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Synthesis

The production of an accurate analysis is one important goal of modern NWP centers, where
sophisticated data assimilation techniques (such as variational methods) have been implemented.
However, this task is not straightforward, since the real state of the atmosphere is never exactly
known.

One of the main difficulties in data assimilation is caused by the fact that the degrees of
freedom of the modern NWP models (~ 107) are larger than the number of independent available
observations (~ 10%). Moreover, the distribution of the observation network is not uniform in
space and in time. For these reasons, it is not enough to perform a spatial interpolation of
observations into a regular grid. A prior information is needed in order to solve the undetermined
analysis problem. In other words, it is necessary to have a first guess about the atmospheric
state at all grid points. In modern data assimilation schemes, this first guess (or background)
is provided by a short range forecast (from a previous analysis cycle). Hence, the analysis field
results from a combination of observations and a background field.

The relative weights given to observations and to the background depend on specified ob-
servation and background error covariance matrices (which are usually noted R and B, respec-
tively). More precisely, the filtering and interpolation of the observations are mostly determined
by the expected magnitudes of the errors at each location (variances) and by the expected cor-
relations between the errors at different locations. The variances are the diagonal terms of the
covariance matrices and the correlations correspond to the off-diagonal terms. Therefore, the
quality of the analysis strongly depends on the accuracy of the observation and background
error covariance estimates.

The B matrix is also important because it contains the balance relationships between mass
and wind fields (e.g., geostrophy in the mid-latitudes): this allows the mass analysis to be
influenced by wind observations, and vice-versa.

The main goal of the present work is to study and improve the estimate of the background
error covariance matrix. In order to achieve this, an ensemble approach has been applied to the
Arpége global model in its non stretched version (i.e., with a uniform resolution on the globe).
This technique is based on an ensemble of independent perturbed analysis experiments, and it
was first proposed by Houtekamer et al. (1996).

In the ensemble approach, for each experiment (member) and for each analysis cycle, all
observations are perturbed by adding independent random numbers (which have a Gaussian
distribution with mean zero and variance equal to the prescribed variance of the observation
error). Some background perturbations can be also constructed, and these two perturbations
(of the observations and of the background) will create a perturbed analysis for each member.
From each perturbed analysis, a 6h integration of the numerical model is performed. In this
way, an ensemble of perturbed analyses will evolve into an ensemble of perturbed backgrounds.
For each ensemble member, it is possible to use either the same forecast model or different
models. Moreover, the ensemble experiments can be carried out for several consecutive cycles,
for instance during a one or two month period. It is assumed that the differences between the
perturbed background fields of the different members represent the background errors. Thus, the
background error covariances are estimated from these background differences. In the same way,
it is possible to estimate the analysis error covariances from the ensemble analysis differences.

In the first stage of the work, the ensemble method has been implemented using a perfect-
model framework. The resulting covariance estimates have been compared with those that were
previously operational in the Arpége 4D-Var, by performing both diagnostic and impact studies
(Belo Pereira and Berre, 2006).

In particular, the global (i.e. spatially averaged) ensemble covariances have been compared
with those of the NMC method. This NMC technique was used only to specify the global



covariances. This method relies on the assumption that the background error can be estimated
by differences between forecasts of different ranges (for instance 12 and 36 hours), but valid at
the same time. This technique is known as the NMC method, because it was first implemented
in the U.S. National Meteorological Center (now renamed National Center for Environmental
Prediction) (Parrish and Derber 1992). The NMC method has the advantage of being very easy
to implement. This probably explains that this method was (or still is) operational in many
NWP centers.

It was found that, globally, the ensemble approach emphasizes the relative contributions of
the small scales to the background errors. Consequently, the global length scales (which describe
how fast the correlation decreases with distance) are smaller in the ensemble method than in
the NMC method. These results are in accordance with those described by Fisher (2003), where
these differences were considered to be caused by the involvement of longer forecast ranges in
the NMC method.

Nevertheless, the analysis error estimated by the NMC method, strongly depends on the
analysis increment (difference between analysis and background), and it was found that its
spectrum is much larger scale than the analysis dispersion spectrum from the ensemble method.
In other words, the large scale contributions are enhanced in the analysis increment spectrum,
when compared with the spectrum of the analysis error estimated by the ensemble method.
Moreover, this result is consistent with the expected filtering properties of the B matrix in the
analysis equation. This suggests that the different representations of the analysis step, in the
simulation of the error evolution, also explain an important part of the differences between the
two methods.

The local (i.e. spatially varying) ensemble variances have been compared with those provided
by the NMC method, and with the local operational variances (which correspond to a static 3D
map of variances, that reflects some typical data density contrasts).

Previous studies (Bouttier (1994) and McNally (2000)) suggest that the analysis error vari-
ances estimated by the NMC method are underestimated in the data-poor areas, and overesti-
mated in regions where the observations are dense and have a high quality. For these reasons, in
the Arpege 4D-Var, the NMC method is not used to provide the spatial variations of the back-
ground error variance. The examination of the local covariances, and the comparison between
the analysis errors and the background errors estimated by the NMC method, are consistent
with the referred studies.

In contrast with this, the local ensemble background error variances capture some interesting
features, such as the contrasts between data-rich and data-sparse regions, and also the areas
of large atmospheric variability (the ITCZ, for instance). Moreover, the analysis dispersion
provided by the ensemble approach appears to give some relevant information about the analysis
error, for instance that concerning the influence of data density.

The local correlation structures were also examined. For this purpose, an economical method
was developed to estimate the local correlation length scales. The corresponding estimates
provided by the ensemble method show that the length scale is largest in the tropics and smallest
in the data rich regions, as expected from other studies (e.g. Lindzen and Fox-Rabinovitz (1989),
Ingleby (2001), Bouttier (1994)). In addition, these estimates from the NMC method differ
from the ensemble ones, mainly for temperature. In particular, the results indicate that the
overestimation of the length scales by the NMC method is more pronounced over data rich
areas, such as North America. These differences suggest that the expected data density effects
on the correlation structures are not well represented by the NMC method.

Moreover, this local length scale diagnosis also allows to examine the correlation anisotropies.
This information about heterogeneities and anisotropies can be useful to model spatially varying
correlations in the B matrix, e.g. by wavelet techniques (Fisher (2003), Deckmyn and Berre
(2005)).

Some impact studies were also performed with the Arpége 4D-Var. The use of the ensemble
global covariances (compared with the NMC global covariances) had a general positive impact



on the forecast quality. This positive impact was enhanced, when the ensemble local standard
deviation maps (instead of the former operational ones) were used in the minimization and
quality control stages. For the above reasons, the ensemble statistics became operational at
Météo France in January 2004.

However, one could expect that the perfect model assumption causes an underestimation
of the background error variances. Therefore, the impact of simulating the model error in
the ensemble approach has also been studied. The model error is simulated by performing
an ensemble of experiments using different resolutions and different values for certain tuning
parameters of some physical parametrizations. The resulting covariances are compared with
those provided by the ensemble approach in a perfect-model context. Furthermore, the impact
of the corresponding covariance estimates on the forecast quality was also studied.

The results indicate that the resolution is the most important contribution for small scale
variables (e.g., vorticity and divergence). The perturbations of the physical parametrizations
remain important in the tropics for vorticity and divergence, and also for temperature in general.
This is more obvious in lower and middle troposphere in the extra-tropics and in upper levels
over the tropics.

Moreover, the effect of the model error simulation in the ensemble approach is to increase the
magnitude of the estimated background error. For large scale variables (temperature and surface
pressure), the increase in magnitude of the background errors is associated to the enhancement of
the synoptic scale contributions. On the other hand, for the other variables (vorticity, divergence,
and humidity), the simulation of the model error appears to emphasize the relative contributions
of the mesoscale phenomena to the background errors, mainly due to the simulation of the model
error related to resolution. This causes a reduction of the coupling between mass and wind
variables.

The referred reduction of the mass/wind coupling has a positive impact on the forecast
quality of geopotential over the tropics and in some stratospheric extra-tropical areas. On
the other hand, the reduction of mass/wind balance leads to a degradation of the forecasts
of geopotential and wind in some tropospheric extra-tropical regions. This suggests that the
mass/wind coupling is smaller in the tropics and in the stratosphere (as could be expected), and
that the relaxation of this coupling as a function of latitude and height should be strengthened
in the B matrix.

It was also found that there is a better agreement between the vertical profiles of the statis-
tics of the innovations (differences between observations and background) and those from the
ensemble approach, when the model error is simulated.

Finally, the effect of neglecting the observation errors in the ensemble method has also
been studied. For this purpose, the observation perturbations have been set to zero. This
means that the ensemble simulations have been performed assuming that the background error
is caused mainly by the model error (either due to uncertainties in physical parametrizations
and resolution, or only due to the uncertainties in parametrizations). The resulting covariances
have been compared with those in a perfect-model context, and with those in which both the
observation and model errors are simulated.

Globally, it was found that the assumption that observations are perfect leads to a decrease
of the background error variance, mostly due to a reduction of the large scale contributions. This
effect is consistent with the filtering properties of the analysis equation. It is more pronounced
in upper troposphere and for surface pressure.

In addition, it was found that the magnitude of the background error estimated by the
ensemble approach is smaller when it is assumed that observations are perfect rather than when
the model is assumed to be perfect. There are two possible interpretations of this result. The
first one is that the uncertainties related to the observations have a larger contribution to the
background error than the model error. The second one is that some important sources of model



error have been underestimated.

The sensitivity of the ensemble estimates to the model resolution has also been examined. For
this purpose, two background error statistics have been derived from two similar ensemble perfect
model experiments, which were built using the same model at two different resolutions. It was
found that, when the model truncation increases, the magnitude of the background dispersion
decreases in the large scales and increases in the small scales. At first sight, the increase of small
scale variance may be seen as a paradox. However, it is important to note that as the model
truncation decreases, its variability at smaller scales will be smaller, because these scales are
either not represented at all by the model, or dissipated by the horizontal diffusion. Moreover,
the small scale structures that are observed but not represented by the model, due to its limited
resolution, are usually considered and treated as a part of the observation representativeness
errors (rather than as a part of the background errors).

For the above reasons, the determination of the optimum amount of small scale variance, for
the specification of the B matrix in data assimilation, remains an open issue.

On the whole, the results indicate that the ensemble method provides some relevant and
useful information on the time-averaged background error covariances, both globally and locally.
This suggests that one should also try to extract some flow-dependent information from the
ensemble dispersion. The use of this analysis ensemble approach for high resolution limited
area models is another natural application, as showed by recent studies with the Aladin model
(Stefénescu, Berre and Belo Pereira 2006, Berre, Stefénescu and Belo Pereira 2006).



Synthese

La production d’une analyse précise est un objectif important des centres modernes de
prévision numérique du temps, ol des techniques sophistiquées d’assimilation de données (telles
que les méthodes variationnelles) ont été implémentées. Cependant, cette téche n’est pas triviale,
parce que I’état réel de ’'atmosphére n’est jamais connu de fagon exacte.

L’une des difficultés principales en assimilation de données est liée au fait que les degrés
de liberté des modéles modernes de prévision numérique (~ 107) sont plus nombreux que le
nombre d’observations indépendantes disponibles (~ 10°). De plus, la distribution du réseau
d’observation n’est par uniforme dans 1’espace et dans le temps. Pour ces raisons, il n’est pas
suffisant de réaliser une interpolation spatiale des observations sur une grille réguliére. Une
information préalable est requise afin de résoudre le probléme sous-déterminé qu’est ’analyse.
En d’autres termes, il est nécessaire de disposer d'une ébauche relative a I'état atmosphérique sur
tous les points de grille. Dans les schémas modernes d’assimilation de données, cette ébauche est
fournie par une prévision & courte échéance (d’un cycle d’analyse précédent). En conséquence,
’analyse résulte d’une combinaison des observations et d’une ébauche.

Les poids relatifs donnés aux observations et & 1'ébauche dépendent des matrices spécifiées
de covariance des erreurs d’observation et de I'ébauche (qui sont habituellement notées R et B,
respectivement). Plus précisément, le filtrage et I'interpolation des observations sont principale-
ment déterminés par les amplitudes attendues des erreurs en chaque point (variances) et par
les corrélations attendues entre les erreurs en des points distincts. Les variances sont les termes
diagonaux des matrices de covariance, et les corrélations correspondent aux termes non diago-
naux. En conséquence, la qualité de I’analyse dépend fortement de la précision des estimations
des covariances d’erreur des observations et de 1’ébauche.

La matrice B est également importante parce qu’elle contient les relations d’équilibre entre
les champs de masse et de vent (par exemple, le géostrophisme aux moyennes latitudes): cela
permet & 'analyse du champ de masse d’étre influencée par les observations de vent, et vice-
versa.

Le but principal du travail présent est d’étudier et d’améliorer 'estimation de la matrice
de covariance d’erreur d’ébauche. A cette fin, une méthode d’ensemble a été appliquée au
modele global Arpége dans sa version non étirée (c’est-a-dire avec une résolution uniforme sur le
globe). Cette technique est basée sur un ensemble d’expériences d’analyses perturbées de fagon
indépendante. Elle a été proposée initialement par Houtekamer et al (1996).

Dans la méthode ensembliste, pour chaque expérience (membre) et pour chaque cycle d’analyse,
toutes les observations sont perturbées en ajoutant des nombres aléatoires indépendants (qui
suivent une distribution gaussienne de moyenne nulle, et dont la variance est égale 3 la vari-
ance spécifiée de 'erreur d’observation). Des perturbations de I'ébauche peuvent aussi étre
construites, et ces deux perturbations (des observations et de I’ébauche) vont créer une analyse
perturbée pour chaque membre. A partir de chaque analyse perturbée, une intégration sur 6h du
modeéle numérique est réalisée. De cette facon, un ensemble d’analyses perturbées va évoluer en
un ensemble d’ébauches perturbées. Pour chaque membre de Pensemble, il est possible d’utiliser
soit le méme modele de prévision ou différents modéles. De plus, les expériences ensemblistes
peuvent étre menées sur plusieurs cycles consécutifs, par exemple durant une période d’un ou
deux mois. Les différences entre les champs perturbés d’ébauche des différents membres sont
supposées représenter les erreurs de prévision. Ainsi, les covariances d’erreur d’ébauche sont
estimées & partir des différences d’ébauche. De la méme fagon, il est possible d’estimer les
covariances d’erreur d’analyse & partir des différences d’analyse de 'ensemble.

Au cours de la premiére étape de ce travail, la méthode ensembliste a été mise en oeuvre dans
un contexte de modéle parfait. Les estimations de covariance résultantes ont été comparées a
celles qui étaient opérationnelles précédemment dans le 4D-Var Arpége, en réalisant des études



diagnostiques et d’impact (Belo Pereira et Berre 2006).

En particulier, les covariances ensemblistes globales (i.e. moyennées spatialement) ont été
comparées & celles de la méthode du NMC. Cette technique du NMC n’était utilisée que pour
spécifier les covariances globales. La méthode du NMC repose sur I’hypothése que l'erreur
d’ébauche peut étre estimée par les différences entre des prévisions dont les échéances varient
(par exemple 12 et 36 heures), mais qui sont valables pour la méme date. Cette technique
est connu sous le nom de "méthode du NMC”, parce qu’elle a été mise en oeuvre pour la
premiére fois au Centre Météorologique National des Etats-Unis (qui s’appelle maintenant le
Centre National pour la Prévision Environnementale) (Parrish et Derber 1992). La méthode du
NMC a avantage d’étre trés facile & mettre en oeuvre. Cela explique probablement que cette
méthode était (ou est encore) opérationnelle dans beaucoup de centres de prévision numérique.

Il est apparu que, globalement, la méthode ensembliste met davantage ’accent sur les contri-
butions relatives des petites échelles aux erreurs d’ébauche. En conséquence, les portées globales
(qui décrivent la vitesse de décroissance de la corrélation avec la distance) sont plus petites dans
la méthode ensembliste que dans la méthode du NMC. Ces résultats sont en accord avec ceux
décrits par Fisher (2003), pour lesquels ces différences étaient considérées comme étant causées
par les échéances plus longues de la méthode du NMC.

Néanmoins, P'erreur d’analyse estimée par la méthode du NMC dépend fortement de I’'incrément
d’analyse (qui est la différence entre 'analyse et ’ébauche), et il est apparu que son spectre est
nettement plus grande échelle que le spectre de dispersion de 'analyse estimé par la méthode
ensembliste. De plus, ce résultat est cohérent avec les propriétés de filtrage attendues de la
matrice B au niveau des équations de 1’état d’analyse et de I'incrément d’analyse. Cela suggére
que les différentes représentations de P’étape d’analyse, dans la simulation de 1’évolution des
erreurs, expliquent également une part importante des différences entre les deux méthodes.

Les variances ensemblistes locales (i.e. variables spatialement) ont été comparées & celles
fournies par la méthode du NMC, ainsi qu’avec les variances opérationnelles locales (qui corre-
spondent 3 une carte 3D statique de variance, qui refléte certains contrastes typiques de densité
de données).

Des études précédentes (Bouttier (1994) et McNally (2000)) suggérent que les variances
d’erreur d’analyse estimées par la méthode du NMC sont sous-estimées dans les régions pauvres
en observations, et surestimées 1 ot les observations sont denses et de bonne qualité. Pour ces
raisons, dans le 4D-Var Arpége, la méthode du NMC n’est pas utilisée pour fournir les variations
spatiales de la variance d’erreur d’ébauche. L’examen des covariances locales, et la comparaison
entre les erreurs d’analyse et d’ébauche estimées par la méthode du NMC, sont cohérentes avec
les études précitées.

Par contre, les variances ensemblistes d’erreur d’ébauche permettent de représenter des car-
actéristiques intéressantes, telles que les contrastes liés & la densité des observations, ainsi que
les régions ol la variabilité atmosphérique est forte (la ZCIT par exemple). De plus, la disper-
sion d’analyse fournie par I’approche ensembliste s’avére donner une information pertinente sur
Perreur d’analyse, par exemple concernant Pinfluence de la densité des observations.

Les structures locales de corrélation ont également été examinées. A cette fin, une méthode
économique a été développée pour estimer les portées locales de corrélation. Les estimations cor-
respondantes fournies par la méthode ensembliste montrent que la portée est maximale dans les
régions tropicales, et minimale dans les régions riches en observations, en accord avec d’autres
études (Lindzen et Fox-Rabinovitz (1989), Ingleby (2001), Bouttier (1994)). De plus, les es-
timations de la méthode du NMC différent des estimations ensemblistes, principalement pour
la température. En particulier, les résultats indiquent que la surestimation des portées par la
méthode du NMC est plus prononcée sur les régions riches en observations, telles que ' Amérique
du Nord. Ces différences suggerent que les effets attendus de la densité des observations, sur les
structures de corrélation, ne sont pas bien représentés par la méthode du NMC.

De plus, ce diagnostic de portée locale permet aussi d’examiner les anisotropies de corrélation.
Cette information sur les hétérogénéités et les anisotropies peut étre utile pour modéliser des



corrélations variables spatialement dans la matrice B, par exemple & P’aide de techniques on-
delette (Fisher (2003), Deckmyn et Berre (2005)).

Des études d’impact ont également été réalisées avec le 4D-Var Arpege. L'utilisation des
covariances globales ensemblistes (comparées aux covariances globales NMC) ont eu un impact
positif général sur la qualité des prévisions. Cet impact positif a été renforcé, quand les cartes
d’écart type local ensembliste ont été utilisées (& la place de celles qui étaient opérationnelles
auparavant) pour la minimisation et le contrdle de qualité. Pour ces raisons, les statistiques
ensemblistes sont devenues opérationnelles & Météo France en janvier 2004.

Cependant, on pourrait s’attendre & ce que ’hypothése de modeéle parfait cause une sous-
estimation des variances d’erreur d’ébauche. En conséquence, 'impact d’une simulation de
lerreur de modéle dans I’approche ensembliste a été étudié. L’erreur de modele est simulée
en réalisant un ensemble d’expériences qui utilisent des résolutions différentes et des valeurs
différentes pour des parameétres de réglage de certaines paramétrisations physiques. Les covari-
ances résultantes ont éte comparées a celles fournies par Papproche ensembliste dans un contexte
de modéle parfait. Par ailleurs, 'impact des estimations correspondantes de covariance sur la
qualité des prévisions a également été étudié.

Les résultats indiquent que la résolution est la contribution la plus importante pour les
variables de petite échelle (tourbillon et divergence). Les perturbations des paramétrisations
physiques restent importantes sous les tropiques pour le tourbillon et la divergence, ainsi que
pour la température en général. Cela est plus net dans la basse et moyenne troposphére aux
moyennes latitudes et pour les niveaux élevés sous les tropiques.

De plus, 'effet de la simulation d’erreur dans ’approche ensembliste est d’augmenter I'amplitude
de I'erreur d’ébauche estimée. Pour les variables de grande échelle (température et pression de
surface), 'augmentation d’amplitude des erreurs d’ébauche est associée au renforcement des
contributions d’échelle synoptique. D’un autre c6té, pour les autres variables (tourbillon, di-
vergence, et humidité), la simulation de P’erreur de modéle s’avére renforcer les contributions
relatives des phénoménes mésoéchelle aux erreurs d’ébauche, principalement du fait de la simu-
lation de l’erreur de modele liée & la résolution. Cela cause une réduction du couplage entre les
variables de masse et de vent.

Cette réduction du couplage masse/vent a un impact positif sur la qualité de prévision du
géopotentiel sous les tropiques, ainsi que dans certains régions stratosphériques extratropicales.
D’un autre c6té, la réduction de I’équilibre masse/vent conduit & une dégradation des prévisions
de géopotentiel et de vent dans certaines régions troposphériques extratropicales. Cela suggére
que le couplage masse/vent est plus faible sous les tropiques et dans la stratosphére (comme
on pouvait s’y attendre), et que la relaxation de ce couplage en fonction de la latitude et de
Paltitude devrait étre renforcée dans la matrice B.

Il est également apparu qu’il y a un meilleur accord entre les profils verticaux des statistiques
des innovations (qui sont les carts entre les observations et ’ébauche) et ceux de la méthode
ensembliste, lorsque I’erreur de modéle est simulée.

Finalement, V’effet de la non prise en compte des erreurs d’observation dans la méthode
ensembliste a également été étudié. A cette fin, les perturbations d’observation ont été mises a
zéro. Cela signifie que les simulations ensemblistes ont été réalisées en supposant que P'erreur
d’ébauche est principalement due & I’erreur de modéle (soit en raison des incertitudes liées aux
paramétrisations physiques et a la résolution, soit seulement en raison des incertitudes liées aux
paramétrisations). Les covariances résultantes ont été comparées a celles du contexte de modele
parfait, ainsi qu’a celles pour lesquelles les erreurs d’observation et de modéle sont toutes deux
simulées.

Globalement, il est apparu que ’hypothése que les observations sont parfaites conduit a une
baisse de la variance d’erreur d’ébauche, principalement en raison d’une réduction des contri-
butions de grande échelle. Cet effet est cohérent avec les propriétés de filtrage de I'équation



d’analyse. Cela est plus prononcé dans la haute troposphére et pour la pression de surface.

De plus, il est apparu que I'amplitude de l'erreur d’ébauche estimée par 'approche ensem-
bliste est plus petite lorsque les observations sont supposées parfaites, que quand le modéle est
supposé parfait. Deux interprétations sont possibles quant & ce résultat. La premiére est que les
incertitudes des observations ont une contribution plus grande a P'erreur d’ébauche que I'erreur
de modéle. La seconde interprétation est que des sources importantes d’erreur de modele ont
été sous-estimées.

