, which
in turn reduces the search space, until no more violations to the constraints used to
model the problem are found, and all variables are reduced to a single-valued domain,
thus reaching a solution to the problem, if one exists.

In order to model a problem in Propagation Based Solvers, we need to model the
problem as a CSP, and to do so, three things need to be defined: 1) the variables of
the problem, 2) the domain of the variables, and 3) the constraints which describe the
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problem. In the case of Network Intrusion Detection problems, the same modeling will
be used independently of the solver being used.

Array position Packet Field

0 Packet ID

1 Packet type

2 Time-stamp(seconds)

3 Time-stamp(microseconds)

4 Operation

5 1st octet of Sender Hardware Address (SHA)

6 2st octet of Sender Hardware Address (SHA)

7 3st octet of Sender Hardware Address (SHA)

8 4st octet of Sender Hardware Address (SHA)

9 5st octet of Sender Hardware Address (SHA)

10 6st octet of Sender Hardware Address (SHA)

11 1st octet of Sender Protocol Adress (SPA) (IPV4)

12 2st octet of Sender Protocol Adress (SPA) (IPV4)

13 3st octet of Sender Protocol Adress (SPA) (IPV4)

14 4st octet of Sender Protocol Adress (SPA) (IPV4)

15 1st octet of Target Hardware Adress (THA)

16 2st octet of Target Hardware Adress (THA)

17 3st octet of Target Hardware Adress (THA)

18 4st octet of Target Hardware Adress (THA)

19 5st octet of Target Hardware Adress (THA)

20 6st octet of Target Hardware Adress (THA)

21 1st octet of Target Protocol Adress (TPA) (IPV4)

22 2st octet of Target Protocol Adress (TPA) (IPV4)

23 3st octet of Target Protocol Adress (TPA) (IPV4)

24 4st octet of Target Protocol Adress (TPA) (IPV4)

Table 4.3: ARP Packet Fields
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4.4.1 Modeling in Gecode

Modeling Network Intrusion Detection problems in Gecode is basically done by as-
serting relations between the variables of the problem in order to describe the desired
Network Intrusion Signatures.

3 main steps need to be done to model a Network Intrusion Detection in Gecode:

1. model the variables

2. specify the domains of each variable

3. specify the constraints in order to model the problem.

Variable representation

In Gecode, the primary type of the variables is Integer. There are helpers which ease
the description of the problem in terms of variables, such as the type Integer Array,
an array of variables of type Integer. This is a perfect data type to represent the
network packet variables in a Constraint Satisfaction Problem, since it can easily be
represented as a tuple of Integer variables, as provided by the Integer Array.

To represent the problem variables, which we call network packet variables, we decided
to use the IntVarArray which can be used as a single variable, instead of using the
individual variables found in the array. This data type allows to easily represent the
network packet variables, since each network packet variable is a tuple of Integer
variables, which can be directly mapped into a IntVarArray.

The first step to model a problem is to declare the necessary packets to model the
problem. Gecode provides an easy way to declare IntVarArray, by simply stating
the number of Integer variables, and the upper and lower bounds of the domain of
each Integer variable. This procedure is done to each network packet variable of the
problem, so, the variables of the problem will be a set of IntVarArray.

Listing 11 presents the initialization of the network packet variables in Gecode, where
vars is the array with all network packet variables, In this case, a signature with 5
packets is used, so, 5 IntVarArray variables are created, and then initialized with 19
Integer variables with a domain ranging from 0 to 10000001, which is the range of
values that each Integer variable can take in Intrusion Detection problems. In this
example, we use an IntVarArray composed of 19 Integer, since the example uses
TCP packets. For other types of packets, different sizes are used.

1This is the largest number that can occur in the header of a packet, the timestamp.
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Listing 11 Gecode Variable Initialization
1 ...
2 IntVarArray vars[5];
3 ...
4 for(i=0; i<5; i++)
5 vars[i]=IntVarArray(*this,19,0,1000000);
6 ...
7

Using only Integer variables poses a problem, since some network packet fields need
to be represented as a set of characters, such as the network payload. The payload on a
network packet is a completely different field from other fields, since it is a set of opaque
data, which can be understood as a String. Such fields cannot be represented together
with other fields of the network packets variables, since IntVarArray is composed only
by Integer variables, and Gecode is not prepared to work with String data-structures.

To deal with this situation, we decided to add an extra Integer variable in the
IntVarArray representing the network packet variables, which, when a solution is
found, the value assigned to that variable will be a pointer to the payload of a specific
network packet of the network traffic. This simplifies the representation, since the
payloads will be treated as normal Integer variables.

Variable domain

To model the variables in Gecode, we decided to use IntVarArray, a set of Integer
variables. The initial domain of such variables is defined by an interval of values, not
allowing to specify initial domains as sets of non contiguous values. This situation is
not the most desirable to represent the domain of the variables of a Intrusion Detection
problem, which is composed of a set of sparse values which fit in a very large interval,
ranging from low values to very high values.

So, the domain of the problem variables will have to be a contiguous Integer interval,
including all possible values seen on the network traffic. This type of domain is not
suitable for Network Intrusion Detection problems, since this way, the solver would
generate solutions that don’t exist on the network traffic, which makes no sense since
we are looking for a set of network packets with specific properties which are actually
found in the network traffic source. In order to solve this, the domain has to be
narrowed down to the values which occur in the network traffic by using constraints to
limit the possible values that each variable can take.

In a Network Intrusion Detection problem, the domain of the network packet variables
must be the packets actually seen in the traffic, since the only solutions to the prob-
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lem that make sense are the ones composed by packets found on the network traffic.
Narrowing the variable domain is one of the major problems in modeling this type of
problems in Gecode, since it affects the performance of the system significantly.

The packets in the network traffic are composed by individual values of two types;
integer values to represent the network packet fields and strings or set of character
values to represent the payload.

The integer values found on a network packet range from small values to very high
values, but only a few of those are found in the network packets, thus, most of the values
found on the interval which contains all the values found on the network traffic are not
used. Using this set of values to describe the domain of the network packet variables
leads to a problem: producing solutions that are valid according to the description but
not according to the network traffic, since they can not be found on the traffic.

Gecode only allows the specification of variable domains as interval of integers, which,
is not the most suited to these types of problems, so, there is the need use some
mechanisms provided by Gecode to constraint the values that each variable can take to
the ones actually seen on the network traffic, despite the initial variable domain being
much larger.

To limit the domain of the values that can be assigned to each variable we used two
main approaches [7, 6]; 1) using reified constraints to impose restrictions over each
Integer variable of each IntVarArray, limiting the values of each variable, and 2)
using Extensional constraints, which force a tuple of constraint variables of a problem
to take values from a set of tuple of values.

Reified [46] constraints allows to state constraints in a form of logical connectives, such
as conjunctions and disjunctions. This allows to state constraints such as in Listing 12,
forcing variable A to take the values 5 or 10, if those values pertain to the initial domain
of variable A.

Listing 12 Reified Constraints

A = 5 ∨ A = 10

The reified constraints can be applied to the individual Integer variables of each
IntVarArray variable in order to reduce the domain of each Integer variable to the
values found the network traffic. Each Integer variable represent a field of a network
packet, so, the domain of such variable should be reduced to the values actually found
for that specific field in all packets of the network traffic. This is not enough to ensure
that the variables will be assigned with valid values, since each the individual Integer
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variables of the each IntVarArray should be assigned with values from a single network
packet, since the individual values of a network packet don’t make sense when used
alone.

Listing 13 represents how the domain of the network packet variables can be reduced
to the packets seen on the network traffic using reified constraints in Gecode, where D
represents the set of network packets seen on the network traffic and (Di,1, . . . , Di,22), a
network packet, in a total of m packets. V represents the set of network variables used
to model the problem, in a total of n packets and (Vi,1, . . . , Vi,22) represents a network
packet variable. Expressions 4.13 and 4.14 represents the reified constraints applied
to the network packet variables V1 and Vn.

Listing 13 Reified Constraints

D = {(D1,1, . . . , D1,22), . . . , (Dm,1, . . . , Dm,22)} (4.11)

V = {(V1,1, . . . , V1,22), . . . , (Vn,1, . . . , Vn,22)} (4.12)

((V1,1 = D1,1 ∨ V1,1 = D2,1 ∨ . . . ∨ V1,1 = Dm,1) ∧
(V1,2 = D1,2 ∨ V1,2 = D2,2 ∨ . . . ∨ V1,2 = Dm,2) ∧ . . .

∧ . . . ∧ (V1,22 = D1,2 ∨ V1,22 = D1,22 ∨ . . . ∨ V1,22 = Dm,22)) ∨ . . . (4.13)

...

. . . ∨ ((Vn,1 = D1,1 ∨ Vn,1 = D2,1 ∨ . . . ∨ Vn,1 = Dm,1) ∧
(Vn,2 = D1,2 ∨ Vn,2 = D2,2 ∨ . . . ∨ Vn,2 = Dm,2) ∧ . . .
∧ . . . ∧ (Vn,22 = D1,2 ∨ Vn,22 = D1,22 ∨ . . . ∨ Vn,22 = Dm,22)) (4.14)

Another approach to limit the domain of the network packet variables is to use exten-
sional constraints, which force a tuple of variables (IntVarArray) to take values from
set of tuples of values, like a matrix. Reducing the variable domain this way simplifies
the process, since the network packet variables are tuples of variables, and the network
traffic a set of tuples of values.

Listing 14 represents the use of extensional constraint, where V represents the set
of network packet variables; (Vi,1, . . . , Vi,22) a network packet variable; D a matrix
representing the network traffic; and (Di,1, . . . , Di,1) a network packet found in the
network traffic. Expression 4.17 of Listing 14 represents the extensional constraint
applied to any network packet variable Vi, over the matrix D, forcing Vi to belong to
D, once a solution is found.
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Listing 14 Extensional constraints

V = {(V1,1, . . . , V1,22), . . . , (Vn,1, . . . , Vn,22)} (4.15)

D = {(D(1,1), . . . , D(1,22)), . . . , (D(m,1), . . . , D(m,22))}, (4.16)

∀ Vi = (Vi,1, . . . , Vi,22) ∈ V, ∀D, extensional(Vi, D)⇒ Vi ∈ D (4.17)

The use of extensional constraints greatly simplifies the reduction of the variable do-
mains but most importantly, it improves the performance of Gecode when compared
to using reified constraints.

Although the use of extensional constraints turned out to be quite successful, Gecode
presents performance issues when the domain of the variables range from very low
values, such as 0, to very high values, such as 1000000, the range of values found on
the network traffic. To deal with this situation, Gecode provides the element constraint
which allows to use an un-instantiated variable as an index into an array of values or
variables. This allows to translate the matrix representing the network traffic into a
matrix of indexes into an array with all distinct values that occur in the original network
traffic, thus reducing the range of the domains, but still respecting the network traffic
as the variable domain.

Combining the element with the extensional constraint allows the use of the translated
network traffic, containing only indexes to values, instead of the original network traffic
matrix with the original values.

The use of the extensional constraint combined with the element constraint is repre-
sented in Listing 15, where V represents the set of network packet variables to model
the problem; Vj = (Vj,1, . . . , Vj,22) a network packet variable; D the network traffic;
Di = (D(1,1), . . . , D(1,22)) a network packet found on the traffic; DV all the individual
values found in the network traffic D; and DT the network traffic D represented as
indexes.

The network packet payload is treated differently from the other fields, but due to
its representation, the approach used to ensure a valid network packets domain can
be applied without any concern about the payload, since this is treated as an integer
variable, just like the remaining network packet fields.
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Listing 15 Extensional and element constraints combined

V = {(V1,1, . . . , V1,22), . . . , (Vn,1, . . . , Vn,22)} (4.18)

D = {(D(1,1), . . . , D(1,22)), . . . , . . . , (D(k,1), . . . , D(k,22))}, (4.19)

DV = {DV(1,1) ∪ . . . ∪ DV(1,22) ∪, . . . ,∪ DV(k,1) ∪ . . . ∪ DV(k,22)}, (4.20)

DT = {(DT(1,1), . . . , DT(1,22)), . . . , (DT(k,1), . . . , DT(k,22))}, (4.21)

∀ Vj = (Vj,1, . . . , Vj,22), DT(k,i),∈ DT,
extensional_element(Vj, D,DT )⇒ Vi ∈ DT, DVDT(k,i)

= D(k,i) (4.22)

Constraint specification

The most important part in describing a Network Intrusion Detection problem in
Gecode is the specification of the constraints. Stating the constraint over the network
variables is what models and describes a specific attack, which exists in the present
network traffic iff the constraint problem has a solution.

The constraints are stated over one or more network packet variables, and are respon-
sible to specify and ensure which properties are verified by each packet and which
relations should hold between multiple packets, as used to model the problem.

Gecode provides built-in constraints over Integer variables which allows the modeling
of many types of problems. On Network Intrusion Detection problems, many of these
constraints can be applied to the network packet variables, which are Integer.

These built-in constraints can be combined to model most of the necessary constraints
in Network Intrusion Detection problems: either the simple constraints which states
that a network packet should verify some property, or more complex constraints that
relate two or more packets, such as stating that the source address of packet A should
be equal to the destination address of packet B.

Other constraints, such as the ones that force a packet to contain a specific data in the
payload or state some relations between the payload of two network packets can’t be
done through the use of the built-in constraints available in the solvers, since they can’t
work with strings, so, we had to create custom constraints to describe these relations.

Although the built-in constraints allows the description of most constraints necessary
to model Network Intrusion Detection problems, they are not very user friendly, since
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they are prepared to work with Integer variables and there is the need to combine
them in order to describe most of the constraints.

So, in order to ease the description of the problems using the built-in constraints, spe-
cific network meta constraints combining several Gecode built-in constraints, which can
be directly applied to the network packet variables instead of the individual Integer
variables of the network packet components.

Listing 16 represents a simple meta constraint which forces a TCP packet to have its
SYN field set, forcing it to be a SYN packet, where var represents the network packet
variable to which the constraint will be applied, and var[20] is the Integer variable
that represents the SYN field. In this simple case, the built-in Gecode constraint is
specified in Line 2, which states that a specific Integer variable must have a given
value, in this simple case, the variable representing the SYN flag of the TCP packet
should have the value of 1, meaning it has the SYN flag set.

Listing 16 must_be_syn meta constraint
1 void must_be_syn(IntVarArray var){
2 post(*this, var[20] == 1);
3 }

The use of Gecode built-in constraints is not enough to model all properties and re-
lations that need to be verified in Network Intrusion Detection problems, such as,
constraints over the packet payload, which can require a network packet variable to
contain a specific expression on its payload or even relate two or more network packets
according to some relations over their payloads. These have to be implemented as
custom constraint propagators in Gecode.

Gecode provides generic propagator classes which can be extended to create new con-
straints. In case of the payload related constraints, two main factors are considered
when creating the custom propagators, 1) the field of the network packet variable that
correspond the payload, and 2) the network traffic being analyzed.

The propagator is implemented in a way to reduce the domain of the Integer variable
that points to the payload of the packet, by successively checking which network packets
verify the desired expression or relation in their payload. The ones that do not match,
or do not respect the desired relation are removed from the domain of the Integer
variable representing the packet payload.

The propagator collects all indexes of the packets that match the desired constraint,
computes an intersection of the set of valid values with the set of values in the domain
of the variable, thereby, removing the invalid values from the domain.
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Due to the constraints that ensure that a packet variable only takes values from a single
network packet at a time, removing the values that represent the packet that do not
respect the desired expression also leads to the removal of the values of the other fields
of the same packet from the domain of the respective fields.

Listing 17 presents a snippet of pseudo-code that represents a custom payload propa-
gator. Lines 2-6 traverse all network packets of the domain, Line 3 verifies if the packet
matches the desired expression, and, if so, in Line 4, the index of that packet is added
to M. After all packets in the domain have been analyzed, in Line 6, the domain of the
Integer variable is intersected with set M, thus removing from the domain the indexes
to the packets that violates the desired expression.

Listing 17 payload custom propagator - pseudo-code
1 ...
2 FOR all packets in domain
3 IF packet matches expression THEN
4 collect packet in M
5 ENDIF
6 ENDFOR
7 ...
8 variable domain ← INTERSECTION(variable domain, set M)
9 ...

Modeling

After the network packet variables have been specified, the variable domain has been
set, and all necessary constraints have been implemented, the desired network case can
be modeled. In order to do so, the necessary constraints are applied to the variables
of the problem.

Listing 18 show a snippet of Gecode to model a simple illustrative case. Two TCP
network packet variables are created in Line 2, the network traffic is declared in Line
3, in this case allowing for 10000 TCP packets. From Line 5 to Line 7 the problem
is described, forcing the first network packet to by a SYN packet and have as its
destination port, the port 80. Then, a constraints is applied to both packets so that
the source port of the second packet has be the same as the destination port of the
first packet.
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Listing 18 problem modeling - code snippet
1 ...
2 IntVarArray vars[2];
3 int traffic[10000][22];
4 ...
5 must_be_syn(vars[0]);
6 dst_port(vars[0], 80);
7 equal_src_dst_port(vars[1],vars[0]);
8 ...

4.5 Modeling with CBLS Solvers

When using Constraint-Based Local Search to perform Network Intrusion Detection,
two major decisions need to be done: 1) decide the number of network packets that
needs to be found in order to identify the network situation being sought, and 2) decide
the constraints which model the problem.

In Constraint-Based Local Search, the constraints are built in order to drive a heuristic
search, by providing the number of violations of each variable used in the constraints,
guiding the search algorithm to a solution to the problem.

Constraint-Based Local Search starts by creating a first tentative solution by assigning
values, usually randomly chosen, to the variables of the problem. It then performs
small changes to that solution in order to converge on a solution, using heuristics to
decide which changes will be done. This step is repeated until an objective function is
reached, meaning that a solution has been found. The initial tentative solution is very
important in the way the solution is reached, so, picking an initial solution that suits
Intrusion Detection problems may be important.

4.5.1 Modeling with Adaptive Search

Adaptive Search (AS) is a Constraint-Based Local Search (CBLS) algorithm, taking
into account the structure of the problem and using variable-based information to
design general heuristics which help solve the problem. The iterative repairs to the
candidate solution are based on variable and constraint error information which seeks
to reduce errors on the variables used to model the problem.

In Adaptive Search, the constraints are used to drive an heuristic search, guiding the
search algorithm to reach a solution to the problem. They are modeled as a set of
heuristic functions which have the purpose of indicating the error of the variables to
which the constraint have been applied, considering the purpose of the constraint.



4.5. MODELING WITH CBLS SOLVERS 61

Modeling a Network Intrusion Detection problem as an Adaptive Search problem relies
on 3 main definitions:

1. V, the set of network packet variables necessary to describe the sought-after sig-
nature attack.

2. D, the observed network traffic where the attacks will be looked for, containing
all the network packets seen on a network traffic window.

3. C, a set of constraints which describe the network situation.

Variables

Adaptive Search presents a particularity on the problems that it can solve, they have
to be modeled as a permutation, i.e. in a problem using N variables, the domain of each
variable will be D = {I, . . . , I +N − 1}, where I is the lower value that each variable
can take, and a solution to such problem will be a permutation of D.

Considering the set of network packet variables V, necessary to represent the desired
Network Intrusion Detection problem, and the network traffic, D, the domain of the
network packet variables, D being larger than V makes a Network Intrusion Detection
problem incompatible with Adaptive Search, since a valid solution to the problem
would be a subset of D instead of a permutation of D, which could compromise the
modeling of a Network Intrusion Detection with Adaptive Search.

To work around this problem, we model the network situation using as many variables
as the number of network packets in the network traffic. Most of these variables are
ignored by the heuristic functions, which only use the ones needed to describe the
signature.

So, if the network situation being modeled uses N network packet variables and the
network traffic is composed of M packets, the problem will be modeled using M variables,
of which only the first N will be used to reach a solution, ignoring the last M − N

variables. This way, a solution to the problem will be a set of M variables, but only the
first N are the ones with the packets that identify the attack.

In order to use only the N variables that describe the network situation, several ap-
proaches have been used: first, all the constraints used to describe the network situation
are applied only to the first N variables, which are the variables really necessary to
model the problem. The second approach is to give a null error value to all variables
which are not used to model the problem, the variables {Pn+1, . . . , Pm}. Assigning a
null error value to these variables will prevent Adaptive Search from choosing them as
the candidate for a value swap.
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Also due to that characteristic of Adaptive Search, in order to model a network signa-
ture in AS, the packets of the network traffic were indexed: each variable represents a
packet, and when assigned a value, indexes a packet in the network traffic, not a set of
variables representing all fields of the network packets. This way, the variables of the
problem will be a set of integer variables, each one representing a network packet.

Using a set of indexing variables to represent the network packet variables facilitates
the problem of dealing with the network packet payloads, which cannot be treated
equally to the other packet fields. Since a network packet variable is only the index to
a packet in the network traffic, any verification that has to be done over that variable
is made on the packet to where the index points to.

Variable Domain

Because Adaptive Search requires the problems be stated as a permutation, the mod-
eling of Network Intrusion Detection problems in Adaptive Search gets more complex,
but due to this fact, and the way that the network packet variables are represented,
restricting the domain of each network packet variable to the packets found in the
network traffic is actually simple, since a solution to the problem will be subset of a
permutation of the indexes to network packets found on the network traffic.

Listing 19 represents the network packet variables in Adaptive Search as well as its
domain; D representing the network traffic, Di = (D(1,1), . . . , D(1,22)) a network packet
window found on the network traffic, I represents the indexes of each network packet
found on the network traffic, where Ii is the index to the packet Di, V the set of network
packet variables used to model the problem, where {V1, . . . , Vn} are the network pack-
ets actually used to model the problem, {Vn+1, . . . , Vm} the network packet variables
ignored by the solver.

Expression 4.26 represents the relation between the indexes I and the network traffic
D, expression 4.27 represents the connection between the variables V and the indexes
I, showing that the variables should only take values from I, as well as the solution to
the problem, the first nth elements of V.

Constraints

With Adaptive Search, the constraints have the purpose of indicating an error value,
the amount of error that the variables to which the constraint have been applied are
violating considering the purpose of the constraint, and are used to drive a heuristic
search to for the solution. The implementation of the constraints consists in creating
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Listing 19 Variables in Adaptive Search

D = {(D(1,1), . . . , D(1,22)), . . . , (D(n,1), . . . , D(n,22)), . . . , (D(m,1), . . . , D(m,22))} (4.23)

I = {I1, . . . , In, . . . , Im} (4.24)

V = {V1, . . . , Vn, . . . , Vm} (4.25)

∀Ii ∈ I, ∀Di ∈ D, Di = (D(i,1), . . . , D(i,22)) ⇒ Ii ⇔ Di (4.26)

∀Vi ∈ V, ⇒ Vi ∈ I, solution = {V1, . . . , Vn} (4.27)

functions which quantifies the error or the number or violations, guiding the search
algorithm towards a solution.

Adaptive Search relies on several heuristic functions, two of the most important being:

1. Cost_Of_Solution which computes the amount of error of a candidate solution,
informing the algorithm how far away it is from a valid solution;

2. Cost_On_Variable which informs the algorithm of the cost of changing a variable
in a candidate solution.

These heuristics rely on the error of the constraints applied to the variables of the
problem in order to model the desired network situation.

The constraints used to model the problem need to access the variables used to model
the CSP and the network traffic data, since they are applied to the variables, but rely
in the network traffic to compute the associated errors.

Each constraint applied to a set of variables specifies a set of rules that must be verified
in order for the constraint to be satisfied. These rules are then checked against the
packets corresponding to the indexes assigned to the variables of the tentative solution
and which are involved in the constraint, thus computing the error of each variable and
constraint.

The network packet payload constraints are treated exactly like the others, the only
difference is that rules which makes the constraint valid are checked against the payload
of the packet indexed by variables of the current candidate solution.



64 CHAPTER 4. INTRUSION DETECTION WITH CONSTRAINTS

Calculating the error of a constraint

Modeling a problem with Adaptive Search entails specifying a set of variables and a set
of constraints. Associated to each constraint, there is an error function which calculates
the number of rules being violated by the constraint. Each constraint is composed of a
set of combined rules that must be checked. Each of these is specific to each constraint,
applied to a set of network packet variables and the values found on a tentative solution
are checked against the existing packets on the network traffic.

To calculate the constraint error, each of the rules that compose the constraint is indi-
vidually checked and accounted for, with a different weight, depending on the relevance
of the rule in the constraint. The total error of a constraint is given by the weighted
sum of the number of rules violated by the current tentative solution.

As an example, a constraint that forces a network packet to be a SYN packet, can be
defined as in Listing 20. In this simple constraint there is only one rule, stating that
the network packet associated to the variable var must be a network packet with the
SYN flag set, meaning that a particular field must have the value of 1.

Line 2, checks if the corresponding packet in the network traffic window has the correct
value on that specific field. If the value is correct, then the variable var doesn’t violate
this constraint and the function returns the value 0(zero), otherwise, the function
returns an error that reflects the violation of this constraint.

The return value depends on how relevant the constraint is to the problem, higher
values being for less important constraints, lower for higher. The most important
being the ones which state more restrictions over the variables.

This approach is used to calculate the error of a constraint, the cost of a solution and
the associated error of a variable.

Listing 20 SYN Packet constraint
1 int syn (int window [][22], int var) {
2 if (window[var][14] == 1)
3 return 0;
4 else
5 return 1000;
6 }

Calculating the Cost_Of_Solution

A critical Adaptive Search heuristics is the cost_of_solution function, which com-
putes the cost of a tentative solution, indicating how far it is from a valid solution, so
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it can decide the value that will be assigned to the bad variable of the current tentative
solution, leading to the next best candidate solution.

The cost_of_solution is implemented by applying the necessary constraints over
specific network packet variables in order to model the desired Network Intrusion De-
tection problem. Each constraint will return an error value which indicates the amount
of error of the current tentative solution for the given constraint. The computation of
the cost_of_solution is then achieved by adding the error values of all constraints
applied to the set of variables used to model the problem, thus reaching the total error
of the given tentative solution.

Listing 21 demonstrates how to compute the cost_of_solution for a simple problem
of identifying 10 SYN packets on the network traffic. In this example, the variable sol
is an array with all variables of the model, representing the current tentative solution,
and syn, the constraint listed in Listing 20, applied to all 10 variables in order to
model this simple problem. When applying the constraint to all variables, err will
accumulate all the violations of all variables, providing the total cost of the current
tentative solution.

Listing 21 Cost_Of_Solution - Set of SYN packets
1 int Cost_Of_Solution (void) {
2 int i;
3 int err=0;
4 for (i=0; i<10; i++)
5 err += syn (window, sol[i]);
6 return err;
7 }

Calculating the Cost_On_Variable

Adaptive Search needs to compute the error of each variable on a tentative solution,
in order to choose a candidate for a swap, the one with higher cost value.

The error of each variable is calculated by using the associated error value of all con-
straints in which it occurs. To compute the cost of a single variable, every constraint
applied to that particular variable is evaluated, and the sum is the variable cost.

Continuing our example of a simple situation composed of 10 SYN packets, the cost
of a variable in the current tentative solution is in Listing 22, where i represents
the variable with respect to which the cost is being calculated, and variable window
represents the network traffic that will be used to check the rules of the constraint syn,
defined in Listing 20.
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Listing 22 Cost_On_Variable - SYN Packet
1 int Cost_On_Variable (int i) {
2 return syn (window, sol[i]);
3 }

Modeling

The actual modeling of a Network Intrusion Detection problem in Adaptive Search
is achieved by using the necessary heuristic functions representing the constraints to
create the Cost_Of_Solution and Cost_On_Variable.

Listing 23 show how a simple problem can be modeled. This example is about finding
two network packets, the first one should have its SYN flag set and with destination
port 80. The second packet should have as source address, the destination address of
the first network packet. Line 2 defines the Cost_Of_Solution, on Line 5 it is checked
if the first network packet has its SYN flag set, Line 6 checks if its destination port is
80, and Line 7 checks the source address of the second network packet is equal to the
destination address of the first packet. Line 23 returns the accumulated error of all
constraints.

Line 12 of Listing 23 defines the Cost_On_Variable, from lines 15 to 19 are checked
the errors of the first network packet, in case of the argument i is 0(zero). Line 12
checks the errors associated to the second network packet. In the end, the accumulated
error for this variable, is returned in Line 23.

4.5.2 Improving the Adaptive Search performance

Adaptive Search is a very efficient algorithm to solve combinatorial problems, but, if
not properly tuned it can perform poorly. In order to get the best performance, we
need to tune the heuristic functions to help Adaptive Search reach the desired solution
as fast as possible, otherwise, the solver can get lost in the process of searching for a
valid solution to the problem, degrading its performance.

Besides the heuristic functions which affect the performance of Adaptive-Search, there
are a number of internal configuration parameters that influence how the AS algorithm
behaves.

Fine-tuning the heuristic functions

The main heuristic functions used by Adaptive Search are Cost_Of_Solution and
Cost_On_Variable. The Cost_Of_Solution inform the algorithm how far away the
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Listing 23 Problem modeling in Adaptive Search - code snippet
1 ...
2 int Cost_Of_Solution (void) {
3 int err=0;
4

5 err+=syn(window, sol[0]);
6 err+=dst_port(window, sol[0], 80);
7 err+=equal_src_dst_port(sol[1], sol[0]);
8

9 return(err);
10 }
11

12 int Cost_On_Variable (int i) {
13 int err=0;
14

15 if(i==0){
16 err+=syn(window, sol[0]);
17 err+=dst_port(window, sol[0], 80);
18 err+=equal_src_dst_port(sol[1], sol[0]);
19 } else
20 if(i==1)
21 err+=equal_src_dst_port(sol[1], sol[0]);
22

23 return(err);
24 }
25 ...

current candidate solution is from a valid solution, as for the Cost_On_Variable, it
informs the algorithm the cost of a variable with a given value assigned. These two
heuristics are critical for the performance of Adaptive Search and require fine tuning.

These heuristics are built by using the constraints which model the specific Network
Intrusion Detection problem, so, the way the constraints are modeled, more specifically
the error value return by each constraint, has a great impact on Adaptive Search
performance. One way to improve performance is to give more importance to some
constraints than others, assigning a different weight to the constraints, depending on
how important they are.

We experimented different error values for each constraint, to understand the behavior
of Adaptive Search while using different weights on each constraint. As expected, these
experiments revealed that the algorithm is quite sensitive to these changes.
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These experiments also revealed that to improve the performance of Adaptive Search,
the constraints which impose more restrictions on the solution, thus the more complex
ones, also the most important constraints while modeling the problem, should have a
lower error value. As for the auxiliary constraints, the ones which impose less restric-
tions on the solution, it was verified that they should have a higher error value in order
to improve the Adaptive Search performance.

With these results, we decided to assign different error values according to the con-
straints, depending on the importance and complexity of the constraints: higher error
values to the least important constraints, and lower error values to the most important
ones.

By doing this, we are forcing the simplest constraints to be solved first, leaving the
more complex ones for last, since Adaptive Search selects the variable with the higher
error value in the current solution to compute the next candidate solution.

This approach to fine-tuning Adaptive Search turned out very good heuristic functions,
making Adaptive Search faster to reach a valid solution, thus, making the AS detection
mechanism of NeMODe very efficient.

We now list the error value for the most important constraints of NeMODe if the
constraint is being violated, with a small description of each constraint:

• syn(packet) - return 1000;
Force a network packet to have its SYN flag set.

• reset(packet) - return 1000;
Force a network packet to have its RESET flag set.

• ack(packet) - return 1000;
Force a network packet not to have its ACK flag set.

• not_ack(packet) - return 1000;
Force a network packet not to have its ACK flag set.

• dst_port(packet, port) - return 1000;
Force a the destination port of a network packet to be equal to port.

• src_port_different(packet1, packet2) - return 500;
Force two network packets to have different source ports.

• src_different(packet1, packet2) - return 500;
Force two network packets to have different source addresses.

• different(packet1, packet2) - return 100;
Force two network packets to be different.
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• proceed(packet1, packet2) - return 2;
Force packet1 to appear after packet2.

• useconds_max(packet1, packet2, usecs) - return 1;
Force packet1 to appear at-most usecs micro-seconds after packet2.

To obtain these return values, we tried several values for each constraint while exper-
imenting the network situations presented in Sec. 5.5(page 109). The values which
produce the best results were selected.

Fine-tuning the Adaptive Search parameters

Adaptive Search provides configuration parameters which allow to change its behav-
ior, adapting the way it the algorithm searches for a solution, allowing to fine-tune
specifically for each problem.

The following list presents the main configuration parameters of Adaptive Search as
well as a brief description of each one, taken from the Adaptive-Search manual [92]:

• ad_exhaustive: if true, the solver always evaluates (the cost of) all possible
swaps to chose the best swap. If false a projection of the error on each variable
is used to first select the worst variable.

• ad_prob_select_loc_min: this is a percentage to force a local minimum (i.e.
when the 2 selected variables to swap are the same) instead of staying on a
plateau (a swap involves 2 different variables but the overall cost will remain the
same). If a value > 100 is given, this option is not used.

• ad_freeze_loc_min: number of swaps a variable is frozen when a local minimum
is encountered (i.e. the 2 variables to swap are the same).

• ad_freeze_swap: number of swaps the 2 variables that have been selected (and
thus swapped) to improve the solution are frozen.

• ad_reset_limit: number of frozen variables before a reset is triggered.

• ad_nb_var_to_reset: number of variables to randomly reset.

• ad_restart_limit: maximum number of iterations before restarting from scratch
(give a big number to avoid a restart).

• ad_restart_max: maximal number of restart to perform before giving up.

• reset_percent: percentage of variables to reset.



70 CHAPTER 4. INTRUSION DETECTION WITH CONSTRAINTS

After some experiments these configuration parameters while solving some problems,
we got to the conclusion that they affect the performance of Adaptive-Search in a great
scale, as it would be expected. These experiments allowed us to find the values for each
of these parameters which improve the performance of Adaptive Search in a great scale.
The following list presents those values:

• ad_freeze_loc_min = 8: If a local minimum is found, freeze the variable during
8 swaps.

• ad_freeze_swap = 5: If two variables are swapped, they are frozen during 5
swaps.

• ad_reset_limit = (NB_VAR / 4)+ 1: If there are (NB_VAR / 4)+ 1 frozen vari-
ables, where NB_VAR represents the number of network variables in the problem,
a reset is triggered.

• int reset_percent = 1: When a reset is triggered, only 1% of the variables are
reset.

• int ad_restart_max = 0: Do not allow restarts.

By analyzing the values that we found to be better, we see that Adaptive Search should
be configured in a way so it doesn’t restart the solving process of a problem from scratch,
it should minimize the number of variables to reset and should not should not allow
the freeze of variables for a long time, forcing Adaptive Search to swap variables more
often.

4.6 Modeling with SAT Solvers

SAT [79] problem consists on determining if there exists a valid assignment to all
variables of a Boolean function so that the function is satisfiable, or, to determine
that there is no valid assignment that can make such Boolean function True(a SAT
problem), implying that the Boolean function is False(an UNSAT problem).

In order to solve a SAT problem, it is necessary to make a description of the problem as
a Boolean function, composed by Boolean variables, which can only take True or False
values. Usually this function is specified in the Conjunctive Normal Form(CNF) [79],
a conjunction of clauses, where each clause is a disjunction of literals, and each literal
is a Boolean variable or it’s negation.

While modeling a Network Intrusion Detection problem as a SAT problem, the purpose
of the Boolean function which describes the problem is a set of Boolean clauses rep-
resenting the valid values for each variable, considering the constraints used to model
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the problem and the network traffic, so, the final purpose is to state which packets are
a combination that satisfies the desired network situation.

4.6.1 Encoding a CSP with SAT

As previously mentioned in Sect. 3.4(see page 37), to model a problem with SAT, there
is the need to create a number of CNF rules. This process is called encoding [80, 86, 79].
There are several ways to encode a CSP, the most commonly used are:

• Direct Encoding

• Support Encoding

• Log Encoding

In this work, we use both direct and support encodings, depending on the constraint be-
ing encoded. These can be used together, as they use the same variable representation
and the same types of clauses.

In both encodings, the variables are represented in the same way: for each CSP variable
i, and for each value d, there is a variable Vi,d which represents the assignment of value
d to CSP variable i.

These encodings are very similar, both composed by 3 types of clauses:

1. at_least_one clauses

2. at_most_one clauses

3. constraint clauses

Both encodings use the same type of at_least_one and at_most_one clauses. The
at_least_one clauses state that at least one value must be assigned to each CSP
variable, while the at_most_one clauses states that only one value can be assigned to
a CSP variable.

The difference between these encodings is the way the constraints are specified. The
direct encoding [79] uses conflict clauses, stating pairs of two inconsistent value assign-
ments, indicating that when value dj has been assigned to CSP variable i, value dk
cannot be assigned to CSP variable l.

As for the support encoding [79], it uses support clauses to represent the constraints.
These are achieved by stating which values are compatible with a CSP variable, when
a specific value has been assigned to a given CSP variable.
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4.6.2 Modeling with MiniSat

To solve a SAT problem, MiniSat goes through two major steps; 1) read and parse
the problem description, represented the Conjunctive Normal Form, in order to build
the internal representation of the problem in MiniSat; and 2) the actual solving of the
problem, already internally represented in MiniSat.

The step of reading and parsing the problem, which is normally read from text file with
all CNF clauses, is very time consuming, having a great impact in the performance of
MiniSat.

One of the main concerns of the MiniSat authors was to provide a tool that can easily
be adapted and interfaced with other tools, making it appropriate as a back-end to
NeMODe.

We used the MiniSat capability of programmatically specifying the CNF rules, thereby
bypassing the text file parsing step.

Variables

Modeling a problem in SAT is quite different from doing so in any other approach to
constraint programming, as we may only use Boolean variables. Encoding a CSP as
SAT involve two types of variables: 1) the CSP variables; and 2) the variables which
represent the assignment of each possible value to each CSP variable [86].

In a Network Intrusion Detection problem, each CSP variable represents a network
packet, and then, there is a variable for each possible network packet that can be
assigned to each SAT variable. We decided that a CSP variable represents an entire
packet by indexing all packets on the network traffic, instead of having a CSP variable
for each network packet field, thereby reducing the number of variables.

When encoding a network signature as a CSP problem, the first thing to be done is
to create the variables which represent the assignment of each possible value to a CSP
variable. For each CSP variable, representing a packet, there is a set of variables, one
for each value that can be assigned to it.

Listing 24 represent the variables used to model a Network Intrusion Detection problem
as a SAT problem, where D represents the set of network packets actually seen on the
network traffic; each Dj = {F(j,1), F(j,2), . . . , F(j,m)}, a network packet actually seen in
the network traffic, x the total number of network packets found in the network traffic;
F(j,i) the field i of packet j, and m the total number of fields of a packet.
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P is the set of all CSP variables, representing the network packet variables used to
describe the desired network signature; and n the number of CSP variables.

V is the set of variables which represent the assignment of all possible values to each
CSP variable Pi, where Vi = {VPi,D1 , . . . , VPi,Dx} is the set of variables that represent
all possible assignments that CSP variable Pi can take, i.e. VP1,D1 means that value
D1 was assigned to the SAT variable P1, if set to true.

Listing 24 SAT variables

D = {D1, D2, . . . , Dx} (4.28)

∀Dj ∈ D : Dj = {F(j,1), F(j,2), . . . , F(j,m)}, (4.29)

P = {P1, P2, . . . , Pn} (4.30)

V = {VP1,D1 , . . . , VP1,Dx , VP2,D1 , . . . , VP2,Dx , . . . ,

, . . . , VPn,D1 , . . . , VPn,Dx} (4.31)

A solution to such SAT problem will be a subset of V , containing only the variables that
have been assigned with True values, the ones that are part of the solution, identifying
the network packets that belong to the desired signature. Such solution is represented
in Listing 25, where S is the set of all variables of V which has a True value, representing
the solution of the problem.

Listing 25 SAT solution

∀ S = {SP1,Dy1 , SP2,Dy2 . . . , SPn,Dyn} ⇒ S ⊂ V,

∀ Sj ∈ S, Sj = SPj ,Dyj
, Sj = True (4.32)

Variable Domain

In a SAT problem, there is no concept of variable domain as in other constraint solving
approaches, since the variables used to model the problem are Boolean variables.

In the encoding of a Network Intrusion Detection problem as a SAT problem, the
constraints used to model the problem are also the ones responsible for ensuring that
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a valid solution makes sense on the given network traffic, and that the variables can
only take values from the effective network traffic.

Constraints

Constraints in SAT encode the problem in CNF. The purpose of which is to model the
valid values, according to the rules that should be verified by the constraint.

Encoding an intrusion signature as a SAT problem in CNF is quite complex and can
grow very rapidly, due to the number of variables involved in a SAT problem. So,
we created functions which model the necessary constraints for Network Intrusion De-
tection problems, and create the necessary CNF clauses, representing the rules of the
constraint.

The modeling of a problem in SAT is then achieved by using such constraints in the
necessary arrangement in order to achieve the desired description.

Two major types of encoding are necessary to model a problem in SAT:

1. encoding the set of variables, which ensures the integrity of the solution;

2. encodings which actually model the problem, which in turn model the desired
intrusion signature, and the ones that are actually encoded by the constraints.

The first step of the encoding is almost independent of the network traffic and of the
intrusion detection to be modeled, as it depends only on packets in the network traffic
window, and the number of network packets used to model the desired signature. This
step is almost static, and can be reused when those parameters are shared among
problems, thus avoiding re-computation, resulting in a performance gain.

Variable encoding

The variable encoding, although almost independent of the problem being modeled, is
very important. Although we decided to use a set of indexing variables to represent
the network packets, the variable encoding specifies the domain of the variables, by
specifying the set of rules which states that each variable has to take at least one value,
an index to a network packet, and should at most one index to a network packet, thus,
stating the domain of each variable.

Encoding the set of variables is made in two steps:

1. ensuring that at least one value is assigned to each SAT variable by using the
at_least_one clauses;
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2. ensuring that at most one value is assigned to each SAT variable, through the
use of at_most_one clauses.

The at_least_one clauses are a set of clauses represented in Conjunctive Normal Form
(CNF) stating that each SAT variable should take at least one value from any network
packet on the network traffic log.

Listing 26 represents a formal representation of such clauses, where x represents the
number of network packets in the network traffic and n the number of network packets
used to model the intrusion signature.

If VPi,Dj
is assigned with value True, means that packet j from the network traffic has

been assigned to CSP variable i.

Listing 26 at_least_one clauses - formal description

n∧
i=1

( x∨
j=1

(
VPi,Dj

) )

Listing 27 presents the at_least_one clauses to model a small network CSP made of
2 variables, while considering a network traffic of 2 network packets. D is the network
traffic, where each Di represent a packet; P the set of CSP variables; V the set of
variables which represent the possible value assignments to each CSP variable, where
each VPi,Dj

represents the assignment of packet j to CSP variable i.