La sensibilité des estimations ensemblistes & la résolution du modéle a également été ex-
aminée. Dans cette perspective, deux statistiques d’erreur d’ébauche ont été obtenues a partir
de deux expériences ensemblistes sembables dans un contexte de modéle parfait. Ces deux statis-
tiques ont été construites en utilisant le méme modéle & deux résolutions différentes. Il est apparu
que, lorsque la résolution du modéle augmente, ’'amplitude de la dispersion d’ébauche décroit
dans les grandes échelles et augmente dans les petites échelles. A premiére vue, I’augmentation
de la variance dans les petites échelles peut sembler étre un paradoxe. Cependant, lorsque
la troncature du modéle augmente, des échelles plus petites peuvent étre simulées. De plus,
I’amortissement des ondes plus courtes dii & la diffusion numérique est réduit. En d’autres ter-
mes, davantage de composantes de la variabilité atmosphérique sont représentées par le modéle.
La détermination de la quantité optimale de variance de petite échelle reste ensuite une question
ouverte, pour la spécification de la matrice B en assimilation de données. Cela est li¢ au fait
que les structures de petite échelle qui sont observées mais non représentées par le modele, en
raison de sa résolution limitée, sont habituellement traitées comme une partie des erreurs de
représentativité des observations (plut6t que comme une partie des erreurs d’ébauche).

Dans I’ensemble, les résultats indiquent que la méthode ensembliste fournit des informations
pertinentes et utiles sur les covariances moyennées temporellement de ’erreur d’ébauche, a la
fois globalement et localement. Cela suggeére que I'on devrait également essayer d’extraire une
information dépendante de I’écoulement & partir de la dispersion de ’ensemble. L’utilisation
d’une approche ensembliste pour des modéles 4 aire limitée et & haute résolution est une autre
application naturelle, comme cela a été montré par des études récentes avec le modéle Aladin
(Stefinescu, Berre et Belo Pereira 2006, Berre, Stefinescu et Belo Pereira 2006).



Resumo longo

Um dos objectivos dos maiores Servigos Meteorolégicos é produzir uma andlise de boa qual-
idade. Para este fim sao utilizadas técnicas sofisticadas de assimilagdo de dados, como, por
exemplo, métodos variacionais.

Uma das principais dificaldades na assimilagdo de dados deve-se ao facto do nimero de
graus de liberdade dos modelos de Previsdo Numérica do ‘lempo (PNT) (~ 107) ser superior ao
niimero de observactes independentes disponiveis (~ 10°). Além disso, as observagdes sobre o
Globo nao se encontram distribuidas uniformemente no espago e no tempo.

Por estas razoes, ndo é suficiente interpolar espacialmente as observagdes para a malha regular
dos modelos. E necessério ter uma estimativa inicial do estado da atmosfera, de modo a resolver
um problema indeterminado. Nas técnicas modernas de assimilacdo de dados, esta estimativa
inicial, conhecida como estimativa a priori e como background na literatura anglo-saxénica, é
fornecida por uma previsao a curto prazo (geralmente 6 horas). No presente documento esta
previséo é designada simplesmente por previsdo curta. Assim, o campo da andlise resulta da
combinac@o das observacoes e da previsdo curta.

A ponderacio atribuida as observagdes e 4 previsdo curta depende das estatisticas (ma-
trizes de autocovaridncia, também designadas de covaridncia) dos erros destas duas fontes de
informacdo. Por outras palavras, a forma como a informacio proveniente das observacoes é
utilizada para modificar o campo da estimativa a priori nos pontos da malha do modelo de-
pende das variancias e das correlagdes entre os erros da previsdo curta em diferentes pontos. As
variancias reflectem a magnitude dos erros e correspondem aos termos diagonais das matrizes de
covariancia. Os termos nao diagonais das matrizes de covaridncia contém as correlagoes. Con-
tudo, como o estado real da atmosfera nunca é conhecido exactamente, as matrizes de covariancia
néo podem ser exactamente conhecidas, podem apenas ser estimadas.

A matriz de covaridncia dos erros da estimativa a priori, conhecida como matriz B, é também
importante porque contém informagio sobre as relagoes entre os campos do vento e da massa
(por exemplo, o equilibrio quasi-geostréfico nas latitudes médias). Estas relagdes permitem que
a informacao proveniente das observacoes de uma varidvel possa ser utilizada por outra varidvel.

Pelas razées mencionadas a qualidade da andlise depende fortemente da exactidao das estima-
tivas da matriz B. O método de NMC é uma das técnicas utilizadas para estimar as estatisticas
dos erros da previsdo curta no contexto da previsdo numérica. Este método aceita a hipétese
que os erros da previsdo curta podem ser estimados pelas diferencas entre previsdes do mesmo
modelo com alcances diferentes (por exemplo 12 e 36 horas), mas vilidas no mesmo instante.
Esta técnica é conhecida como método de NMC, porque foi implementada pela primeira vez
no Centro Meteorolégico Nacional dos Estados Unidos (actualmente chamado Centro Nacional
para a Previsao Ambiental) (Parrish e Derber 1992).

O método de NMC tem a vantagem de ser muito ficil de aplicar. Provavelmente, este
facto explica, em parte, a sua utilizacdo em regime operacional, desde 1992. No entanto, es-
tudos precedentes (Bouttier (1994) e McNally (2000)) sugerem que o método de NMC tende a
subestimar a varidncia (magnitude) dos erros de anélise nas regides com poucas observagoes e
a sobrestima-la nas regides onde a densidade de observagoes é elevada e a sua qualidade ¢ boa.
Por este motivo, na assimilac cdo do modelo Arpége, as estimativas provenientes do método de
NMC nunca foram utilizadas para descrever as variacoes geogréficas dos erros da previséo curta.
Este método ¢ utilizado apenas para fornecer a média global das covaridncias (em cada nivel do
modelo).

No presente trabalho, um método de ensemble foi aplicado ao modelo global Arpége na sua
versdo nao-estirada (isto é, com uma resolugdo uniforme sobre o globo), com o objectivo de
estudar e melhorar a estimativa da matriz B. O método de ensemble utiliza um conjunto de
experiéncias independentes de andlise e foi proposto pela primeira vez por Houtekamer et al.



(1996).

No método de ensemble, para cada experiéncia (membro) e para cada ciclo de anélise, todas
as observagoes sao perturbadas, adicionando niimeros aleatérios independentes (que tém uma
distribuicio gaussiana com um valor médio igual a zero e varidncia igual & varincia dos erros
das observagoes). E também possivel gerar perturbagdes da estimative a priori, de modo a sim-
ular os erros do modelo. Os erros do modelo podem também ser simulados utilizando modelos
diferentes para cada membro do ensemble. A partir dos campos perturbados das observagtes
e das estimativas a priori obtém-se uma anélise perturbada para cada membro do ensemble.
Através da integragdo (durante 6 horas) do modelo numérico, com base numa anélise pertur-
bada, obtém-se uma previsdo curta perturbada. Estas experiéncias podem ser realizadas para
diversos ciclos de andlise consecutivos, durante um perfodo de um ou dois meses, por exemplo.
Finalmente, aceita-se que as diferencas entre os campos das previsées curtas perturbadas de
membros diferentes representam os erros da previsio curta (ou da estimativa a priori). Desta
forma é possivel estimar as covaridncias dos erros da previsdo curta a partir das diferencas entre
os campos de previsdes curtas de diferentes membros do ensemble. De forma andloga, é possivel
estimar as covariidncias dos erros da anélise, a partir das diferencas entre campos de andlises de
diferentes membros do ensemble.

Inicialmente, o método de ensemble foi aplicado assumindo que a contribuicdo dos erros do
modelo para os erros da previsdo curta é desprezdvel. Ou seja, supde-se que as principais fontes
de erro para a previsdo curta sao os erros das observagoes, os erros presentes na estimativa
a priori utilizada durante a assimilacdo de dados e os erros existentes nas estimativas das
estatisticas dos erros. Na prética isto significa que nas simulagdes é utilizado sempre o mesmo
modelo para todos os membros do ensemble. As estatisticas estimadas por este método foram
comparadas com as utilizadas operacionalmente na 4D-Var do Arpége e, em particular, com as
provenientes do método de NMC. O impacto na qualidade das previsdes do modelo foi também
estudado (Belo Pereira e Berre, 2006).

Globalmente, verificou-se que nas estimativas do método de ensemble as contribuigbes dos
fen6menos de mesoscala para os erros da previséo curta parecem ser acentuadas, relativamente as
estimadas pelo método de NMC. Consequentemente, o comprimento de correlagio (que descreve
a forma como a fun¢éo de autocorrelagao decresce com a distdncia) é menor quando estimado
pelo método de ensemble, do que quando obtido pelo método de NMC. Estes resultados séo
concordantes com os descritos por Fisher (2003), que considerou que estas diferencas seriam
provocadas pela utilizagdo de previsdes de maior alcance no método de NMC.

No entanto, na técnica de NMC, as estimativas dos erros dependem em grande parte do
incremento da anslise (diferenca entre a andlise e a estimativa a priori). Além disso, verificou-se
que o espectro do incremento da anélise é mais largo que o espectro do erro da anélise estimado
pelo método de ensemble. Por outras palavras, as contribuigdes dos fenémenos de larga escala
sdo acentuadas no espectro do incremento da andlise, quando comparadas com o espectro das
diferencas entre andlises de membros distintos de um ensemble. Este resultado é consistente com
as propriedades de filtragem da matriz B. Isto sugere que as diferengas entre as duas técnicas
relativamente & representacao da anslise na simulagao da evolugéo dos erros, explicam também
uma parte importante das diferencas entre os dois métodos.

O estudo dos mapas de varidncias dos erros das previsées curtas e a comparacao entre as
varidncias dos erros da andlise e da previsdo curta estimados pelo método de NMC, permitiu
obter resultados concordantes com os estudos de Bouttier (1994) e McNally (2000), referidos
anteriormente. Por outro lado, os mapas de varidncias dos erros da estimativa a priori prove-
nientes do método de ensemble parecem identificar algumas caracteristicas interessantes, tais
como os contrastes entre regiGes com baixa e com elevada densidade de observagdes, e também
as dreas de grande variabilidade atmosférica (a Zona de Convergéncia Inter-Tropical, por exem-
plo). Além disso, na técnica de ensemble, as diferencas entre os campos da andlise de diferentes
membros do ensemble parecem fornecer informagoes relevantes sobre os erros da andlise, por



exemplo, relativamente & influéncia da densidade das observagbes na qualidade da anilise.

As variacbes geograficas da funcdo de correlagdo foram também examinadas. Com esta
finalidade, foi desenvolvido um método econémico para estimar localmente o comprimento de
correlacéo. Aplicando este método as estimativas provenientes do método de ensemble, verificou-
se que o comprimento de correlagdo é maior nos trépicos e menor nas latitudes médias (sendo este
contraste méximo para as regides ricas em observagdes). Este resultado é consistente com outros
estudos (por exemplo, Lindzen e Fox-Rabinovitz (1989), Ingleby (2001), Bouttier (1994)). Além
disso, estas estimativas derivadas do método de ensemble diferem das provenientes do método de
NMC, principalmente para a temperatura. Em particular, os resultados sugerem que o método
de NMC tende a sobrestimar o comprimento de correlacdo principalmente em dreas ricas em
observacgoes, tais como a América do Norte. Estes resultados sugerem que os efeitos previsiveis
da densidade de observactes nas estruturas das correlagbes dos erros da estimaliva a priori nado
sao bem representados pelo método de NMC.

E também importante referir que, este diagndstico local do comprimento de correlagado per-
mite nao sé6 estudar as heterogeneidades, mas também examinar a anisotropia da fungdo de
correlagao. Esta informacdo pode ser 1til para modelar as variagbes espaciais (horizontais) das
correlacSes da matriz B, utilizando, por exemplo, técnicas de wavelets (Fisher (2003), Deckmyn
e Berre (2005)).

Os estudos de impacto realizados com a 4D-Var do modelo Arpége, permitiram verificar que:
i) a utilizagdo das covaridncias globais estimadas pelo método ensemble (quando comparadas
com as provenientes da técnica de NMC) teve um impacto positivo na qualidade das previsdes
do modelo; ii) este impacto positivo foi ampliado, quando foram também utilizados os mapas
tridimensionais das varidncias, estimadas pelo método de ensemble (em vez dos operacionais).
Por estas razoes, o método de ensemble passou a ser utilizado operacionalmente na 4D-Var do
modelo Arpége, desde Janeiro de 2004.

Contudo, seria de esperar que a magnitude dos erros fosse subestimada pelo método de
ensemble devido & suposicao de que o modelo é perfeito. Por isso, o impacto de simular o erro
do modelo na técnica de ensemble foi também examinado, realizando estudos de diagnéstico e
de impacto na qualidade das previsdes. Para este fim, admitiu-se que as incertezas associadas &
discretizagéo e as parametrizacoes fisicas constituem importantes fontes de erros que nao devem
ser desprezadas.

Para simular o efeito do erro do modelo, construiu-se um conjunto de experiéncias, onde o
modelo foi executado com resolugdes diferentes e usando valores diferentes para determinados
pardmetros de algumas parametrizagdes. As covaridncias resultantes foram comparadas com
as estimadas pela técnica de ensemble utilizando a hipStese de que o modelo é perfeito. Os
resultados sugerem que a resolugio é a fonte de erro mais importante para as varidveis de
pequena escala (por exemplo, vorticidade e divergéncia). No entanto, as incertezas associadas
as parametrizages fisicas s&o também importantes para a vorticidade e divergéncia nos trépicos
e, em geral, para a temperatura. Este resultado é mais notério na média e baixa troposfera, nas
latitudes médias e elevadas e nos niveis superiores nos trépicos.

Além disso, verificou-se que o efeito da simulagdo dos erros do modelo no método de ensemble
é aumentar a varidncia dos erros da previsdo curta. Para varidveis de larga escala (tais como a
pressao 3 superficie e a temperatura), este aumento da varidncia estd associado & amplificagdo
das contribuicdes dos fenémenos de escala sinéptica para os erros da previsdo curta. Por outro
lado, para as outras varidveis (vorticidade, divergéncia e humidade) a simulagéo do erro do
modelo parece acentuar as contribuigbes relativas dos fendmenos de mesoscala, principalmente
devido a simulagdo do erro do modelo relacionado com a resolugao. Isto tem como consequéncia
uma redugdo do acoplamento entre os campos da massa e do vento.

Os resultados mostram que a referida redugdo do acoplamento massa/vento tem um impacto
positivo na qualidade das previsdes do geopotencial nos trépicos e em dreas extra-tropicais na
estratosfera e na vizinhanca da tropopausa.



Por outro lado, na troposfera média e alta das latitudes médias, a referida redugio do
acoplamento massa/vento causa uma degradagéo da qualidade das previstes de geopotencial.
Isto indica que nestas regides a presenca na matriz B de um equilibrio geostréfico relativamente
forte é relevante, pois permite que a anslise do geopotencial possa beneficiar das observagdes de
vento.

Estes resultados confirmam que o acoplamento entre os campos da massa e do vento na
estratosfera é mais fraco do que na troposfera, sendo também mais fraco nos trépicos do que
nas latitudes médias. Assim, estes resultados sugerem também que, na especificagdo da matriz
B, a dependéncia em funcio da latitude e altitude, do acoplamento entre os campos da massa
e do vento, deve ser reforcada.

Quando o erro do modelo é simulado em vez de ser negligenciado, h4 uma melhor con-
cordéncia entre os perfis verticais das estatisticas das diferencas entre as observagdes e a previsdo
curta e os perfis das varidncias estimadas pelo método de ensemble.

Finalmente, o efeito de desprezar os erros das observagdes no método de ensemble foi também
estudado. Neste caso, as simulagbes de ensemble foram executadas admitindo que os erros
da estimativa a priori sao provocados principalmente pelos erros do modelo (devido as in-
certezas relativas & resolucdo e s parametrizagdes fisicas, ou somente devido as incertezes nas
parametrizacdes). As covaridncias resultantes destas simulagoes foram comparadas com as es-
timadas pelo método de ensemble aplicado nas duas outras variantes (em que se aceita que
o modelo é perfeito e em que ambos os erros das observagoes € do modelo sdo simulados).
Globalmente, verificou-se que a suposicdo de que as observagGes sdo perfeitas conduz a uma
diminuicdo da varidncia do erro da previsdo curta, principalmente devido a uma reducéo das
contribuigoes dos fenémenos de larga escala. Este efeito é consistente com as propriedades de
filtragem da equacido da andlise. Este resultado é mais evidente na alta troposfera e para a
pressao & superficie.

Os resultados mostram também que a varidncia estimada pela técnica de ensemble é menor
quando se supde que as observagdes sdo perfeitas do que quando se assume que o modelo é
perfeito. H4 duas interpretagtes possiveis para este resultado. Por um lado, os erros das ob-
servagoes poderao ter uma contribuicdo maior para o erro da previsdo curte do que as incertezas
inerentes ao modelo. Por outro lado, este resultado pode também sugerir que algumas fontes
importantes de erros do modelo foram subestimadas.

A dependéncia das estimativas do método de ensemble (no contexto de um modelo per-
feito) em funcao da resolugdo do modelo foi também estudada. Para cumprir este objectivo
construiram-se dois conjuntos de ensembles semelhantes, onde o mesmo modelo numérico foi
utilizado, mas com resolugdes diferentes para cada conjunto.

Os resultados indicam que um incremento da truncatura do modelo tem como consequéncia
um aumento da magnitude dos erros da previsdo curta, estimados pelo método de ensemble.
Embora este resultado possa parecer surpreendente, é importante lembrar que 4 medida que a
truncatura do modelo aumenta, fené6menos de menor escala podem ser simulados pelo modelo.
Por outras palavras, & medida que a resolugao aumenta, mais componentes da variabilidade
atmosférica podem ser representadas pelo modelo. Estes resultados sugerem que a determinacao
da varidncia dos erros da previsdo curta devido aos fenémenos de pequena escala, nos modelos
globais, permanece uma questdo em aberto.

Em resumo, os resultados apresentados no presente trabalho mostram que o método de
ensemble fornece informacoes relevantes e \teis sobre as covariincias dos erros da estimativa a
priori. Além disso, a técnica de ensemble pode também ser aplicada a modelos de 4rea limitada,
tal como revelam os recentes estudos efectuados com o modelo ALADIN (Stefinescu, Berre and
Belo Pereira 2006, Berre, Stefénescu and Belo Pereira 2006).
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Introduction

It is known that the accuracy of a forecast from a Numerical Weather Prediction (NWP)
model is very sensitive to errors in its initial state. One goal of data assimilation is to determine
this initial state (known as analysis) in such a way that the analysis will be as close as possible
to the true state of the atmosphere. Moreover, the analysis should be compatible with the model
dynamics, to avoid the generation of spurious gravity waves during the forecast.

However, to obtain an accurate analysis is not straightforward. One of the main difficulties in
data assimilation is caused by the fact that the degrees of freedom of the modern NWP models
(~ 107) is larger than the number of independent available observations (~ 10%). Moreover,
the distribution of the observation network is not uniform in space and time. For these reasons
it is not enough to perform a spatial interpolation of observations into regular grids. A prior
information is needed in order to solve the undetermined problem. In other words, it is necessary
to have a first guess about the atmospheric state at all grid points. In modern data assimilation
schemes, this first guess (known as background) is provided by a short range (six-hour) forecast
from the previous analysis.

Thus, the analysis field results from a combination of observations and a background. In
this sense, data assimilation can be seen as a least squares or regression problem. The relative
weights given to observations and to the background are fundamentally determined by the
specified observation and background error covariances matrices. Therefore, the quality of the
analysis strongly depends on the accuracy of the observation and background error covariance
estimates.

The background error covariance matrix (B matrix) is also important because it contains
the balance relationships between mass and wind fields, which allows to spread the observed
information from one variable to other variables.

The oldest method used to estimate the background error statistics is known as the innova-
tion method (e.g. Hollingsworth and Lonnberg (1986), and Lénnberg and Hollingsworth (1986)),
because it is based on the covariance matrix of the innovation vector (observation minus back-
ground values). The main limitations of this method are that the data coverage is sparse over
large areas of the globe (such as the oceans), and that there is no information on the scales that
are smaller than the available data density (and neither on the scales that are larger than the
size of the data network).

A second method used to estimate the background error statistics is based on an empirical
assumption: the differences between forecasts of different lengths, but valid at the same time,
have similar structures to those of the short range forecast errors. This technique is known as
the NMC method, because it was first implemented in the U.S. National Meteorological Center
(now renamed National Center for Environmental Prediction) (Parrish and Derber 1992). This
method has the advantages of being easy to implement, and of providing some estimate for the
whole globe and for all the modelled scales. This probably explains that this method was (or
still is) operational in many other NWP centers: at ECMWF (Rabier et al. 1998), at CMC in



Canada (Gauthier et al. 1999), at Météo-France (Desroziers et al. 1995), at the UKMO (e.g.
Lorenc et al. 2000). This method was also used in limited area models (Berre 2000; Gustafsson
et al. 2001).

More recently, an interesting alternative technique based on an ensemble of assimilation
experiments was proposed by Houtekamer et al. (1996). This approach, known as Ensemble
Analysis method or ensemble method has been also implemented operationally at ECMWF
(Fisher, 2003).

The main goal of the present work is to make the estimate of the B matrix more accurate, in
order to improve the forecast quality of a NWP model. In order to accomplish this, the ensemble
approach has been applied to the 4D-Var scheme of the global ARPEGE model.

Firstly, the ensemble method has been implemented using a perfect-model framework. The
resulting covariance estimates have been compared with those that were previously operational,
by performing both diagnostic and impact studies (Belo Pereira and Berre, 2006). The global
(i.e. spatially averaged) ensemble covariances have been compared with those of the NMC
method. The local (i.e. spatially varying) ensemble variances have also been compared with the
local operational variances (the latter correspond to a static 3D map of variances, that reflects
some typical data density contrasts).

Furthermore, the local ensemble correlations have been diagnosed and compared with those
from the NMC method. This has been done by developing an economical method to estimate the
local correlation length scales. The study of these local correlations gives interesting information
about the existing heterogeneities and anisotropies.

Some emphasis has also been given to study the role of the analysis step in the simulation of
the background errors. Moreover, the background and analysis errors estimated by the ensemble
approach have been compared.

Secondly, the role of the model error on the background error covariances estimated by
the ensemble method is investigated. It is assumed that the horizontal discretization and the
uncertainties associated to the physical parametrization are significant sources of model errors.
The resulting covariance estimates have been compared with those from the ensemble approach
using a perfect-model assumption. Both global and local covariances have been compared.

Finally, the effect of neglecting the observation error in the ensemble method is investigated.
In this case, it is assumed that the background error is caused mainly by the model error. The
resulting covariances are also compared with those provided by the ensemble approach in a
perfect-model context.

The structure of the thesis is the following. In chapter 1 some theoretical notions about
data assimilation and the B matrix are outlined. The formalism of the ensemble simulation of
the model state error is presented in chapter 2, where it is compared with the formalism of the
NMC method and with the exact model state error evolution. The results obtained using the
ensemble method with a perfect-model assumption are described in chapter 3. In chapter 4,
the effect of the simulated model error in the ensemble approach is presented. In chapter 5, the
background error covariance are estimated by the ensemble approach in a perfect-observation
context. Finally, the main conclusions and perspectives are presented.

The full versions of three publications are also included as appendices. Belo Pereira and
Berre (2006, appendix F) corresponds to a formal and experimental study of the ensemble
approach applied to the ARPEGE global model. The other two publications are focused on
applications to the ALADIN limited area model. Berre, Stefinescu and Belo Pereira (2006,
appendix G) deals with a comparison between the ensemble approach and two other error
simulation techniques, regarding the representation of the analysis effect. Stefinescu, Berre
and Belo Pereira (2006, appendix H) concerns the evolution of the dispersion spectra and the
evaluation of model differences (when applying the ensemble approach to the ALADIN model).



Chapter 1

Analysis Objective

1.1 Introduction

In order to illustrate that data assimilation is an estimation problem and that the analysis field
can be seen as the optimal least-squares estimate, or as the Best Linear Unbiased Estimate
(BLUE) of a true state, it is useful to consider a simple scalar example.

Assuming that one wants to estimate the temperature at a certain location and that two
sources of information are available at this point: for instance, one observation and one short
range model forecast (background). In this case, it is possible to estimate the temperature value
from a linear combination of the two sources of information:

z, = Kizp + Ky (1.1)

where K and K are the weights to be estimated. Here z, is the analysis value, which represents
an estimate of the true value (&), 3 is the background and y is the observation.