Listing 27 at_least_one clauses - example

D = {D1, D2} (4.33)

P = {P1, P2} (4.34)

V = {VP1,D1 , VP1,D2 , VP2,D1 , VP2,D2} (4.35)

at_least_one_clauses =
(
VP1,D1 ∨ VP1,D2

)∧(
VP2,D1 ∨ VP2,D2

)
(4.36)

The at_most_one clauses ensures that only one value is assigned to a SAT variable,
which is accomplished by creating conflict causes between all combinations of possible
values that can be assigned to a single variable, e.g. ¬VP1,D1 ∨ ¬VP1,D2 , means that
when value D1 is assigned to variable P1, the network packet represented by D2 can
not be assigned to the same variable P1.
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Listing 28 presents a formal representation of the at_most_one clauses, where x rep-
resents the number of network packets in the network traffic and n the number of
network packets used to model intrusion signature.

Listing 28 at_most_one clauses - formal description

n∧
i=1

( x∧
j=1

( x∧
k=j+1

(
¬VPi,Dj

∨ ¬VPi,Dk

) ) )

Listing 29 presents the at_most_one_clauses for the example presented above, which
consists of a CSP with 2 variables, and a network traffic made of 2 network packets.

Listing 29 at_most_one clauses - example

D = {D1, D2} (4.37)

P = {P1, P2} (4.38)

V = {VP1,D1 , VP1,D2 , VP2,D1 , VP2,D2} (4.39)

at_most_one_clauses =
(
¬VP1,D1 ∨ ¬VP1,D2

)
∧
(
¬VP2,D1 ∨ ¬VP2,D2

)
(4.40)

Due to the high complexity of the CNF rules and size these rules can reach, we created
functions which, depending on parameters such as the number of network packets in the
network traffic and the number of variables necessary to model the problem, generate
the necessary rules to encode the problem. These functions are executed by the MiniSat
solver, which generates the necessary rules and updates the MiniSat database with the
newly created rules.

Constraint encoding

The second part of encoding a network signature as a SAT problem is the encoding
of the problem itself: the constraints that compose the network signature and which
actually model the problem. This encoding follows the same approach used to encode
the variables, relying on conflict causes and support clauses to describe each constraint.

Each constraint is also modeled in a function, which creates the necessary CNF rules
equivalent to the constraint being true. Using such functions, we can encode the desired
Network Intrusion Detection problem in SAT, hiding the complexity of the CNF rules.
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Constraints are encoded by analyzing the network traffic and, based on that traffic and
the desired constraints, CNF rules are created by stating which packets are compatible
with each other, according to the constraint being encoded.

Next, we present the modeling of the most important constraints as a SAT problem:

packet_field_equal_to(packet, field, value)

This constraint allows one to require a given field of a specific network packet to be
equal to some value. This type of constraint is useful in many situations, e.g. requiring
that the destination port of a network packet be equal to some port number.

The encoding of this constraint is accomplished by analyzing the network traffic and
testing if the desired field on each network packet is equal to the desired value, and
then, create a disjunctive clause with the variables representing such values.

Listing 30 presents a formal representation of the necessary clauses to encode this
constraint, where p is the packet number to which the constraint is applied; f is the
field of the packet to which the constraint is applied; and v the value that should be
found in the field f of the packet number p.

Listing 30 packet_field_equal_to(p, f, v)

∀ packet_field_equal_to(p, f, v), 1 ≤ j ≤ x, F(j,f) = v :

clauses =
∨

( Vp,Dj
)

field_equal_field(p1,f1,p2,f2)

The constraint field_equal_field(p1, f1, p2, f2) allows one to force a field of a
packet to be equal to another field of another packet, allowing the statement of relations
between two network packets, e.g. the source port of one packet to be equal to the
destination port of another network packet.

The encoding of this constraint is accomplished by analyzing the network traffic log
and creating a set of support clauses describing which variables are compatible between
them in order to satisfy this constraint. This set of variables is computed by verifying
which network packets are compatible with each other according to the specifications
of the constraint, by comparing the desired fields of each network packet.
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Listing 31 presents the formal description of the support clauses used to encode this
constraint, where f1 represents the field of packet p1 which should be equal to field f2
of packet number p2.

Listing 31 field_equal_field(p1, f1, p2, f2)

∀ field_equal_field(p1, f1, p2, f2), F(p1,f1) = F(p2,f2) :

clauses =
∧((

¬Vp1,D1

∨(
Vp2,D2

))∧(
¬Vp2,D2

∨(
Vp1,D1

)))

packet_different_packet(p1,p2)

This constraint assures that the network packet variables p1 and p2 are assigned with
different network packets, assuring that p1 and p2 are not the same.

This constraint is encoded by using support clauses, stating that when a specific network
packet is assigned to a given variable, all other network packets, except the one that
was assigned, are compatible with it. We use the network packet identification number
to distinguish the different packets.

Listing 32 presents a formal description of the support clauses used to encode this
constraint, where p1 and p2 are the network packets that must be different. Fj,12

represents the 12th field of packet j containing a unique identification number of the
network packet.

Listing 32 packet_different_packet(p1,p2)

∀ packet_different_packet(p1, p2), Fj,12 6= Fk,12 :

clauses =
x∧

j=0,k=0,j 6=k

((
¬Vp1,Dj

∨(
Vp2,Dk

))∧(
¬Vp2,Dj

∨(
Vp1,Dk

)))

time_packet_greater_time_packet(p1, p2)

This constraint is used to force the order between two network packets, ensuring that
the network packet variable p2 appears after p1, in a chronological order.
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To encode this constraint, we used support clauses which states the compatibilities
between each network packet of the network traffic window, regarding the temporal
order between the two network packets, looking at the timestamps of network packets
found on the network traffic.

More specifically, to encode the temporal constraints, for each packet found in the
network traffic, we analyse the entire network traffic, looking for compatible packets
which satisfy the temporal constraint, using the arithmetic expression found in List-
ing 33, taking into account the seconds and microseconds of the packets timestamp.
This results in a set of packets which are compatible with each other, regarding the
temporal restrictions. Then, based on these packets, a set of support clauses is created
to encode the constraint.

Listing 33 presents a formal description of the support clauses used to encode this
constraint, where p1 and p2 are the packets to which the constraint is to be applied.
Fj,0 represents the 1st field of network packet j, the time stamp of the packet j in
seconds; and Fj,1 represents the 2nd field of network packet j, the micro-seconds of the
network packet time stamp. Expression Fj,0 ∗ 106 + Fj,1 represents the time stamp of
network packet j, converted into micro-seconds.

Listing 33 time_packet_greater_time_packet(p1, p2)

∀ time_packet_greater_time_packet(p1, p2),
Fj,0 ∗ 106 + Fj,1 < Fk,0 ∗ 106 + Fk,1 :

clauses =
x∧

j=0,k=0,j 6=k

((
¬Vp1,Dj

∨(
Vp2,Dk

))∧(
¬Vp2,Dk

∨(
Vp1,Dj

)))

usecs_packet_greater_packet(p1,p2,usecs)

This constraint is used to make sure the network packet p2 appears usecsmicroseconds
after packet p1. To encode this constraint we use support clauses to state which packets
are compatibles with each other by analyzing the timestamps of each network packet
and calculating their temporal distance.

The approach to encode the time_packet_greater_time_packet(p1, p2) was also
used in this temporal constraint. The only difference is the formula which calculates the
compatible packets, which computes the packets within a range of usecs microseconds.
The resulting packets are then used to create the support clauses.
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Listing 34 usecs_packet_greater_packet(p1,p2,usecs)

∀ usecs_packet_greater_packet(p1, p2, usecs),
Fj,0 ∗ 106 + Fj,1 < Fk,0 ∗ 106 + Fk,1 + usecs :

clauses =
x∧

j=0,k=0,j 6=k

((
¬VP1,Dj

∨(
VP2,Dk

))∧(
¬VP2,Dk

∨(
VP1,Dj

)))

Listing 34 presents a formal description of the support clauses used to encode this con-
straint, where p2 is the network packet that should appear at most usecs microseconds
after packet p1. Fj,0 represents the 1st field of network packet j, the time stamp of the
packet j in seconds; and Fj,1 represents the 2nd field of network packet j, the micro-
seconds of the network packet time stamp. Expression Fj,0 ∗ 106 + Fj,1 represents the
time stamp of network packet j, converted into micro-seconds.

Modeling a problem

To model an IDS signature with SAT, we first apply the previously defined functions
which encode and define the all necessary variables. Then we state the constraints
which actually describe the given network signature, using the functions which imple-
ment them.

Listing 35 exemplifies the modeling of a simple situation in MiniSat: First, we start by
encoding the variables in line 6 by using the function setup(S, n_vars, n_packets),
which takes as parameters the MiniSat solver S, the number of variables necessary to
model the problem n_vars, and the number of packets in the network traffic n_packets.
In line 9 we state that packet 0 should have its SYN flag set, by using the constraint
represented in the function pkt_field_equal, which states that field 14 of packet 0
should have a value of 1, which means that it has the SYN flag set. Line 12 states
that packet 0 should have the destination port 80, by stating that field 11, repre-
senting the destination port, should have the value 80. From line 15 to line 18 it is
stated that the source address of packet 1 should be equal to the destination address
of packet 2, which is achieved by using the constraint represented in the function
pkt_field_equal_pkt_field, which states that a particular field of one packet must
be equal to other field of other packet, which in this case are the fields representing the
source address of packet 1 and destination address of packet 0.
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Listing 35 problem modeling - code snippet
1 ...
2 int n_vars=2;
3 int n_packets=400;
4

5 //variable encoding
6 setup(S, n_vars, n_packets);
7

8 //packet 0 should have a SYN flag
9 pkt_field_equal(S, n_vars, n_packets, 0, 20, 1)

10

11 //packet 0 should have the destination port = 80
12 pkt_field_equal(S, n_vars, n_packets, 0, 13, 80)
13

14 //packet 1 source address = packet 0 destination address
15 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 4, 0, 9);
16 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 5, 0, 10);
17 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 6, 0, 11);
18 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 7, 0, 12);
19 ...

4.7 Conclusion

In this Chapter, we described how we used the Constraint Programming paradigm, in
some of its forms, to perform Network Intrusion Detection. We described the use of
Propagation Based, Constraint-Based Local Search and Boolean Satisfiability solvers.
We have demonstrated that we can model Network Intrusion Detection signatures using
these methodologies, in order to perform the detection of signature-based attacks.

Each approach to Constraint Programming poses specific problems in modeling a Net-
work Intrusion Detection problem. Constraint Based solvers allow a relatively easy
modeling of the problem. On the other hand, it is quite difficult to efficiently restrict
the domain of the network packet variables, so that a solution to the problem be com-
posed exclusively of packets found in the actual traffic, without sacrificing performance.

Modeling in Constraint-Based Local Search is easy in the sense that the constraint
specification is straightforward, but since AS is quite sensitive to the heuristic used
to model the problem, it turns out difficult to figure out the best heuristics, thus,
making the modeling of Network Intrusion Detection problem in Adaptive Search quite
complex. In AS, ensuring that the domain of the network packet variables is correct
comes for free, due to the way we modeled the network packet variables.
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As for SAT, the modeling of the problem is quite linear after all constraint functions
have been implemented in order to encode the necessary CNF rules. The major problem
in SAT is the modeling of such constraint functions, which generate quite large and
complex sets of Boolean rules. In MiniSat, due to the specificity of the SAT problems,
we don’t need to worry about the domain of the network packet variables, since it is
taken care of by the encoding the of problem.



Chapter 5

A Domain-Specific Language for IDS

This Chapter starts with a brief introduction of Domain-Specific Languages
and their main characteristics. Then, we describe the Domain-Specific Lan-
guage provided by NeMODe which eases the description of the signatures of
specific attacks, leading to the generation of executable code for each of the
detection mechanism available in NeMODe, from a single source. We also
present the specification of the DSL, the code generation process for each
detection back-end and some examples.

5.1 Domain-Specific Languages

Domain Specific Languages (DSLs) are programming languages specially adapted to a
specific problem domain, as opposed to GPL, which are created with no specific domain
in mind, trying to be as general as possible so they can be used in a wide variety of
settings.

5.1.1 DSLs and GPLs

General-Purpose Languages can be large and complex in order to cope with a vast
diversity of problem domains. Due to this, GPLs are indeed suitable to solve problems
of virtually any domain problem.

The generality of these programming languages brings about two major concerns:

1. The problems have to be programmed using a generic language, identical for all
problems, which, in some cases, may make the modeling of the problem awkward.
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2. The applications written with such languages may be not as efficient as they
could be, since they are implemented with generic tools.

On the other hand, Domain-Specific Languages, also known as micro languages or little
languages, are small, focused on a particular domain, using very restricted notions and
abstractions thus being much more expressive for modeling specific problems, many
times being called definitions, specifications or descriptions [93]. Due to their high
expressive power, DSLs are usually declarative, allowing to “program” the problem in
terms of what should be achieved rather than how it should be achieved.

Since Domain-Specific Languages are custom built for a specific-domain, they can be
very simple to use by users fluent on the application domain or by domain experts,
allowing for a non-programmer user to be able to use, validate, modify or write DSL
programs without difficulties [94].

Although Domain Specific Languages are mostly used by application-domain experts,
scripting or macro languages found in spreadsheet-like applications, enabling simple
programming tasks, are designed to be used by normal users.

DSL Development

Although very easy to use, DSLs are hard to develop, because, due to their specific
application domain, it requires a multifaceted development team with a comprehen-
sive knowledge of the domain and, at the same time, knowledge about programming
language development, two capabilities which can be hard to combine.

Executability of DSLs

In General-Purpose Languages the programs are built with the intention of producing
executable applications, this is not necessary true with DSLs, as these are often used to
generate inputs to some other tools, such as application generators or parser generators.

Many times they rely on a well-defined execution semantics to produce some output,
such as spreadsheets or HTML [93].

Applications such as YACC [95], a parser generator; TEX [96] a language to typeset
text documents; PIC [95], a language for describing pictures are examples of DSLs
which don’t generate an executable application.
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5.1.2 The origins of DSLs

DSLs have been used for programming applications for a long while, tools like APT [97],
developed between 1957 and 1958, a language to program numerically controlled ma-
chine tools; BNF [98], introduced in 1959, the well-known syntax specification formal-
ism can be thought of as early formalism of Domain-Specific Languages [93].

Among the oldest DSLs, we have other well known programming languages, such as
Cobol, Fortran and Lisp. Although these languages are General Purpose Languages,
they were originally designed for specific domains: Cobol for business computing,
Fortran for numeric computation and Lisp for symbolic processing [99]. Over the
years, these languages have evolved, slowly becoming larger, more complex and more
amenable General Purpose programming.

Tools such as the UNIX tools awk [100] and sed [101], which have been around for years
may also be considered as Domain Specific Languages. Modern widely used tools, such
as spreadsheets, HTML, SQL, CSS, among others, are also DSLs [94].

Although Domain-Specific Languages have been used over years in a variety of appli-
cation domains, the scientific and academic interest in these only came much later.
The first studies regarding this subject are dated from 1985 when Martin [102] did an
exhaustive account of Fourth-Generation Languages (4GLs); and from 1989 where Big-
gerstaff and Perlis [103] include a number of articles on software reuse including DSL
development and program generation [93].

From those and other more recent studies, several definitions have been proposed, such
as the one from Van Deursen et al. [99]:

“A domain-specific language (DSL) is a programming language or exe-
cutable specification language that offers, through appropriate notations
and abstractions, expressive power focused on, and usually restricted to, a
particular domain.”

5.1.3 DSL design

Domain-Specific Languages can be developed in a vast number of ways, but depending
on the approach used to develop a DSL, two stages are mandatory and usually present
in the process of implementing a Language:

1. Analysis

2. Implementation
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Analysis

The analysis stage is the prime stage in the process of designing a DSL, considered by
many authors a pre-requisite to start developing a DSL [104]. This stage may comprise
several sub-stages:

1. The first of these sub-steps is identify the problem domain, which, while looking
like an obvious step, is sometimes overlooked by developers.

2. After the problem domain has been identified, there is the need to collect relevant
knowledge about the application domain. This knowledge is very important and
should be mature enough before the development of any DSL in order to catch
the correct essence of the application domain.

When the domain knowledge has been successfully collected, it needs to be processed
to extract the semantic notions and operations, which will allow for a powerful and
expressive way to write programs which in turn generate applications for the given
application domain. With the semantic notions and operations defined, the DSL can
be designed, without losing focus on the application domain and its semantics.

Implementation

The implementation phase is essential, resulting in a tool which receives as input a
DSL program and transforms it into a domain specific output or even into executable
applications. Several approaches can be taken to implement a DSL, but there are two
important phases which are always present:

1. Domain-specific library design and implementation

2. Compiler design and implementation

As a first step, one should design and implemented a library which covers for all the
semantic notions found during the initial analysis step.

After this library has been implemented, a compiler should be designed and imple-
mented according to the DSL design specifications resulting from the analysis step.
This compiler must be able to translate a DSL program into a sequence of calls to
library functions, as previously defined.

5.1.4 Approaches to DSL implementation

Several approaches have been used over the years to satisfy the growing needs for
specialized programming languages over specific application domains. The most widely
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used approaches since the first DSLs, and still valid in present days fit these two
categories:

1. Internal languages

2. External languages

Internal languages

Internal languages, also known as embedded languages or Domain-specific embedded
languagess (DSELs) [93], are add-ons to General-Purpose Languages, providing sup-
plementary expressive power over some specific application domain. These extensions
to GPLs include all the semantic notions which have been acquired in the design step
of the language, usually implemented by means of a set of subroutine libraries, which
implement the domain notions and operations.

This approach to DSLs does not provide the same freedom as an external languages,
since the underlying constructs of the base GPL must be respected. On the other hand,
this approach allows the use of the features found in the base GPL, at no extra cost.

When using this method to develop a Domain-Specific Language, several approaches
can be adopted to extend a GPL, of which the most commons are:

1. domain-specific libraries

2. pre-processing or macro processing

When using domain-specific libraries to extend a General-Purpose Language, the
developers make use of functions, procedures and other related tools available in the
base GPL to implement the domain-specific operations. Using the methods available
in the base GPL, the final DSL is very limited in terms of expressiveness, since it has
to respect every single aspect of the base GPL, including its syntax. Since the domain-
specific addition to the GPL is achieved by the creation of custom domain-specific
functions, there is no need to make any changes in the compiler/interpreter, as those
those additions are correct GPL programs, which turns out to be the main advantage
of this approach.

The pre-processing or macro processing approach is very flexible, since it uses a set
of macros which convert the domain-specific language constructs into GPL statements,
thus not being restricted to the syntax and other characteristics of the base GPL.
Although more flexible, this approach is not capable of error checking at the domain-
specific level, making the identification of errors quite complex. Also, any optimization
process has to be done at the GPL level.
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External languages

External languages, also known as micro-languages or little-languages are a widely used
method to implement Domain-Specific Languages. These external languages are small
programming languages created from scratch, custom-built for an application domain,
usually declarative and very expressive, and providing a compiler which generates ap-
plications or other form of output from programs written in the custom domain-specific
language.

This approach to DSL building is most common, and follows the same methods which
used to build General-Purpose Languages, using standard compiler construction tools.
Sometimes one uses specifically tailored tools, to help design and implement Domain-
Specific Languages. Section 5.1.5 gives a brief introductions to such systems.

This approach presents some significant advantages, allowing to design every single
aspects of the language to the needs of the specific application domain, having no
restrictions in terms of notions, primitives, variables and other language constructs.
Among other advantages, there is also the possibility to include error detection and
other language helpers at the domain level.

External languages also have some issues, mostly related to the cost of building a
programming language from scratch together with the need of a strong knowledge in
the development team about the specific domain. Another problem is the inability to
re-use the language in other application domains.

5.1.5 DSL Development Systems

As previously noted, the development of a DSL is a difficult task, demanding a de-
velopment team with a large knowledge and expertise in both the specific application
domain and in programming language development.

To ease the development of DSLs, systems have been developed over the years with a
wide variety of capabilities, in order to help developers to create DSLs: Draco [105],
ASF+DSF [106], Kephera [107], Kodyack [108] or InfoWiz [109], just to mention a few.

While these helper systems vary in many aspects, they tend to use the same type of
input to help building a DSL, specific information about the desired DSL, usually de-
scribed by means a of specialized meta-language, usually rule-based. These aspects are
normally related to syntax, pretty-printing, consistency checking, execution, transla-
tion and debugging [93].

These tools help with some aspects of DSL development, usually in the implementation
step. In other aspects of the development of a DSL these systems are not adequate.
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5.2 Requirements Overview

Using Constraint Programming to perform Network Intrusion Detection allows one to
be very expressive and model intrusion signatures, which, sometimes are quite hard or
even impossible to model in standard Network Intrusion Detection systems.

Despite of the expressiveness brought by using the Constraint Programming paradigm,
the modeling of the desired network signature can be quite complex for someone not
familiar with Constraint Programming. In order to ease the description of the network
situations, we decided to create a declarative, intuitive Domain-Specific Language for
Network Intrusion Detection [5], with network specific jargon expressions and terms
to model the intrusion signatures, which talks about network entities, their properties
and relations among them, allowing to describe network intrusion signatures, and, with
based on those descriptions, generate intrusion detectors.

The key goal of this DSL is to ease the way in which network attack signatures are
described, using constraint programming, hiding from the user all the constraint pro-
graming aspects and complexity of modeling network signatures as a Constraint Satis-
faction Problem (CSP), but still, using the methodologies of Constraint Programming
to describe the problem at a much higher level of abstraction, describing how the
network entities should relate among themselves and what properties should hold.

Maintaining the declarativeness and expressiveness of the Constraint Programming
(CP), allows an easy and intuitive way of describing the network attack signatures,
by describing the properties that must or must not be seen on the individual network
packets, as well as the relationships that should or should not exist between each of
the network packets.