It is important to mention that if the analysis is an unbiased estimate of the true state, the
equation (1.1) is equivalent to the following equation:

Zgq = Tp + K(y -_— :l:b) (1.2)

The analysis is an unbiased estimate of the true state if < x, >= £, where < > is the time
average operator. This is verified when the following conditions are satisfied:

1) the errors of the two sources of information are unbiased, which means that the expectation
of background and observation errors is zero, i.e., < e >=<zp—Z > = 0and <e, > =<
y—z>= 0.

2) the sum of the weights is equal to 1:

Kl 4+ K=1 (1.3)

Using the definition of analysis given by the equation (1.2), the error of the analysis (estimate)
can be expressed as

ea=%,—~F=xp -+ K(y—ZE+E—xp) =ep+ K(e, — ep) (1.4)

The analysis error variance is defined as

1 N
oo =(e)=((@a—%)") =5 3 (2a~2)° (1.5)

=0

where [V is the number of analysis experiments.
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Using the definition of o2 given by the previous equation and equations (1.1) and (1.3), the
following expression for analysis error variance can be derived, if the observation and background
errors are uncorrelated:

02 = K20% 4+ K%0? = (1 - K)?? + K%0? (1.6)

where 02 = (e2) is the observation error variance and 02 = (e?) is the background error
variance.

If K and K; are both positive, from equations (1.3) and (1.6), it can be shown that the
analysis error variance satisfies the condition

0% < Omas 1.7
where 02,,, is the largest of o2 and o2. This result is important, but the goal of the analysis is
more exigent, its aim is to find the K for which the analysis error variance is the lowest possible.
Thus, it is necessary to derivate equation (1.6) with respect to K, to find the K that minimizes
o2:

do?

0K

The second derivative %;%(‘2* is positive for all K. Thus, the value K that satisfies the equation
(1.8) corresponds to the value for which ¢2 is minimum, and is given by the following expression:

=2Ko2 +2Kot ~ 208 =0 (1.8)

2
_ %

A 9

The weight given by the previous equation is called the optimal weight. Substituting the previous
expression into equation (1.2) or into (1.1) and (1.3), the analysis field can be expressed as:

Toq = T — & & Tq = x .
e b+ag+ag(y b) o= Tt Ay (1.10)

This equation shows that if the observation is very inaccurate (or absent) or if the background
is very accurate (02 >> o), then the observation is ignored (K = 0) and the analysis is taken
from the background value: z, = z;. On the contrary, if the observation is very accurate,
(062 << o}), then K = 1 and the analysis corresponds to the observed value (the maximum
weight is given to the observation). If the observation and background error variances are equal,
then K = 1/2 and z, = 0.5(zp + y). So, in this last case, the analysis is given by a simple
average of the two information sources.

If K is given by the expression (1.9), then the expected analysis error becomes
2 _ oia? 1 1 1

+ =3 (1.11)

oo = =
¢ o2+o2 o2 02 o}

a o

From the last equation it can be seen that the accuracy of the analysis (defined as the inverse
of the variance) is the sum of the accuracies of the observations and background. This shows
that the analysis error variance satisfies the condition

Uz S a?nin (112)
where ¢2,;,, is the smallest of the expected observation and background error variances. This is
a much better result than (1.7). From (1.11) and (1.12) it is clear that the uncertainty about
the true state is decreased due to the combination of two sources of information.

However, it is very important to remember that both expressions (1.11) and (1.12) are only
true when K is the optimal weight, which corresponds to the case when the error statistics are
correct.



1.2 The analysis equation

The simple example with a single observation given in the previous section illustrates the basic
concept of analysis. Nevertheless, the equation (1.2) is only valid when the observations are
available at the analysis gridpoints, which generally is not the case.

The general analysis equation is

Xa = Xb + K(y — H(x)) (1.13)

where x, = [z],22, ..., z"] represents the analysis vector, and x; = [z}, z2, ..., z}] the background

vector, where n is the dimension of the model state vector. The observation vector of dimension
misy = [y!,...,4™] and H is the observation operator which transforms a model state vector
(%, or xp) into the observation vector and y — H(x;) = d is the observation increment, also
called innovation. K is known as the gain matrix and contains the weights that control how the
background field will be modified by the observation increments in order to produce the analysis
field.
Under certain hypotheses (see appendix A.1) it is possible to prove that the K matrix which
minimizes o2 is given by
K =BH'HBHT +R)™! (1.14)

where R = {(e,)(e0)T) and B = ((es)(es)T ) are respectively the observation and the back-
ground error covariance matrices, and H is the linearized observation operator.

The solution of the analysis problem can be achieved by using several methods, such as the
Optimal Interpolation Algorithm and the variational methods (see appendix A).

The exact analysis error covariance matrix, A, for any K, is:

A=(1I-KH)B*(I-KH) +KR*KT (1.15)

where B*, R* are the exact covariance matrices.
Moreover, if K contains the optimal weights, it is possible to prove that the previous equation
can be rewritten as:
A l'=B14+HTR'H (1.16)

Thus, in this case, the analysis accuracy is the sum of the background and observation accuracies.
It can be also demonstrated that the equation (1.16) is equivalent to:

A=B-BH'HBHT +R)"'HB (1.17)
Since the autocovariance matrices B and R are both real positive definite, then the matrix
BHT(HBHT + R)"HB is also real positive definite. Therefore, A < B (or 1'r(A) < I'r(B),
where 1'r is the trace operator), i.e., the uncertainty of the analysis is smaller than the back-
ground uncertainty.
It is interesting to notice that equations (1.14) and (1.16) are vector generalizations of the
scalar expressions (1.9) and (1.11), respectively.

1.3 Background Error Covariance Matrix
The background error covariance is defined as:
B =< (ep)(es)T >=< (%3 — %)(x5 — %)T > (1.18)

where X represents the true state of the field, x; the background field and < > the time average
operator.

In the univariate case, the diagonal elements of B correspond to the error variances (o})? at
the different gridpoints i. The off-diagonal elements of B correspond to the covariances between
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the background errors at different gridpoints ¢ and j: B;; = CYGi,j) = oi o} pij, where p;j is
the correlation between the background errors at different gridpoints ¢ and j. Furthermore, the
correlation matrix is symmetric, that is, p;; = pji.

In the multivariate case, the matrix B contains also the cross-covariances between different
parameters, such as vorticity, divergence, temperature and surface pressure. In data assimilation,
this allows the mass observations to influence the wind analysis, and vice-versa. The operational
multivariate formulation of the matrix B is described in appendix B. The remainder of the text
will focus on the univariate case for sake of simplicity.

1.3.1 The importance of the Background Error Covariance Matrix

As said before, the analysis problem at a given time is underdetermined because the dimen-
sion of modern NWP models is larger than the number of independent available observations.
Moreover, there is often a lack of observations over oceans. So, the background is used as a
preliminary estimate of the true atmospheric state. Furthermore, the B matrix a is key ele-
ment in determining the way to correct the background with observations. Therefore, in data
assimilation, it is important to have a good estimate of the background error statistics.

A) Example with two stations

It is supposed that it is necessary to estimate the temperature at Lisbon and Porto and that
both observations and background are available in the two stations. It is assumed that the
instrument type is the same in both stations and so the error variance is 02 for the two stations.
It is also considered that the observation errors are uncorrelated. The background error variance
is (o¥')? at Lisbon and (of)? at Porto. The correlation of background error between Porto and
Lisbon is given by p. In this case, where m = 2, n = 2 and H = [, the analysis equation (1.13)

becomes
L L L L
z; \ _ [ Kir KLP)(ZI~$ )
= + 1.19
(xf) (xf) (KPL Kpp )\ vP —af (1.19)
which is equivalent to the two equations for the analyses at Lisbon and Porto:

xﬁ’ = arg‘ + KLL(yL - azg’) + KLp(yP — xf) (1.20)
zf = 2f + Kpp(y* — 2f) + Kpp(yF - «f) (1.21)

and according to equation (1.14), the Gain matrix in this case is

K=BB+R)! (1.22)

2 Ly2 L_P
(o5 O _ (o) poyoy
R= ( 0 O'Z ) and B= ( pabPUbL (053)2 . (123)

where

Combining the previous expressions with the equation (1.22), the gain matrix can be written

as:
K= 1 ( (1+ap)—(0)® py/ap/ar ) (1.24)
(A+ap)I+ar)+ @2\  pv/apyer (1+or) - (p)?
where ap = 02/(of)? and af, = 02/(a})?.
If the background errors at Lisbon and at Porto are uncorrelated (p = 0), then the Gain
matrix becomes

_{ Q+ag)? 0
K-( OL (1 +ap)-! ) (1.25)
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The last equation is equivalent to

2
Kpp = (a£)2 -)i- puk Kpp= (01(;;3_1 5 KpL=Krp=0 (1.26)

Thus, substituting the last equation into equations (1.20) and (1.21), it can be seen that the
analysis at Lisbon is not influenced by observations at Porto. It is only influenced by observations
at Lisbon, and the analysis at Porto depends only on observations at Porto. Moreover, it is also
clear that observations and background in the two stations will be combined according to their
relative accuracies, as in the scalar case (see section 1.1).

When the correlation p increases from zero, the terms Kpz and K p increase in magnitude,
Therefore, the analysis at Lisbon is more influenced by an observation at Porto and also the
weight of an observation at Lisbon for the analysis at Porto increases. The maximum weight
that can be given to an observation at Porto for an analysis at Lisbon is when p =1 and

P = O+ ap)Q+ag)+1

and in this case, the observation at Lisbon receives a weight of

Kir = i
W= A+ap)+en)+1

for the analysis at Lisbon and K7'8°/K1, = \/ar//ap. Since the observation error variances
were assumed to be the same at the two stations, if the background error variance is also the same
at both stations, then ap = af, and the observations at Porto and Lisbon have the same weight
for the analysis at Lisbon. If the forecast at Porto is very good relatively to the observations
and better than at Lisbon, i.e, (6f)2 < (6f)? ~ 02, then K["8% < K1, which means that one
observation at Porto has less weight for the analysm at Llsbon than one observation at Lisbon.
On the contrary, if the forecast at Lisbon is qmte good compa.red with observations and with
the forecast at Porto, i.e., (¢7)% < (of)? ~ 02, then K1, < KJ'&® and therefore one observation
at Porto has more weight for the analysis at Lisbon than one observatlon at Lisbon.

So, it is obvious that observations at one location can influence the analysis at other lo-
cations. Moreover, this influence is much determined by the standard deviation o, and by
the background error correlation, p, which is the correlation of background errors between the
observation location and the analysis location.

B) Analysis at one station with an observation in another station

A single observation is supposed to be available, for instance at Lisbon. In addition, the back-
ground error variance is assumed to be the same at Lisbon and Porto:

(€)= {(es)*) = o3 (1.27)
The correlation between the background error at Lisbon and Porto is:
<(eb )(eg‘))
1.28
“oPel (1.28)

It is also assumed that observation and background errors are uncorrelated:

{(€)(es)) = {(ef)(e)) =0 (1.29)

For this case, the analysis at Porto can be determined by

a:f::xf—i—KpL(y ——:cb) (1.30)
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In this case, the K py which minimizes the analysis variance is:

2
o p
Kpp = b = 1.31
PL pag + ag 1+« ( )

where a = 02/02.

Thus, this confirms that the weight given to an observation for the analysis in another
location does not depend only on the ratio between the observation and background accuracies.
It depends also on the distance between the observation and the analysis grid point. For instance,
if this distance is so large that the correlation is 0, then the weight is 0 and the analysis
error variance will be the background error variance. Finally, it also depends on the way the
background error correlation varies with distance.

C) The effect of misspecification of the background error covariance

It is also relevant to consider the case when the specified weight (in a single observation case)
is:
~ 7y

6% + o2

(1.32)

where &"3 is an incorrectly specified background error variance, while the correct error variance
is o
B

Then the analysis equation (1.10) becomes

2 =2

G
To= 2T b 1.33
and according to equation (1.11), the perceived expected analysis error variance is
=2 2
52 = b’ 1.4
* GE+o2 (1.34)

However, since K is not the optimal weight (because &2 is not the real background error
variance), then the real analysis error variance is given by the equation (1.6), which in this case
can be rewritten as:

2 ~2 =4 .2 4.2
2 _ o, 2 5 gy 2 5, 0,0;,+0,07
w=\z2) vt \zmr2) =2y ae (1.35)
oy + 0% of + o2 (02 +0%)

According to Daley (1991), it is interesting to consider two extreme cases:

In the first case, 0f < 02 < 2. Thus, the analysis would give more weight to the observa-
tions, and from expressions (1.34) and (1.35) it can be seen that the perceived and real analysis
error variances are 02 ~ 2 < o2. So, the expected analysis error variance is only smaller
than the larger of o2 and 02, because in the analysis a very good background (comparing with
observations) was ignored. If o2 had been correctly specified, the observation would have been
discarded and the analysis error variance would have been reduced to its smallest possible value.

In the second case, 67 < 02 < of. Then, in this case, any analysis scheme would give
more weight to the background, which is very inaccurate. Moreover, as it is assumed that
07 < 02, which implies that 02 < 02 + &7, then it is clear from equation (1.34) that &2 < &2.
So, the perceived analysis error variance would be impressively small. However, 62 would be
unacceptably large, because o2 < of. This type of error is much more serious than the one done
in the first case, because in this case the background field is very inaccurate, while in the first
case the observations are less accurate than the background, but are not extremely inaccurate
(02 <« 52). Thus, when a background is used in the objective analysis, it is wiser to overestimate

the expected background error variance than to underestimate it.
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1.3.2 Length scale of autocorrelation

In the current NWP models, the model state dimension is 7 ~ 107. Thus, the dimension of B
matrix is ~ 107 x 107, which is too big to be computed. For this reason, it is necessary to make
some assumptions, which simplify the computation of this matrix and reduce its computational
cost.

The background error covariances of a 3-dimensional field in the grid point space of a model
can be simplified if the vertical and horizontal structures are separable. This means that

B([zi, %, 2, (25, 95, 7)) = ov(@i, i, %) 0b(25, Y5, 25) Chlas, wil, [24, v5]) Co(z,25)  (1.36)

where o3, is the standard deviation of the background error, C}’{ is the horizontal correlation,
which is independent of height and C{’, is the vertical correlation which is independent of the
horizontal coordinates.

Generally, the horizontal background error correlations are assumed to be homogeneous.
This means that the correlation between two points in physical space depends only on the
horizontal relative displacement, ¥ = (z; — z;, ¥; — ¥i), and not on the absolute locations (z;, u:)
and (z;,¥;). So, under homogeneous conditions, the correlation can be written as a function
of only two parameters: the norm of the horizontal relative displacement (r) and the direction
(given by the angle, 6):

C?{([zif '!li], [xja yJ]) ~ Cb('ra 0) (1'37)

where 72 = (z; — ;)2 + (y; — %)? and @ = tan~ ((y; — v:)/(zj — 2:))-
If the background error correlation does not depend either on the direction, i.e., it depends
only on the horizontal distance r (between the two points), it is said to be isotropic:

C?{([zi’ yi]’ [zj’ yj]) ~ Cb(r) (1.38)

otherwise, it is anisotropic.

Several studies show that the standard deviation (square root of the variance) of background
errors is not constant over the globe. Therefore, the horizontal covariance for geopotential
background error is not homogeneous or isotropic. A less restrictive and more reasonable as-
sumption is to assume that only the correlations are homogeneous or isotropic, because it gives
the possibility of introducing spatial variation of the background error standard deviation.

The correlation matrix is defined by:

- B([x‘ia Yi, Zi]’ [x]’ y]szD (1'39)
ov(zi, ¥i, zi)os(2;, Y5, 25)
or

B=DpD (1.40)

where D is the diagonal matrix of standard deviations. The standard deviations are estimated
for each point on the grid and for each variable.

Daley (1991) defined the correlation length scale (L) as a measure of the inverse local cur-
vature of the autocorrelation p. In the one-dimensional (1D) homogeneous case, it is defined
as:

2 _ p(r)

b= - dpldr? |, (4D
If %f is continuous at r = 0, it must be zero, because p decreases when r increases from zero.
Since L2 is positive, the second derivative of p(r) must be negative at r = 0. Moreover, a 1D
homogeneous autocorrelation function can be shown to be also isotropic. Therefore, p is sym-
metric about r = 0, and the first derivative should be zero at r = 0. Thus, the autocorrelation
function is approximately parabolic near 7 = 0. In the two-dimensional (2D) case, L is defined
by
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2__ 20 1
L 1 (1.42)
where V2 is the Laplacian operator.

L describes the sharpness of p (i.e. how it decays with distance from its initial value 1).
For a sharp auntocorrelation function, the curvature is high and the length scale must be small.
Similarly, if the curvature is low, the autocorrelation function is wide and the length scale is
large.

In practice, the correlation length scale gives an idea about the distance over which the
influence of the observation extends. Consequently, the resolution of the analysis increments is
greatly determined by the horizontal correlation lengths used in the background error covariance
model.

It is interesting to notice that L reflects mostly short-distance correlations and it is very
sensitive to the small scale part of the spectrum. This explains why it is sometimes called
microscale (Daley, 1991).

1.3.3 Covariance spectra

As said before, under the homogeneity and isotropy assumptions, the background error covari-
ance between two points is a function of only their distance over the sphere:

< ep(A, pep( N, 1) >= f(r)

where p represents the sinus of latitude and A the longitude. Hereafter, it is assumed that e is
unbiased.
Besides, it is possible to express f(r) in terms of spherical harmonics:

N m
Fr) = alPr(cosy)e™ (1.43)
n=0m=-n
where 7 is the angular separation between the two points and P™(cosv) is the Legendre poly-
nomial of first kind with degree m (and m is the zonal wave number) and order n (and n is the
total wave number).
Moreover, under the homogeneity and isotropy assumptions, the covariance function can be
written as

N
f(r) =" anP(cosv) (1.44)

n=0

and the background variance on the sphere is given by

N N
fr=0=) aP2(1) = any/(n+1) (1.45)

n=0 n=0
The last equality in the previous equation results from applying the normalization to the Leg-
endre polynomials, which leads to £2(1) = v/(2n +1).
It was demonstrated (Boer, 1983) that, under the previous assumptions, the background
error covariance can be written as:

n = if (n, m) = (nl’m')
’ 7 ot (2n+1)
< DT =57 Bo = “ (146)

0 if (n,m)#(n,m')

14



and B,, is known as the modal variance, which is a function of total wave number only, i.e., it
is independent of the zonal wave number.

The meaning of the last equation is that under the homogeneity and isotropy assumptions,
the B matrix is diagonal in the spectral space. This is a very important result because this
means that the calculation of a full matrix of two-dimensional (i.e, horizontal) covariances in
grid point space is equivalent to the computation of a diagonal matrix (containing spectral
variances) in spectral space. Therefore, when the previous assumptions are used, it is more
efficient to calculate covariances in spectral space than in gridpoint space.

Combining the equations (1.45) and (1.46), it is possible to write the global variance of the
background error in the following way:

N m N N
gp=<ef>=3" Y ()= Bn@@2n+1)= A (1.47)
n==0

n=0m=-n n=0

where P, = an\/(2n +1) is the total variance for a given total wavenumber n and provides
the covariance power spectrum. The correlation spectra (hy,) are deduced from the covariance
spectra by normalizing them by the global variance: h, = £, /af.

The last equation establishes the correspondence between the background error variance in
gridpoint space and the covariance power spectrum.

In the last years, several studies with global models (Courtier et al., 1998; Rabier et al., 1998)
have shown that it is easy to formulate non-separable structure functions in spectral space.

The total vertical covariance between two levels [ and k can be written as:

g L / " / Lo el r p,)dz\dp.=i 3 (Ehmiehmr) =i3“
y A 2 B(A, b , b/n \%bJn | n

n=0m=-n

where m
B = 3" ((b)rieh)m)r)

is the vertical covariance for the wavenumber n. The total covariance can also be written as
N
B¥ ="k, [BE yH
n=0

Vkl _ B’I;l

" /BE./BU
is the vertical correlation between levels k and ! for the wavenumber r and v/ BXF is the standard
deviation for the wavenumber 7 at level k.
Finally, using the definition of length scale (eq. 1.42), from Daley (1991), L can also efficiently
be computed in spectral space, according to:

where

N
12 = -2 NZ"=° Bn (1.48)
Zn:O n(n + I)B’n

1.3.4 Filtering properties

Following Hollingsworth (1987) and Daley (1991) it is possible to illustrate the filtering properties
of an analysis algorithm.
Assuming that the analysis gridpoints and observation stations coincides (H = 1), the anal-
ysis equation (1.13) becomes:
Xo —Xp = K (y —xp) (1.49)
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where
K=BB+R)!'=1+RB})! (1.50)

In order to illustrate the filtering properties of (1.49) it is necessary to examine the eigen-
structures of the covariance matrices involved in K.

It is possible to show that if e is an eigenvector of the matrix RB~! with an associated
eigenvalue v, then v must be real and positive, because R and B are both symmetric positive
definite matrices (see Daley 1991, section 4.5). In addition, in this case e is also an eigenvector
of K and

Ke=I+RB ) le=(1+1v)te (1.51)

Consequently, because v is positive, 0 < (1 + »)™! < 1 and all the eigenvalues of K lie
between zero and one.

It is interesting to consider the special case in which the background and observation error
matrices commute, then B R = R B. Moreover, supposing that e is an eigenvector of B and R
with associated eigenvalues ,u% for B and p2 for R:

Be=p%e and Re=ple (1.52)

Then, equation (1.51) can be written as

21-1
Ke= [1+ -"7"] e (1.53)
KB

It is important to mention that u2B and p? are the expected background and observation
error variances for the eigenvector e (see Appendix D, Daley 1991).

If observation errors are spatially uncorrelated (with expected variance o2, independent of
the observation station), then R = 621 and consequently p2 = o2.

Suppose that B = abz p, where p is the background error correlation matrix. Furthermore,
assume that e is an eigenvector of p with the corresponding eigenvalue J, i.e., pe = Ae, then

combining the last expressions with equations (1.52) and (1.53) it is possible to write

24 -1
ph =02\ and Ke= [l-}-%“’—] e (1.54)

where 2 = 02 /02.
If the observation increment can be written as a superposition of eigenvectors of p:

N
d=y-x=) ce (1.55)
i=1
then
N N 52 —1
xa—xszd=Zc;Kei=Zc;[l+T°] e; (1.56)

i=1 =1

Because [1 + f%]‘l varies between zero and one, according to equation (1.56) the analysis
algorithm always behaves as a. filter of the observation increments.

Equation (1.56) also indicates that the eigenvectors of p with the largest eigenvalues (A >>
£2) are filtered the least, and those with the smallest eigenvalues (A << €2) are filtered the most.
In addition, when A >> €2 for all eigenvectors of the correlation matrix p, the observations are
well fitted and there is little filtering. On the other hand, when A << &2 for all the eigenvectors
of p, the observations are ignored and the analysis is similar to the background field.

Moreover, it can be demonstrated that the eigenvectors of p have decreasing eigenvalues as
their effective scale decreases (Daley, 1991, p. 128). Consequently, for uncorrelated observation
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errors, K acts like a low-pass filter, i.e., it tends to filter the smaller scales (of the observation
increment) most strongly.
It is also important to remember that the analysis equation can be also written as:

X, = Ky + (I - KH)x;

where contrarily to K, I — KH acts like a high pass filter.

Thus, the larger scales of the background field and the small scales of observations are filtered
the most. In other words, the analysis can be seen as the combination of the large scale part of
the observation field y and of the small scale part of the background field x;.

The equation (1.56) is valid when the observation errors are spatially uncorrelated. When
the observation errors are spatially correlated (e.g. for satellite data), Daley (1991) has shown
that the scale selectivity of the analysis filter depends on the ratio between the correlation length
scales of the observation error and of the background error. If the correlation length scale of the
observation error (L,) is smaller than L, the analysis algorithm behaves like a low-pass filter on
the observation increments, like for the uncorrelated observation errors. However, when L, = L,
the filter K is independent of the scale.