The primary goal of the Domain Specific Language provided by NeMODe (NEtwork
MOnitoring DEclarative approach) is to ease the description of network intrusion sig-
natures, but, equally important, to generate source code for each of the detection
back-end mechanisms of NeMODe, from a single specification.

The DSL is a front-end compiler to several back-ends, one for each intrusion detec-
tion mechanism. This organization allows it to generate several recognizers based on
different solver methods, from a single, unified description.

5.2.1 Hello world

As a simple example to introduce the DSL, we present a small network signature which
looks for 10 TCP packets with the SYN flag set.
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Listing 36 shows how this simple problem can be modeled in NeMODe. We start by
naming the program in Line 1, then, in Line 2 we define the network traffic, as well
the solvers which will be used.

In Lines 3-6 we create a variable A, which should be a TCP packet and should have its
SYN flag set. These statements are then assigned to variable P.

Then, in Line 8, we clone the statements found in variable P 10 times, assigning the
result to variable C. This creates 10 sets of statements like the ones found in P, but
using distinct variables.

The statements assigned to P, and the clone assigned to C have no effect if not used. To
do so, in Line 9 we use the clone C, which applies the statements previously assigned
to it.

Finally, in Line 11 we specify the alert message to be shown when the signature is
found.

Listing 36 Helloworld example
1 helloworld {
2 RES = solve(’traffic.pcap’, [as,gecode,minisat]) {
3 P = {
4 tcp_packet(A),
5 syn(A)
6 },
7

8 C := clone(10,P),
9 C

10 } => {
11 alert(Hello world’)
12 };

5.2.2 Other approaches

Most widely used approaches to Intrusion Detection use specific rule-based languages
to describe the network intrusions. Usually these systems do not allow the relation
between several network packets, and when they do, they do it in a very limited way,
usually resorting to plugins to achieve the desired relation.

As a simple example to compare the DSL of NeMODe with other approaches, in List-
ing 37 we present the description of a ß brute force attack in Snort which looks for 5
SSH connection attempts in a 60 seconds time interval.
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In Sec. 7.4.5(see page 159) we further evaluate the DSL of NeMODe with Snort.

Listing 37 SSH password bruteforce Snort rule

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
(msg:"Possible SSH brute force attempt"; \
flow:to_server,established; \
threshold:type threshold, track by_src, count 5, seconds 60; \
content:"SSH-"; offset: 0; depth: 18;)

5.3 The NeMODe Specification

An input program written in the NeMODe DSL is composed of two major parts; 1) the
description of the desired network attack signature; and 2) the actions to take when
such a signature is detected on the network.

The description of the desired signature is composed by two main parts, as found on
Line 1 of Listing 38:

1. An optional set of initial declarations.

2. The actual description of the desired signature.

The initial declarations are optional (line 3 of Listing 38), since they their purpose
is to ease the description of the network signatures, by defining a set of variables
representing IP addresses, host names, port numbers or services, which can later be
used on the description of the problem, making the program more readable, by referring
to hostnames and ports or services, instead of IP addresses of port numbers. These
initial declarations are represented by a comma separated list of declarations (Line 5
of Listing 38).

Listing 38 NeMODe DSL simplified grammar - Program main structure
1 program → init case | case
2

3 init → decl_list
4

5 decl_list → declaration
6 | decl_list, declaration
7

8 declaration → ID = NUMBER
9 | ID = IP_ADDRESS
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The main part of a NeMODe program is a network case(line 1 of Listing 41), where
the network situation to be modeled is actually modeled. A case is composed by two
parts:

1. solver_list

2. action

5.3.1 Signature description

The solver_list (Line 3 of Listing 41) is the most important part of a NeMODe pro-
gram, since this is where the desired intrusion signature is modeled. It also contains the
identification of the tool which will be used to solve the problem. The action (Line 1
of Listing 57, page 102) is the action to take when the desired network situation is
detected.

Although the current implementation of NeMODe accepts a description of what to
do when the desired network situation is detected, it still does not produce any code
to perform the specified action, since our primary goal is to describe and detect the
signatures. In future implementations of NeMODe, it will be produced some code
which that will make sure that the desired actions will be taken.

The solver_list (Line 3 of Listing 41) is a simple comma separated of solver , each
one modeling different parts of the desired network signature. There are two types of
solver (Line 8 of Listing 41) in order to distinguish two completely different filtering
methods, the two types are:

1. filter

2. solve

The solve type is used to describe and solve complex network intrusion signatures and
is what really uses a constraint programming approach to perform the detection of the
network signature.

In a solve , we can specify any type of statement in order to model the desired network
situation (Line 8 of Listing 41).

Listing 39 presents a simple example of a solver of type solve, where we state the traffic
to be analyzed and the list of solvers to be used. Then, we specify a set of statements
which model a given signature. In this case we are looking for two network packets, A
and B. A should have destination port 80, and B should have as destination port the
source port of A.
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Listing 39 Solve example
1 ...
2 S = solve(’traffic.pcap’, [as,gecode,minisat]) {
3 tcp_packet(A), dst_port(A) == 80,
4 tcp_packet(B), dst_port(B) == src_port(A)
5 }
6 ...

As for the filter , is only used to perform some simple initial filtering tasks, accom-
plished by the use of simple packet analyzer tools, such as tcpdump [110], only allowing
the specification of simple properties over the network packets, that can be specified
with tools like tcpdump(Line 7 of Listing 41). The statements which can be used in a
filter, are represented in (Line 17 of Listing 41).

Listing 40 presents a simple example of a solver of type filter. We start by stating the
traffic to be analysed as well as the tool which will be used to filter the network traffic.
In this example, we are filtering TCP packets which have the source or destination
port 80.

Listing 40 Filter example
1 ...
2 F = filter(’traffic.pcap’, [tcpdump]) {
3 tcp_packet(A), port(A)=80
4 }
5 ...

A solver(Line 8 of Listing 41), independently of its type, is composed by 3 parts:

1. network traffic source

2. a list of filtering tools

3. network signature description

The network traffic source is the identification of the network traffic which will be used
analyzed to look for the desired network signature. The filtering tools indicate which
solver/filter will be used to filter the network traffic source and detect the desired net-
work signature. Finally, the network signature description models the desired network
attack signature.

A solver is stored into a variable, ID, which can later be used as an input to another
filtering stage.
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Listing 41 NeMODe DSL simplified grammar - a case
1 case → ID { solver_list } => { action };
2

3 solver_list → solver
4 | solver_list , solver
5

6 solver →
7 ID = filter ( STRING , [ id_list ] ) { stmt_filter_list }
8 | ID = solve ( STRING , [ id_list ] ) { stmt_list }
9

10 stmt_list → stmt
11 | stmt_list , stmt
12

13 stmt → primitive | connective
14 | ID = { stmt_list } | ID
15 | macro_stmt | logic_stmt
16

17 stmt_filter_list → stmt_filter
18 | stmt_filter_list , stmt_filter
19

20 stmt_filter → primitive_type ( var )
21 | data ( var , NUMBER ) == STRING
22 | address eq_op ID | address eq_op ip_address
23 | port eq_op NUMBER | port eq_op ID
24 | src_dst_port eq_op NUMBER | src_dst_port eq_op ID
25

26 id_list → ID
27 | id_list , ID
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Listing 42 presents an example on how to use the result of a solver as input to another
solver. In this example we use a filter which uses tcpdump to filter the network traffic,
looking for packets with source or destination ports 80. The filter is assigned to F,
which is then used as input for the solver of type solve.

Then, using F as network traffic, the solve looks for 2 TCP packets A and B with specific
properties, the destination port of B should be the same as the source port of A.

Listing 42 Using a solver as input to another solver - example
1 ...
2 F = filter(’traffic.pcap’, [tcpdump]) {
3 tcp_packet(A), port(A)=80
4 }
5

6 S = solve(F, [as,gecode,minisat]) {
7 tcp_packet(A), tcp_packet(B),
8 dst_port(B) == src_port(A)
9 }

10 ...

The most important part of a NeMODe program is the list of statements, stmt_list
(line 1 of Listing 41), where the network signature is actually described.

NeMODe DSL provides 6 types of statements(line 13 of Listing 41):

1. primitive statements

2. connective statements

3. definition statements

4. use statements

5. macro statements

6. logical statements

Primitive statements

The primitive statements (Listing 43) are the simplest statements available in NeMODe,
the ones which state simple properties that must be verified by the network packets,
forcing some specific properties of a network packets to hold true.

More specifically, the primitive statements available in NeMODe allows to require a
network packet to:
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1. be a tcp, udp or arp packet;

2. have any of its tcp flags set;

3. not to acknowledge another tcp packet;

4. have a specific data on its payload;

5. have a specific source or destination address;

6. have a specific source or destination port;

Listing 43 NeMODe simplified grammar - primitive statements
1 primitive → primitive_type ( var )
2 | data ( var ) ~= STRING
3 | data ( var , NUMBER ) == STRING
4 | address eq_op ID | address eq_op ip_address
5 | port eq_op NUMBER | port eq_op ID
6 | src_dst_port eq_op NUMBER | src_dst_port eq_op ID
7

8 primitive_type → tcp_packet | udp_packet | arp_packet
9 | arp_reply | arp_query

10 | urg | ack | psh
11 | rst | syn | fin | nak

Listing 44 presents a simple example using 2 primitive statements, which states that
we are looking for a TCP packet A, which should have the destination port 80.

Listing 44 Primitive statements - example
1 ...
2 tcp_packet(A), dst_port(A)==80
3 ...

Connective statements

The connective statements (Listing 45) are important because they describe network
situations that spread across several network packets. The connective statements have
the purpose of enforcing relations between two network packets, more specifically, they
allow to force:

1. a tcp packet to acknowledge another tcp packet;

2. a destination/source port of a packet to be equal/different to another destina-
tion/source port of other packet;
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3. a destination/source address to be equal/different to a destination/source address
of other packet;

4. the payload of two network packets to be equal/different at specific positions;

5. two network packets to have a temporal relation, such as their temporal distance
to be inferior to a given amount of time.

Listing 45 NeMODe simplified grammar - connective statement
1 connective → ack ( var ) eq_op var
2 | src_dst_port eq_op src_dst_port
3 | address eq_op address
4 | time rel_op time
5 | data(var, NUMBER, NUMBER) eq_op data(var, NUMBER, NUMBER)

Listing 46 presents a small example which use connective statements, more specifically
it states that source port of TCP packet A should be equal to destination port of packet
B.

Listing 46 Connective statements - example
1 ...
2 tcp_packet(A), tcp_packet(B),
3 src_port(A) == dst_port(B)
4 ...

The primitive and connective can be used to describe most of the network intrusion
signatures we used , but the NeMODe DSL provides some more statements types to
help the description of such signatures, the definition statements, the use statements
and the macro statements.

Definition statements

The definition statements (Line 2 of Listing 47) allows to define a variable as a group
of statements, which can later be used in the description of a network situation. This
type of statements have no effect on the program unless they are used latter, since they
are only the definition of a variable.

This can also be understood as a method to define macros, since we are assigning a set
of statements to a given name, which can later be used.

Listing 48 shows an example where two statements are used two define variable C.
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Listing 47 NeMODe simplified grammar - definition statement
1 stmt → primitive | connective
2 | ID = { stmt_list } | ID
3 | macro_stmt | logic_stmt

Listing 48 definition example
1 ...
2 C = {
3 tcp_packet(A), syn(A)
4 }
5 ...

Use statements

The definition statements have no effect, unless they are actually used, to do so, there
is the use statement (Line 2 of Listing 47), allowing to use a previous definition. This
activates the definition which produces the desired effect.

Listing 49 presents a simple example demonstrating the use of a previous definition.
Considering C a definition, created in Line 2, we use C in Line 6. This will apply the
statements assigned to C.

Listing 49 use example
1 ...
2 C = {
3 tcp_packet(A), dst_port(A)==80
4 },
5

6 C
7 ...

Macro statements

To ease the description of some properties that should be verified, we created the macro
statements (Listing 50), designed to avoid the unnecessary repetition of code.

The clone statement (Line 7 of Listing 50) is one of the macro statements, which allows
to clone a previously defined variable a given number of times. These clones are stored
under a variable, e.g. C := clone(3,P), which allows to later state constraints over a
specific variable of a specific iteration of the clone. Also, when we the clone statement
is used, it implicitly states that the variables of each instance of the cloning should be
different.
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Listing 50 NeMODe simplified grammar - The macro statements
1 macro_stmt → ID := clone
2 | same_different
3 | interval ( var ) eq_op time
4 | duration ( var ) eq_op time
5 | connection ( var , var )
6

7 clone → clone ( NUMBER , var )
8

9 same_different →
10 same_src ( var )
11 | same_dst ( var )
12 | same_src_port ( var )
13 | same_dst_port ( var )
14 | different_src ( var )
15 | different_dst ( var )
16 | different_src_port ( var )
17 | different_dst_port ( var )
18

The same_different statements include a set of statements which are used to state
the same properties over all a specific variable in all instances of a cloning, e.g.
same_src(C:A), which forces all variables A of all instances of cloning C to have the
same source address.

The macro statement duration (Line 4 of Listing 50) forces the overall duration of a
cloning to a be higher or lower than a certain amount of time specified in seconds or
micro-seconds, e.g. duration(R) < secs(60).

The macro statement interval (Line 4 of Listing 50) forces the time between each
iteration of a cloning to be higher or lower than a given amount of time, specified in
seconds or micro-seconds, e.g. interval(R) < secs(60).

As for the macro statement, connection (Line 5 of Listing 50), it forces two packets to
belong to the same connection, forcing the source or destination of a specific packet be
the same as the destination or source of another network packet.

Listing 51 shows an example usage of the duration statement; where Lines 1-7 defines
a variable C as a block of statements, Line 6 defines a cloning, where C is cloned 3
times and stored in variable R. Line 7 states that the overall duration of R should be
less than 60 seconds.
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Listing 51 Example of a macro statement
1 C = {
2 tcp_packet(A),
3 syn(A)
4 },
5

6 R:=clone(3,C),
7 duration(R) < secs(60)

Logical statements

The last type of statements, but also as important, are the logical statements (List-
ing 52). These statements have the purpose of allowing the specification of some logic
operations over primitive and connective statements, such as in Listing 53. In this ex-
ample, we stated that the source address of packet A should be equal to the destination
of packet B or equal to the source address of packet B.

Listing 52 NeMODe simplified grammar - Logic statements
1 logic_stmt → logic_stmt logic_op logic_stmt
2 | ( logic_stmt )
3 | primitive
4 | connective

Listing 53 Example: Logical statements
1 src(A)==dst(B) | src(A)==src(B)

Basic Network Entities

Essential to NeMODe are the basic network-related entities that can be used to describe
network intrusions. Listing 54 presents the basic entities which are available to the DSL
and are essential to describe a network situation, such as ports, ip address and time,
used in several types of statements.

Temporal expressions

Since NeMODe allows the relation of network packets regarding their timestamps, one
of the basic network entities is time (Line 7-12 of Listing 54). One can use simple
time units, usecs and secs; or arithmetic expressions involving timestamps of several
packets.



5.3. THE NEMODE SPECIFICATION 101

Listing 54 NeMODe simplified grammar - Basic entities
1 src_dst_port → dst_port ( var )
2 | src_port ( var )
3

4 address → src ( var )
5 | dst ( var )
6

7 time → usecs ( NUMBER )
8 | secs ( NUMBER )
9 | time_arith

10

11 time_arith → time ( var )
12 | time ( var ) arith_op time_arith

Listing 55 presents a simple example which demonstrates the use of temporal expres-
sions. We state that the time difference between TCP packets B and A should be less
than 5 microseconds.

Listing 55 Temporal expressions - example
1 tcp_packet(A), tcp_packet(B),
2 time(B) - time(A) < usecs(5)

Basic Operators

Listing 56 NeMODe simplified grammar - Basic operators
1 eq_op → ==
2 | !=
3

4 logic_op → ‘‘|’’
5 | &
6

7 arith_op → +
8 | -
9 | *

Listing 56 presents the most relevant operators found in NeMODe: the equality and dis-
equality operators eq_op; the logical operators logic_op and the arithmetic operators
arith_op.
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5.3.2 Actions

A case is composed by two parts, the solver_list, which actually describes the desired
network situation, and the action(Line 1 of Listing 57), which describes the action to
take when the specified intrusion is detected.

In the current implementation of NeMODe, there is only one possible action, alert
for an attack. The alert takes a list of strings and variables as arguments, which are
concatenated to build the alert message. When using a variable as argument, the
source address is used to generate the alert message.

Listing 57 NeMODe simplified grammar - Action statements
1 action → alert ( alert_arg_list )
2

3 alert_arg_list → alert_arg
4 | alert_arg_list , alert_arg
5

6 alert_arg → var | STRING

Listing 58 presents an example of an alert using 2 arguments, a string and variable A.
This produces an alert message which is the concatenation of the string and the source
address of TCP packet A.

Listing 58 Action - example
1 http_access {
2 R = solve(’traffic.pcap’, [as]){
3 ...
4 tcp_packet(A), dst_port(A)==80
5 ...
6 }
7 } => {
8 alert(‘‘http access from ’’, R.A)
9 }

5.3.3 Variables

Variables in a NeMODe program (Listing 59) are designed to help the description of
signatures, always upper case to be easily identified.

The variables can occur in several environments and situations, allowing us to catego-
rize them in the following types:
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1. initial declaration variables

2. solver/filter variables

3. definition variables

4. cloning variables

5. network packet variables

Declaration variables The initial declaration variables are the ones used to de-
clare host names, services or ports, as described earlier in this Chapter(Line 8 of
Listing 38).

Solver/Filter variables The solver/filter variables are the ones where we store the
result of a solver or filter, which can then be used as the input to other solver or
filter.

Definition variables The definition variables are the ones used to store a set of
statements, which will be used later, such as in a cloning.

Cloning variables The cloning variables is where a cloning of a definition is stored,
allowing it be accessible later, as well as its internal variables.

Packet variables The network packet variables, as the name indicates, are the ones
that represent the network packet, and to which the constraints are applied.

Although NeMODe provides these types of variables, they can be represented formally
as in Listing 59. Most variables are represented by IDs(Line 1 of Listing 59), uppercase,
alpha numeric, including the ’_’ character and always starting with a letter, as in
Listing 60.

There are two exceptions to this representation, the variables of a clone (Line 5 of
Listing 59), and the variables of a solver or filter (Line 7) of Listing 59), which can
be accessed from an outer scope. These variables are variations of the regular IDs,
which are arranged with other IDs using a special nomenclature, which respect and
self-describe the scope of the variable.

To access a variable inside a clone, we first refer to the clone, then the iteration number
and finally the variable, e.g. C[2].A, where C is the clone, 2 is the desired iteration of
the clone, and A the variable.

Accessing a variable inside a solver is made in a similar way, but referring first to
the solver, e.g. S.C[2].A, where S is the name of the desired solver. In Sec. 5.3.4 we
further detail these types of variable.
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Listing 59 NeMODe simplified grammar - Variables
1 var → ID
2 | clone_var
3 | filter_var
4

5 clone_var → ID [ NUMBER ] : ID
6

7 filter_var → ID . ID
8 | ID . clone_var

Listing 60 IDs regular expression
1 identifier [A-Z]([A-Z_]|[0-9])*

Except for network packets, variables are implicitly declared, being defined the first
time they are referenced or used. As for the network packet variables, they are declared
explicitly by the use of tcp_packet(x), udp_packet(x) or arp_packet(x), where x
is the variable name.

5.3.4 Variable scope

A program in NeMODe contain several scopes, a first one which is the program itself,
then, a second scope for the solvers/filters, and, inside each solver there might exist
a third scope, a definition or even the clone of a definition. Figure 5.1 represents the
variable scopes in a NeMODe program.

Program

Filter

Cloning

Solver

Cloning

Figure 5.1: DSL scope diagram

At each scope level, it might be necessary to access a variable of a higher scope level,
which is achieved in a transparent way, if there is no other variable with the same name
on the current scope level, by simply referring to the desired variable. Otherwise there
is the need to access that variable using a special syntax, described further ahead.
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Accessing a variable inside a clone

To access a variable defined in a definition which was assigned to a variable, one starts
to refer the clone variable, then the number of the iteration and finally the variable ID,
e.g. C[2].A, where C is the clone variable; 2 the desired iteration; and A the variable
which we desire to access.

Listing 61 shows such an example, where the statement nak is applied to variable A of
the second instance of clone C (Line 8).

Listing 61 Referring a variable of a clone
1 C = {
2 tcp_packet(A),
3 syn(A)
4 },
5

6 R := clone(3,C),
7

8 nak(R[1]:A)

Accessing a variable inside a solver

When there is the need to access a variable defined inside a solver or filter to state
some constraint over it, one starts by referring the filter and then the desired variable,
e.g. gecode.A, where gecode is the variable where the solver has been stored, and A
the variable to we which we want to access.

There is also the possibility of referring a variable which is inside a clone, which in turn
is inside a solver, e.g. gecode.R[2].A. In this case, R is the variable representing the
desired clone; 2 the desired iteration of clone R; and A the variable that we want to
access.

5.4 Implementation

The current implementation of NeMODe DSL is able to generate code for the several
detection mechanisms: the Gecode solver, the Adaptive Search algorithm and the
MiniSat solver. These approaches to constraint programming are different from each
other, either in the way the problems are solved, and the way the problems are modeled
and described, requiring distinct code generators, one for each of back-end.
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Although we need to implement several code-generators, one for each solver, we were
able to minimize the differences between the solvers by creating custom libraries for
each constraint solver so that the code generation process may be shared between
different back-ends.

Standard programming language implementation tools were used to implement parts of
NeMODe: Flex and Bison, were employed to make the syntactic and semantic analysis
of NeMODe programs.

Figure 5.2 represents the architecture of the code-generators; starting with a NeMODe
program, which is then parsed into tokens with the help of Flex. Then, based on those
tokens and the grammar which defines the NeMODe DSL, and with the help of Bison,
a parser is created, which outputs a parse tree representation of the input program.
Using the output of this parser we create a semantic model of the problem, and then,
using the custom libraries for each of the solvers, we generate code for each detection
mechanism.

NeMODe
Program Flex

Recognizer 1
Gecode

Recognizer 2
Adaptive
Search

Recognizer 3
MiniSat

Bison

tokens

Gnu Prolog

Abstract
Parse
Tree

Gecode

A.S.

MiniSat

Custom libraries

Figure 5.2: Code generators architecture

For the code generation, we choose GNU Prolog, since it presents excellent charac-
teristics to rapidly implement prototypes as well as a great flexibility to work and
manipulate tree data-structures like, such as the Abstract Parse Tree (APT), essen-
tial to generate code. So, Bison generates GNU Prolog code representing the Abstract
Parse Tree, which is then analyzed in GNU Prolog, generating source code for Adaptive
Search and Gecode.

The Bison and Flex modules of the code generation are shared among all back-end
mechanisms, as their only task is to ensure that the input code is correct and generate
an Abstract Parse Tree. After the APT has been created, the code generation is specific
to each back-end. We now describe these back-end code generators.
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5.4.1 Generating Adaptive Search code

The task of generating Adaptive Search code consists in creating the proper error
functions which are needed for Adaptive Search to be able to solve the problem:
Cost_of_Solution and Cost_on_Variable.

In order to ease the generation of this error functions, a library was created which
implements small error functions, specific to the network intrusion detection domain,
which are then used under a certain combination, according to the desired intrusion,
which will be combined to generate the cost_of_solution and cost_on_variable.

Listing 62 shows an excerpt of the Adaptive Search Cost_of_Solution function gen-
erated for the port-scan attack, as described in Listing 69 (page 116).

Listing 62 Adaptive Search, cost_of_solution code excerpt
1 int Cost_Of_Solution(){
2 ...
3 err += tcp(MATRIX, sol[1]);
4 ...
5 err += src_dst(MATRIX, sol[1], sol[2]);
6 ...
7 return err;
8 }

Listing 63 presents an excerpt of the Adaptive Search Cost_of_Variable function
generated for the port-scan attack, described in Listing 69 (see page 116).

Listing 63 Adaptive Search, cost_of_variable code excerpt
1 int Cost_On_Variable(int x){
2 ...
3 if (x == 1)
4 err += tcp(MATRIX, sol[1]);
5 if (x == 2)
6 err += tcp(MATRIX, sol[2]);
7 ...
8 if (x == 1 || x == 2)
9 err += src_dst(MATRIX, sol[1], sol[2]);

10 ...
11 return err;
12 }
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5.4.2 Generating code for Gecode

Generating code for Gecode follows an approach similar to Adaptive Search, but, in-
stead of generating error functions, it generates code based on Gecode constraint propa-
gators and custom network propagators which describe the desired network signatures,
so as to later solve the problem.

We created a custom library which defines functions that combine several stock Gecode
constraints to define custom network related “macro” constraints. The same library
includes definitions for a network-related constraint propagators, useful to implement
some of the constraints needed to describe and solve Network Intrusion Detection
problems.

With this library, the generation of code for Gecode is simplified, using the custom built,
network related constraints instead of the general purpose constraints in Gecode.

Listing 64 presents an excerpt of generated Gecode code for a port-scan attack, defined
in Listing 69.

Listing 64 Gecode code excerpt
1 ...
2 must_be_tcp(vars[1]);
3 ...
4 src_dst(vars[1], vars[2]);
5 ...
6 branch(*this, vars[1], INT_VAR_SIZE_MIN, INT_VAL_MIN);
7 ...

5.4.3 Generating code for MiniSat

The code generation for MiniSat is achieved with the help of a small library implement-
ing the functions representing the necessary constraints to model the problem, which
in turn encode each constraints as a set of clauses in Conjunctive Normal Form (CNF),
necessary for MiniSat.

In particular, this library is composed of two types of functions: the functions which
encode the constraints used to model the problem as CNF clauses, and the functions
which are used to model the variables of the problem as a set of CNF clauses. We
avoid the direct encoding of the CNF clauses, leaving the details to the library.

Code generation starts by using the functions which model the variables and their
domain according to the number of variables of the problem being modeled and the
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size of the network traffic being used, only then, are the functions which model the
constraints as CNF rules used, thus modeling the desired problem.

Listing 65 presents an excerpt of code generated for MiniSat for a port-scan attack, as
defined in Listing 69 (see page 116).

Listing 65 MiniSat code excerpt
1 ...
2 //variable encoding
3 setup(S, n_vars, n_packets);
4 ...
5 //packet0 must be a TCP packet
6 pkt_field_equal(S, n_vars, n_packets, 0, 1, 1)
7 ...
8 //src address of packet1 == dst address of packet0
9 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 4, 0, 9);

10 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 5, 0, 10);
11 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 6, 0, 11);
12 pkt_field_equal_pkt_field(S, n_vars, n_packets, 1, 7, 0, 12);
13 ...

5.5 Examples

During development of NeMODe we modeled some network attacks using the DSL
in order to figure out the requirements that NeMODe should verify in terms of func-
tionality and expressiveness, and also evaluate NeMODe. Each of the network attacks
were successfully modeled and a recognizer code for each of the detection mechanisms
available in NeMODe was implemented.

The network attacks we modeled were the following:

1. Portscan

2. SSH password brute-force

3. SYN flood

4. DNS spoof

5. DHCP spoof

6. ARP poisoning

We now proceed with a description of each of these.
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5.5.1 Portscan

A Portscan can be the first step towards a complex network attack, having the as main
purpose to figure out which services a specific host is running. This is achieved by
successively connecting to the ports of the corresponding services, and, if a connection
to a specific port is established, it means the host is running that particular service.

A Portscan attack can be detected by monitoring the number of network connections
that are initiated and terminated a few moments later, from the same source address
and to the same destination address and with different destination ports.

Should this occur, it means that either someone attempted to connect to a service
not available in the host, which causes the connection to be immediately terminated,
or someone connected to a service available on the host and immediately closed the
connection, since the purpose of the connection was only to figure out if service was
available on the host. If many of these connections are made to different destination
ports on the same host in short interval of time, we are probably under a Portscan
attack.

Modeling the attack

To model this attack, we create a set of two packets, one for the packet which initiates
the connection, and other for the packet who closes it.

We then state constraints over these two packets so that the packet which closes the
connection appears shortly after the packet which initiated the connection. This con-
nection can be closed either by the attacker, if the service is available, or by the victim
host, if the service is not available.

This set of packets is then cloned as many times as we find necessary to consider this
an attack, and limit the maximum time interval allowed between each set. We also
need to state that the incoming connections originate all in the same host1, have the
same destination and different destination ports.

Modeling in NeMODe

Listing 66 presents a simple example of NeMODe, describing a Portscan attack. The
program starts by defining the name of the intrusion to be detected, Line 2; and then
specify the network traffic source as well as the target CSP solvers to which it will be

1If considering a distributed attack, there is no need to check if the connections originate in the
same host.
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Listing 66 A Portscan attack using NeMODe
1 portscan {
2 RES = solve(’portscan.pcap’, [as,gecode,minisat]) {
3 P = {
4 tcp_packet(A), tcp_packet(B)
5 syn(A), nak(B), rst(B),
6 connection(A,B),
7 time(A) - time(B) < usecs(100),
8 },
9

10 C := clone(26,P),
11

12 same_src(C:A), same_dst(C:A),
13 different_dst_port(C:A),
14 max_interval(C) < usecs(500)
15 {
16 } => {
17 alert(’Portscan attempt’)
18 };

produced code, Line 2. In this case, the network traffic source will be a tcpdump log
file entitled ’portscan.pcap’ will generate code for all three detection mechanisms of
NeMODe.

The network signature is described in Lines 2-14, and in Lines 16-18 is where the “se-
mantic actions” to be taken if the attack pattern is found on the network are described,
in this case, we only alert the network administrator.

Lines 3-8 constitute the definition of a set of rules, grouped under a block which has
been named P. In this block, we create two TCP packets A and B, then state that packet
A should have its SYN flag set, and that packet B should close the connection started
by packet A. Then we state that packet A and B should belong to the same connection,
using the statement connection. Finally we state and that the connection initiated by
packet A and terminated by packet B should be very short, less than 100 microseconds.

Line 10 states that the packets which match the rules of block P are expected to occur
26 times. These occurrences are assigned to variable C, which is used later to state
other constraints.

Line 12 states that all packets A of clone C should have the same source and destination
address and line 13 states that the destination port of all packets A of clone C should
have different source ports.
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Finally, Line 14 states that the maximum distance between each instance of clone C
should be less that 500 microseconds.

5.5.2 SSH password brute-force attack

A SSH password brute-force attack happens when the attacker tries to access the SSH
service of a given host by brute-forcing SSH username/password combinations, i.e.
trying a large amount of username/password combinations, based on some username/-
password dictionary or some other approach, to gain access to the SSH server.

Modeling the attack

This type of attack is characterized by a large number of SSH connection attempts.
To detect this attack, we can we can monitor the number of SSH connections that
are initiated and terminated in a small amount of time, which means the connection
was not successful. If there are a few connections like these, it means that the host is
probably under a SSH password brute-force attack.

Modeling in NeMODe

Listing 67, shows how an SSH password brute-force attack can be described in NeMODe,
we start by naming the network situation in Line 1, and then specify the network traffic
source, the file ’ssh.pcap’, and the target solvers to which we will generate code.

The network signature is actually described in Lines 3-13. Line 15, alerts the network
administrator for an eventual SSH password brute-force attack using the statement
alert(’SSH password brute attack’), if the specific attack is found.

Lines 3-7 describe a TCP packet A which initiates an SSH connection. These statements
are assigned to variable P, which later, in Line 9 we clone 10 times, meaning that we
are looking for 10 packets, representing 10 SSH connection attempts.

In Line 11 we state that the packet A of each instance of clone C should all have the
same source and destination address.

Then, in Line 12, we state that the overall time of all clones should be less than 60
seconds, the value we found reasonable to consider it an attack, using the statement
max_duration.

Finally, in Line 15, we alert the network administrator for an eventual SSH password
brute-force attack using the statement alert(’SSH password brute attack’).
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Listing 67 An SSH password brute-force attack using NeMODe
1 ssh_brute_force {
2 RES = solve(’ssh.tcpdump’, [as,gecode,minisat]) {
3 P = {
4 tcp_packet(A),
5 dst_port(A)==22,
6 syn(A), nak(A)
7 },
8

9 C := clone(10,P),
10

11 same_src(C:A), same_dst(C:A),
12 max_duration(C) < secs(60)
13 }
14 } => {
15 alert(’SSH password brute attack’)
16 };

5.5.3 SYN flood

A SYN flood attack happens when the attacker initiates more TCP/IP connections
than the server can handle, and, at the same time, ignores the replies from the server,
forcing the server to have a large number of half open connections in standby, leading
to a Denial-Of-Service when this number reaches the limit of connections.

Modeling the Attack

This type of attacks can be detected if a large number of connections is made from a
single host to a specific host in a very short time interval, meaning the host is probably
under a SYN flood attack.

Modeling in NeMODe

Listing 68 shows how a SYN flood attack can be described using NeMODe, we start
by defining the name by which this network situation will be known, Line 1, and
specifying the network traffic source, the tcpdump network traffic log ’syn.tcpdump’
and the solvers for which will be generated source code, Line 2.

From Line 3 to Line 13 is where the signature is actually described. Line 15 describes
the action to take if the network situation is found, alerting for a SYN flood attack.
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In Lines 3-13 we state that A should be a TCP packet, which must have its SYN flag
set and a null acknowledgement field. These statements model a network packet which
initiates TCP connections, which are assigned to variable P.

Then, in Line 9, we clone the statements defined in variable P 30 times, the number
we found reasonable to be considered a SYN flood attack, representing 30 connection
attempts. Then we store this cloning as variable C.

After the cloning, in Line 11 we specify that all packets of all instances of cloning C
should all have the same source and destination address. Also, in Line 12, we define
the maximum interval time between each instance of cloning C should be inferior to
500 microseconds.

Listing 68 A SYN flood attack in NeMODe
1 syn {
2 RES = solve(’syn.tcpdump’, [as,gecode,minisat]) {
3 P = {
4 tcp_packet(A),
5 syn(A),
6 nak(A)
7 },
8

9 C := clone(30,P),
10

11 same_src(C:A), same_dst(C:A),
12 max_interval(C) < usecs(500)
13 }
14 } => {
15 alert(’SYN flood attack, packet’)
16 };

A distributed SYN flood attack

This description of the problem can be trivially modified for a Distributed SYN flood
attack, where the attackers are geographically distributed, allowing for a stronger
attack [1]. To make this transformation, we only need to remove the statement
same_src(C:A) from Line 11, allowing the packets to originate from several hosts.
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5.5.4 DNS spoof

A DNS spoof is a Man in The Middle (MITM) attack, where the attacker tries to
provide a false answer to a DNS query posted by the victim host. If the attack succeeds
the victim could be accessing a host controlled by the attacker instead of the legitimate
host. This allows the attacker to extract information from the victim.

Modeling the Attack

In order to perform this type of attacks, the attacker tries to respond with a false DNS
answer faster than the legitimate DNS server, providing a false IP address for the name
to which the victim was querying.

To detect this type of attacks, we want to look for several replies to the same DNS
query, indicating the host might be under a DNS spoof attempt.

Modeling in NeMODe

Listing 69 shows how this attack can be modeled in NeMODe. We start by naming
the intrusion in Line 1, followed by the network traffic source in Line 2. The actual
description of the desired network situation is done in Lines 2-14. Line 16 states what
actions to take if the situation is found, in this situation the network administrators
are alerted for an eventual DNS spoof attack.

Line 3 describes the packet that makes the DNS request. Lines 5-6, models a first reply
to the DNS request and lines 8-9 describes the second reply.

From Line 11 to Line 13 we state that the network packets B and C should be different
and that the DNS id in replies should be the equal to the DNS id of the DNS request.
The DNS id is represented in the first two bytes of the packet data.

5.5.5 DHCP spoof

A DHCP spoof is another Man in The Middle (MITM) attack, where the attacker
tries to reply to a DHCP request faster than the legitimate DHCP server for the local
network, allowing the attacker to provide false network configurations to the victim
host, e.g. a fake default gateway, which forces all traffic from and to the victim host
to pass through an attacker controlled host, allowing it to capture or modify sensitive
data.
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Listing 69 A DNS spoof attack programmed in NeMODe
1 dns_spoofing {
2 RES = solve(’dns.pcap’, [as,gecode,minisat]) {
3 udp_packet(A), dst_port(A) == 53
4

5 udp_packet(B), src_port(B) == 53,
6 dst(B) == src(A), dst_port(B) == src_port(A),
7

8 udp_packet(C), src_port(C) == 53,
9 dst(C) == src(A), dst_port(C) == src_port(A),

10

11 B != C,
12 data(B,0,2) == data(A,0,2),
13 data(C,0,2) == data(A,0,2)
14 }
15 } => {
16 alert(’DNS Spoofing attempt’)
17 };

Modeling the Attack

This kind of intrusion can be detected by looking for several answers to a single DHCP
request, originating in different hosts. If the attacker spoofs its IP addresses, this
detection method needs to be tuned (e.g. use Media Access Control (MAC) addresses).

Modeling in NeMODe

A NeMODe program which models a DHCP spoof situation is presented in Listing 70.
The signature is described in Lines 2-8. Line 10 states which actions should be taken
if the specific network situation is found.

Line 3 describes the packet that initiates a DHCP request, Line 4 describes a first reply
to such request and Line 5 describes a second reply the DHCP request.

Finally, in Line 7, states that packets B and C, the first and second replies, should have
different source addresses.
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Listing 70 A DHCP Spoofing attack programmed in NeMODe
1 dhcp_spoofing {
2 RES = solve(’dhcp.tcpdump’, [as,gecode,minisat]) {
3 udp_packet(A), dst_port(A)==67,
4 udp_packet(B), dst_port(B)==68,
5 udp_packet(C), dst_port(C)==68,
6

7 src(B) != src(C)
8 }
9 } => {

10 alert(’DHCP Spoofing attempt’)
11 };

5.5.6 ARP poisoning

An ARP poisoning attack happens when someone tries to poison the ARP tables of a
router or specific host with fake data, making an IP address point to a MAC address
corresponding to some other host which is not the legitimate owner of the given IP
address.

This kind of attacks allows the attacker to gain unauthorized access to information,
destined to someone else.

Modeling the Attack

This type of attack is achieved by sending a series of ARP packets with fake information
in order to poison the ARP tables of the desired hosts.

One way to detect ARP poisoning attacks is to monitor ARP packets, looking to see
if there are different IP addresses assigned to the same MAC address in a short time.
If this happens, the host is most likely under an ARP poisoning attack.

Modeling in NeMODe

Listing 71 presents a possible description of an ARP poisoning attack in NeMODe. It
starts by naming the specific network situation in Line 1, then stating what is network
traffic source, and then specifying which solvers are going to be used.

The description of network signature is actually done in Lines2-21. In Line 23 we alert
the administrator if the specific attack is found.
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Listing 71 An ARP poisoning attack programmed in NeMODe
1 arp_poisoning {
2 RES = solve(’arp.tcpdump’, [as,gecode,minisat]) {
3 arp_packet(A), arp_reply(A),
4 arp_packet(B), arp_reply(B),
5 arp_packet(C), arp_reply(C),
6 arp_packet(D), arp_reply(D),
7

8 time(A) < time(B),
9 time(B) < time(C),

10 time(C) < time(D),
11

12 src(A) == src(B),
13 src(A) == src(C),
14 src(A) == src(D),
15

16 src_mac(A) != src_mac(B),
17 src_mac(A) != src_mac(C),
18 src_mac(A) != src_mac(D),
19

20 time(D) - time(A) < secs(5)
21 }
22 } => {
23 alert(’ARP poisoning attempt’)
24 };

Lines 3-6 describes four packets which should be ARP replies, representing the ARP
replies that we are looking for. Lines 8-10 states that these packets should be in that
specific temporal order, so later we can specify a global time interval between the first
and the last ARP reply, in Line 20.

In Lines 12-14 we state that packets A,B,C and D should all have the same Sender
Protocol Address (SPA), also known as IP Address, and in Lines 16-18, we state that
the Sender Hardware Address (SHA) of packet A, also known as MAC Address, must
be different from the SHA of packets B,C and D. This means that we have packets
A,B,C and D with the same IP address, but the MAC address of packet A is different
from the MAC address of packets B,C and D, indicating that we are probably under an
ARP poisoning attack.

To make this signature stronger, in Line 20 we state that the time interval between
network packets B and D should be less than 5 seconds, since an ARP poisoning attack
tends to produces several ARP replies in a short time interval.
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5.6 Conclusion

In this chapter we have described the Domain Specific Language provided by NeMODe,
a small, simple programming language about network entities related to Network In-
trusion Detection, which allows easy description of the desired situations to be found
in the network traffic, using a declarative approach underlain by the use of constraint
programming.

We have described in detail the specification of the DSL to help understand its syntax
and semantics. Besides the description of the DSL, we also described its implementation
as well as some examples of how to use the language.

The NeMODe DSL presented allows for an easy description of specific network situa-
tions. Code generation for each of the back-end detection mechanisms is available in
NeMODe, enabling a parallel detection process, using all the mechanisms concurrently,
in search for the faster solution.

The examples presented, although simple, demonstrate the expressiveness of NeMODe
in describing network signatures.





Chapter 6

Sliding Network Traffic Window

This Chapter describes a Sliding Network Traffic Window and its imple-
mentation in Adaptive Search, simulating the essence of live network traf-
fic, where new network packets are constantly arriving. Adopting a scheme
such as this allows us to make a first evaluation of NeMODe while analyzing
simulated live network traffic.

6.1 Introduction

The Gecode, Adaptive Search and MiniSat back-end detection mechanisms of NeMODe
work on a static network traffic log, which may be obtained with tcpdump [110], a
network packet sniffer, while a computer is under an actual attack.

By using a static traffic sample, we are limiting the capabilities of the detection mech-
anism. This is necessary because watching live network traffic would be difficult to
handle, performance-wise, and also because we need to establish benchmark results
which require a fixed data set.

Introducing a network traffic window that changes over time, which slides across a
larger set gives the solver new capabilities, allowing it to analyze a much larger data
set than was previously possible. Besides, if we get the network traffic window to slide
across live network traffic, it allows us to analyze live network traffic in real time, by
updating the network traffic window with incoming network packets captured from the
wire.

If, instead of simply slide the network window over a larger set, or updating it with fresh
network packets, we keep in the network window past packets which seem interesting
for the network situation that we are trying to detect, we get the capability of detecting
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attacks that spread across a window larger than that previously used, thereby including
a range of packets that span a considerably larger time interval than was previously
attainable.

In this Chapter, we present a sliding network traffic window scanner using the Adaptive
Search detection mechanism of NeMODe, with the ability to buffer packets which are
relevant to the situation being analyzed, allowing the detection of attacks over a wider
time interval. Our goal is to create a strong platform on which to perform network
intrusion detection, on live network traffic, in the near future.

Adaptive Search was chosen as the solver to implement the sliding network traffic
window since, from the solvers we have experimented with, it is the one which is most
easily modified and is less sensitive to changes, such as the changes on the network
traffic window, due to the customizability of the Adaptive Search algorithm.