On the other hand, when L, > L, K acts like a high-pass filter on the observation increments.
Therefore, the analysis uses mostly the information from observations at small scales and from
the background at large scales. This can be explained because when L, > L, the observation
error is mostly in large scales and only the smaller scales of the observations are reliable.
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Chapter 2

Simulation methods used for the
estimation of background error

covariances

This chapter corresponds essentially to the formal part of Belo Pereira and Berre (2006). It has
been ertended by including some additional remarks about the model error representation.

2.1 Introduction

Most of the major operational NWP centers use variational methods to combine observations
with a background state provided by a short range forecast, in order to produce an optimal
estimate of the atmospheric state. However, this estimate is only optimal if both observation
and background error covariance matrices are correctly specified in the analysis. Therefore,
an accurate specification of these covariance matrices is very important for the quality of the
assimilation system. For instance, the accuracy of the background error covariance is important
for the assimilation of satellite sounding data such as from the TIROS! Operational Vertical
Sounder (TOVS) (Smith et al., 1979, Eyre, 1989b). The poor vertical resolution of these data
implies that the analysis strongly depends on the vertical correlation of background temperature
(and humidity) error to distribute the radiance information in the vertical (McNally, 2000).
Nevertheless, the estimation of the background error statistics is not straightforward, since the
truth is never exactly known.

This chapter presents the formal comparison between two approaches which can be used to
estimate the background error covariances in the NWP operational context.

One method is known as the NMC method, which relies on the assumption that the back-
ground error can be estimated by computing the differences between forecasts of different ranges,
but valid at the same time.

The other technique is called ensemble method, which was firstly proposed by Houtekamer et
al. (1996). It is based on an ensemble of assimilation experiments: for each ensemble member,
the observations can be randomly perturbed, as well as the physical parametrizations.

The formalism of the method based on an ensemble of assimilation experiments is briefly
described. It will be also compared with the formalism of the NMC method. A linear framework

1Television Infra-Red Observation Satellite
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will be considered to make the derivations simpler. The reader is referred to Berre et al. (2006)
for more detailed derivations (note also that a formalism in a non linear framework is described
in Zagar et al (2004)). In the current chapter, the main features that are important for the
interpretation of the experimental results will be summarized. This concerns for instance the
differences between the two methods regarding the analysis step representation, as it will be
seen.

Firstly, the exact evolution of the model state error is presented. The way this error evo-
lution is simulated in the ensemble approach is then explained and it is finally compared with
the corresponding formalism of the NMC method. The true errors will be noted e, while the
simulated errors will be noted £ and € respectively in the ensemble and NMC methods. The
experimental environment of the ensemble simulations is described in the next chapter.

2.2 The exact model state error evolution

An assimilation cycle involves a succession of analyses and forecasts. This process implies a
specific evolution for the model state errors.

Starting from an uncertain analysis x}, (valid at time ¢;), one will obtain an uncertain six-hour
(6h) forecast xi*! (valid at time ¢4 = t; + 6h) by integrating the NWP model: xt = Mxd,
where M is the operator that corresponds to the 6h integration provided by the forecast model.
If the analysis and the forecast model were perfect, the last equation would become %1 = M %°,
where M is the exact 6h forecast operator (which represents a perfect forecast model) and % is
the true state. Thus, the background error can be expressed as:

et =xpt — & = Mx!i - M&' + M& - M#& =M, — &) + (M - M)&*
Consequently, the evolution of the analysis errors into the background errors, e;;"'l, corresponds
to the following equation: . . .

et = Me! +eit! (2.1)
where €}, = x’, — %' is the analysis error and e¥! is the accumulated model error (during the 6h
period). The model error is defined as:

el =M% -2 =M% - M= (M- M) %'

The 6h forecast field xi’H will then be used as the background for a new analysis (that is
valid at time ¢;41, according to the equation (1.13), which will use also the observation vector
y**1). As the analysis equation also applies to the states & and H(%), it can be shown that, the
evolution of the background errors ef,"'l into the analysis errors ei*! corresponds to the similar
following equation:

el = it L K(elH! - Heit') = Keft! 4+ (1 - KH)e;t! (2.2)

where K is the classical gain matrix (K = BHT(HBH? + R)~!, where B, R are respectively
the specified background and observation error covariance matrices) and H is the observation
operator. This operator transforms the model variables into observed variables and performs
the spatial interpolation from the model grid to the observation locations.

The observation vector can be written as y = § + e,,,, where § is the exact atmospheric
state in the observation space, and e,,, is the measurement error. It is also possible to express
y in the following way:

y=HE&)+y-HRX)te,. =HE) +e +e, =HE) +e

where e, is the error of representativeness, which reflects the fact that the operator H is not
perfect. The observation error, eit!, is the sum of the measurement error and of the represen-
tativeness error.
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It is interesting to note that the analysis equation, which is applied to observation and
background fields is the same as the equation applied to the corresponding errors (see equations
1.13 and 2.2). Furthermore, since K can be seen as a low pass filter, and I — KH acts like a
high pass filter, the analysis error can be seen as the combination of a large scale part of the
observation error e, and of a small scale part of the background error e (see section 1.3.4).

2.3 The ensemble simulation of the error evolution

The ensemble method may be seen as a technique that intends to simulate the exact error
evolution, by applying an intermittent data assimilation cycle to an ensemble of perturbed
experiments. This approach is illustrated schematically in figure 2.1. For each member n
(for n = 1,...,N), the observations are perturbed by adding independent random Gaussian
perturbations d,(n), which are drawn from the specified observation error covariance matrix R.
At time t;y; = t; + 6h, the anslysis for each member is

x;M(n) = 53t (n) + K(y"(n) — Hx{t!(n)) @3)

where y*+1(n) = y**! 4 §i*!(n) are the perturbed observations and xi*!(n) represents the
background field for each member n.

Thus, at a given time an ensemble of (perturbed) analyses is available. Moreover, the
dispersion of this ensemble of analyses, given by the analysis differences ¢,, can be seen as an
estimate of the analysis error, €, due to the uncertainties in the observation and background
fields.

From equation (2.3) it can be shown that the background differences £jt! = xi"’l(n +1) -
x;+1(n) evolve into analysis differences e5t! = xi+1(n + 1) — xi+1(n), according to the following
equation:

el = gt + K(ei! - Helt!) = Keit! 4 (1 - KH)eiH! (2.4)

where €4t! are observation differences between two consecutive ensemble members (e8! =
y“+1(n + 1) — y**1(n)) that simulate the observation errors e+!.

In addition, from one ensemble of analyses one can obtain an ensemble of (perturbed) six-
hour forecasts, by integrating the NWP model. The background field can be expressed as

x; (n) = Mx: (n) + ¥(n) (2.5)

where M is the 6h forecast operator and ¥(n) are some model perturbations that can be added
after the model integration, in order to simulate the model error. These random realizations
Y(n) can be built from an estimate of the model error covariance matrix (Mitchell et al., 2002).

It is also possible to obtain an ensemble of background fields by using a different NWP
model, M,,, for each ensemble member:

x5+ (n) = Muxi(n) (26)

This approach has been used by Houtekamer et al (1996) in order to simulate the model error.
Finally, the evolution of &%, into the background differences s;;“ corresponds to the following
equation:
eit! = Me! 4 ¢i! 2.7
where 51! represents the simulated model error, which can be estimated by using different
forecast models, as in (2.6), or by adding some model perturbations (according to equation 2.5).
It is important to notice that the basic form of the two equations (2.4) and (2.7), and the
involved operators are the same as in the exact error evolution (see equations 2.2 and 2.1). Thus,
the ensemble approach has the advantage of simulating two basic and important components of
the exact error evolution: the forecast evolution provided by the model and the analysis step
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Figure 2.1: Schematic illustration of the Ensemble method, where DA stands for data assim-
ilation. For the first analysis step, the operational (unperturbed) background is used, for all

ensemble members.

(represented by K and I — KH, which are the respective analysis weights of the observations and
of the background). In practice, these two components are simulated by applying a succession
of forecasts and analyses to some perturbed states.

In the case of a perfect model framework, it is assumed that the background errors are
only due to the time evolution of the analysis errors provided by a perfect model. Thus, £, is
simply set to zero in equation (2.7). This means that no model perturbations are added to the
6h-forecasts and that the forecast model used in assimilation experiments is the same for all the
ensemble members (i.e., M, = M, for n = 1,..., N). This approach is expected to lead, e.g., to
an underestimation of the error variances. Nevertheless, it is a simpler approach for a first set
of experiments and it also gives the possibility to assess the impact of model error simulations.

2.4 The NMC simulation of the error evolution

The NMC method may also be seen as a technique that simulates the evolution of the model
state errors. In addition, this approach relies on the assumption that the background error can
be estimated by computing the differences between forecasts of different ranges, but valid at the
same time. In the present work, differences between 36h and 12h forecasts are used (see figure
2.2). It may be noted that there is a 24h period between the respective starting dates of these
two forecasts. During this period, there is a succession of analyses and 6h forecasts. After this
24h period, there is a final forecast step (over a 12 h period).

In order to show the main differences between the NMC approach, the exact and the ensemble
error evolutions, it is useful to write the equations for the first and for the final analysis steps
in the NMC method (more details are available in Berre et al. 2006).

For the first analysis step of the NMC method, the simulated analysis error E;H is simply
equal to the analysis increment:

L+l ; : - .
& =K(et! — Hejt!) = Kei*! - KHeit! (2.8)
~ +1 . . I3 '3 - . .
because e; = x:"l -Mx} = xf;” —_ sz = dgttl = K(y“” _ sz+1).

Comparing equations (2.8) and (2.2) it is possible to summarize important features of the
NMC method.
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Figure 2.2: Schematic illustration of the NMC method. Here, xt! and dz*t! are respectively
the analysis and the analysis increment at time #;. x“"4 is the 24h forecast that is valid at time

ti+4. Similarly, x ""6 and xgﬁ are respectively the 36h and 12h forecasts that are valid at time

tite.

Regarding the estimated variances of the analysis errors, in a similar way as discussed in
Bouttier (1994), one may consider the following three limit cases:

¢ In regions where the data density is rich, and the observation errors have similar variances
and similar spatial correlations as the background errors, KH and K are close to /2.
This implies that e5t! ~ 1(eft! + e}+?), while & ~ L(eit! — ef*!). The consequence is
that, in this case, the variances of the analysis mcrements are similar to the variances of
the exact analysis errors. (Note that the variances of e, and e are added, rather than
subtracted: {(¢;7)2) ~ 1( {(¢5t1)2) + ((eft1)2) )).

e In regions where the data density is rich and the observations have a high quality, KH
and K are close to /. This implies that ;! ~ eitl, while &, = eft! — eit!. In other
words, the variances of the analysis increments are likely to be an overestimation of the
variances of the exact analysis errors.

¢ In regions where the data density is poor and the (few) observations have a low quality,
KH and K are close to 0. This implies that eit! ~ e’+1 while &, ~ 0. In other words,
in data sparse areas, the simulated analysis error variances are hkely to be underestimated
by the NMC approach.

Regarding the estimated correlations of the analysis errors, one may note that the exact
operator (I — KH) is replaced by KH in equation (2.8). If the observation error covariances are
similar to the background error covariances (as evoked in the first limit case above), these two op-
erators are similar, and the analysis error correlations can be expected to be well approximated.
However, the observation errors are usually less spatially correlated than the background errors.
As discussed in section 1.3.4, following Daley (1991, section 4.5), this implies that (I — KH)
acts as a high-pass filter, while KH is rather a low-pass filter. The consequence is that in this
case the analysis error correlations are likely to be overestimated by the NMC method. In other
words, the NMC method tends to overestimate the correlation length scale of the analysis errors.

For the "final” analysis step (which oorrwponds to the 4th analysus step in the 24 h period)

in the NMC method, the simulated analysis error e =xtH - x“M
itd i+d . 3 . o
€;+ - €;+ + d$z+4 — ( z M4ﬁk d$z+k )+ dxt+4 (2_9)
k=1
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where €;+4 can be seen as the NMC background perturbation, which contains the contributions
of the earlier analysis increments, that were evolved in time and accumulated.

Thus, in the NMC method, the analysis step consists in adding the (unperturbed) analy-
sis increment to a background perturbation (which corresponds itself to some earlier evolved
increments). In contrast, in the exact and ensemble evolutions, the analysis step consists in ap-
plying the analysis equation to a vector of background differences and to a vector of observation
differences (the differences are the "true errors” in the exact evolution).

The last equation can be re-written as:

- 24: MAF itk

k=1

In addition, in the NMC method, this final analysis perturbation i is evolved during 12 ad-
ditional hours, which provides the final 36h-12h forecast differences, eb +0 — x""6 ’+6 (that
intend to simulate e}+°):

4
k=1

which can be compared with the corresponding equation for the background differences in the

ensemble method:
+6 =M €i+5

The comparison between the last two equations allows to summarize the main three charac—
teristics of the NMC method, compared with the ensemble method:

¢ the involvement of longer forecast ranges (see the occurrence of the matrices M2, M4~
instead of the 6h matrix M) ;

e the accumulation of several increments (see the occurrence of the operator ¥°) ;

¢ the involvement of analysis increments dz, instead of analysis differences «,.

The involvement of longer forecast ranges has been evoked by Fisher (2003), to explain the
differences between the NMC and ensemble methods. It will be shown in section 3.3.3 that the
differences in the representation of the analysis step (i.e. the third item in the list above) also
play an important role.
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Chapter 3

The background error covariances
estimated by an ensemble approach

in a perfect-model framework

This chapter corresponds essentially to the experimental part of Belo Pereira and Berre (2006).
It has been eztended by including some additional experimental results.

3.1 Introduction

The diagnosis of the background error covariances of the Arpege global NWP model, esti-
mated by the ensemble approach using a perfect-model assumption, is presented in this chapter.
Formally, this assumption corresponds to setting M, = M (or equivalently ¥ (n) = 0), for any
ensemble member n (see section 2.3). The resulting covariance estimates have been compared
with those that were previously operational, by performing both diagnosis and impact studies:
the global (i.e. spatially averaged) ensemble covariances have been compared with those of the
NMC method, and the local (i.e. spatially varying) ensemble variances have also been compared
with the local operational variances (the latter correspond to a static 3D map of variances, that
reflects some typical data density contrasts).

Some emphasis has been given to study the role of the analysis step in the simulation of the
background errors. Moreover, the background and the analysis errors estimated by the ensemble
approach have been compared.

Significant effort has been devoted to the diagnosis and examination of the local ensemble
correlations. This has been done by developing an economical method to estimate the local
correlation length scale. The study of these local correlations gives interesting information about
the existing heterogeneities and anisotropies. This can also be useful for the future evaluation of
heterogeneous covariance formulations, such as those based on wavelets (Fisher (2003), Deckmyn
and Berre (2005)) or recursive filters (Wu et al. 2002).

The experimental framework is described in section 3.2. Section 3.3 concerns the comparison
between the global covariance estimates of the ensemble and NMC methods. The local covariance
estimates are diagnosed in section 3.4. The impact studies of the ensemble global covariances
and of the ensemble local variances are then described in section 3.5.
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3.2 The experimental framework

The results shown in the present chapter were produced from one ensemble with five 4D-
Var assimilation cycles, that were performed from the 1st of February to the 24th of March
2002. The first analysis ensemble is created by randomly perturbing the observations, and by
using the (unperturbed) operational background field. The model integration will then provide
an ensemble of backgrounds (see figure 2.1). Thus, after the first analysis step, the perturbed
analyses result from both observation and background perturbations. The amplitude of the
background differences grows thus from zero to stable values during the first three days. This
preliminary period is therefore not included in the statistics, which are rather calculated from
04/02 to 24/03 (which is a 49 day period).

The members were arbitrarily numbered from 1 to 5 (zs(1),x5(2), 25(3), x5(4), 26(5)), from
which four sets of member differences were calculated (x3(1) — 25(2),25(2) — 3(3), z5(3) —
xy(4), z5(4) — zp(5)). So, the correlations and standard deviations of the background error
are computed from 4 x 49 = 196 differences between 6h forecasts, for each of the four daily
analysis times (00, 06, 12 and 18 UTC). Mostly, the results from fields valid at 18UTC will be
shown.

It may be mentioned that using differences between background states from separate per-
turbed experiments is equivalent to the use of differences between a perturbed background and
the background from an unperturbed control experiment, except for a factor 2 (see e.g. Berre
et al (2006): it can be shown that the covariance of the difference between two perturbed
backgrounds is equal to twice the covariance of the single background perturbations).

The experiments have been performed with the Arpége global model (in its non-stretched
version, i.e., with a uniform resolution), and its 4D-Var scheme (Rabier et al. (2000); Veersé and
Thépaut (1998)). The model has been integrated at T299 triangular truncation with 41 levels.
The formulation of the B matrix that is used in the Arpége 4D-Var is described in appendix B,
following the description given by Derber and Bouttier (1999).

3.3 Global background error covariances

This section presents the comparison between the ensemble and NMC methods, relatively to
the estimation of the global background error covariances. The covariances were computed in
spectral space at truncation T179 and were examined for the following variables: vorticity ({),
divergence (77), temperature ('), logarithm of surface pressure (¥,) (which will be referred to
as surface pressure in the remainder of the text), and specific humidity (g).

The results are focused on the vertical profiles of standard deviation, on the horizontal
correlation spectra, and on the horizontal correlation length scales. The influence of the analysis
step on these differences will be studied in the final part of this section.

3.3.1 Standard deviations

The vertical profiles of the total standard deviations are used to determine how the (horizontally
averaged) amplitudes of the background errors vary as a function of height.

Figure 3.1 presents the standard deviations of the temperature and vorticity background
errors, estimated by the NMC and ensemble methods. One can notice that there are some
similarities between the two methods. For instance, both methods indicate that the background
errors of temperature show small variations in vertical, in particular in troposphere. Another
common feature is that the background errors of vorticity increase significantly with height,
reaching their maximum near the tropopause. This maximum is related to the jet streams in
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Figure 3.1: Vertical profile of standard deviation of the temperature (K) (left side) and vorticity
(1075s™1) (right side) background errors. In the right axes is plotted the atmospheric pressure

(in hPa) corresponding to a certain model level for a standard atmosphere.
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Figure 3.2: Vertical profile of standard deviation of the specific humidity (g kg™!) (left side)

and divergence (10~5s~!) (right side) and background errors.

the middle latitudes. Nevertheless, the contrast between the jet level and the low levels is weaker
in the ensemble method than in the NMC method.

The standard deviations are obviously larger in the NMC method than in the ensemble
method. The absence of model error simulation in the current version of the ensemble ex-
periments is likely to contribute to this difference. Moreover, the accumulation of four analysis
increments and the involvement of long forecast ranges in the NMC method contribute probably
also to this result.

According to both methods, the largest background errors of g occur in the lower troposphere,
below 700hPa, where more specific humidity is available. Above this level, the background
errors of q decrease drastically with height. For divergence, the largest background errors are
found near the surface and in the upper and middle troposphere, for both methods (figure 3.2).
Furthermore, for these variables, the standard deviations estimated by the NMC method are
also larger than those from the ensemble method.
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3.3.2 Horizontal correlations

The correlation spectra can be deduced from covariance spectra by normalizing it by the global
variance. Therefore, the correlation spectra will be shown instead of the covariance spectra,
since this allows to compare more directly the relative contributions of the different horizontal
scales, in the two methods (see section 1.3.3).

According to the meteorological nomenclature, the wave number, k, indicates the number
of waves along the latitude circle, i.e., k = 2Rwcos¢/L, where R is the earth radius, L the
wavelength and ¢ is the latitude. Thus, the wave number 1 corresponds to a wavelength equal
to the earth’s circumference, at the equator. Following this nomenclature, the scales resolved
the Global model ARPEGE may be grouped into three categories based on the wave number
k; large or planetary scales associated to long waves for k between 1 and 5 (ultralong if k < 3);
synoptic scales for k between 6 and 20; and mesoscales for k > 21.

The figure 3.3 presents the variation with height of the autocorrelation spectra of the tem-
perature and vorticity background error estimated by the ensemble method. From this figure
it is clear that the maximum variance! of the background error is shifted towards the larger
scales with height. In other words, the contributions from the mesoscale phenomena to the
background errors are emphasized in the lower troposphere and the contributions from large
scales are mostly important in the upper troposphere and in stratosphere.

Moreover, the results show that the largest contributions to the vorticity and divergence
background errors are due to the mesoscale phenomena, while for temperature and specific
humidity the largest contributions are associated to the synoptic scales. This is illustrated for
vorticity and temperature in figure 3.3.

The figure 3.4 presents the correlation spectra for temperature and vorticity background
errors (at model level 21, near 500hPa). One can see that compared with the NMC method,
the ensemble approach emphasizes the relative contributions of the small scales (i.e. compared
with the contributions of the large scales). This result is also found for the other variables. As
illustrated in figure 3.5, this implies that the corresponding correlation length scales (computed
from equation 1.48, section 1.3.3, and defined by equation 1.42, section 1.3.2) are smaller in the
ensemble than in the NMC method.

The increase of length scale with height, found in other studies (e.g. Rabier et al, 1998), can
also be identified in figure 3.5, in accordance with the increase with height of the contributions
of large scale phenomena. Moreover, according to both methods, the length scale of vorticity is
smaller than the one of temperature. This is consistent with the larger importance of mesoscale
phenomena for the vorticity background error than for the temperature one, as showed in figure
33

The enhancement of the small scale horizontal contributions implies also that the vertical
correlations are sharper in the ensemble method (see section 3.4.4). Another consequence is that
the contributions of the unbalanced components are emphasized in the multivariate formulation.
In other words, the amount of explained variance (equation B.12, appendix B) by the balance
relationships is smaller in the ensemble method than in the NMC method. This is illustrated
in figure 3.6 for temperature. All these results are consistent with those mentioned by Fisher
(2003).

3.3.3 The influence of the analysis step

In sections 2.3 and 2.4, it has been demonstrated that the ensemble and NMC methods differ with
respect to the representation of the analysis step. The ensemble method simulates the reduction
of the model state errors when combining the (uncertain) background with the (uncertain)
observations. To contrast with this, the NMC method is rather relying on the accumulation and
time evolution of four (successive) analysis increments.

Inormalized variance

27



0.025 T T T T T T T T
level 16 (300 hPa)

level 21 (500 hPa) -
level 32 (850 hPa) -
level 41 {bottom level) - ]

0.02

0.015

spectrum

0.01

0.005 |

20 40 60 80 100 120 140 160 180
wave number n

0-012 T L} T - 1 T T T T
ievel 16 (300 hPa)
level 21 (500 hPa) -
level 32 (850 hPg) -
0.01 | level 41 (bottom level) —-+— ]
0.008 | .
5
£ o006 | .
2
A
0.004 | . .
0.002 |
0 # 1 2 I ] i i 1 L

20 40 60 80 100 120 140 160 180
wave number n

Figure 3.3: Autocorrelation spectra of the background error of temperature and vorticity for

different levels, estimated by the ensemble method.
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line) methods.
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An indication of the influence of these analysis representation differences is shown in figure
3.7. The top panel represents the background error correlation spectra of F;, estimated by the
ensemble and NMC methods. The contributions of the small scales and of the planetary scales
are emphasized in the ensemble method.

The bottom panel corresponds to the comparison between the correlation spectra of the anal-
ysis increment (in the NMC method) and of the analysis dispersion (in the ensemble method).
It appears that the analysis increment spectrum is much larger scale than the analysis dispersion
spectrum. Such a difference is consistent with the expectation that the correlation length scales
of the analysis increments are larger than the correlation length scales of the analysis errors
(see section 2.4). As the analysis increment is one fundamental ingredient of the NMC method,
this contrast explains the relative larger contributions of the small scales to the background
errors in the ensemble method. This indicates that the analysis representation differences play
an important role in the scale differences between the two methods.

3.4 Local background error covariances

In this section, the geographical variations of the ensemble covariances are studied. Firstly,
the ensemble local standard deviations will be compared with the operational local standard
deviations, and also with the NMC local standard deviations.

Secondly, the geographical variations of the ensemble correlations will be examined. This
will be done in particular by introducing an economical estimation of the local correlation length
scales. Concerning this aspect, a comparison will be done with the NMC method.

Finally, the corresponding differences in the vertical correlations and in the analysis/background
errors will be also illustrated.