The introduction of a sliding network traffic window is depicted in Fig. 6.1, where the
network traffic source can be seen. This will be used to update the network traffic
window when a new network packet arrives, inserting it into the traffic window, which
is then used as input to the detection mechanism, in this case, Adaptive Search.
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Adaptive
Search

Solution

Network
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Window
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Insert new 
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Figure 6.1: Network Traffic Sliding Window diagram in Adaptive Search

6.2 Sliding Network Traffic Window in AS

Adaptive Search relies on heuristics, reflected in the error functions in order to reach a
solution to a combinatorial problem. In a Network Intrusion Detection problem, these
heuristics directly pertain to the network traffic window, since the error functions are
calculated by analyzing the packets actually found in the traffic window.

Due to this direct influence of the network traffic window over Adaptive Search heuris-
tics, any changes made to the network traffic window will have an immediate effect
in the heuristic functions used by Adaptive Search, changing the way it seeks for a
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solution and, most importantly, automatically adapting to any change made on the
network traffic window.

Adaptive Search reaches a solution to a problem by starting with an initial state, and
then iteratively performing minor changes to it, until an objective function is satisfied.
At each step, every variable of each “tentative” solution is already assigned with a
value, which is a reference to an actual network packet that belongs to some instance
of the network packet window. So, when a network packet is removed from the packet
window to make room for another packet, the “tentative” solution is no longer valid.
Due to the high performance and insensitiveness to previous context of the Adaptive
Search algorithm, it adapts very quickly to the new “instance” of the network packet
window, without requiring any changes to the code.

6.2.1 Updating the Sliding Window

In order to update the sliding window with new packets, we decided to use a first in
first out access discipline, where the oldest packet in the network traffic window is
replaced by the newest packet arriving in the network. Two versions of this approach
were implemented, and, depending on the network case being analyzed, the most suited
version is used:

1. Remove oldest packet, insert new packet

2. Remove oldest not relevant packet, insert new packet

We now discuss both approaches:

Remove oldest packet, insert new packet

In a first version, when a new packet arrives, we simply remove the oldest network
packet from the network traffic window and insert the new one in its position. At some
point, while inserting new packets replacing the old ones, the packets in the network
traffic window are no more ordered as in the original network traffic source, since we
don’t shift the packets when inserting a new one. This does not poses a problem to
Adaptive Search, since it uses each packet time stamp when there is the need impose
temporal order between network packets.

Listing 72 presents the pseudo code to insert a new packet in the network packet win-
dow, replacing the oldest one, where i represents the index of the oldest packet, or the
position to insert the new packet, window is the network packet window, new_packet
is the new packet and window_size is the network packet window size.
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While updating the network traffic window, we keep track of the index of the last
packet inserted, so, when a new packet arrives, we immediately know where to insert
it, the next index. If the last packet was inserted in the last position of the network
traffic window, the oldest packet is the first packet of the network traffic window, so,
the new packet is inserted in that position.

Listing 72 Remove oldest packet, insert new packet
1 i = 0; //start at the beginning of the window
2 do{
3 wait_for_new_packet(); //wait for a new packet
4

5 window[i]=new_packet; //insert the new packet
6

7 //prepare the index for the next packet
8 if( i == last_position )
9 i=0; //the next position is the first

10 else
11 i = i + 1; //go to next position
12 }

This version of the sliding window is most suited to network situations in which the
network packets which makes prove the existence of an intrusion are close together
and fit in a small network traffic window, because this approach limits the number of
network packets that compose the signature of an intrusion situation.

Remove oldest not relevant packet, insert new packet

The second version of the sliding window was implemented in order to keep specific
packets in the network packet window: the ones which are understood to be important
for the desired network situation, even if they are among the oldest packets and would
otherwise be replaced by new ones. This approach allows us to detect intrusions in a
wider range than the network traffic window being used, since the relevant packets to
such situation are being “buffered” in the sliding network traffic window, allowing them
to be related to newer packets which appear later in the network traffic.

The update of the network traffic window while using this approach is achieved in
the following way: start by filling the network packet window with until the window
is full, then, start on the oldest network packet, and check if it is relevant to the
desired situation, if so, skip that network packet and test the next oldest packet. This
procedure is repeated until a packet not counted as relevant is found, which became
the one to be replaced by the new one.
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This approach leads to one problem; the network window could get clogged with rel-
evant packets, at risk of reaching a state where it is impossible to insert new packets,
since every packet in the window is relevant. To deal with this situation, we introduce
a new heuristic function, based on the age of the packet to decide when a previously
buffered packet should not be anymore considered relevant and be replaced by a new
one.

The pseudo-code presented in Listing 73(page 125) describes the process of inserting a
new packet on the network window while preserving the relevant network packets. Vari-
able i is the current index of the window where the new packet will be inserted, window
an array representing the network packet window, and new_packet the newly arrived
network packet. The function wait_for_new_packet(); waits for a new packet in
order to continue with its insertion on the network window, the relevant(p) function
decides whether the network packet p is relevant to network situation being described,
and the function not_too_old(p) decides if the packet has been frozen enough time
to be removed from the window.

Listing 73 Remove oldest not relevant packet, insert new packet
1 i = 0;
2 do {
3 wait_for_new_packet(); //wait for a new packet
4

5 //find the oldest packet not relevant or
6 //the packet buffered for more time
7 while( relevant(window[i]) AND not_too_old(window[i] ) ){
8 if( i == window_size )
9 i = 0; //go back to first position

10 else
11 i++; //test the next position
12 }
13

14 window[i] = new_packet; //insert the new packet
15

16 //prepare the index for the next packet
17 if( i == last_position )
18 i = 0; //the next position is the first
19 else
20 i++; //go to next position
21 }
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6.2.2 Deciding if a Packet is Relevant

The decision of checking if a network packet is relevant to the desired network situation
is critical in keeping the interesting network packets in the traffic window, so as to relate
them with packets that may appear in the future, beyond the limits of the network
packet window size.

Deciding if a network packet is relevant is directly related to the intrusion being de-
scribed as well as its signature, since that decision is achieved through the use of subset
of the heuristics that have been used in the description of the network attack as an
Adaptive Search problem. These heuristics are applied to the network packets being
checked for relevance, and, depending on the result, the packet is considered relevant
or not. These heuristics are usually very simple, checking specific packet fields such as
ports, flags, addresses or time-stamp of a network packet.

For example, in a SSH password brute-force attempt, the network packets that might
be relevant are the ones that are actually SSH packets. Also, only the ones that
initiate a network connection are relevant, so, they should have its SYN flag set and
not acknowledge another network packet. Listing 74 presents the heuristics to decide
if a network packet is relevant to a SSH password brute-force attack. If the total
heuristic functions value is null, the network packet is considered relevant and is kept
in the window, otherwise, its replaced by a new packet.

Listing 74 Checking if packet is relevant
1 bool relevant(packet){
2 int err=0;
3 err+=syn(packet);
4 err+=not_ack(packet);
5 err+=dst_port_must_be(packet, 22);
6

7 if( err == 0 )
8 return true;
9 }

The relevance of a network packet for a specific intrusion is given by a boolean function,
i.e. the packet is relevant or not. In the future we pretend to change this, allowing
the packets to have different levels of relevance, which in turn could be used to best
decided if a specific packet is kept in the traffic window or to help the heuristic search.
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6.2.3 Window Update and Continuous Solutions

The arrival of new packets on the network traffic is completely independent of the Adap-
tive Search solving process, so, these two processes are handled by different threads.
If one process were to depend on the other, it could lead to performance issues and
miss the detection of some packets, which, in turn, could lead to not recognizing an
attack, so, these two processes must run at the same time, updating the network packet
window with new packets while the solver is continuously searching for solutions.

In order to combine these two processes, we decided to launch a thread (POSIX thread)
from the main solver function, which will take care of everything involved in updating
the network traffic window, listening for new packets, making the necessary main-
tenance to the current window instance, deciding if some of the network packets are
relevant and should be kept or removed from the window, as well as inserting the newly
arrived packet in its proper location.

Working with threads which access the same data at the same time could lead to incon-
sistencies and synchronization problems. To prevent this type of problems we decided
to use the mutual exclusion mechanisms available in the POSIX threads (Mutexes) to
block some procedures of the window update while important steps of the solver are
being executed.

In particular, we have used the Mutex mechanism to block the procedure that updates
the window while the solver is deciding if a current solution is in fact a solution to the
problem. This is a critical step for the solver, which could lead to the loss of a valid
solution if the window suffers any change at the time the solution is being checked for.

Listing 75 presents a snippet of code that demonstrates how the main Adaptive Search
solver process is synchronized with the window update procedure by using Mutexes.
In Listing 75, main() is the Adaptive Search main function, Solve() is the function
which actually solves the problem and finds a solution, Check_Solution() verifies if
a tentative solution is valid and needs to have exclusivity over the network packet
window, not allowing any changes to its content while Check_Solution() is being
executed.

The function update_window() is executed as a separate thread, launched from the
Adaptive Search main function, and should not be executed while the solver is checking
if a tentative solution is valid, so, immediately before the call of update_window() we
wait until Check_Solution() has completed and unlocked the mutex. After that, we
can update the window, and lock the mutex to make sure the solver doesn’t try to
check for a solution while the window is being updated. After the window has been
updated, the mutex is unlocked, freeing the window update process and allowing both
window update and solve process to work in parallel.
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Listing 75 Combining Adaptive Search with the Window Update Thread
1 main(){
2 ...
3 pthread_create( &thread, NULL, update_window, null);
4 ...
5 for(;;){
6 solution=Solve();
7 ...
8 pthread_mutex_lock(&mutex);
9 Check_Solution(solution);

10 pthread_mutex_unlock(&mutex);
11 }
12 }
13

14 update_window(){
15 ...
16 for(;;){
17 ...
18 while( !new_packet() ) {}
19 ...
20 //wait for Check_Solution to terminate
21 for(;;){
22 if( pthread_mutex_trylock(&mutex)==0 )
23 break;
24 }
25 update_window();
26 pthread_mutex_unlock(&mutex);
27 ...
28 }
29 }

Figure 6.2 presents a flowchart representing both the Adaptive Search solving process,
and the window update process. On the left side of the diagram is the solve process,
on the right side the window update process. As it can be seen, and described above,
each process must wait for each other at specific points through the use of the Mutex
mechanism, using pthread_mutex_trylock() to gain the lock over the mutex, and
pthread_mutex_unlock() to release it.
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Figure 6.2: Window update while solving - Flowchart

6.3 Simulating live network traffic

The sliding network traffic window is implemented to use a tcpdump log file as network
traffic source, but is designed to simulate live network traffic, up to a certain level,
by simulating the network packet arrival at a given rate, which is accomplished by
controlling when and which packet is considered a newly arrived packet, so it can be
processed in order to be inserted in the network traffic window.

The network traffic source is represented internally in Adaptive Search as an array of
network packets, so, each new packet to be inserted in the network traffic window will
be copied from this array to the network traffic window, one at a time, following the
order in which the packets were captured by tcpdump, starting from the oldest packet.

While updating the traffic window with new packets from the network traffic source,
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we keep track of which was the last packet from the source to be inserted in the network
traffic window. This way, when its time to insert a new packet, we immediately know
which is the next new packet to be inserted in the network traffic window.

To simulate live network traffic using a tcpdump log file, we introduce a sleep time
between the update of the network traffic window with new packets, thus, simulating
the arrival of new network packets at a given network bandwidth.

To implement this, we used the nanosleep function, which allows one to specify the
time a process will be frozen, in seconds and nanoseconds, allowing to fine-tune the
simulated network bandwidth.

The processes of simulating the network bandwidth and updating the network traffic
window are completely integrated, as shown in Listing 76, which shows how these
processes are combined in order to simulate a live network traffic, using a static network
traffic source.

We start with the first packet of the network traffic source, and go up to the last
packet of the network traffic source(Line 1), inserting them, one by one, at specific
time intervals, in its correct position in the network traffic window. Next, we specify
the time interval and use the nanosleep function to simulate the interval between two
packet, Lines 3 to 8. The interval time is specified in variable tim, which is a data
structure representing the time the process will be sleeping, and is changed according
to the desired sleep time.

After the sleep time has elapsed, and the index to insert the new packet is calcu-
lated, Line 11, described in Sect. 6.2.1, the new network packet is copied from the
network traffic source to the network traffic window, in the correct position, Lines 13-
13, where window represents the network traffic window, source, the network traffic
source, index, the index where the new packet will be inserted, i, the index of the
new packet in the network traffic source, and nfields, the number of fields used to
represent a network packet.

This approach to simulate real live network traffic allows the fine tuning of the packet
arrival rate, thus simulating different network traffic speeds, allowing to test NeMODe
in situations similar to real network traffic, at different network bandwidths.

6.4 Towards live network traffic

Although the network traffic sliding window is implemented to work only with static
network traffic as network source, using live network traffic instead of network traffic
logs can be done with few changes to the current implementation of the sliding network
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Listing 76 Simulating live network traffic
1 for(i=0; i<source_size; i++){
2

3 //wait for next packet
4 struct timespec tim, tim1;
5 tim.tv_sec = 0;
6 tim.tv_nsec = nsleep;
7

8 nanosleep(&tim , &tim1);
9

10 //calculate index to insert new packet
11 ...
12

13 //insert new packet
14 window[i] = source[i];
15

16 }

traffic in Adaptive Search. This section presents an approach on how to change the
network traffic window in Adaptive Search so it can use live network traffic to look for
the desired network case scenarios.

The network traffic log files used as network source are created with the help of
tcpdump, which in turn relies on libpcap [30], an implementation of pcap, which
is an API for capturing network traffic, to perform all the network traffic capture.
Libpcap is used in many Intrusion Detection Systems, such as Snort [27] to perform
network traffic capture and then perform the detection of the desired attacks and is
almost considered a standard method to capture network traffic in Unix-like systems.

Libpcap allows to access each individual piece of data of each captured network packet,
allowing to select only the relevant data of intrusion detection. This makes libpcap
an ideal tool for NeMODe to perform network traffic capture in order to work with
real time network traffic.

Shifting NeMODe towards live network traffic, more specifically, can easily be accom-
plished by integrating libpcap in Adaptive Search, allowing it to perform network
traffic capture, and, at the same time, inserting the newly captured network packets in
the network traffic window, thus working the same way as the network traffic window
which we already implemented and described in Sec. 4.5, only this time, using live
network traffic.

Libpcap allows some basic filtering while capturing network packets, which may dra-
matically reduce the size of the network traffic that needs to be analyzed. This char-
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acteristic can be used by NeMODe in order to reduce the number of network packets
being analyzed. To take the advantage of this pre-filtering provided by libpacp we
need to implement a first filtering level on the NeMODe DSL, which allows the specifi-
cation of very simple filtering rules that specify which network packets are relevant to
the network intrusion signature being analyzed, and are actually captured by libpcap.

The use of live network traffic as a network source was only implemented as a small
prototype with a very simple, hard coded network situation to assess if using libpacp to
capture network traffic and update the network traffic window to deal with live network
traffic is valid. This prototype showed it is quite viable to use such an approach to live
network traffic monitoring using Adaptive Search with a sliding network window.

Figure 6.3 presents a diagram of how we could integrate lipbcap in NeMODe, where
it can be seen that the DSL of NeMODe, besides generating code for each for back-
end available in NeMODe, also produces libpcap rules which will be used as input to
libpcap to perform the network traffic capture, already pre-filtered according to the
libpcap rules generated by the DSL, and specific to the network situation.
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Figure 6.3: Live network traffic - Tentative diagram

6.5 Conclusion

In this Section, we presented an Adaptive Search detection mechanism for NeMODe,
using a sliding network packet window, a significant step towards network intrusion
detection on live network traffic, allowing us to work with network traffic logs much
larger that we were able to in previous versions.
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We demonstrated that with minor changes to Adaptive Search, it is possible to adapt
it to work with a dynamic, sliding network window, which changes over time, and still
detect the desired network situations.

Although the tests used network traffic logs, the results can be compared to using live
network traffic, since the logs were created to simulate live network traffic and the
solver adapted to simulate the arrival of network packets at a given rate.

Also important is the fact that, using this approach, we can now detect network situa-
tions that are wider than the network window used by the solver, allowing the detection
of network attacks that span a considerable time interval.

We also formulate the use of live network traffic as network traffic source in order to
update the network traffic window, thus, allowing the continuous monitoring of live
network traffic, looking for the desired network situations.

Although the integration of libpacp in NeMODe, was only implemented as a rough
prototype to verify the feasibility of the approach, and no benchmark results were
produced, we are confident that we will be able to monitor live network traffic, at least
with the Adaptive Search back-end detection mechanism of NeMODe.





Chapter 7

Experimental Evaluation

This Chapter reports and evaluates the experimental results performed while
developing NeMODe in order to assess its performance, figure out its weak-
nesses, and enhance its capabilities, either in terms of performance, us-
ability or expressiveness. We present the results obtained for each case in
each detection mechanism as well as the evaluation of each case and solver.
We also make a comparison of NeMODe with other approaches to Network
Intrusion Detection.

7.1 Introduction

To evaluate NeMODe we experimented with several network situations in order to
understand the behavior of the system, its performance, usability and expressiveness,
under different conditions while using each of the detection mechanisms available in
NeMODe.

Using these network intrusion signatures made us enhance NeMODe, forcing us to add
more features to cope with all the examples that we tested. Also, these tests lead to
more system tuning, due to the variety of tests and the differences between them.

The network intrusions that we decided to model are all signature-based, which can be
modeled by stating relations between several network packets, thus, describing network
intrusions which span several network packets. This is one of the most important
features of NeMODe, which, either lack in most Network Intrusion Detection systems,
or, when available, it only allows relations between different network packets in a very
limited way.
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We used a dedicated computer with the x86 architecture to run each test with each
detection mechanism, and, since Adaptive Search had been recently ported to the
Cell/B.E. architecture [111], we have also tested all the network situations using the
Adaptive Search Cell/B.E. version.

The x86 computer architecture was an HP Proliant DL380 G4 with two Intel(R)
Xeon(TM) CPU 3.40GHz and with 4 GB of memory, running Debian GNU/Linux
4.0 with Linux kernel version 2.6.18-5. As for the tests with the Cell/B.E. Adaptive
Search version, they were run on a IBM BladeCenter H equipped with QS21 dual-
Cell/BE blades, each with two 3.2 GHz processors, 2GB of RAM, running RHEL
Server release 5.2.

During all experiments, we froze the versions of each constraint solver, to ensure reliable
results without external influence. The versions used in our experiments are:

1. Gecode 3.1.0, compiled from source

2. Adaptive Search 0.9.0, compiled from source(x86)

3. Adaptive Search 0.9.0, compiled from source(Cell/B.E.)

4. MiniSat2 070721, compiled from source

To perform the experiments, we used log files representing network traffic containing
the desired signatures to be detected. These log files were created with the help of
tcpdump [110], a packet sniffer, while a computer was undergoing the desired attacks,
thus, simulating a real-life scenario.

While developing NeMODe, we introduced the ability to use a sliding network traffic
window over a network traffic log, thus, two major types of experiments were performed:

1. Experiments using a static network traffic window.

2. Experiments using a sliding network traffic window.

7.2 Analyzed Intrusion Signatures

In this section we present and describe the network situations that we have tests in
NeMODe, for both static and sliding network packet windows, as well as the parameters
used in each problem. The network situations that we decided to model in order
evaluate NeMODe are the ones already presented and described in Section 5.5:

1. Portscan

2. SSH password brute-force
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3. SYN flood

4. DNS spoof

5. DHCP spoof

6. ARP poisoning

All of these network situations were tested using the static network traffic window
NeMODe version. For the sliding network traffic window NeMODe, only the following
network situations were used, with a modeling identical to the previous ones:

1. SSH password brute-force

2. DNS spoof

3. DHCP spoof

4. ARP poisoning

The situations modeled in the static network traffic window NeMODe were all success-
fully described in NeMODe DSL, and code generated for each of the 3 back-end detec-
tion mechanisms, Gecode, Adaptive Search (both x86 and Cell/B.E.), and MiniSat.

For the sliding network traffic window version, we only generated code for x86 Adaptive
Search.

The code generated for each network situation and for each solver was then run in
the HP Proliant DL380 G4, and in the Cell/B.E. machine for the Cell/B.E. Adaptive
Search version.

7.2.1 Portscan

For the Port-scan attack, we have created two network traffic log files, one composed
of 100 network packets, and another of 400 packets. These log files were created with
the help of tcpdump while a computer was being a victim of a Portscan, performed
with the help of nmap [112], a security scanner used to discover computers and services
on computer networks.

Nmap was used on its most simple form to perform the scan of the victim host services,
as in Listing 77, where 10.10.10.59 is the IP address of the target victim.

Listing 77 Performing a Portscan

nmap 10.10.10.59
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The tcpdump network log file was used the as the network traffic source for all 3
detection mechanisms running on the x86 as well as the Cell/B.E. with Adaptive Search.

The Portscan signature was modeled with 52 network packet variables, so, a solution
to this problem is a set of 52 packets, taken from a set of 100, or 400 network packets,
the tcpdump log file.

7.2.2 SSH password brute-force

To test the SSH password brute-force attack, we created network traffic log files while
a computer was trying to gain access to the victim’s SSH service using a brute-force
approach, successively using username/password combinations to attempt to force ac-
cess to the service. To perform the attack, we used Medusa [113], a fast, parallel, and
modular login brute-forcer which supports many services, including SSH.

To perform the SSH password brute-force attack we used the Medusa tool as in List-
ing 78, where 10.10.10.59 is the IP address of the target host, pds the username used
in the attack, and password.list the name of the file with the list of passwords used
during the attack.

Listing 78 Performing an SSH password brute-force attack

medusa -h 10.10.10.59 -u pds -P password.list -M ssh

The tcpdump log file was used as the network traffic source for all tests with the SSH
password brute-force attack, either in both x86 and Cell/B.E. architectures.

To perform the detection of the SSH password brute-force attack in NeMODe, the
signature used to model the problem was composed by 10 network packets variables,
so a solution to this problem would be a set of 10 packets taken from the network
traffic source. The same modeling was used in the two versions of NeMODe, the static
and sliding network traffic window versions.

Static network traffic window

While using the static network traffic window NeMODe version, two network traffic
files were used, one with 182 and another with 400 network packets, each one containing
10 failed attempts to access the SSH service.
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Sliding network traffic window

On the sliding network traffic window NeMODe version, the network traffic source was
composed by 3000 network packets, containing 10 SSH brute-force attacks. We tested
this attack while varying the size of the window, using the 10, 20, 30, 100 and 300
network packets as the size of the network traffic window, and also, the update time
the network traffic window, so we could understand how the system reacts to these
changes.

7.2.3 SYN flood

The network traffic source files used in NeMODe while detecting the SYN flood attack
were two tcpdump network traffic logs files, one composed of 100 network packets and
other of 400 network packets, both generated while the chosen victim host was under
a SYN floodattack.

This attack was achieved with the help of hping [114] a packet generator and analyzer
for several protocols, including TCP/IP. The attack was achieved using the options
presented in Listing 79, where 10.10.10.59 is the IP address of the target host, and
80, port of the target service.

Listing 79 Performing a SYN flood attack

hping -i u1 -S -p 80 10.10.10.59

The same tcpdump network traffic log file was used in all tests performed with the SYN
flood attack.

The SYN flood attack was modeled in NeMODe using a network signature composed of
30 network packet variables, so that a solution to this problem was a set of 30 packets
taken from the traffic source, composed of 400 packets.

7.2.4 DNS spoof

The DNS spoof attack detection was performed in NeMODe using, as a network traffic
source, tcpdump network log files, generated while the host chosen as victim was under
a DNS spoof attack, performed with Ettercap [115], using the DNS plugin, as in
Listing 80, where 10.10.10.254 is the IP address of the legitimate DNS server of the
host victim network, and 10.10.10.59, the victim’s host IP address.
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Listing 80 Performing a DHCP spoof attack

ettercap -i eth0 -T -M arp:remote -P dns_spoof \
/10.10.10.254/ /10.10.10.59/

Besides these call parameters, we also changed the default settings of the DNS plugin
so that the name microsoft.com be resolved to 209.92.24.80. To do so, we added
the lines presented in Listing 81 to file /usr/share/ettercap/etter.dns.

Listing 81 /usr/share/ettercap/etter.dns

microsoft.com A 209.92.24.80
*.microsoft.com A 209.92.24.80

The signature used to model the problem was described using 3 network packet vari-
ables, which, when the problem gets solved, if the attack is found on the network
traffic source, those variables will be assigned to packets found in the network traffic
source which respect the constraints used to model the problem. This signature was
modeled in the same way for both static and sliding network traffic window versions
of NeMODe.

Static network traffic window

When using a static network traffic window as the network traffic source for NeMODe,
two traffic logs were used, composed by 400 and 100 packets, both containing 10 fake
DNS replies, spread over the entire log.

Sliding network traffic window

Using the sliding network traffic window NeMODe, we used a network traffic source
composed of 400 packets, containing 10 fake DNS replies. This network situation was
tested with several window sizes, using sizes of 10, 20, 30, and 60 packets, and changing
the network speed in order to see how the system reacts to such changes.

7.2.5 DHCP spoof

To perform the detection of the DHCP spoof attack in NeMODe we decided to create
network traffic log files with the help of tcpdump while a computer designated as a
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target host was under a DHCP spoof attack, which was achieved with the help of
Ettercap [115], a tool capable of sniffing live network traffics and performing some
“man in the middle” attacks.

Ettercap was used as in Listing 82 to produce the DHCP spoof attack. 10.10.10.59
is the victim host IP address, and 10.10.10.254 the legitimate DHCP server of the
network which the host victim is connected to.

Listing 82 Performing a DHCP spoof attack

ettercap -i eth0 -T -M \
dhcp:10.10.10.59/255.255.255.0/10.10.10.254

Both tcpdump network traffic log files were used as network traffic source for all ex-
periments, either with Gecode, Adaptive Search or MiniSat, in any of the available
architectures, x86 for Gecode and Adaptive Searchand MiniSat, and Cell/B.E. for
Adaptive Search.

The signature used to model this attack was composed by 3 network packet variables,
so, a solution to a problem representing a DHCP spoof attack, if it exists, is a subset
of the network traffic log: 3 network packets satisfying all constraints used to model
the signature of the attack. This signature was used and modeled in the same way in
both the static and the sliding window versions of NeMODe.

Static network traffic window

Performing the detection of the DHCP spoof attack with NeMODe using a static
network traffic window, we used two log files, one composed of 400 network packets
and another of 100 network packets, both containing 10 fake DHCP replies, simulating
a DHCP spoof attack.

Sliding network traffic window

To detect this attack using NeMODe with a sliding network traffic window, the network
traffic source was composed of 400 packets, containing 10 fake DHCP replies to DHCP
queries made by the target victim. This network traffic source was used with different
network traffic window sizes, using sizes of 10, 20, 30, and 60 network packets, and
also, changing the update time of the network traffic window, simulating the speed of
the network traffic, so that we could understand the behavior of NeMODe with the
variation of these parameters.
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7.2.6 ARP poisoning

The network traffic log files used as the network source to detect an ARP poisoning
attack, were generated by tcpdump, while the victim host was being attacked with
Ettercap, which was configured to perform ARP poisoning attacks.

Ettercap was used as in Listing 83 to perform the ARP poisoning attack, where
10.10.10.59 is the IP address of the host victim, and 10.10.10.254 is the IP address
of the host victim’s default gateway, which makes the victim host to see the attackers
MAC address as the default gateway’s MAC address, and the default gateway see the
attackers MAC address as the victim host MAC address, forcing all communications
between the two hosts to pass through the attacker.

Listing 83 Perform an ARP poisoning attack

ettercap -i eth0 -T -M ARP /10.10.10.254/ /10.10.10.59/

To model the signature of the ARP poisoning attack, we used 4 network packet vari-
ables. A solution to this problem is a set of 4 network packets, taken from the network
traffic source, if the ARP poisoning attack exists in the network traffic. This signature
was used and modeled with no modifications for both versions of NeMODe, the static
and sliding network traffic window.

Static network traffic window

We used two traffic source log files as input for NeMODe while using a static traffic
window to detect the ARP poisoning attack, one composed by 400 packets, and other
composed by 100 packets, each one containing 10 distinct and fake ARP poisoning
replies.

Sliding network traffic window

While using a sliding traffic window in NeMODe to perform the detection of an ARP
poisoning attack, we used a traffic source composed of 500 packets, containing 10 ARP
poisoning attacks, and used a sliding window over this traffic source with a size of 10,
20 and 50 packets, while varying the update time of the network traffic window, thus,
simulating the network traffic speed, in order to understand how NeMODe behaves
when changes affect these parameters.
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7.3 Results

In this section we present the results in terms of performance obtained for the network
situations presented in Section 7.2. The results are presented in two classes, the results
of the static network traffic window NeMODe version, and the ones of the sliding
network packet window NeMODe version. We also make a distinction between the
tests run on the x86, and the ones run on Cell/B.E.

For the experiments using a static network traffic window, we present the performance
in terms of time to detect the first occurrence of the attack being looked for. As for the
experiments using a sliding network traffic window, we present the results in terms of
detection rate for at a given network traffic window update rate, simulating different
network traffic speeds.

7.3.1 Static network traffic window - x86

We present the results of the experiments using the static network traffic window
NeMODe version to detect each of the network situations described above.

Table 7.1 presents the required time(user-time), in miliseconds(ms), to find the desired
network situation for each of the attacks presented in this work, using Gecode and

Table 7.1: Average time(in ms) necessary to detect the intrusions using Gecode and
Adaptive Search

Intrusion Log Size Case Size GC (ms) AS(ms)

Port 400 52 127.3 674.99

scan 100 52 73.59 407.52

SSH 400 10 18.75 4.37

password 182 10 12.6 1.49

SYN 400 30 50.54 25.39

flood 100 30 40.62 6.09

DNS 400 3 6.94 5.78

Spoof 100 3 4.37 2.26

DHCP 400 3 8.26 1.09

spoof 100 3 3.98 0.46

ARP 400 4 23.125 18.04

Spoof 100 4 5.46 2.34
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Adaptive Search x86 version, as the detection mechanisms. The presented results are
the average execution times of 128 runs. We also present the “Log Size”, the size of the
network traffic window, and the “Case Size”, the number of network packet variables
in the signature used to model the problem.

Table 7.2 presents the same results as Table 7.1, but using MiniSat as detection mech-
anism. We present the total time needed to setup the problem, i.e.: generate the CNF
rules which encode the problem, the necessary time to solve the problem after all CNF
rules have been generated, and the total time necessary to obtain the a valid solution
to the problem, including the CNF rules generation and problem solving. All times are
presented in mili-seconds(ms) and are the average of 128 runs.

Table 7.2: Average time(in ms) necessary to detect the intrusions using MiniSat

Signature Log size Case size Setup(ms)1 Solve(ms)2 Total(ms)3

Port 400 52 1838.12 1384.40 3222.52

scan 100 52 124.37 66.88 191.25

SSH 400 10 332.5 243.12 575.62

password 182 10 51.25 23.12 74.37

SYN 400 30 965.41 1311.23 2276.64

flood 100 30 103.12 71.25 174.37

DNS 400 3 106.32 28.07 134.39

spoof 100 3 6.95 0.70 7.65

DHCP 400 3 105.93 11.17 117.10

spoof 100 3 6.79 0.48 7.27

ARP 400 4 195.93 34.53 230.46

spoof 100 4 11.71 2.89 14.60

1 - MiniSat setup time; 2 - MiniSat solve time; 3 - SAT total time (Setup + Solve)

For MiniSat, we also present the size of each problem when encoded as a SAT problem,
represented in Table 7.3, while varying the size of the network traffic window. For each
problem is presented the number of Setup clauses, which models the variables of the
problem and ensures the consistency of a solution, the number of Model Clauses,
which are the clauses which actually model the problem, the number of Total clauses
as well as the number of SAT variables necessary to model the problem.
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Table 7.3: Size of each SAT problem: number of rules and variables

Signature Log size Case size #Setup
clauses

#Model
clauses

#Total
clauses

#Total
vars

Port 400 52 4149652 82478 4232130 20800

scan 100 52 257452 20678 278130 5200

SSH 400 10 798010 12020 810030 4000

password 182 10 164720 5480 170200 1820

SYN 400 30 2394030 57972 2452002 12000

flood 100 30 148530 14472 163002 3000

DNS 400 3 239403 4107 243510 1200

spoof 100 3 14853 1063 15916 300

DHCP 400 3 239403 3587 242990 1200

spoof 100 3 14853 897 15750 300

ARP 400 4 319204 8004 327208 1600

spoof 100 4 19804 2004 21808 400

7.3.2 Static network traffic window - Cell/B.E.

The Adaptive Search back-end detection mechanism has a special characteristic over
the other solvers: it has implementations in both x86 and Cell/B.E. architectures.
Due to the availability of the Cell/B.E. implementation of Adaptive Search, we also
decided to make some experiments using the Cell/B.E. In this Section, we presents
these results..

Each network situation analyzed in this work was run on the IBM QS21 dual-Cell/BE
blades, several times using different number of cores to understand the behavior of
Adaptive Search running on Cell/B.E. under different circumstances.

As we have different results depending on the network situation and the number of
cores used to solve the problem, we present two types of results using the Adaptive
Search detection mechanism of NeMODe on the Cell/B.E.:

1. Average time to detect the first occurrence of the attack.

2. Speedup (versus single-core) obtained by using different numbers of Cell/B.E.
cores.

The average time needed to detect the first occurrence of the attack is presented in Ta-
bles 7.4 and 7.5 , where Sig. represents the network situation being detected, Log size,
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the number of packets in the network traffic log, and Case size, the number of packet
variables that buildup the signature used to model the desired network situation. We
present the results using 1, 2, 4, 6, 8, 10, 12 and 16 cores. The results are presented in
mili-seconds(ms) and they are the average of 128 runs.

Table 7.4: Average time(in ms) necessary to detect the intrusions with Adaptive Search
on Cell/B.E. using 1, 2, 4 and 6 cores

Sig. Log size Case size 1 core 2 cores 4 cores 6 cores

Port 400 52 118555.07 74420.23 43568.35 27854.92

scan 100 52 5279.37 2447.81 1327.96 816.4

SSH 400 10 103.05 6.72 7.85 10.92

password 182 10 98.12 4.01 6.42 9.62

SYN 400 30 1143.12 801.87 458.98 351.79

flood 100 30 493.67 257.03 188.98 142.81

DNS 400 3 571.32 309.45 158.59 105.39

spoof 100 3 121.64 28.2 16.71 15.39

DHCP 400 3 91.47 5.45 7.64 10.76

spoof 100 3 88.51 3.59 4.92 8.82

ARP 400 4 175.15 63.82 34.76 27.42

spoof 100 4 96.64 10.31 9.84 11.48

Tables 7.6 and 7.7 presents the speedup obtained by using 1, 2, 4, 6, 8, 10 and 12
Cell/B.E. cores to solve each problem, using the results presented in Tables 7.4 and 7.5,
and having as reference for calculating the speedups, the results obtained while using
1 core. Sig. represents the network situation being detected, Log size, the number
of packets in the network traffic log size, and Case size, the number of packets that
buildup the signature used to model the desired network situation.
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Table 7.5: Average time(in ms) necessary to detect the intrusions with Adaptive Search
on Cell/B.E. using 8, 10, 12, 14 and 16 cores

Sig. Log
size

Case
size

8 cores 10
cores

12
cores

14
cores

16
cores

Port 400 52 22630.46 17063.67 13729.37 12196.95 10894.68

scan 100 52 638.43 577.96 386.09 351.09 310.39

SSH 400 10 13.85 16.85 19.55 22.52 25.17

password 182 10 12.27 15.72 18.75 21.3 23.65

SYN 400 30 290.78 277.1 255.85 228.04 224.06

flood 100 30 133.2 132.18 122.81 121.4 120.62

DNS 400 3 90.14 69.68 66.71 61.56 59.53

spoof 100 3 17.10 18.35 21.09 23.43 25.31

DHCP 400 3 15.45 18.57 21.25 23.81 26.31

spoof 100 3 14.14 16.4 17.65 22.26 23.67

ARP 400 4 27.34 27.5 28.75 30.46 32.42

spoof 100 4 14.21 16.71 19.68 22.03 24.14

Table 7.6: Speedup on using Adaptive Search in Cell/B.E. with 1, 2, 4 and 6 cores.
Average of 128 runs

Sig. Log size Case size 1 core 2 cores 4 cores 6 cores

Port 400 52 1.00 1.59 2.72 4.26

scan 100 52 1.00 2.16 3.98 6.47

SSH 400 10 1.00 15.33 13.13 9.44

password 182 10 1.00 24.47 15.28 10.20

SYN 400 30 1.00 1.43 2.49 3.2

flood 100 30 1.00 1.92 2.61 3.46

DNS 400 3 1.00 1.85 3.60 5.42

spoof 100 3 1.00 4.31 7.28 7.90

DHCP 400 3 1.00 16.78 11.97 8.50

spoof 100 3 1.00 24.65 17.99 10.04

ARP 400 4 1.00 2.74 5.04 6.39

spoof 100 4 1.00 9.37 9.82 8.42
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Table 7.7: Speedup on using Adaptive Search in Cell/B.E. with 8, 10, 12, 14 and 16
cores. Average of 128 runs

Sig. Log
size

Case
size

8 cores 10
cores

12
cores

14
cores

16
cores

Port 400 52 5.24 6.95 8.64 9.72 10.88

scan 100 52 8.27 9.13 13.67 15.04 17.01

SSH 400 10 7.44 6.12 5.27 4.58 4.09

password 182 10 8.00 6.24 5.23 4.61 4.15

SYN 400 30 3.93 4.13 4.47 5.01 5.10

flood 100 30 3.71 3.73 4.02 4.07 4.09

DNS 400 3 6.34 8.20 8.56 9.28 9.60

spoof 100 3 7.11 6.63 5.77 5.19 4.81

DHCP 400 3 1.00 4.93 4.30 3.84 3.48

spoof 100 3 6.26 5.40 5.01 3.98 3.74

ARP 400 4 6.41 6.37 6.09 5.75 5.40

spoof 100 4 6.80 5.78 4.91 4.39 4.00
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Figures 7.1-7.6 present the speedup obtained for all network situations while using
different number of cores on the Cell/B.E., while using network packet windows of
different sizes; Fig. 7.1 for the Portscan; Fig. 7.2 for the SSH password brute-force;
Fig. 7.3 for the SYN flood; Fig. 7.5 for the DHCP spoof; Fig. 7.4 for the DNS spoof
and Fig. 7.6 for the ARP poisoning. In each Fig. we also present a linear speedup line
for reference.

7.3.3 Sliding network traffic window

The sliding network traffic window was only implemented in the x86 version of Adaptive
Search. All results presented in this Section are related to using Adaptive Search with
a sliding network traffic window.

The results of using a sliding network traffic window in NeMODe are presented in
terms of detection rate, instead of the time necessary to detect the first occurrence
of the desired network situation, as opposed to the time necessary to detect the first
occurrence of the desired attack.

For a better understanding of the results, we represent them as charts, rather than to
tables. Since we present the results for different network traffic speeds, it would make
results hard to understand if represented in tables. The results are presented in two
unit scales for a better reading:

1. Detection rate(%), while varying the network traffic window update time

2. Detection rate(%), while varying the network traffic speed

DNS spoof

Fig. 7.7 presents the detection rate of DNS spoofing attacks, while varying the time
interval between the arrival of each network packet (in micro-seconds). The chart
presents the results using a sliding window of 10, 20, 30, and 60 network packets, over
a network traffic log of 400 network packets.

Fig. 7.8 presents the same results as Fig. 7.7, but considering the network traffic band-
width, measured in Mbit/s, instead of the network packet interval. The results pre-
sented in both Figures are the average of a of 100 runs.
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Figure 7.8: DNS spoof - Detection rate.

DHCP spoof

Fig. 7.9 represents the detection rate of DHCP spoofing attacks, while varying the time
interval between the arrival of each network packet(in micro-seconds). We present the
results for a sliding window of 10, 20, and 60 network packets, over a network traffic
log of 400 network packets

Fig. 7.10 presents the same results as Fig. 7.9, but considering the network traffic
bandwidth, measured in Mbit/s, instead of the network packet interval. The results
presented are the average detection rate of a total of 100 runs.

SSH password brute-force

Figure 7.11 represents the detection rate of the SSH password brute-force attack, vary-
ing the time interval between the arrival of network packet(in micro-seconds). We
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present the results of using a sliding window of 10, 20, 30, 100 and 300 network pack-
ets, over a network traffic log of 3000 network packets.

Figure 7.12 presents the same results as in Fig. 7.11 but considering the network traffic
bandwidth, measured in Mbit/s, instead of the network packet window interval time.
Both results presented are the average detection rate of 100 runs.

ARP poisoning

Figure 7.13 represents the detection rate of the ARP poisoning attack, varying the
time interval between the arrival of network packet(in micro-seconds). We present the
average results using a sliding window of 10, 20 and 50 network packets, over a network
traffic window of 500 network packets.
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Figure 7.14 presents the same results as in Fig. 7.13, but considering the network traffic
bandwidth, measured in Mbit/s, instead of the network packet interval. The results
for both Figures are the average of 100 runs.

7.4 Evaluation

In this section we evaluate all the approaches to the back-end detection mechanisms of
NeMODe, while detecting all network situations described in this work. We do this us-
ing the static network traffic window with Gecode, Adaptive Search(x86 and Cell/B.E.)
and MiniSat. We also evaluate the sliding network traffic window version of NeMODe
running in the x86. We evaluate NeMODe not only regarding the experimental results,
but also regarding the NeMODe specification DSL. Last, we compare our approach to
other approaches to Network Intrusion Detection, in particular against Snort.
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7.4.1 Static network traffic window - x86

The experimental results described in Sec. 7.3.1 reveal a significant performance vari-
ation, depending on the problem and the solver being used. Carefully analyzing Ta-
bles 7.1 and 7.2, we get to the conclusion that when the size of the problem grows,
Gecode performs better than Adaptive Search and MiniSat, but when the size of the
problem is smaller, Adaptive Search beats both Gecode and MiniSat in a large scale.

If we consider only the time taken by MiniSat to solve the problem, instead of the
total time including the clause generation and solving process, MiniSat can be almost
as fast as Gecode, and, in some cases, the most simple ones, it can be even faster than
Adaptive Search. This consideration makes sense because the generation of the clauses
which encode the problem as a SAT problem is not directly related to solving the
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problem, but to the description of the problem, and also, the rules used to setup the
variables which represent the major number of rules, as can be seen in Table 7.3, can
be shared among many network situations. These setup rules only depend on the size
of the network traffic window and the number of network packets used to model the
signature of the desired network situation, which can be pre-generated, thus allowing
to discard most of the time consumed in generating the CNF clauses.

Although Adaptive Search performs better in most cases, there are some exceptions,
such as the Portscan case. In this case, Gecode presents much better results, explained
by the high number of variables used to model its signature, thus confirming that when
the size of the problem is larger, mainly due to the number of packet variables used to
model the desired situation, Gecode tends to perform better.