3.4.1 Standard deviations

All the statistics presented in this subsection (as in the whole section) were computed on a
1.5° x 1.5° latitude-longitude grid (which is comparable to a truncation T130 approximately).
However, the standard deviations maps presented here have been truncated at T21 for vorticity
and at T79 for temperature. These truncations have been chosen in order to filter the sampling
noise, while retaining the relevant features.

The figure 3.8 shows the maps of normalized? standard deviations of the vorticity background
error at 500hPa, estimated by the ensemble method and used in the operational experiments.
The normalized standard deviations correspond to some horizontal modulations, that are applied
to the global covariances (see section 3.3.1).

Some common features between the three estimates can be identified regarding the latitudinal
variations: the standard deviations are smaller in the tropics than in the middle latitudes.
However, these contrasts are strongest in NMC method and smallest in the operational map. The
smallest values of standard deviations over the tropics in the NMC method (when compared with
the other estimates) are consistent with the fact that the NMC approach tends to underestimate
the background errors in data poor areas, for the reasons explained in section 2.4.

Concerning the influence of data density, there are important differences between the NMC
method and the other two estimates. From both the ensemble and the operational maps, it
is visible that the standard deviation has relatively small values over data rich regions such as
Europe and the United States of America (USA), particularly in the operational estimate.

On the other hand, in the estimate from the NMC method, local maxima are visible in data
poor areas, such as over Northern Atlantic and North Pacific, as over data rich areas like North
America. In addition, the standard deviation has relatively large values over Europe.

2the normalization consists simply in a division by the horizontal average of the standard deviation
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The differences found between the NMC method and the other approaches are probably
related to the tendency of the NMC method to overestimate the background errors in data-rich
areas (see section 2.4).

The results show also that the local maxima over the middle and high latitude oceans (such
as over the Northern Pacific, the Northern Atlantic, and the circumpolar ocean of the Southern
Hemisphere) are strongest in the NMC method and weakest in the operational estimate.

Finally, the ensemble method provides also some local maxima near the North Pole and over
the Himalayas, which are not present in the other two maps. These large values in North Pole
are consistent with the lack of snow analysis in the ARPEGE model.

The geographical variations of the ensemble standard deviations for temperature background
error have been also compared with those provided by the NMC method. The estimates at model
levels 37 (near 970hPa) and 27 (near 700hPa) will be used to illustrate some typical differences
(figures 3.9 and 3.10, respectively).

Near 970hPa, some similar latitudinal variations are found according to the two methods.
For instance, the mid-latitude values are larger than in the tropics, and some large values around
the North Pole are visible in the two estimates.

One of the most striking differences is the occurrence of some strong maxima in the central
regions of North America, according to the NMC method. This is consistent with the results
found for vorticity. However, when the ensemble method is used, the background errors have a
local maximum in Canada, near the Hudson bay, but they have relatively small values in USA.
A local minimum over Europe is also more visible in the ensemble method than in the NMC
method.

Over e.g. Europe and North America, the differences between the two methods can be
partly explained by the tendency of the NMC method to overestimate the background errors
in data rich areas, as explained in section 2.4. On the other hand, it may be that the perfect
model assumption leads to an underestimation of the background errors in some regions by the
ensemble method. For instance, one could consider that the temperature errors in the Boundary
Layer in mountains areas (e.g. Rocky mountains and Alps) might be underestimated by the
ensemble method.

The figure 3.9 also indicates that, according to the ensemble method, large values of back-
ground errors occur in Equatorial Africa. This is consistent with the large atmospheric vari-
ability observed in this area, associated with the Inter-Tropical Convergence Zone (ITCZ). Such
a feature is not well captured by the NMC method. More generally, in the tropics, the mag-
nitude of the background error is larger when estimated by the ensemble method than by the
NMC method. These differences may be explained by the fact that the NMC method tends to
underestimate the background errors in data sparse areas, as mentioned before.

Near 700hPa, when the background errors are estimated by the ensemble method, the con-
trast between data rich and data sparse regions is very clear (figure 3.10). At this level, as at
other levels, the NMC method is not able to represent such a feature.

Moreover, in the Southern Hemisphere, the largest background errors of the ensemble method
are located in the Tropical Eastern Pacific, and in the Tropical Atlantic. In addition, near 850hPa
(not shown), according to the ensemble method, very large errors are located in the North Pacific
in adjacent areas to the North American west coast. Relatively large values are also found near
the West coast of Iberian Peninsula and near the NW and SW coast of Africa. These results
are related to the presence of marine stratocumulus, that have a quasi-permanent character
in these regions. This may reflect that some large uncertainties exist in these regions: these
uncertainties may be related to some strong sensitivity of the shallow convection and radiation
parametrizations, with respect to the initial conditions of the NWP model. The NMC method
also reflects such uncertainties, but less clearly than the ensemble method. This may be due
to an underestimation of analysis errors (by the NMC method) over these data-poor oceanic
regions.
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3.4.2 Horizontal length scales

Diagnosing the full geographical variations of the correlations is a significant challenge: the
total number of correlation values to be calculated is the square of the number of gridpoints.
This is much larger than what is required for e.g. the calculation and the representation of
the geographical maps of standard-deviation. In this context, it is meaningful to introduce an
economical estimation of the local correlation length scale. This has been achieved by using the
background error variance of each variable and of its derivative. For any error e, it is possible
to define a zonal length scale (L7) and a meridional length scale (L) as (the derivation of these
expressions is presented in appendix C):

Ie — o?(e) e — o?(e)
i e do(e) 2’ v e do(e) \ 2
o282 - (%) A~ (%58

where 3% and % are respectively the derivatives in the z and y directions, 0?(e) and az(gf) are

(3.1)

respectively the variance of the error e and of % The 2D correlation length scale is given by
L= /(L8 + L) /2.

This method of computing L is economical: for a domain with N gridpoints, it is necessary
to calculate only 3/V variances, instead of computing N2 correlations or covariances. Moreover,
this approach provides a description of the geographical variations of the correlation functions.

In order to validate this estimate of the length scales, the global length scales have been
compared with the ones computed in spectral space. The length scales computed in gridpoint
space are shown in figure 3.11 for vorticity, temperature and geopotential. Comparing this figure
with figure 3.5 it can be seen that the length scales estimated in gridpoint space are very similar,
but larger than those estimated in spectral space, mainly for vorticity, which is consistent with
the lower resolution used in gridpoint space than in spectral space. The results also show that L
is larger for geopotential than for the other variables. Furthermore, the correlation length scale
of geopotential background error increases significantly with height. This is consistent with
the fact that the atmospheric waves which predominate in the stratosphere and in the upper
troposphere are longer than those in the lower troposphere.

The length scale estimates that are provided by the ensemble and NMC methods will be noted

L .. and L:, e respectively. The latitudinal variations of L; ve and L; ~s Were examined, for

ENS C C S
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Table 3.1: Regions used to study the heterogeneities of the background error statistics and to

compute the forecast scores (as it will be shown in section 3.5).

Acronym Region latitudes longitudes
NORD20 Northern Hemisphere 20°N - 90°N
EUROPE Europe (over land) 30°N - 70°N  10°W - 35°E
EURATL Europe and East region of North Atlantic ~ 30°N - 70°N 10°W - 35°E
NORAMER North America (over land) 25°N - 60°N  145°W - 50°W
AMNORD North America and surrounding ocean areas 25°N - 60°N  145°W - 50°W
ASIE Asie 25°N - 65°N  60°E - 145°E
TROPIQ tropics 20°S - 20°N
SUD20 Southern Hemisphere 20°S - 90°S
AUS/NZ Australia/New Zealand 10°S - 55°S  90°E - 160°E

and surrounding ocean areas

different meteorological variables. According to both methods, the correlation length scale is
larger in the tropics than in the middle and high latitudes, for all the variables. This is illustrated
for surface pressure in figures 3.12 (for both methods) and 3.13 (for ensemble method). Following
the physical explanation from Lindzen and Fox-Rabinovitz (1989), Ingleby (2001) suggested that
the increase of the horizontal correlation length scale, when approaching the equator, reflects the
latitudinal dependence of the Rossby radius of deformation. From figure 3.13 it is also obvious
that length scales are larger over sea than over land.

From figure 3.12, it is also clear that L;N ¢ is much shorter than L‘;mc. Moreover, in the
middle latitudes, the correlation length scale of F; is smaller in the Northern Hemisphere than
in the Southern Hemisphere. This is partially related to the larger presence of land surfaces in
the Northern Hemisphere.

The length scales for different regions of the globe were also examined. The corresponding
vertical profiles of length scale are shown for temperature in figure 3.14. These regions are
defined in table 3.1.

According to the ensemble method, the length scale is largest in the tropics and smallest
in the data rich regions (for instance, in EUROPE and NORAMER areas). This result is in
agreement with other studies concerning the effects of latitude on the length scales (e.g. Lindzen
and Fox-Rabinovitz (1989), Ingleby (2001)) and the effects of data density (Bouttier, 1994).

In contrast, between 950hPa and 500hPa, the largest L:mc values are found in the NO-
RAMER region, rather than in the TROPIQ area. This is mostly related to the largest differ-
ences between L; we and L; ~s Over NORAMER. This indicates that the background correlation
overestimation is more pronounced over data rich areas. Moreover, contrarily to the ensemble
method, it was found that in the middle troposphere, the L; yc Value for temperature is larger
over land than over sea (not shown).

The figure 3.15 shows the comparison between L; v for the analysis error and length scales of

&, of €;+6 (estimated by the NMC method) and of the analysis increments (dz) for temperature
over different regions. The most striking feature in this figure is the large difference between
the correlation length scales of the analysis error estimated by the ensemble method and those
from the analysis increments, particularly in data sparse regions, such as the SUD20 and the
TROPIQ domains.

This result is consistent with results presented in section 3.3.3 and with the theoretical

considerations claiming that the correlation length scales of the analysis increments are larger
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than those from the analysis errors (see section 2.4).

From figure 3.15 it is also clear that the accumulation and time evolution of several analysis
increments during a 24h period leads to a decrease of the length scales of €;+4 when compared
with those of the analysis increments, mostly in data poor areas. Nevertheless, the length
scales of the analysis dispersion are smaller than those of E:M for all regions. This difference is
maximum over the NORAMER domain. ) .

Furthermore, it is visible that in middle and upper troposphere the L;M o of E;H and €;+6 :
are very similar, specially in data rich areas.

These results suggest that the differences between the NMC and the ensemble estimates
presented in figure 3.14 are mainly caused by an inadequate representation of the analysis step
(which relies on the accumulation and time evolution of several analysis increments during a
24h period) in the NMC method.

3.4.3 Anisotropy

Hollingsworth (1987) and Bouttier (1993) have studied the anisotropy of correlation, by com-
puting the inertia matrix of the correlation function. In a similar way, the anisotropy of p can
be determined from the eigenvectors and eigenvalues of the following matrix N:

1/New 1N
(1/Nzy 1/N§§) (32)

where Ny, = Li and Ny, = Lg (where Ly, Ly are the zonal and meridional length scales, that
are defined in section 3.4.2). The term of tilting of p is determined by:

_ o*(e)
T (D d o(e) o
(§8) - 52 %2
for any error e, where o2(e) is the variance of the background error and (& %) is the covariance

between % and %ﬁ—.

The magnitude of the anisotropy is measured by the oblateness (O) of the correlation func-
tion, which is defined as © = 1 — A2/ A;, where A; and Az are the largest and the smallest eigen-
values, respectively. The anisotropy of p is defined by a vector, which has the direction of the
eigenvector of N corresponding to its smallest eigenvalue. In other words, the main anisotropy
axis identifies the direction of the largest elongation of the correlation function. Moreover, the
norm of the anisotropy vector is given by O: therefore, a null vector is equivalent to an isotropic
p. An oblateness equal to 0.5 means that the value of p decreases with distance twice faster in
one direction than in the perpendicular one. Thus, it is possible to diagnose the main direction
and intensity of the local correlation anisotropies (see two simple examples in appendix C.2).

The figure 3.16 illustrates the kind of features that can be highlighted. For instance, the
correlations appear to be SE-NW elongated over the Subtropical South Atlantic. This tilt is due
to the negative (positive) covariance between the background error of the meridional and zonal
components of the temperature gradient, in Northern Hemisphere (in Southern Hemisphere).

It is also interesting to mention the large anisotropy found in the region of the jet stream,
particularly over North Africa and Southeast Asie (in the 10 — 20°N latitude belt). The zonal
elongation of p (with a SW-NE or a WSW-ENE tilt) in this area can be explained by the
larger errors of the meridional component of the temperature gradient relatively to the zonal
ones (see the example of N; in appendix C.2). This might reflect the large uncertainties in the
strength and position of the area of maximum meridional gradient of temperature associated to
the African-Asian jet.

Moreover, the comparison between the correlation function at selected points (in north Africa
and in Southern Atlantic) and the direction of main axis of anisotropy shows that the shape of
p is well represented by the anisotropy vector.

Nay (3.3)
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The results also show that in middle and upper troposphere, the correlation function of «
background error is predominantly elongated in East-West direction. This is illustrated in the
top panel of figure 3.17 at model level 21. This reflects the fact that for zonal wind, uncertainties
in the meridional gradient are larger than in the zonal gradient. This is consistent with the
mainly zonal flow (at these levels). Moreover, this result is in agreement with other studies
(Daley, 1985; Undén, 1989), which document that p for zonal wind is predominantly elongated
zonally when the wind is mainly rotational, which is the case in troposphere above the Planetary
Boundary Layer.

Nevertheless, p has a slight SW-NE tilt in Northern Hemisphere and a slight NW-SE tilt in
Southern Hemisphere. Probably, this is related to the coupling between divergent and rotational
components of wind (see e.g. Gustafsson et al, 2001).

Near the surface, where the divergent wind component becomes more important, the shape
of p is very different, mainly over continents. For instance, the direction of main anisotropy axes
is mainly Northwest-Southeast in the Rockies mountains, and mostly North-South in Andes
region (not shown).

The results also show that the autocorrelation of background error for the meridional wind
is mainly elongated in North-South direction, in middle and high latitudes, in middle and upper
troposphere. This result is due to the fact that for meridional wind, the uncertainties in the
meridional gradient are smaller than in the zonal gradient. This is consistent with the presence
of transient perturbations, of the mainly zonal flow, associated to the baroclinic instabilities.
Furthermore, this result is in agreement with the study of Undén (1989), which reports that p
for the meridional wind is elongated meridionally when the wind is mainly rotational, which is
the case in free atmosphere in extra-tropics.

The local anisotropy diagnosis shown in this section is likely to be particularly interesting
in the future, to evaluate the properties of heterogeneous covariance formulations. For instance,
these diagnostic equations appeared to be very informative when studying the properties of
wavelets for the error covariances of the Aladin model (Deckmyn and Berre 2005).
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Figure 3.17: Anisotropy vector of the autocorrelation function of the background error of zonal

wind (top panel) and of meridional wind (bottom panel) at model level 21 (near 500hPa).
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Figure 3.18: North-South variation of the vertical correlations of temperature background error
(at level 21, i.e. around 500 hPa), estimated by the ensemble method (left) and by the NMC
method (right). Isoline spacing is 0.1.

3.4.4 Vertical correlations

The latitudinal dependence of the vertical correlations of temperature is illustrated in figure 3.18.
Both the ensemble and NMC methods indicate that the vertical correlations become narrower
in tropics.

Moreover, it appears that the mid-tropospheric background errors are negatively correlated
with levels near the tropopause. However, when the NMC method is used, the vertical correlation
functions are broader, and the negative correlations near the tropopause have a larger amplitude.
Furthermore, when using the ensemble method, a negative correlation between the middle and
the lower troposphere is visible, while in the NMC method, the positive correlation extends from
the mid-troposphere to the surface.

It is known that the vertical correlations tend to be sharper for smaller scales (for higher
wave numbers), except at very large scales (Derber and Bouttier, 1999). Therefore, the fact
that the vertical correlations are sharper when estimated by the ensemble method (than by the
NMC method) is consistent with the enhancement of mesoscale contributions in the ensemble
method.

The top panel of figure 3.19 shows the vertical correlation functions of vorticity at level 21,
estimated by the ensemble method, for the global average and for the EUROPE and TROPIQ
areas. It is obvious that the vertical correlations are narrower in the TROPIQ area, as expected
from other studies (Ingleby, 2001; Wu et al., 2002). Compared with the global average, the
vertical correlation function over Europe is slightly broader in the short distances, and sharper
in the long distances.

For vorticity (bottom panel of figure 3.19) and for g (not shown), the background errors in
the mid-troposphere are positively correlated with all levels, according to both methods. The
results also show that the vertical correlations estimated by the ensemble method are narrower
(than when estimated by the NMC method), for all varjables.
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3.4.5 Analysis versus background errors

The NMC and ensemble methods differ regarding the representation of the analysis step, as
mentioned in section 2.4. In this section, the corresponding estimates of the local standard-
deviations are compared, for both analysis errors and background errors.

In the NMC method, the vectors €;+4, €;+6 may be seen as estimates of the analysis errors
and forecast errors, respectively (see section 2.4 : €;+4 corresponds to some 24h-00h forecast
differences and €;+6 are the final 36h-12h forecast differences). The corresponding vertical profiles
of standard deviation are represented in figure 3.20, for the SUD20 region (top panel) and for
NORAMER region (bottom panel). These profiles can be also compared with the corresponding
ensemble estimates, that are represented in figure 3.21. These ensemble estimates correspond
to the respective dispersions of the analyses and of the backgrounds of the ensemble.

For the NMC method, it appears that the maximum magnitude of both the analysis and the
background errors is slightly larger over NORAMER  than in SUD20 region. On the contrary, for
the ensemble method (figure 3.21), the analysis and background dispersions are larger in SUD20
than in NORAMER region. The ensemble results appear therefore to be more consistent with
the expected effects of the data density contrasts (i.e. more observations over North America
than in the Southern Hemisphere).

For the ensemble method, it can be also noticed, e.g. around the jet level, that the difference
between the analysis and background dispersions is relatively larger over North America than in
the Southern Hemisphere: as expected, the analysis effect is stronger in the data rich area than
in the data poor area. Similarly, the background dispersion appears to be smaller at 18 UTC
than at 12 UTC. This seems to be consistent with the larger amount of available observations
at 12 UTC than at 06 UTC.

These results support therefore the idea that the analysis effects (on the error evolution) are
more adequately represented in the ensemble method (than in the NMC method).

3.5 Impact on the forecast scores

3.5.1 Experiments

Some assimilation and forecast experiments have been performed in order to investigate the
impact of the ensemble statistics, compared with the statistics that were used in the operational
configuration (as described in appendix B). The impacts of the ensemble global covariances and
of the ensemble local standard deviations have been both studied. In a similar way as for the
operational local standard deviations, there are two different types of ensemble local standard
deviations that are involved. Firstly, a 3D map of vorticity standard deviations is used in the
minimization. In other words, this map is a part of the B matrix which is involved in the
cost function, and which determines the weights of the background in the analysis solution.
Secondly, some 3D maps of standard deviations (for wind, temperature, and geopotential) are
used in the quality control. The ”quality control maps” are obtained from the ”vorticity maps”
and from the ensemble global covariances, by using a randomization technique (Andersson and
Fisher 1998). These two maps are both truncated at T21, in order to provide some smooth
geographical variations.

The list of experiments and their features are summarized in Table 3.2. The experiments
were performed for the period between the 5th of February and the 4th of March 2002. Some
experiments have been also performed over an October/November 2002 period, and the main
results were roughly similar.

Moreover, some experiments have been performed in order to investigate the impact of
diurnal cycle on the ensemble statistics. For this purpose, different global and local background
error statistics have been used at each analysis time in the 4D-Var assimilation cycle. The
impact of these changes was mostly neutral.
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In addition, a final experiment has been done in order to see the impact on forecasts of
using the 3D vorticity maps provided by the NMC method. This experiment was performed for
the period between the 1st and the 28th of February 2005, and compared with the operational
forecasts. In operational suite at this time, the background error covariance was provided by the
ensemble method. As expected, the impact of the NMC map was negative, mainly for forecast
ranges larger than 48h.

Table 3.2: Experiments. The following letters are used to refer to the different statistics: ENS
= ensemble statistics, NMC = NMC method’s global covariances, OLS = operational local
standard deviations, UNI = uniform standard deviations. The last two columns refer to the
local standard deviations that are used in the minimization (min.) and in the quality control

(q.c.), respectively.

Experiment | Global covariances | Local std. dev. (min.) | Local std. dev. (q.c.)
OPE NMC OLS OLS
EBO ENS OLS OLS
ER3 ENS ENS OLS
GR3 ENS ENS ENS
TK1 NMC UNI OLS
ET2 NMC ENS OLS

In the experiments of table 3.2, the forecast scores were calculated by comparing the forecasts
with both ECMWF analysis and TEMP observations, for geopotential, wind, temperature and
relative humidity. The main results were similar with both verification sources. The impact of
the ensemble statistics were mostly neutral for humidity. The largest impact in the scores was
found for geopotential and wind (in a similar way). Therefore, the wind scores with respect to
the ECMWTF analysis will be presented, in the remainder of the text.

3.5.2 Impact of the ensemble global covariances

In the operational version of the Arpége 4D-Var, the global NMC standard-deviations are mul-
tiplied by a scaling factor Ry,,., which is equal to R, = 0.9.

As mentioned in section 3.3.1, the ensemble estimates of the global standard deviations are
much smaller than with the NMC method. A scaling factor equal to Ry, = 1.5 has therefore
been applied to the ensemble standard deviations: the resulting magnitudes are then similar
to the operational ones. In addition, some sensitivity studies have indicated that this choice of
Ry c Was close to optimal (the scores were slightly degraded or neutral, when decreasing or
increasing Ry, by 10%).

The left panels of figure 3.22 correspond to the impact of the ensemble global covariances,
compared with the NMC global covariances. The impact appears to be clearly positive over
the AMNORD and EURATL domains, with some increase of the impact amplitude when the
forecast range increases. The scores are also generally positive over the tropics. In the other
regions, the scores are slightly positive or neutral.

3.5.3 TImpact of the ensemble local standard deviations

The middle panels of figure 3.22 correspond to the total impact of both the ensemble global
covariances and the ensemble local standard deviations (of vorticity). The generally positive
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Figure 3.22: Difference between the root mean square errors (RMSE, in m s71) of wind forecasts
(as function of pressure levels and forecast range) of the operational experiment (OPE) and those
of the following experiments: EBO (left panels), ER3 (middle panels) and GR3 (right panels).
Forecasts are verified against the ECMWF analysis. Solid (resp. dotted) isolines indicate ranges
and levels, for which the scores of the involved experiment are better than (resp. similar to) the
scores of the operational experiment. The isoline spacing is 0.10 m s~!. The acronyms of the 5
areas are defined in table 3.1.
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impact, which was already visible in the left panels, appears to be enhanced due to the use
of the ensemble local standard deviations. This is particularly noticeable over the ASIE and
EURATL areas. This result suggests that the enhancement (by the ensemble method when
compared with the former operational map) of the standard deviation in these regions (see
figure 3.8) is relevant. A similar positive impact was noticed when comparing the experiments
ET2 and OPE.

The impact of the ensemble local standard deviations, that are used in the minimization, has
been also studied by comparing the experiments ET2 and TK1 (not shown): TKI1 is based on
some uniform standard deviations (i.e. that do not vary geographically), while ET?2 is based on
the ensemble local standard deviations (see table 3.2). The positive impact was confirmed, and
it appeared to be even stronger than when comparing the ensemble and operational standard
deviations (which is also an indication that the operational standard deviations are more realistic
than the uniform standard deviations).

The right panels of figure 3.22 correspond to the total impact of the three types of ensemble
statistics, compared with the operational statistics: the third involved ensemble statistics are
the local ensemble standard deviations, that are nused in the quality control stage of the 4D-
Var analysis. The addition of this third ingredient appears to strengthen the previous positive
impacts. This is more obvious over the AMNORD, ASIE and EURATL areas.

3.6 Summary

In the present chapter, the results of the analysis ensemble experiments performed with the non-
stretched version of the Arpége global model, in a perfect-model context, have been presented.
Globally, the ensemble approach (when compared with the NMC method) appears to em-
phasize the relative contributions of the small scales to the background errors. Consequently, the
correlation functions are sharper in the ensemble method. These results are in accordance with
the ones described by Fisher (2003), where these differences were considered to be caused by the
involvement of longer forecast ranges in the NMC method. Nevertheless, the results presented
here suggest that the different representations of the analysis step (in the simulation of the error
evolution) explain also an important part of the differences between the two methods.

The examination of the local covariances suggests that the analysis error variances estimated
by the NMC method are underestimated in the data-poor areas, and overestimated in regions
where the observations are dense and have a high quality. This result is consistent with the
theoretical considerations made by Bouttier (1994).

In comparison, the local ensemble background error variances are able to capture interesting
features, such as the contrasts between data-rich and data-sparse regions, and also the areas
of large atmospheric variability (the ITCZ, for instance). Moreover, the analysis dispersion
provided by the ensemble approach appears to give some relevant information about the analysis
error, for instance concerning the influence of data density.

The local correlation structures were also examined. An economical method was presented
to estimate the local correlation length scale. The corresponding estimates provided by the
ensemble method show that the length scale is largest in the tropics and smallest in the data
rich regions, as it would be expected from other studies (e.g. Lindzen and Fox-Rabinovitz
(1989), Ingleby (2001), Bouttier (1994)). In addition, these estimates from the NMC method
differ from the ensemble ones, mainly for temperature. In particular, the results indicate that
the overestimation of the length scales by the NMC method is more pronounced over data rich
areas, such as North America. These differences suggest that the expected data density effects
on the correlation structures are not well represented by the NMC method.

Moreover, this local length scale diagnosis allows also to examine the correlation anisotropies.
These informations about the heterogeneities and anisotropies can be useful to model spatially
varying correlations in the B matrix, by wavelet techniques (Fisher (2003), Deckmyn and Berre
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(2005)) for instance.

Some impact studies were finally performed with the Arpége 4D-Var. The use of the ensemble
global covariances (compared with the NMC global covariances) had a general positive impact
on the forecast quality. This positive impact was found to be enhanced when the ensemble local
standard deviation maps (instead of the former operational ones) are used.

The diagnostic and impact studies indicate that there is some relevant global and local
information in the ensemble method, and in particular that this technique is more appropriate
than the NMC method. Nevertheless, the use of the ensemble approach in a perfect model-
framework might lead to an underestimation of the error variances. In the next chapter, the
impact of the model error on the background error covariances will be presented.
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Chapter 4

The role of model error in the

ensemble approach

4.1 Introduction

The study of the background error covariances of the Arpége global NWP model, estimated by
the ensemble approach using a perfect-model assumption, has been presented in the previous
chapter. The assumption that the model is perfect means that the imperfections of the forecast
model are not considered to be a source of error to the background error. In others words, it is
supposed that the analysis and background errors result from observational errors, from induced
errors in the background field used by the data assimilation, and from their evolution during
the analysis and forecast (from a perfect model) steps.

According to Houtekamer et al (1996), neglecting the model error in the ensemble simula-
tions might lead to an ensemble dispersion that would be too small. The results presented in
the previous chapter also support this idea. Houtekamer et al. (1996) also suggest that, in order
to obtain a realistic estimate of the background error covariances, it may not be necessary to
have a complete description of the model error. Instead, it could be sufficient to concentrate on
aspects of the model which can be expected to be deficiently represented. Moreover, one may
assume that differences between two model versions characterizes the model error due to the
parametrized processes.

In the present chapter, the effect of the simulated model error on the background error
covariances, estimated by the ensemble method, is investigated. It is assumed that the horizontal
discretization and the uncertainties associated to the physical parametrizations are significant
sources of model error. The role of horizontal discretization has been studied by performing
experiments with different horizontal resolutions. In addition, the impact of the uncertainties
in the parametrizations has been examined by performing experiments using different values for
certain tuning parameters from some parametrizations.

The description about the changes made in the chosen parameters and parametrizations is
presented in appendix E. The list of experiments and their features are summarized in Table
3.2. These experiments were performed for the same period as the ones using the perfect-model
assumption (1st of February to 24th of March 2002).

4.2 Global background error covariances

This section presents the comparison between the background error covariances estimated in the
spectral space (at truncation T179) by the three types of ensembles described in table 4.1.
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Table 4.1: Ensemble experiments performed to study the impact of simulating the model error.
Here, HD is the horizontal diffusion and LSCON is the large scale convergence used in the
parametrization of convection. The truncations T299 and T449 correspond to a grid spacing of

approximately 67km and 45km, respectively.
Observations . Changes in
EXP | Member . Resolution . . Error source
perturbations parametrizations
PO P33 yes T299 HD(T299) b "
P34 yes T299 HD(T299) observations
POR Al12 yes T449 HD(T449) observations
P34 yes T299 HD(T299) and resolution
HD(T449) observations,
Al5 yes T449 vertical diffusion resolution
PORP cloudiness scheme and
LSCON physical
P35 yes T299 HD(T299) parametrizations

4.2.1 Standard deviations and covariances

The figure 4.1 presents the vertical profile of standard deviations of temperature and vorticity
background errors, estimated by ensemble method for the three types of ensemble differences
described in table 4.1. There are some similarities between the three ensembles, mostly in the
upper troposphere and in the stratosphere, where the variations of the standard deviation with
height are very similar. Another common feature is that the background errors of vorticity
increase significantly with height, reaching their maximum near the tropopause.

Nevertheless, the standard deviations are largest for PORP and smallest for PO. In other
words, the background errors are largest when the model error due to resolution and parametriza-
tions uncertainties is simulated. Moreover, the results suggest that for vorticity and divergence
(not shown) the resolution plays the main role. This is consistent with the fact that for these
variables the largest contributions to the background error are due to the mesoscale phenomena.

For temperature (figure 4.1, left panel) it is interesting to note that the model error simulation
has not only an impact on the magnitude of the background errors, but also on its variation
with altitude. For instance, according to PO, in the troposphere, the largest background errors
are found in middle troposphere. To contrast with this, for PORP, in troposphere, the largest
temperature background errors are located in the PBL and decrease with height. This results
seems to be more realistic than those obtained for the other ensembles, when considering the
great importance of turbulent fluxes in PBL and that the turbulent motions have spatial and
temporal variations at scales much smaller than those represented in the analysis (due to the
resolution of the meteorological observing network). This is in accordance with the larger
contributions of the mesoscale phenomena to the background error in the bottom model levels
(relatively to the middle and upper troposphere), as shown in figure 3.3 of the previous chapter.
In addition, the results for PORP are consistent with those presented in the appendix D, where
it is shown that the RMSE of the innovation vector for temperature has larger values near the
surface than in middle troposphere.

The figure 4.2 presents the standard deviation of the background error of £, as a function
of the wave number (or horizontal scales). One can see that the simulation of model errors
contributes to increase the magnitude of surface pressure background error. This is more pro-
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Figure 4.1: Vertical profile of standard deviation of the temperature (K) (left side) and vorticity
(10~%s71) (right side) background errors, estimated by the ensemble method for the experiments
described in table 4.1.
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Figure 4.2: Standard deviation of surface pressure background error as function of the wave
number, estimated by the Ensemble method, using the PO, POR and PORP ensembles.

nounced for synoptic scales (for wave numbers between 4 and 20) and for small scales (for wave
numbers greater than 100). In section 4.3.1 it will be shown that this enhancement of the small
scales contributions is associated to the increase of the background errors over mountainous
regions, when the model error is simulated.

The figure 4.3 presents the variance and correlation spectra for temperature at model level
32 (near 850hPa). All ensembles agree that the largest variance of the temperature background
error is caused by the synoptic scales. However, for PORP the contributions from synoptic
scales are enhanced, relatively to the small scales (bottom panel). This result can be surprising,
because one could expect that the role of the model error would be to emphasize the variance
associated to the mesoscales. However, the fact that the errors in smaller scales tend to propagate
to larger scales due to non linear terms can possibly explain this result.

As illustrated in figure 4.4, this enhancement of the mesoscale contributions implies that
the corresponding correlation length scales (computed from equation 1.48, section 1.3.3, and
defined by equation 1.42, section 1.3.2) are larger for PORP than for the other ensembles, in
the troposphere.
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Figure 4.3: Variance spectra (top) and correlation spectra (bottom) of temperature background
error at level 32 (near 850hPa), estimated by the ensemble method for the experiments described
in table 4.1.

Moreover, the larger difference between PORP and POR (than between POR and PO),
illustrated in figures 4.1 (left panel) and 4.3, suggests that in lower troposphere, the model
error caused by uncertainties in the physical parametrizations has a larger contribution to the
temperature background errors than the model error related to resolution. Considering that
relatively high resolutions have been used in the experiments, and that the largest variance of
temperature errors is due to the synoptic scales, one could expect that, if coarser resolutions
had been used, the model error sensitivity to resolution would have been larger.

The results also show that the simulation of model errors in the ensemble method contributes
to increase the magnitude of specific humidity background error (not shown).

The figure 4.5 presents the correlation spectra for vorticity at model level 32 (near 850hPa).
One can see that compared with the PO, ensembles POR and PORP emphasize the relative
contributions of the small scales (compared with the contributions of the large scales). The same
was found for divergence. Thus, the role of model error is to enhance the relative contributions
of small scales to the background errors of vorticity and divergence, mostly due to the model
error associated to the horizontal discretization. As a consequence, the vorticity and divergence
length scales are smaller for the ensembles for which the model error is simulated than for PO
(not shown). Another consequence is that the contributions of the unbalanced components
are emphasized in the multivariate formulation (see figure 4.6). This is particularly marked in
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Figure 4.4: Length scale of temperature background error, estimated by the ensemble method
for the experiments described in table 4.1.
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Figure 4.5: Correlation spectra of vorticity background error at level 32 (near 850hPa), estimated
by the ensemble method for the experiments described in table 4.1.
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Figure 4.6: Explained variance for temperature background error, for the experiments described
in table 4.1.

mesoscales, for wave numbers larger than 60 (not shown). Moreover, this result is mostly due
to the contributions of model error caused by resolution.

4.2.2 Analysis versus background error

As said in the previous chapter, the differences, £,, between different perturbed analyses may
be seen as an estimate of the analysis error (e,). In other words, the dispersion of the analyses
of the ensemble corresponds to an estimate of e,. Thus, the comparison between €4 and &
gives the opportunity to compare the simulated analysis and background errors and to study
the impact of the analysis step in the ensemble simulations.

The corresponding vertical profiles of the standard deviation for temperature are represented
in figure 4.7 for PO and PORP experiments. According to both ensembles, in the upper and
middle troposphere, the analysis error is smaller than the background error. However, for PO
and for POR (not shown), in the PBL, the analysis dispersion is equal or slightly larger than the
background dispersion. This result is unforeseen, because one would expect that the analysis
process will reduce the background uncertainties thanks to the information from the observations
(see sections 1.1 and 1.2). To contrast with this, for PORP, the analysis dispersion is smaller
than the background dispersion also in the PBL. This result is also illustrated in the bottom
panel of figure 4.8 for the model level 32 (near 850hPa).

One can see that, for PORP, the analysis dispersion is smaller than the background dispersion
for all different scales. The largest difference between the simulated errors is found for synoptic
scales. On the contrary, for PO and POR ensembles, the analysis error is larger than the
background error, mostly for synoptic scales. This may be explained as follows: for PORP
the synoptic scale contributions to the background errors are largely emphasized, while the
mesoscales become less important; and it is expected that the analysis system will reduce the
model state uncertainties more efficiently for synoptic scales than for mesoscales, partly due to
the density of the observation network, and partly due to the filtering properties of the analysis
(see section 1.3.4).
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Figure 4.7: Standard deviations of the analysis error (solid line) and of the background error at
12UTC (dashed line), for temperature, estimated by the ensemble method with PO (top panel)
and PORP (bottom panel) ensembles.
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4.3 Local background error covariances

4.3.1 Standard deviations

The maps of standard deviation of the surface pressure background error for the three ensembles
described in table 4.1 are shown in figure 4.9. Surface pressure is a large scale variable, therefore
it was decided not to filter its background error standard deviations.

Some common features (between the 3 ensembles) can be identified regarding the latitudinal
variations and the influence of the data density: the standard deviations are smaller in the
tropics than in middle and high latitudes, and they are also relatively small over data rich
regions, such as Europe.

However, when the model error is simulated, the standard deviation is larger over land,
mostly in mountainous areas. This feature seems to be more realistic, since the atmospheric
evolution is more difficult to predict in such regions. Moreover, the local maxima over the mid-
latitude oceans are enhanced, such as over the Northern West Pacific and Northern Atlantic.

The figure 4.10 presents the vertical profile of the standard deviations of vorticity background
errors, for the three ensembles, for NORD20, TROPIQ and SUD20 regions. All ensembles agree
that the largest variance occurs in SUD20 and the smallest in TROPIQ region. This is consistent
with the largest variability of the vorticity field in middle and high latitudes (associated to frontal
systems, extra-tropical cyclones and jet streams). This result is also consistent with the smaller
density of observations in the Southern Hemisphere than in the Northern Hemisphere.

The results also show that the enhancement of the magnitude of the background error due
to the simulation of model error is stronger in NORD20 than in SUD20 domain. This is related
to the larger percentage of land over NORD20, where the role of model error seems to be
more important. In these two domains, the model error related to resolution appears to be
more important than the one associated to parametrizations. However, in TROPIQ region both
factors are relevant.

The normalized standard deviations of the vorticity background error were also examined
for the three ensembles. The corresponding maps for level 21 (near 500hPa) are shown in figure
4.11. Some similarities are visible concerning the latitudinal variations and the data density
contrasts: the standard deviations are smaller in the tropics than in the middle latitudes, and
they are also relatively smaller over data rich areas, such as Europe and Northern America.

On the other hand, for the PORP ensemble, the local minima are slightly more marked over
the tropics, and slightly less pronounced over the data rich areas. In addition, the local maxima
over Northern Atlantic and over Himalayas are enhanced. The local maxima near the North
Pole are less pronounced. For the POR ensemble, the standard deviation map is very similar to
the one from the PORP ensemble, except that for the former the local maximum over Himalayas
is stronger.

The figure 4.12 presents the vertical profile of the standard deviations of temperature back-
ground error, estimated by the ensemble method for the three ensembles, for different regions
(see table 3.1, section 3.4.2). In SUD20 region (top left panel), the shape of the vertical profile
of standard deviation is very similar for PO and POR ensembles. For instance, the smallest
magnitude of the background errors is found near the surface. Nevertheless, the values of the
standard deviations are larger for the POR set. The simulation of the model error due to uncer-
tainties in physical parametrizations causes a further increase of the standard deviation values,
mostly near the surface (mainly over land regions, not shown), which contributes to change the
shape of the vertical profile.

In TROPIQ region, all ensemble simulations agree that large errors are located near 90hPa
(top right panel). Near the equator, the tropopause is located approximately at 100hPa. Thus,
the large errors near 90hPa probably reflect the difficulties of the model in determining the
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position of tropopause. Possibly, the fact that the ARPEGE model has a lower vertical resolution
at these altitudes contributes to this result.

Moreover, in the tropics, it is visible that, in upper troposphere, the simulation of the model
error due to uncertainties in physical parametrizations causes a considerable increase of standard
deviations. This result is consistent with the fact that the vertical gradients are strongest in the
tropical upper troposphere, due to the subsidence in the neighbouring of the deep cumulonimbus
clouds in the ITCZ, and due to the evaporation and radiative cooling at the tops of these clouds.

In troposphere, over the tropics, the largest errors are found near the surface and in middle
troposphere. The local maximum near the surface is associated to the largest background errors
found near the ITCZ, for all ensembles (see top panel of figure 3.9, section 3.4.1).

The results also show that the model error simulation leads to an increase of the magnitude
of the background errors in all regions, mainly in lower troposphere. However, its impact is
smallest in TROPIQ region and largest in the North Pole, except in stratosphere and in upper
troposphere.

In the tropics, this result may reflect that some sources of error have been underestimated.
For instance, it could be important to use different deep convection parametrizations in the
different ensemble members, in order to simulate the model error due to uncertainties in the
treatment of deep convection, which is particularly important in this region. On the other hand,
the fact that, in middle and lower troposphere, the atmospheric variability of the temperature
in the tropics is relatively small (e.g., when compared with middle and high latitudes) might
also partly explain the smallest contribution of the simulated model error to the background
error in this region at these levels.

In the North Pole region (bottom panel), in lower troposphere, the large impact of the
simulation of the model error can be related to the large uncertainties in parametrizations of
turbulent heat fluxes, specially during Winter, when the PBL is frequently stably stratified in
this region.

In addition, it was found that the impact of the model error is larger over land than over sea
(not shown). For instance, over EUROPE (middle left panel) and ASIE (not shown) regions,
when the model error is neglected the standard deviations of temperature background error
are nearly constant in the vertical. However, when the model uncertainties are considered, a
considerable increase of the background error is visible in the lower troposphere, largely due
to resolution. The large importance of the model resolution is consistent with the presence of
mountainous areas (e.g., the Alps and the Himalayas) in these regions.

Moreover, in NORAMER region, the local maximum visible in the three estimates near
the PBL top is enhanced when the model error is simulated, mainly when the errors related to
physical parametrization are not neglected. Possibly, these local maxima reflect a large difficulty
in the prediction of the shallow clouds in this region.

It is also interesting to compare the vertical profiles shown in figure 4.12 with the profiles of
RMSE of the innovation vectors for temperature (see appendix D). Nevertheless, it is important
to note that an innovation inevitably contains a contribution from the observation error. This
fact partly explains that the magnitude of the RMSE of the innovations is larger than the
standard deviation of the background errors estimated by the ensemble approach.

The comparison between figure 4.12 (top right panel) and the left panel of figure D.1 shows
that, both the ensemble derived statistics and the innovations statistics computed using radioson-
des indicate that the magnitude of the background errors has maximum values in stratosphere,
near the tropopause and near the surface. However, the standard deviation derived by the en-
semble method presents a local maximum in middle troposphere (near 600hPa), which is not
visible in the RMSE of the innovations. On the other hand, the maximum valie of the RMSE
of the innovations computed using aircraft reports is located near 700hPa (right panel of figure
D.1).

In SUD20 region, the RMSE of innovations is maximum near the surface and decreases with
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height, reaching its minimum value near 400hPa. On the other hand, according to the ensemble
estimates, the standard deviation of background error is largest near 700hPa and it is small near
the surface, mainly for PO and POR ensembles (figure D.2 and top left panel of figure 4.12).

Possibly, the low density of the observation network over the tropics and in the Southern
Hemisphere partly explains the differences between the profiles of ensemble estimates and those
of innovations.

Over Europe and NORD20 (not shown) regions, in middle and lower troposphere, the shape
of the vertical profile of innovation RMSE is very similar to the one of standard deviation derived
from PORP and POR ensembles (to contrast with PO) (figures 4.12 and D.3).

In addition, both statistics from innovations and from ensemble simulations agree that the
background errors are larger in NORAMER than in EUROPE region. Moreover, the background
error in NORAMER region is larger in lower troposphere than in middle troposphere, for both
estimates. However, for the innovation estimates the maximum value is located at surface (figure
D.4), while according to the ensemble estimates the maximum is near the PBL top.

In extra-tropical regions (as in NORAMER, EUROPE, NORD20 and SUD20 aress), the
RMSE of innovations shows a maximum near the tropopause. For the ensemble derived statistics,
only a small local maximum is visible in SUD20 and NORD20 regions.

These differences between the innovations and ensemble statistics near the tropopause levels
might be caused by large observation errors at these levels. Another possible explanation is that
some important sources of errors for the background error have been misrepresented. Neverthe-
less, regarding that the tropopause is higher in the tropics than in the extra-tropics and that the
vertical resolution of ARPEGE decreases with height, one could expect that the uncertainties
relatively to the position of tropopause would be largest in the TROPIQ region. In other words,
one could expect that the background errors near the tropopause would be largest in the tropics.

The normalized standard deviations of the temperature background error were also examined
for the three ensembles. The corresponding maps for level 32 (near 850hPa) are shown in figure
4.13 for PO and PORP ensembles. Some similarities between the ensemble simulations were
identified. For instance, very large errors are located in the North Pacific in adjacent areas
to the North American west coast. Relatively large values are also found near the West coast
of the Iberian Peninsula and near the NW and SW coast of Africa. As said in the previous
chapter, these results are related to the presence of the marine stratocumulus, which have a
quasi-permanent character in these regions.

On the other hand, for PORP, the values over Himalayas are increased. This is mostly due
to the fact that in mountainous regions, the sources of error due to resolution become more
important to the background error.

In addition, it is visible that for PORP the background errors are enhanced in USA (ma.inly
due to the uncertainties in physical parametrizations) and the local minimum in Europe is less
pronounced.

Nevertheless, in the middle and high troposphere the contrasts between data rich and data
poor areas are well marked for PORP, as for the other ensemble sets. This is illustrated by
the normalized standard deviation of temperature background error at level 21 (near 500hPa),
presented in figure 4.14 for PORP.
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Figure 4.13: Normalized standard deviations of the temperature background error at model level
32 (around 850 hPa), for (a) PO and (b) PORP ensembles.
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Figure 4.14: Normalized standard deviations of the temperature background error at model level
21 (around 500 hPa) for the PORP ensemble.

4.3.2 Horizontal length scales

The length scales for different regions (defined in table 3.1, section 3.4.2) of the globe were
also examined. The corresponding vertical profiles of length scale are shown for temperature in
figure 4.15. According to all ensemble simulations (see also the top panel of figure 3.14, section
3.4.2), the length scale is largest in the tropics and smallest in data rich regions (for instance,
in EUROPE and NORAMER areas). However, for PORP, near the PBL top, the length scale
in NORAMER region is considerably larger than for the other ensembles.

4.4 Sensitivity studies

In this section, the differences between the background error statistics derived from similar
ensemble simulations, but at different resolutions will be presented. The experiments compared
in order to accomplish this goal are presented in table 4.2.

The figures 4.16 and 4.17 present the vertical profile of standard deviation of the background
error, estimated for the three types of ensembles described in table 4.2. It is visible that the ver-
tical distribution of standard deviation is similar for both PO and POH ensemble sets. However,
the magnitude of the background error is increased when estimated by an ensemble at higher
resolution (POH). This is more marked for vorticity and divergence, mostly due to mesoscale
phenomena, in accordance with the fact that for these variables the largest contributions to
the background errors come from the mesoscales. For specific humidity, the standard deviation
has also larger values in the ensemble at higher resolution (T449), mainly in lower troposphere.
Moreover, the contrast between PO and POH is largest over the Northern Hemisphere (not
shown). This is consistent with the larger percentage of mountainous areas in this hemisphere.

The increase of the background error magnitude when the ensemble simulations are per-
formed with a higher resolution might look like a paradox at first sight. However, it is important
to remember that the variability of the forecast fields, from a NWP model, is limited by the
effective model resolution, which is defined by spectral truncation (or grid spacing) and by the
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Figure 4.15: Length scales of the background error of temperature, estimated by the Ensemble
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Table 4.2: Ensemble simulations performed at truncation T299 and T449.

Observations Changes in
EXP | Members . Resolution L. Error source
perturbations parametrizations
PO P33 yes T299 HD(T299) observations
P34 yes T299 HD(T299) at T299
POH A16 yes T449 HD(T449) observations
Al12 yes T449 HD(T449) at T499
HD(T449) observations
Al5 yes T449 vertical diffusion at T449
POPH cloudiness scheme and
LSCON physical
A12 yes T499 HD(T449) parametrizations
o PO 18
*r POH --=- ] 35 4r
sf POPH - 190 8
12+ , 4 200 12 |
16 | 320 16
2u 'v‘ Jeo =l
28| 5' ] 28|
2 ‘i: 4 850 32
‘i
36 L] 4 950 36
40p L i i ': i o % i af
0 02 04 086 08 1 12 14 16 o A

Figure 4.16: Vertical profile of standard deviation of temperature (K) (left panel) and vorticity
(10°s71) (right panel) background errors estimated by Ensemble methods.

smoothing due to parameterized horizontal diffusion. In other words, as the effective resolution
of the model decreases, its variability at smaller scales will be smaller, because the smaller scales
are either not resolved at all, or dissipated by the horizontal diffusion.