While making a broader analysis of Tables 7.1 and 7.2, we can conclude that all solvers
are affected by both the size of the network traffic window and the size of the intrusion
signature, some more so than others. Gecode is the one least affected by changes to the
size of the problem, while MiniSat is the most affected, mostly due to the exponential
increase of number of rules used to model the problem. The performance is most
sensitive to the size of the signature, as can be seen in both Portscan and SYN flood,
the network case scenarios with larger signatures, thus the ones that perform worst.

Considering the best results obtained, we achieved performance figures which allow us
to perform live network intrusion detection in the future using this approach.

7.4.2 Static network traffic window - Cell/B.E.

The results presented in Sec. 7.3.2 shows that Adaptive Search Cell/B.E. version
presents a behavior very similar to the Adaptive Search x86 version, but with some
significant differences in performance, being overall slower that the x86 version.

The results presented in Tables 7.4 and 7.5 show that performance is affected in a
greater scale than in the x86 version of Adaptive Search when the size of the problem
increases, reaching very low figures with the Portscan, the case scenario with more
network packet variables in its signature.

Besides Portscan, the performance of Adaptive Search in Cell/B.E. is affected by the
size of the network traffic window in the same way as in the x86 version, being more
affected by the size of the network signature than by the size of the network traffic
window.

Adaptive Search was tested on Cell/B.E. using different number of cores, from 1 to 16
cores, on problems of different sizes and complexities, revealing interesting results in
terms of possible parallel speedup to solve each problem.
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Looking at Tables 7.4 and 7.5 and Figures 7.1-7.6 we can see there are two types of
behaviors; on one hand, the speedup is proportional to the number of cores used to
solve the problem; and on the other hand, it rises up to a certain number of cores, and
then starts to decay when increasing beyond that.

The most complex and large problems are the ones which get closer to a linear speedup,
always increasing the performance of Adaptive Search with the number of cores.

As for the smaller and simple problems, the speedups have a peculiar shape, with the
increase of number of cores, there is a huge increase in performance when using only 2
cores, but then, it starts to decay up to the total of the 16 cores. This behavior may
be explained with noise introduced by very small execution times, disguising the real
speedup values.

Despite the difference of the results, we obtain on all network situations interesting
speedup figures when comparing to the single core performance figures.

7.4.3 Sliding network packet window

The results presented in Sec. 7.3.3 are very promising, as we obtain a good detection
rate at reasonably high network speeds while using Adaptive Search with a sliding
network packet window.

Looking closer at the results, it is possible to see that the detection rate is low when
the time interval between the arrival of two network packets is very small, i.e. with a
high network speed. This characteristic is mostly noted while using a small network
traffic window, which presents the lowest detection rate. This is explained by the fact
that the packets are in the window for a very short time, and the solver is not capable
of detecting all situations while the packets are still in the window.

With the increase of the window size, the detection rate at higher speeds also increases,
but only up to a certain limit, starting to decline when the window becomes too large.
The increase of the detection rate is explained by the fact that the network packets
remain more time in the window, thus allowing the solver a better chance in looking
for a solution. Still, when the window reaches a certain limit, the detection rate starts
do decay when using higher bandwidth rates. This is due to the solver taking too long
to analyze the larger window, thus missing some attacks.

The DNS spoofing attack gets a very low detection rate with high network speeds and
using a window of 10 packets, reaching a detection rate of 100% only at about 1 MBit/s.
Using a 30 packet window, we get a detection rate of 100% from the beginning, with a
bandwidth 18MBit/s. The detection rate keeps constant up to a of 60 packets, when it
starts to decay. With these results, we get to the conclusion that using a window with
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a size between 30 and 60 network packets, we get close to a detection rate of 100% on
a 18MBit/s network.

The DHCP spoofing attack presents a behavior very similar to the DNS attacks, but
manages to obtain a detection rate of 100% on higher speeds and smaller network
windows, being capable of a detection rate of 100% at 18MBit/s, using a window of
20 network packets. Also, this rate gets constant up to a window of 60 packets, when
it starts to decay. The conclusion that we can take from this results is similar one
we learned from DNS spoofing attack: we are able to reach a detection rate of almost
100% using a window with a size between 20 and 60 packets with a bandwidth of
18MBit/s. The DHCP spoofing attack presents slightly better performance results due
to the simpler signature.

The SSH password brute-force attack also presents a similar behavior as the other
attacks, but it has more difficulty in reaching a 100% detection rate, which can be
explained by the fact that the network signature of the attack is more complex, using
more time-consuming constraints.

Although it doesn’t present a performance as good as the other examples, still, it
manages to get a detection rate of 100% up to about 5MBit/s while using a window of
30 network packets. This detection rate is constant up to a window of about a window
of 100 network packets, when it starts to decay. Considering a bandwidth of about
10Mbit/s, we manage to get a detection rate of 80%, which is a very good result.

The results obtained by the SSH password brute-force attack are very encouraging,
not only due to the detection rate at considerable network speeds, but mainly because
we are able to detect intrusions that spread across a network window larger than the
window being used by the solver, allowing us to detect network attacks which are
diluted in time, thereby providing a good basis to perform intrusion detection on live
network traffic.

The ARP poisoning attack presents a behavior very similar to the SSH password brute-
force attack, but needs a slower network speed to detect reach a detection rate of 100%
when using a smaller network traffic window. When the network traffic window is
increased, it reaches a 100% detection rate faster than the SSH password brute-force
attack.

It gets a detection rate of 100% with a network packet window of 20 packets at
17Mbit/s. This detection rate of 100% is constant up to a network packet window
of 50 packets, when it starts to decay.
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7.4.4 NeMODe Specification DSL

The DSL introduced for NeMODe, turns out to be expressive and powerful, allowing
an easy description of all network intrusions analyzed in this work and generating
recognizers able to detect the desired network situation.

Although other IDSs like Snort could detect some of the attacks presented in this work,
they don’t allow to describe the problems with the expressiveness used by NeMODe
or even relate the several packets that make part of the attack. This topic is further
discussed in Sect. 7.4.5.

7.4.5 NeMODe vs Snort

Most attacks presented in this work can be detected by tools which use different ap-
proaches to Network Intrusion Detection. These usually present limited ways to de-
scribe the desired network situation, if possible to describe them at all.

These tools, usually cannot describe or detect attacks that spread across several net-
work packets, and when they do, the description of such attacks is very limited, re-
sorting to preprocessors built with the single purpose of detecting a specific network
situation.

Although most cases which we have experimented in NeMODe can be detected by
systems such as Snort, they cannot be or modeled in a descriptive way as in NeMODe,
making a direct comparison difficult, nevertheless, we decided to experiment on the
same network situations in Snort using the same network traffic logs in order to obtain
some experimental results.

We now describe how these attacks can be modeled in Snort and present the results
obtained.

Portscan

A Portscan attack can be detected in Snort, allowing several ways to detect this type
of attack, either by describing the situation in a limited way, or, by using of built-in
pre-processors built with the single purpose of detecting Portscan attacks.

Usually specific preprocessors designed to detect portscans are required for Snort to
detect this type of attacks, not being possible to program a portscan attack using
the Snort rule language. Snort provides several of these preprocessors: portscan,
portscan2, flow-portscan or sfPortscan.
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In our experiments we selected the sfPortscan [28] preprocessor which allows Snort
to detect various types of portscans and portsweeps. The sfPortscan was used as in
Listing 84.

Listing 84 Using sfPortscan Snort module

preprocessor sfportscan: proto { all } \
memcap { 10000000 } \
sense_level { high } \
logfile { portscan.log }

SSH password brute-force

It is possible to use Snort to describe and detect SSH password brute-force attacks by
monitoring a large amount of SSH connections from the same source in a short period
of time: this is achieved in a very limited way, resorting to built-in filters which impose
a limit of network packets in given amount of time.

Listing 89 represents the rule which we used to detect this attack in Snort. It looks for
packets going to port 22, where the SSH service is running, which have message “SSH-”
in it’s payload. If there are 5 of these network connection from the same source in the
interval of 60 seconds or less, then we could be under an SSH password bruteforce.

Listing 85 SSH password bruteforce Snort rule

alert tcp $EXTERNAL_NET any -> $HOME_NET 22 \
(msg:"Possible SSH brute force attempt"; \
flow:to_server,established; \
threshold:type threshold, track by_src, count 5, seconds 60; \
content:"SSH-"; offset: 0; depth: 18;)

Although this rule is effective in some cases, it doesn’t make use of real relations
between several network packets, making the description counter-intuitive and hard to
express.

In our experiments we obtained a detection rate of 100%, mostly because the rule was
specifically tailored to match the attacks in the network traffic logs being analyzed. If
the attack is done in a slightly different way, the signature can fail to detect the attack.
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SYN flood

The detection of a SYN flood attack in Snort is possible by creating a rule based in the
threshold option which allows to count the number of packets with the SYN flag set
over a small amount of time, which is basically the same approach we took in NeMODe,
but in a more expressive way.

Listing 86 presents the rule which detects a SYN flood in Snort, where we look for 50
tcp packets in 5 seconds with the SYN flag set.

Listing 86 SYN flood Snort rule

alert tcp any any -> any any (msg:"Syn Flood"; \
flow: stateless; flags:S,12; threshold: type threshold, \
track by_src, count 50, seconds 5; sid:10002;)

Although the use the threshold option allows to count the network packets over a
certain period of time, it doesn’t allows to create real relations between the packets
involved in the attack.

DNS spoof

Snort provides some built-in rules which allows the detection of some DNS spoofing
attacks, but they do so by analyzing only specific properties in the headers and payload
of the network packets, not being able to relate several packets to model the problem.
More specifically, the Snort ID 253 rule and Snort ID 254 rule, check for DNS replies
with a TTL of 1 minute and no authority [116], which are usually characteristics of a
DNS spoofing attempt.

Listing 87 presents both Snort ID 253 and Snort ID 254 rules we used to detect the
DNS spoof attack.

This set of rules were used “as is” in the Snort rule data-base, having the specific
purpose of detecting DNS spoof attempts. In fact, these rules can detect some DNS
spoofing attempts, but in many cases, depending on the tools used to perform the
attack, they will fail. In particular, this set of rules were not able to detect any of our
DNS spoofing attempts made with the help of ettercap.

DHCP spoof

For the DHCP spoofing attacks, Snort does not provide a ready to use preprocessor
or rule. One of the only ways to detect a DHCP spoofing in Snort is to monitor for
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Listing 87 DNS spoof Snort rule

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS SPOOF \
query response PTR with TTL of 1 min. and no authority";\
content:"|85 80 00 01 00 01 00 00 00 00|"; \
content:"|C0 0C 00 0C 00 01 00 00 00|<|00 0F|"; \
classtype:bad-unknown; sid:253; rev:4;)

alert udp $EXTERNAL_NET 53 -> $HOME_NET any (msg:"DNS SPOOF \
query response with TTL of 1 min. and no authority"; \
content:"|81 80 00 01 00 01 00 00 00 00|"; \
content:"|C0 0C 00 01 00 01 00 00 00|<|00 04|"; \
classtype:bad-unknown; sid:254; rev:4;)

DHCP replies from hosts which are not a legitimate DHCP server [117]. This can
actually detect some DHCP spoofing attacks, but can be easily evaded if the attacker
also spoofs its IP address.

Listing 88 presents the rules necessary to detect this attack. First, we specify that
we should accept all DHCP replies from the legitimate DHCP server with IP address
192.168.1.254. Then we specify that any DHCP reply from other host will be con-
sidered a DHCP spoofing attempt.

To use this specific rule, Snort had to be run with the “–o” option, which reverses the
order how the rules are read, considering “pass” statements before “alert” statements.

Listing 88 DHCP spoof Snort rule

pass udp 192.168.1.254 67 -> any 68
alert udp any 67 -> any 68 (msg: "Rogue DHCP server..."; sid:1)

This set of rules is effective to detect DHCP spoofing attempts, but they can fail if a
new DHCP server is added to the network and the rule is not updated, leading to a
large amount of false positives.

However, if an attacker decides to spoof its IP address, it can easily evade the detection.

ARP poisoning

Snort is also capable of detecting ARP poisoning attacks, but only if using the arpsoof
preprocessor [28], which monitor for ARP packets against a user supplied ARP table
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containing valid (MAC address, IP address) pairs in the given network, which is
hard to maintain when there are changes in the network.

Listing 89 presents the rules which were used to detect an ARP poisoning in Snort where
it can be seen some known IP/MAC addresses combinations in the given network. If
a different combination of the same IP/MAC addresses is found then we could be
under an ARP poisoning attack. In this example we present only 3 IP/MAC addresses
combination to simplify the example.

Listing 89 ARP poison Snort rule

preprocessor arpspoof
preprocessor arpspoof_detect_host: 192.168.1.70 \

48:5d:60:72:d4:75
preprocessor arpspoof_detect_host: 192.168.1.90 \

08:00:27:94:2c:46
preprocessor arpspoof_detect_host: 192.168.1.254 \

00:24:17:70:26:EC

This Snort preprocessor is effective for detecting ARP spoofings, achieving a 100%
detection rate (on our test runs). Still, it requires a large amount of maintenance if
there are many hosts in the network to monitor, becoming unusable on large networks.

Snort results

To perform these experiments, we used Snort in replay mode, enabling the use of
tcpdump or pcap files, allowing the use of the same network traffic log files used in
NeMODe.

Snort was run as in Listing 90, where file.pcap is the tcpdump file with the network
traffic, file.conf the configuration file of Snort. Parameter -b forces Snort to log
packets in a binary tcpdump formatted file, making Snort faster.

Listing 90 Running Snort with a pcap file

snort -r file.pcap -c file.conf -b

Table 7.8 presents the results obtained by Snort. We present the time spent by the
specific rule or preprocessor which detects the specific time; the time spent by other
Snort preprocessors, also necessary for the detection of the specific rule, in microsec-
onds; the total time needed to process the network traffic log and detect the specific
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attack. We also present the detection rate of Snort. We present the results for each
network situation with log files of different sizes, the same used to evaluate NeMODe.

In all experiments with Snort we removed all unnecessary rules and preprocessors which
were not relevant for the specific attack being detected.

Looking to the results obtained by Snort in Table 7.8, it is possible to conclude that
Snort performs better than NeMODe in terms of time necessary to process the network
traffic and detect the specific intrusion.

Table 7.8: Snort results (in µs)

Signature log size specific
rule (µs)

preproc.
(µs)1

total time
(µs)

detection
rate (%)

Port 400 755 2121 2876 100

scan 100 215 462 677 100

SSH 400 24 1425 1449 100

password 100 13 619 632 100

SYN 400 131 2071 2202 100

flood 100 37 807 844 100

DNS 400 n.a. 1042 1042 0

spoof 100 n.a. 329 329 0

DHCP 400 34 1020 1054 100

spoof 100 24 354 378 100

ARP 400 2 1018 1020 100

spoof 100 1 353 354 100

1 - preprocessor(µs)

7.5 Conclusion

In this Chapter we presented and evaluated the results obtained while using all versions
of NeMODe to solve all network situations described over this entire Chapter.

The results obtained present valuable information, showing that we can use declarative
programming, more specifically, constraint programming methodologies, to perform
Network Intrusion Detection.

Although all these tests were performed with network traffic log files, the results ob-
tained show that we are ready to start performing Network Intrusion Detection on live
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network traffic, a conclusion which is reinforced by the results obtained while using the
sliding network traffic window version of Adaptive Search in the x86, which achieved
a high rate of detection for the desired network situations, at reasonable, although
simulated, network traffic speeds.

The results obtained in all tests, demonstrate that one limiting factor to obtain good
performance results is the size of the problem, both the size of the network traffic
window and the size of the network intrusion signatures, but, while using a sliding
window, this limitation is not as important, since there is no need to use network traffic
window such a large window as in the static version, since the window is constantly
being updated.

While comparing our work to other approaches to Network Intrusion Detection, more
specifically Snort, we get to the conclusion that NeMODe is less efficient in terms of
detection time. Still, some of the network attacks have to be modeled using specific
tailored preprocessors, not allowing to program the attacks using the Snort rule based
language at all. Also, when it is possible to model the specific attacks in the Snort rule
based language, the description is often limited, awkward and counter-intuitive.

In some cases, as in the DNS spoofing, Snort provides ready to use rules, but they were
unable to detect the specific attack in our network traffic log files, mostly because the
lack of generality in specific Snort rules. Because of this, if the attack deviates slightly
from the rule specification, it will not be detected.

For other attacks, such as for the ARP spoofing, Snort provides very efficient pre-
processors, but they require a lot of maintenance, becoming unusable in large scale
networks.





Chapter 8

Conclusions and Future Work

This Chapter presents the conclusions of this work as well as some future
work to be done.

8.1 Conclusions

We presented NeMODe, a declarative approach to Network Intrusion Detection Sys-
tems providing network intrusion detection mechanisms based on several Constraint
Programming approaches. NeMODe also provides a declarative Domain Specific Lan-
guage allowing for an easy modeling of the network intrusions to be detected.

The system presented in this work allows for a declarative description of network sit-
uations which spread across several network packets, and based on this description,
generate several detection mechanisms based on different Constraint Programming
methodologies, namely propagation based solvers, Constraint-Based Local Search and
Boolean Satisfiability Solvers.

In this work, we have demonstrated that we can model Network Intrusion Detection
signatures using these methodologies, in order to perform the detection of signature-
based attacks.

Each approach to Constraint Programming used in this work poses specific problems
in modeling a Network Intrusion Detection problem. Constraint Based solvers allow
a relatively easy modeling of the problem. On the other hand, it is quite difficult to
efficiently restrict the domain of the network packet variables, so that a solution to
the problem be composed exclusively of packets found in the actual traffic, without
sacrificing performance.

167
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Modeling in Constraint-Based Local Search is easy in the sense that the constraint
specification is straightforward, but since AS is quite sensitive to the heuristic used
to model the problem, it turns out difficult to figure out the best heuristics, thus,
making the modeling of Network Intrusion Detection problem in Adaptive Search quite
complex. In AS, ensuring that the domain of the network packet variables is correct
comes for free, due to the way we modeled the network packet variables.

Modeling a Network Intrusion Detection problem in SAT is quite linear after all con-
straint functions have been implemented in order to encode the necessary CNF rules.
The major problem in SAT is the modeling of such constraint functions, which gener-
ate quite large and complex sets of Boolean rules. In MiniSat, due to the specificity
of the SAT problems, we don’t need to worry about the domain of the network packet
variables, since it is taken care of by the encoding the of problem.

The Domain Specific Language provided by NeMODe proved capable of a descriptive
modeling of network intrusions and adequate to generate detections mechanisms for all
Constraint Programming approaches used in this work, enabling a parallel detection
process, using all the mechanisms concurrently, in search for the faster solution.

The use of a sliding network traffic window allows to simulate the analysis of real time
network traffic, as well as detecting network situations that are wider than the network
window used by the solver, allowing to detect network attacks that span a considerable
time interval. Also, this window can be easily adapted to work on a live link, and has
enough performance to do Intrusion Detection in real time.

The architecture used in the “sliding window” version uses two threads: one for feeding
the solver with packets and another to solve the problem. This revealed to be a right
decision, mostly because with this approach we can easily change the network traffic
source from tcpdump log files to other type of log files or even to live traffic, using
either libpcap or another approach to capture network traffic. Also important, this
approach does not limit the network bandwidth. Even if the solver is not able to
analyse all traffic, it is able to detect some attacks.

Although all tests were performed with network traffic log files, the results obtained
show that we are ready to start performing Network Intrusion Detection on live network
traffic, a conclusion which is reinforced by the results obtained while using the sliding
network traffic window version of Adaptive Search in the x86, which achieved a high
rate of detection for the desired network situations, at reasonable, although simulated,
network traffic speeds.

The results obtained in all tests, demonstrate that one limiting factor to obtain good
performance results is the size of the problem, both the size of the network traffic
window and the size of the network intrusion signatures, but, while using a sliding



8.2. FUTURE WORK 169

window, this limitation is not as important, since there is no need to use a network
traffic window as large in the static version, since it is constantly being updated.

While comparing our work to other approaches to Network Intrusion Detection, more
specifically Snort, we get to the conclusion that NeMODe is less efficient in terms of
detection time. Still, some of the network attacks have to be modeled using specific
tailored preprocessors, not allowing to program the attacks using the Snort rule based
language at all. Also, when it is possible to model the specific attacks in the Snort rule
based language, the description is often limited, awkward and counter-intuitive.

The performance figures achieved by all detection mechanisms implemented is prelim-
inary, due to the need of modeling the network as complex combinatorial problems.
Still, we do believe the performance can be improved either by modeling the problems
in different ways or by fine tuning the solvers to the needs of our problems.

8.2 Future Work

As for future work, there is plenty to be done in order to improve the work presented
in this thesis. The most important steps to take in a near future are:

1. Look for better Adaptive Search heuristic functions to improve the Constraint
Local Based Search detection mechanism.

2. Experiment different encodings of the network intrusions as SAT problems to
improve MiniSat detection mechanism.

3. Incorporate the “static” part of a SAT problem into MiniSat in order to avoid the
processing of static rules, thus improving the performance of MiniSat on large
scale problems.

4. Improve the Adaptive Search “Sliding network traffic window” to work with real
live network traffic, thus allowing to monitor networks in a real environment.

5. Adapt the Gecode and MiniSat back-ends to work with a “Sliding network traffic
window”, enabling them to monitor real live network traffic.

6. Include more network entities and properties to allow the detection of a broader
range of network situations.

7. Improve the network intrusion specification language to allow the description of
a wider range of network intrusions.

8. Improve parallel specification and solving.
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