In order to evaluate the implications of these results, it is useful to remember that the scales
that are resolved by the observation network, but not by the model due to its limited resolution,
are treated as a part of the observation representativeness errors (rather than a part of the
background errors). This is the case in particular for scales which are not represented at all by
the model. More generally, one may wonder if, the small scale variability that is dissipated by the
numerical diffusion should also be considered and treated as a part of these representativeness
€rTorS.

For the above reasons, the determination of an optimum amount of small scale variance for
data assimilation remains an open issue. On one hand, using relatively large small scale variances
may be seen as realistic and useful, as an attempt to correct (through data assimilation) what
may be considered as a model deficiency. On the other hand, this might also be seen as allowing
observations to introduce many small scale features, which may be considered as noise by the
model during the forecast integration, and therefore should rather be filtered by the analysis.

A possible strategy may then be at least to make the model diffusion as realistic as possible,
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Figure 4.17: Vertical profile of standard deviation of specific humidity (g kg~!) (left panel) and
divergence (10°s~!) (right panel) background errors estimated by Ensemble methods.

and then to derive some background error statistics that are consistent with this model diffusion.

From the comparison between POH and POPH, one can see the role of model error due to
parametrizations uncertainties at a higher resolution (T449). It is visible that for POPH the
magnitude of vorticity and divergence background errors is increased uniformly in all tropo-
sphere. However, for specific humidity, the standard deviation for POPH are only sightly larger
than those for POH.

For temperature, the enhancement of the background errors due to perturbations of the
physical parametrizations is more pronounced in the lower and middle troposphere. Moreover,
the examination of variance and correlation spectra shows that this increase of the background
error magnitude is mainly due to the synoptic scale phenomena and that the contributions from
mesoscales are less emphasized (not shown). As a consequence, the temperature correlation
length scales are larger for POPH than for the other two ensembles sets. These results are in
agreement with those found for the ensembles at T299.

The figure 4.18 shows the correlation spectra of vorticity and specific humidity background
error at level 32 (near 850hPa). It is visible that the contributions from the small scales are
emphasized for both POH and POPH ensemble simulations. As a consequence, the correlation
length scales are smaller than for PO (not shown). The same result was found for divergence.
In addition, in lower troposphere, the contributions of the unbalanced components in the multi-
variate formulation are emphasized, mainly for the POPH ensemble. This is illustrated in figure
4.19 for temperature.

Moreover, the comparison between figures 4.6 and 4.19 shows that the contributions of the
balanced components are more pronounced for POPH than for PORP. In other words, the
explained variance by the balance relationships is larger when the ensemble is built from models
having the same resolutions (POPH) than when models with different resolution have been used
in the ensemble simulations (PORP).

The figure 4.20 presents the standard deviation of the background error of F; as a function of
the wave number (or horizontal scales). It may also be mentioned that for the POH experiment
there is less diffusion of the small scale features than in PO experiment. The comparison between
PO and POH suggests that the large scale phenomena are better represented at higher resolution
(POH), while the uncertainties in mesoscales are enhanced. This suggests that if the smaller
scales are better represented by the model this has a positive impact on the large scales. This
is consistent with classical concept of atmospheric predictability, according to which the errors
in smaller scales tend to propagate to the larger scales.

Moreover, it is visible that the simulation of model errors due to uncertainties in the

73



0.01 T T T T T T T T

0.008 |

0.006 |
£
g

0.004

0.002 |+

0 N L N L ' L
60 80 100 120 140 160 180
wave number n
0.014

0.012

0.01

spectrum

0.004

0.002

0 1 1 1 I 1 1 1 1
20 40 60 80 100 120 140 160 180

wave number n

Figure 4.18: Correlation spectra of vorticity (top) and specific humidity (bottom) background
error at level 32 (near 850hPa).

SR o8 5 — i s e P e
L L “2 -

C : ]
5S¢ ’ =
10:— sese PO _:
C —-— POH ]
15 — POPH _j
B F ]
> L 4
220 =
2 - -
2t ]
225_— -
N ~. ]

- ~ -
30 N -
N S ]

[ % i

5 Vi 3
5 A -
] EEEn e L e s g i i
0,1 0,2 0,3 04 0,5 0,6 0,7 0.8

cxplained variance

Figure 4.19: Explained variance for temperature background error, using the PO, POH and
POPH ensembles.

74



012

01 f

008 -

std dev

0.06

0.04

0.02 -

0 L &
1 10 100

wave number n
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parametrizations contributes to increase the magnitude of surface pressure background error,
mostly in the synoptic scales (for wave numbers between 4 and 20).

4.5 Impact on the forecast scores

Some assimilation and forecast experiments have been performed in order to investigate the
impact on the forecast quality of the statistics provided by the ensemble approach when the
model error is simulated. The forecast scores were thus compared with those from the ensemble
method in the perfect-model context (which were operational when these impact experiments
were done). For this purpose, both the impact of the global covariances and of the local standard
deviations have been studied.

The experiments were done in a similar way to those presented in the previous chapter. The
list of experiments and their features are summarized in table 4.3. These experiments were
performed for the period between the 1st and the 28th of February 2005.

Table 4.3: Impact Experiments. The following letters are used to refer to the different statistics:
OPE = ensemble statistics using the perfect-model assumption, LSD = ensemble local standard
deviations provided by the PORP ensemble experiments, TPH and TPR correspond to the en-
semble global covariances provided respectively by the POPH and PORP ensemble experiments.
The 2nd column refers to the global covariances. The 3rd column refers to the local standard
deviations that are used in the minimization (min.). The last column refers to the value of

Ry, used.

Experiment | Global covariances | Local std. dev. (min.) | Ry,
OPE PO PO 1.5
LSD PO PORP 1.5
TPH POPH PO 1.3
TPR PORP PO 1.3

The RMSE and bias scores were calculated by comparing the forecasts with both ECMWF
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analysis and TEMP observations, for geopotential, wind, temperature and relative humidity.
The impact of simulating the model error in the ensemble approach was mostly neutral for
humidity and wind. The largest impact on the scores was found for geopotential, mainly when
compared with TEMP observations. Therefore, the geopotential scores with respect to the
TEMP observations will be shown.

As mentioned in section 4.2.1, the simulation of the model error in the ensemble approach
leads to an increase of the global standard deviations. Therefore, the value of Ry, is smaller
for the TPH and TPR experiments than for the OPE experiment, which provides similar tem-
perature standard deviations for the three experiments (they are still slightly larger for TPH
than for OPE).

The left panels of figures 4.21 and 4.22 correspond to the impact of using the ensemble global
covariances provided by the POPH experiment (where the model error due to uncertainties in
the parametrizations is simulated at high resolution), when compared with those provided by
the PO experiment. The impact is negative in the stratosphere and near the tropopause, over
SUD20, TROPIQ and AUS/NZ domains. This is illustrated for the bias on the last two domains
in figure 4.21, and for the RMSE on TROPIQ in figure 4.22.

In the troposphere, the scores are generally neutral except over the AUS/NZ region (not
shown), where the RMSE scores are positive (also when compared with the ECMWF analysis).

The right panels of figures 4.21 and 4.22 correspond to the impact of using the ensemble
global covariances provided by the PORP experiment (where the model error associated to res-
olution and to uncertainties in the parametrizations is simulated), when compared with those
provided by the PO experiment. The impact seems to be positive over the tropics (essentially
for bias, while the impact is neutral on standard-deviation (not shown)). Moreover, a reduction
of the geopotential bias is visible over the AMNORD and NORD20 domains in the stratosphere
and over AUS/NZ domain in the upper and middle troposphere. In the other regions, the
stratospheric impact is globally neutral. These positive impacts might be caused by the relax-
ation of the mass/wind coupling in the PORP experiment (when compared with PO and POPH
experiments, see figures 4.6 and 4.19).

However, in the middle and upper troposphere, the RMSE scores are neutral or negative. The
strongest negative impact is found in the AMNORD region (right panel of figure 4.22), which
is also visible on wind (not shown). This is likely to be due to the reduction of geostrophic
coupling verified in the PORP experiment.

For temperature, the scores are mostly neutral, except in PBL levels, where there is a positive
impact, mainly in AMNORD and AUS/NZ regions. This may be explained by the increase of
the background error variance (in particular at these levels) due to the model error simulation.

It was also found that the impact of the new o3, map (LSD experiment) in the minimization is
mostly neutral. This is consistent with the relative closeness between the two maps of ensemble
standard deviations, in particular for vorticity. It may be mentioned that the two maps of
ensemble standard deviations are more different for temperature, but that they are not used
directly in the Arpége 4D-Var (the vorticity maps are used instead, to determine the main part
of the wind and temperature covariances).

4.6 Summary

In the present chapter, the estimates of the background error covariances from the ensemble
method when the model error is simulated are examined. The model error is simulated by
performing an ensemble of experiments using different resolutions and different values for certain
tuning parameters from some physical parametrizations. The resulting covariances are compared
with those provided by the ensemble approach in a perfect-model context. Furthermore, the
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Figure 4.22: The same as in figure 4.21, but for the RMSE (m) in the TROPIQ and AMNORD
regions.

impact of the corresponding covariance estimates on the forecast quality was also studied.

The effect of the model error simulation in the ensemble approach is to increase the magnitude
of the estimated background error variance. The results indicate that the resolution is the
most important contribution for small scale variables (e.g., vorticity and divergence). The
perturbations of the physical parametrizations remain important in the tropics for vorticity and
divergence, and also for temperature in general. This is more obvious in lower and middle
troposphere in the extra-tropics and in upper levels over the tropics.

Furthermore, for the large scale variables (temperature and surface pressure) the increase in
the magnitude of the background errors is associated to the enhancement of the synoptic scale
contributions. On the other hand, for the other variables, the simulation of the model error in
the ensemble approach appears to emphasize the relative contributions of the mesoscales to the
background errors. As a consequence, there is a reduction of the coupling between mass and
wind variables, mainly due to the simulation of errors related to resolution.

This reduction of the mass/wind coupling has a positive impact on the forecast quality of
geopotential over the tropics and in some stratospheric extra-tropical areas. On the other hand,
the reduction of mass/wind balance leads to a degradation of the forecasts of geopotential and
wind in some tropospheric extra-tropical regions. This suggests that the mass/wind coupling
is smaller in the tropics and in the stratosphere, and that the relaxation of this coupling as a
function of latitude and height should be strengthened in the B matrix.

It was also found that there is a better agreement between the vertical profiles of the statistics
of the innovations and those from the ensemble approach when the model error is simulated.

The results also show that the magnitude of the background error increases when the hori-
zontal resolution of model used in the ensemble simulations increases. This is more pronounced
for small scale variables, for which the largest contributions to the background errors are due to
the mesoscale phenomena.

The increase of the background error magnitude when the ensemble simulations are per-
formed with a higher resolution may look like a paradox at first sight. However, it is important
to remember that as the effective model resolution decreases, its variability at smaller scales
will be smaller, because the smaller scales are either not resolved at all or dissipated by the
horizontal diffusion.
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Moreover, small scale structures that are observed but not represented at all by the model
are usually considered and treated as a part of the observation representativeness errors, rather
than a part of the background errors. Thus, one may wonder if the small scale variability
that is dissipated by horizontal diffusion should also be considered and treated as a part of
these representativeness errors. This suggests that the determination of the optimum amount
of small scale variance remains then an open issue, for the specification of the B matrix in data
assimilation.

Finally, it was found that, for surface pressure, the large scales are better represented when
using a higher resolution. This suggests that an improved representation of smaller scales by
the model has a positive impact on the large scales. This is consistent with a classical concept
of atmospheric predictability, according to which the errors in smaller scales tend to propagate
to the larger scales.
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Chapter 5

The impact of neglecting the
observation errors in the ensemble

approach

5.1 Introduction

The results presented in the previous chapters have shown that there is valuable information in
the background error covariances (locally and globally) estimated by the ensemble approach in
a perfect-model context and when the model error is simulated.

In the present chapter, the effect of neglecting the observation error in the ensemble method
is investigated. In this case, it is assumed that the background error is caused mainly by the
model error. Formally, this corresponds to setting ,(n) = 0, for any ensemble member n
(see section 2.3). The resulting covariances are compared with those provided by the ensemble
approach in a perfect-model context, and with those from the ensemble method when both the
observation and the model errors are simulated. The results presented here are focussed on the
spectral space (at truncation T179).

5.2 Neglecting observation errors when perturbing the physics

In order to study the effect of neglecting the observation errors in the ensemble method, firstly
it is supposed that the background error is mostly due to model errors associated to the physical
parametrizations. The list of experiments analysed to accomplish this aim are described in
table 5.1. This section summarizes the main results obtained from the comparison between the
background error covariances provided by the three types of ensembles presented in this table.

The figures 5.1 and 5.2 present the vertical profile of standard deviations of background
errors, estimated by ensemble method for the three types of ensemble differences described in
table 5.1. It is clear that the magnitude of the background errors is largest for POPH, as
expected, since both the observation errors and model error due to physical parametrizations
are simulated.

In addition, one can notice that for temperature in troposphere there are significant differ-
ences between the ensemble sets. For instance, according to POH, the magnitude of background
errors of temperature has small variations in vertical and has its maximum in middle tropo-
sphere. On the other hand, for PPH and POPH, the magnitude of the background errors is
maximum near the surface and decreases with height (mainly for PPH).
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Table 5.1: Ensemble experiments performed to study the impact of neglecting the observation
error. Here, HD is the horizontal diffusion and LSCON is the large scale convergence used in
the parametrization of convection. These experiments were performed at truncation T449.

EXP | Member Observa.ti.ons Cha.ngfas m Error source
perturbations | parametrizations
POH Al6 yes HD(T449) observations
A12 yes HD(T449)
HD(T449)
Al4 no vertical diffusion physical
PPH cloudiness scheme
LSCON parametrizations
All no HD(T449)
HD(T449)
Al5 ves vertical diffusion observations
POPH cloudiness scheme and
LSCON physical
Al2 yes HD(T449) parametrizations

For vorticity, all ensembles agree that the magnitude of vorticity background errors increases
significantly with height, reaching its maximum near the tropopause. This maximum is related
to the jet streams, as said before. Nevertheless, the contrast between the tropopause levels and
the low levels is smallest for PPH (when the observations errors are not simulated).

Moreover, for specific humidity and divergence, as for vorticity, the magnitude of the back-
ground error is smallest for PPH and largest for POPH, at all levels. This result might suggest
that the uncertainties related to the observations have a larger contribution to the background
error than the model error. On the other hand, this result may also suggest that some important
sources of model error have been underestimated.

The comparison of the correlation spectra from the POPH and POH estimates, for ¢, n
and g, suggests that the effect of neglecting the model error (due to uncertainties in physical
parametrizations) is neutral. In addition, the comparison between the POPH and PPH esti-
mates indicates that when the observation errors are neglected there is a decrease of the relative
contribution of the background error associated to the large scales, and the mesoscale contri-
butions are emphasized. This is illustrated in figure 5.3 for specific humidity at model level 32
(near 850hPa). As a consequence, for ¢, 7 and g, the corresponding correlation length scales are
smaller for PPH than for POH and POPH (not shown).

The figure 5.4 presents the correlation spectra for temperature background errors (at model
level 32, near 850hPa). It is visible that when either the observation errors or either model errors
are neglected, the synoptic scale contributions to the temperature background errors are less
emphasized. It is also obvious that when the model error is simulated and the observation errors
are neglected (PPH), there is a reduction of the synoptic and planetary scales contributions to
background error, and the mesoscale contributions are enhanced, when compared to the POH
estimate. As shown in figure 5.5, this implies that the corresponding correlation length scales
of the temperature background error are smallest for PPH and largest for POPH.

The figure 5.6 presents the standard deviation of the background error of surface pressure as
a function of the wave number (or horizontal scales). Is is clear that neglecting the observation
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Figure 5.1: Vertical profile of standard deviation of temperature (K) (left side) and vorticity
(10~5s71) (right side) background errors, estimated by the ensemble method for the experiments
described in table 5.1.
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Figure 5.2: Vertical profile of standard deviation of specific humidity (K) (left side) and di-
vergence (10~%s~1) (right side) background errors, estimated by the ensemble method for the
experiments described in table 5.1.

0.014 T T T T T T T

0.012

0.01

0.008

spectrum

0.006

0.004

0.002

20 40 60 80 100 120 140 160 180
wave number n

Figure 5.3: Correlation spectra of the specific humidity background error at model level 32 (near
850hPa), estimated using the POH, PPH and POPH ensembles.
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Figure 5.4: Correlation spectra of the temperature background error at model level 32 (near
850hPa), estimated using the POH, PPH and POPH ensembles.
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Figure 5.5: Horizontal length scale of the autocorrelation function of the temperature back-
ground error, estimated using the POH, PPH and POPH ensembles.

83



o1

01
0.09
0.08 -
0.07 |

0.08

std dev

0.05 [
oo f )
0.03 |

ooz b

0.01

0 L z
1 10 100

wave number n
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errors or the model error leads to a decrease of the variance of background errors, associated
to planetary and synoptic scales (when compared with POPH). However, this decrease is con-
siderably stronger when the observation errors are neglected (in PPH) than when the model
error is not simulated (in POH). This result suggests that neglecting the observation errors in
the ensemble approach might lead to an underestimation of the large scale contributions to the
background errors.

Moreover, the reduction of the large scale background error variance in PPH (compared to
POPH or POH) is consistent with the filtering properties of the analysis. Remember that the
analysis equation applied to the evolution of errors e is the same as the equation of evolution of
the ensemble state differences £ (compare equations 2.2 and 2.4). Consequently, the simulated
analysis error £, can be seen as the combination of a large scale part of the observation differences
€, and of a small scale part of the background differences ¢, (see sections 1.3.4, 2.2 and 2.3).

Therefore, when the observation differences ¢, are set to zero, the analysis differences £, will
tend to correspond simply to a small scale part of the background differences €;. In other words,
due to the absence of the large scale contribution Ke,, the simulated analysis error tends to
be relatively small scale. Moreover, the same feature may be expected for &3, because they are
directly related to the simulated analysis errors.

5.3 Neglecting observation errors when perturbing the physics
and the resolution

In this section, the effect of neglecting the observation errors in the ensemble method is studied
by supposing that the background error is mostly due to uncertainties related to resolution and
to physical parametrizations. The resulting background error covariances are compared with
those provided by two other ensemble sets (see table 5.2). This section summarizes the main
results obtained from this comparison.

The figure 5.7 presents the vertical profile of standard deviations of temperature and vorticity
background errors, estimated by ensemble method for the three types of ensemble differences
described in table 5.2.

For temperature, in troposphere, significant differences between the ensemble sets are visible.
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Table 5.2: Ensemble experiments performed to study the impact of neglecting the observation
errors. Here, HD is the horizontal diffusion and LSCON is the large scale convergence used in
the parametrization of convection.

EXP | Member Observati.ons Resolution Changfes m Error source
perturbations parametrizations
PO P33 yes T299 HD(T299) observations
P34 yes T299 HD(T299)
HD(T449)
Al4 no T449 vertical diffusion resolution
PRP LSCON and
convection physical
P30 no T299 HD(T299) parametrizations
HD(T449) observations,
Al5 yes T449 vertical diffusion resolution
PORP cloudiness scheme and
LSCON physical
P35 yes T299 HD(T299) parametrizations

For instance, according to PO, the magnitude of background errors of temperature has small
variations in vertical and has its maximum in middle troposphere. On the other hand, for PRP
and PORP, the magnitude of the background errors is maximum near the surface and decreases
with height. Nevertheless, the contrast between the tropopause levels and the low levels is
weaker for PORP than for PRP.

For vorticity, near the tropopause, the magnitude of background errors is considerably larger
for PORP (when the observations and model are perturbed) than for PRP and PO experiments.
It also interesting to notice that the contrast between the tropopause levels and the low levels
is smallest for PRP {(when observation errors are neglected).

These results might indicate that the influence of observation errors is particularly important
in the upper troposphere.

For divergence, as for vorticity, the magnitude of the background error is larger for PRP
than for PO, mainly in lower and middle troposphere. The comparison between these vertical
profiles and those presented in the previous section indicates that the uncertainties associated to
resolution are the main cause for the differences between PRP and PO. This result is consistent
with the ones presented in the previous chapter.

For specific humidity, the magnitude of the background error is slightly smaller for PRP
than for PO. In addition, if both the model error and observation errors are simulated (PORP),
the standard deviations are enlarged (figure 5.8).

The results also show that when the model error is simulated (PRP and PORP) the large
scale relative contributions to the background error of ¢, 5 and q are reduced (and the mesoscales
are enhanced). This is particularly marked when the observation errors are neglected. This is
illustrated in figure 5.9 for vorticity at model level 16 (near 300hPa). As a consequence, the
corresponding correlation length scales are smallest for PRP and largest for PO (not shown).

The figure 5.10 presents the standard deviation of the background error of surface pressure
as a function of the wave number (or horizontal scales). It is visible that neglecting either
the observation errors or the model error leads to a decrease of the variance of background
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Figure 5.7: Vertical profile of standard deviation of temperature (K) (left side) and vorticity
(1075s71) (right side) background errors, estimated by the ensemble method for the experiments
described in table 5.2.
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Figure 5.8: Vertical profile of standard deviation of specific humidity (K) (left side) and di-
vergence (10~%s71) (right side) background errors, estimated by the ensemble method for the
experiments described in table 5.2.
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Figure 5.9: Correlation spectra of the vorticity background error at model level 16 (near 300hPa),
estimated using the PO, PRP and PORP ensembles.
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Figure 5.10: Standard deviation of surface pressure background error as a function of the
wavenumber, estimated using the PO, PRP and PORP ensembles.

errors, associated to planetary and synoptic scales (when compared with PORP). However, this
decrease is considerably stronger when the observation errors are neglected. As mentioned in
section 5.2, this is consistent with the filtering properties of the analysis.

5.4 Summary

In the present chapter, the background error covariances estimated by the ensemble approach
in a perfect-observation context have been described. In this framework, it is assumed that the
background error is caused mainly by the model error (either due to uncertainties in physical
parametrizations and resolution, or only due the uncertainties in parametrizations). In addition,
the resulting covariances are compared with those provided by the ensemble approach in a
perfect-model context and with those from the ensemble method when both the observation
and the model errors are simulated.

Globally, it was found that neglecting the observation errors might lead to an underestimation
of the background error variance. The assumption that observations are perfect leads to a
decrease of the background error variance, which is particularly large in upper troposphere and
for surface pressure. Moreover, this decrease is mostly due to a reduction of the large scale
contributions to the background error (in accordance with the expected filtering properties of
the analysis).

On the other hand, in agreement with the previous chapter, the results also suggest that
neglecting the model error might also cause an underestimation of the background errors, mainly
in lower troposphere. In particular, the uncertainties due to physical parametrizations appear
to be not negligible for the temperature background errors, while the resolution seems to be
more important for background errors of vorticity and divergence.
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Chapter 6

Conclusions and perspectives

The estimation of the background error statistics is a key issue for data assimilation. In the
last years, the global covariances used in the Arpége 4D-Var, as in other NWP models, have
been determined by using the NMC method. More recently, an interesting alternative technique
based on an ensemble of analysis experiments was proposed by Houtekamer et al (1996) and
Fisher (2003). In the present work the ensemble approach has been applied to the nonstretched
version of the Arpége global model.

First, it was assumed that the forecast model used in the ensemble simulations is perfect.
The corresponding estimates of the covariances were compared with those that were operational,
and in particular with those provided by the NMC method.

Globally, the ensemble approach appears to emphasize the relative contributions of the small
scales to the background errors. Consequently, the correlation functions are sharper in the
ensemble method than in the NMC method. These results are in accordance with those described
by Fisher (2003), where these differences were considered to be caused by the involvement of
longer forecast ranges in the NMC technique.

Nevertheless, the analysis error estimated by the NMC method, strongly depends on the
analysis increment, and it was found that its spectrum is much larger scale than the analysis
dispersion spectrum from the ensemble method. Moreover, this result is consistent with the
expected filtering properties of the B matrix in the analysis state and analysis increment equa~
tions. This suggests that the different representations of the analysis step (in the simulation of
the error evolution) explain also an important part of the differences between the two methods.

Previous studies (Bouttier (1994) and McNally (2000)) suggest that the analysis error vari-
ances estimated by the NMC method are underestimated in the data-poor aress, and overesti-
mated in regions where the observations are dense and have a high quality. For these reasons, in
the Arpége 4D-Var, the NMC method is not used to provide the spatial variations of the back-
ground error variance. The examination of the local covariances, and the comparison between
the analysis errors and the background errors estimated by the NMC method, are in agreement
with these studies.

In contrast with this, the local ensemble background error variances capture some interesting
features, such as the contrasts between data-rich and data-sparse regions, and also the areas
of large atmospheric variability (tbhe ITCZ, for instance). Moreover, the analysis dispersion
provided by the ensemble approach appears to give some relevant information about the analysis
error, for instance concerning the influence of data density.

The local correlation structures were also examined. For this purpose, an economical method
was developed to estimate the local correlation length scales. The corresponding estimates
provided by the ensemble method show that the length scale is largest in the tropics and smallest
in the data rich regions, as it would be expected from other studies (e.g. Lindzen and Fox-
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Rabinovitz (1989), Ingleby (2001), Bouttier (1994)). In addition, these estimates from the NMC
method differ from the ensemble ones, mainly for temperature. In particular, the results suggest
that the overestimation of the length scales by the NMC method is more pronounced over data
rich areas, such as North America. These differences indicate that the expected data density
effects on the correlation structures are not well represented by the NMC method.

Moreover, this local length scale diagnosis allows also to examine the correlation anisotropies.
This information about heterogeneities and anisotropies can be useful to model spatially varying
correlations in the B matrix, by wavelet techniques (Fisher (2003), Deckmyn and Berre (2005))
for instance.

Some impact studies were also performed with the Arpége 4D-Var. The use of the ensemble
global covariances (compared with the NMC global covariances) had a general positive impact
on the forecast quality. This positive impact was found to be enhanced when the ensemble local
standard deviation maps (instead of the former operational ones) are used in the minimization
and quality control stages. These results confirm the indications of the diagnostic studies: there
is some relevant global and local information in the ensemble method, and this technique is
in particular more appropriate than the NMC method. For the above reasons, the ensemble
statistics became operational at Météo France in January 2004.

However, one could expect that the perfect model assumption causes an underestimation
of the background error variances. Therefore, the impact of simulating the model error in
the ensemble approach has also been studied. The model error is simulated by performing an
ensemble of experiments using different resolutions and using different values for certain tuning
parameters of some physical parametrizations.

The results indicate that the resolution is the most important contribution for small scale
variables (e.g., vorticity and divergence). The perturbations of the physical parametrizations
remain important in the tropics for vorticity and divergence, and also for temperature in general.
This is more obviouns in lower and middle troposphere in the extra-tropics and in upper levels
over the tropics.

Moreover, the effect of the model error simulation in the ensemble approach is to increase the
magnitude of the estimated background error. For large scale variables (temperature and surface
pressure), the increase in magnitude of the background errors is associated to the enhancement of
the synoptic scale contributions. On the other hand, for the other variables (vorticity, divergence,
and humidity), the simulation of the model error appears to emphasize the relative contributions
of the mesoscales to the background errors. This causes a reduction of the coupling between
mass and wind variables, mainly due to the simulation of the model error related to resolution.

This reduction of the mass/wind coupling has a positive impact on the forecast quality of
geopotential over the tropics and in some stratospheric extra-tropical areas. On the other hand,
the reduction of mass/wind balance leads to a degradation of the forecasts of geopotential and
wind in some tropospheric extra-tropical regions. This suggests that the mass/wind coupling
is smaller in the tropics and in the stratosphere, and that the relaxation of this coupling as a
function of latitude and height should be strengthened in the B matrix.

It was also found that there is a better agreement between the vertical profiles of the statistics
of the innovations and those from the ensemble approach, when both the model error and
observation errors are simulated.

The effect of neglecting the observation errors in the ensemble method has also been exam-
ined. For this purpose, the observation perturbations have been set to zero (the observations
are supposed to be perfect). In other words, the ensemble simulations have been performed
assuming that the background error is caused mainly by the model error. The resulting covari-
ances have been compared with those in a perfect-model context, and with those when both the
observation errors and the model errors are simulated.

The assumption that observations are perfect leads to a decrease of the background error
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variance, mostly due to a reduction of the large scale contributions. This is consistent with the
expected filtering properties of the analysis, which imply that the contribution of the observation
errors to the analysis errors is particularly important in the large scales.

Furthermore, it was found that, globally, the magnitude of the background error estimated
by the ensemble approach is smaller when it is assumed that the observations are perfect than
when the model is assumed to be perfect. There are two possible interpretations for this result.
The first one is that the uncertainties related to the observations have a larger contribution to
the background error than the model error.

On the other hand, this result might also suggest that some important sources of model error
have been underestimated. In the present work, the model error has been simulated using a
simple approach of changing only certain tuning parameters from some parametrizations. In the
future, it would be interesting to perform ensemble simulations using different (and independent)
models, instead of different versions of the same model. These models should have different
complete sets of parametrizations, e.g. for radiation, deep and shallow convection, vertical and
horizontal diffusion and gravity wave drag. In addition, these models could have a different
treatment of the orography.

The sensitivity of the ensemble estimates to the model resolution has also been studied. It
was found that, when the model resolution increases, the magnitude of the background dispersion
decreases in the large scales, and that it increases in the small scales. At first sight, the increase
of small scale variance may be seen as a paradox. However, it is important to note that as
the resolution of the model decreases, its variability at smaller scales will be smaller, because
these scales are either not represented by the model, or dissipated by the horizontal diffusion.
Thus, the amount of small scale dispersion is very dependent on the resolution and numerical
diffusion. Moreover, the small scale structures that are observed but not represented at all by the
model are usually considered and treated as a part of the observation representativeness errors,
rather than a part of the background errors. More generally, on may wonder if the small scale
variability that is dissipated by the numerical diffusion should also be considered and treated
as a part of these representativeness errors. For the above reasons, the determination of the
optimum amount of small scale variance, for specification of the B matrix in data assimilation,
remains an open issue.

The ensemble simulations presented in this work have been done for a winter period. In
the future, it would be also interesting to perform such experiments for other seasons. This
would allow to examine the seasonal variations of e.g. the standard deviation maps (including
for instance a detailed comparison with the results of the cycling algorithm that is described
in Derber and Bouttier (1999)). More generally, the relevance of the ensemble local estimates
suggests that there may be some interesting flow-dependent information to be extracted from
the ensemble dispersion. In this perspective, it would be interesting to examine the potential of
e.g. wavelets to diagnose and to specify these local flow-dependent signals.

Regarding the potential of the ensemble approach, it seems attractive to study its application
also for limited area models. Thus, this technique has been applied to the Aladin model, which
is coupled with the Arpége global model. In this context, the ensemble approach has been
compared with two other error simulation techniques, regarding the representation of the analysis
effect (Berre, Steféinescu and Belo Pereira, 2006; appendix F). The evolution of the dispersion
spectra and the evaluation of model differences (when applying the ensemble approach to the
Aladin model) has also been studied (Stefinescu, Berre and Belo Pereira, 2006; appendix G).
The operational version of the Aladin-France 3D-Var is thus based on ensemble covariances,
since its implementation in July 2005. The extraction of flow-dependent information from the
ensemble of Aladin perturbed assimilation experiments is also a promising application.
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Appendix A

Analysis Methods

A.1 Optimal Interpolation

Optimal Interpolation (OI) is a method of data assimilation, which was operational in many
numerical weather prediction centers during the 1970s, 80s and early 90s (McPherson et al,
1979, Lorenc, 1981). Ol is so called because it is a minimum variance estimator. This technique
tries to find the K matrix which minimizes the analysis error variance.

In OI, the analysis field (x,) is obtained by replacing the matrix K (given by (1.14)) into
the equation (1.13). Thus, the analysis estimate becomes:

X, =%+ BHI(HBHY + R) }(y - Hxp) (A1)

It is interesting to notice that equation (A.1) is a vector generalization of the scalar expression
(1.10).

It is also important to mention that, the following hypotheses are made in OI:

1) the analysis is an unbiased estimate of the true state;

2) the observation and background errors are uncorrelated;

3) the observation operator is linear, this approximation says that the variations of the
observation operator H, in the vinicity of the background, are linear:

8’2&"’) ox = H(x) + Hox (A.2)

H(x) = H(xp + 0x) ~ H(x}) +

where dx = x4 — xp is the analysis increment.

It is also assumed that the analysis is optimal, i.e., that the analysis field represents the
estimate closest to the true state according to the Root Mean Square Error (RMSE). However,
it is important to remember that according to the estimation theory, the method can only be
optimal if B and R matrices are known exactly. In practice, it is not possible to know them
exactly, it is only possible to obtain an estimate of these matrices. For this reason, OI is also
referred as Statistical Interpolation.

In OI, in order to determine the analysis field, it is necessary to invert the HBHT +R matrix
(see equation A.1). However, the size of this matrix is m x m, where m is the size of observation
vector and typically m = 10%, so the inversion of this matrix is too expensive. Therefore, in
order to reduce the matrix size, data selection is used. This means that it is assumed that
each analysis point is only influenced by observations located in its closest vicinity. Hence, the
observations used to perform the analysis at two neighboring points may be different. As a
consequence, the analysis field will generally be spatially noisy.
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A.2 3D-Var

A.2.1 Formulation and preconditioning

The basic aim of the Three-Dimensional Variational (3D-Var) Data Assimilation method is to
find the model state (analysis, x,) which minimizes the cost function:

J =yt dy= = x)TB - x0) + J(HEO -y RAHED) -y)  (A3)

Here J, measures the distance of the model state x to a background model state x; and J,
measures the distance of x to the vector y of the observations.
The vector X, which minimizes J can be interpreted as the field that best fits simultaneously
the background field and the observations.
When the cost function reaches its minimum, its derivative vanishes and the estimate x,
satisfies:
Vid =0=B(x, —x) + H'R™}(H (x,) - y) (A4)

It is possible to prove that for linear observation operators, the solution of the 3D-Var method
also satisfies the OI equation (A.1) (Lorenc, 1986). This shows that theoretically OI and 3D-Var
are equivalent. However, in practice, the methodology of these two methods is rather different.
3D-Var avoids the inversion of the HBHT + R. matrix by solving instead a global minimization
problem, which is done iteratively using descent algorithms such as conjugate gradient method
or quasi-Newton algorithms. Therefore, one of the major advantages of 3D-Var relatively to
Ol is that all observations over the Earth can be used simultaneously. In other words, in 3D-
Var, data selection is not necessary. Moreover, the variational framework is more suited to
the assimilation of observations indirectly related with the variables of the forecast model. For
instance, the direct assimilation of radiance measurements is possible once a direct model and
its adjoint are available (Eyre, 1989a, b). For these reasons, 3D-Var become operational in the
major NWP centers in the 90s (Parrish and Derber, 1992; Rabier et al, 1998, Courtier et al.
and Gauthier et al., 1999).

In 3D-Var, the accuracy of the analysis field is given by the equation (1.16) or (1.17), if B
and R are exactly specified. Furthermore, it can be demonstrated that, in this case, the matrix
A is equal to half of the inverse of the Hessian of J (second order derivative of J).

Ideally, the analysis cost function should be specified in terms of fields which have the
same resolution as the forecast model. However, in practice, J is defined as a function of the
analysis increments 6x = x, — X3, where dx has a lower resolution than the forecast model. This
formulation is known as incremental formulation.

Applying the tangent linear approximation to the observation operator, the cost function for
the incremental formulation is defined as follows

J=d+J,= -;-JxTB“léx + %(Héx ~d)TR Y (Héx — d) (A.5)

where d =y — H(x}) is the innovation vector.
In this case, the gradient of the cost function with respect to the increment dx is given by:

Vixd = B~16x + HTR™}(Héx — d) (A.6)

However, in practice, the descent methods will not be applied to the previous equation, because
it is possible to achieve a better preconditioning for the 3D-Var problem, and the convergence
of a minimization algorithm is very sensitive to its preconditioning. An ideal preconditioning is
obtained if the Hessian matrix is an identity matrix. One way of improving the preconditioning
of the Hessian matrix is to define a matrix L and a new control variable x such that

B=LLT = Bl!=rTL (A7)
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and
x =L 16x (A.8)

Therefore, . ) )
Jp = EJXTB"léx = §<sxTIrTL—15x = §XTX (A.9)

where x is a transformed analysis increment.
Thus, in the space of x, the background error covariance matrix is equal to the identity
matrix, and the cost function is expressed as:

J= %XTX + %(HLX — &)TR-!(HLx - d) (A.10)
and the gradient of the cost function with respect to the control variable x is:
VyJ = x + LTHTR(HLx — d) (A.11)

The problem defined by the previous equation is much better conditioned than the original
minimization problem. For this reason, in practice, the minimization will be carried out in
the space of x. Moreover, the initial point of the minimization is the background, so initially
0x = x = 0. It is interesting to notice that the preconditioned formulation of the 3D-Var method
has the additional advantage to avoid the inversion of the B matrix.

The minimum of J occurs when the norm of V,.J is zero. In practice, it is only possible
to reduce the gradient norm to a small positive number. To reduce the computational cost of
3D-Var, the number of iterations performed during the minimization can be reduced arbitrarily,
or requiring that the norm of the gradient of J decreases by a predefined amount, which is an
intrinsic measure of how much the analysis is close to its optimum.

At the end of minimization, the analysis increments are reconstructed in model space by
éx = Lx.

A.2.2 The B matrix in 3D-Var

In order to illustrate the role of the B matrix in 3D-Var, suppose that there is a single observation
of a model field (for instance, temperature) at one grid point, corresponding to the j** element of
the model state vector. In this case, the observation operator is very simple and it is represented
by the 1 x m matrix whose j** element is equal to 1 and all other elements are zero:

H = (0,0,...,0,1,0,...,0) (A.12)

It is important to remember that in 3D-Var method a cost function is minimized. Multiplying
the equation (A.4) by B and rearranging, the analysis equation becomes

X, —xp = BHTR (y — Hx,) (A.13)

In this simple example, BHT is equal to the j* column of B. Also, since there is one single
observation, then R~ (y — Hx,) is the scalar value (y — z2) /02, where z7 is the analysed grid
point value corresponding to the observation. Hence:

N [ B
Xq — Xp = (————-(y ;2 a)) B2’ (A.14)
B,

Thus, the analysis increment is proportional to a column of the background error covariance
matrix, B. In other words, the background covariance matrix controls in particular how the
information is spread out from the single observation, to provide statistically consistent incre-
ments at the neighbouring grid points and levels of the model, and to ensure that observations of
one mode] variable (e.g. temperature) produce dynamically consistent increments in the other
variables (e.g. vorticity and divergence).
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A.3 4D-Var

A.3.1 Formulation

In Ol and 3D-Var methods, it is assumed that observations are available at the time when
the analysis is performed. With such an approximation, it is not possible to take into account
the temporal variability of observations within the analysis cycle. Depending on the type of
observation, this can lead to an important loss of information, particularly for high frequency
observations such as satellite and radar data. Therefore, the Four-Dimensional Variational (4D-
Var) Data Assimilation was implemented operationally in the major NWP Centers during the
late 90s or early 2000s, in order to overcome this problem (Rabier et al., 2000; Mahfouf and
Rabier, 2000).

The idea of 4D-Var is to find the initial state, xg, which produces a model trajectory (when
integrated in time using the forecast model) that best fits the observations within the assimilation
interval (known as the assimilation window) . Mathematically, in 4D-Var, the aim is to find the
model state at the beginning of the assimilation window, xg, which minimizes the cost function:

N
J=Jptdo = %(X(to)—Xb(to))TBE *(x(to) —xb(to))+-12- > (Hpx—y:) R (Hxi]-y:) (A-15)
i=0

where N is the number of observation vectors y; distributed within a time interval [ty, ¢n] and x;
represents the model state at instant ¢;, which is related to the initial state through the forecast
model (M):

x; = Mi(x(to)) = Mi(xo) (A.16)

The state xg is called control variable because it is the variable with respect to which the
minimization will be performed. In order to find the xg which minimizes J it is necessary to
compute the gradient of J, and J,. The gradient of the background component of the cost
function is the same as in the 3D-Var.

The determination of J, gradient with respect to xg is more complicated because of the
strong constraint imposed by equation (A.16). Nevertheless, it is easy to compute the gradient
of J, with respect to x;, which is given by

Vo = HIR (i — H(x;)) (A.17)

Thus, in order to determine the gradient of .J, with respect to the control variable, it is
necessary to establish the relationship between it and the gradient with respect to the state x;.
For doing that is necessary to define the adjoint model. In NWP practice, for saving computation
time, it is defined the Tangent Linear Model and its Adjoint.

A Tangent Linear Model (TLM) is obtained by linearizing the forecast model around its
nonlinear trajectory, so that if a perturbation dx;_; is introduced in the initial conditions, the
final state is given by

X +dx; = M1 (-1 +dx;g) ~ M1 (1) + Liadx; g (A.18)

Here L;_; represents the Tangent Linear Model, which transforms an initial perturbation at ¢; 1
to a final perturbation at t;. Thus, the TLM equation is

dx,- = L,;..]dx,'_l (A.lg)

so the TLM describes the evolution in time of perturbations around the initial state. The model
L is called linear since it neglects the higher order terms associated to the nonlinear evolution
of perturbations (tangent linear hypothesis).
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The adjoint?, L, of a linear operator, L;, is defined as:
(Liz, z) = (z,L}z) (A.20)

The first order variations in J, due to variations in the initial state (control variable) can be
expressed as:

0J, =< Vxodo, 029 > (A.21)
and they can also be written as:
N N
8Jo=3 <ViJobzi> &  8Jo=3Y <VyltoLiaLiz.Lodzo>  (A22)
i=0 i=0

The equivalence in the last equation results from the tangent linear hypothesis and from the
fact that the integration of TLM can be expressed as the product of intermediate forecast steps
between the observations instants.

Applying the definition of the adjoint, it is possible to write the previous equation as

N N
8Jo =Y < L{Li.. L1V, 620 >=< Y LgL}..LE_ Vixy o, 620 > (A.23)
=0 =0
Examining the equations (A.21) and (A.23), the following expression for calculation of the
gradient of J, with respect to the control variable is obtained:

N
Vxado = Y LILY..L{ 1V, do (A.24)
=0

The last equation shows that the adjoint model propagates a perturbation backward in time,
from instant ¢x to the initial time #.

Substituting the expression (A.17) in the previous equation and using a euclidean product,
the gradient of J, with respect to the control variable is

N
Vaado = 3 L§LT LT HTR (y; — H(x)) (A.25)
i=0

Hence, the computation of Vy,J, requires the computation of the increments (y; — H(x;))
at the observation times ¢; through a forward model integration, followed by its multiplication
by HY R, ! to obtain weighted increments. Finally, it requires the integration of these weighted
observation increments backward in time to the initial time, using the adjoint model.

In summary, in 4D-Var, for each iteration £, the following steps are involved:

1. Integrate the nonlinear model with initial conditions, x(’)“, from ity to tny and save the
nonlinear trajectory in the assimilation window. This procedure is needed to define L] and the
observation increments (d; = y; — H(x;)).

2. Computation of the gradient of J;, as in 3D-Var.

3. Computation of the gradient of J,, using the expression (A.25), which includes the
integration of the adjoint model.

4. Minimization of J and modification of the control variable, defining xg'*"l.

5. All the previous steps are repeated until the minimum of the cost function is found.

Thus, in 4D-Var, each iteration of the minimization involves one integration of the nonlinear
model and one integration of the adjoint model, which is 2 to 3 times more expensive than the

2the definition of the adjoint of a linear operator depends on the scalar product < .,. > used; for instance, for

the Euclidean product, the adjoint of a real matrix L is its transpose: L* =L
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nonlinear model. If 40 iterations are necessary to reach the minimum of J, then the cost of
4D-Var is 120 to 160 times larger than the cost of the forecast model integration. Thus, 4D-Var
is very expensive. In practice, the 4D-Var problem is solved using the incremental formulation,
in order to reduce the computational cost.

In the incremental formulation the cost function for 4D-Var is written as:

N
J= —;—(éx(to))TBgl(éx(to)) + —;—Z(H,-Lgéx(to) —d;) R (HiLidx(to) —di)  (A.26)
i=0

where the tangent linear hypothesis was used to obtain
Hi(M;[x(t0)]) ~y:i = Hi(M[xy+8x(t0)]) —y: = Hi(Mi(x)) +H;Lidx(to) —y: = HiL:6x(t0) —d:

In 4D-Var, the TLM can be obtained by linearizing the forecast model in the vinicity of a
low resolution trajectory, and also by using either a package of simplified physics (Janiskové et
al., 1999) or a more complex physics.

In operational 4D-Var, for the first iteration xg = xp. In addition, the non-linear forecast
model is used only once within a given minimization, for the first iteration. This allows to build
the first trajectory, which propagates x; within the assimilation window. For the next iterations,
8x(to) are propagated using the TLM (necessary to compute the observation increments) and
xg is updated for M iterations: x5+ = x& + 6x% and the analysis at instant o is x§ = x}.

The number of iterations, M, during the minimization of the gradient of J are also reduced
to diminish the computational cost of 4D-Var, as in the case of 3D-Var.

The Arpége 4D-Var uses an assimilation window of 6 hours centered around each synoptic
time (06, 12, 18 or 00 UTC). This means that, for instance, the analysis, x,, at 12 UTC (which
counstitutes the initial condition of the forecast from 12UTC) doesn’t correspond to the state xg,
valid at the beginning of the assimilation window (9 UTC in this case), but to the 3h propagation
of this state.

A.3.2 The B matrix in 4D-Var

If the tangent linear approximation can be expressed as x; = L;(x(t)), where L; represents the
TLM, then the 4D-Var cost function given by equation (A.15) can be rewritten as

N
J= —;-(x(to) - xb(to))TB('; Yx(to) — xu(to)) + % Z (HL,(xo) ‘yi)TR,-—l(HL.-(xo) — Yi) (A.27)
=0

As seen before, for the analysis the gradient of the cost function is zero:
B~ (xa(to) — Xs(to)) + LY HTR™* (HLi(xa(to)) — ¥(&:)) = 0 (A.28)

where L,T represents the integration of the adjoint of TLM from time ¢; to #p.

Since there is only one observation, the expression R~ (HL;(x,(to)) — ¥(%:)) is equal to the
scalar (y — z4(%:))/o2. Multiplying the previous equation by B and rearranging, it can be seen
that, in 4D-Var, the analysis increment is proportional to a column of BLT:

. (BL: )15
— . T
xa(to) = Xp = (——————(y :: ) )) (Bl (A.29)
’ (BLT )nj
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Multiplying the equation (A.28) by L;B and rearranging, the following equation is obtained:

. (LiBL;iT)1;
I BTy

Li (Xa(to) — %) = (——————(y :: & )) i (A-30)
’ (LiBLiT )

and it is interesting to notice that the expression on the left hand side is:

Li (%a(to) — Xb) = Li(Xa(t0)) — Li(Xs) = Xa(t:) — Li(xs) (A.31)

Since B is the background error covariance matrix at time %o, then the matrix L,-BLiT is
the covariance matrix for errors in a forecast from ¢ to t;, with initial conditions equal to the
background.

Under the tangent linear assumption and for a perfect model, the background errors at time
to and t; are related by

es(t:) = Lies(to) (A.32)

Thus, the background error covariance matrix at time ¢; is:

ep(t:)(€5(t:))T = Liey(to)(es(to) 7L = L;BL{ (A.33)

Combining equations (A.30) and (A.31) it can be seen that the difference between the anal-
ysis and the forecast for time ¢; with initial conditions given by the background at time #p is
proportional to a column of L,-BL';-F. In other words, the difference between the analysis tra-
jectory and the background trajectory, at the time of the observations is proportional to the
covariance matrix that describes the errors in the background trajectory at the time of the ob-
servation. This matrix is implicitly propagated or evolved by 4D-var using the dynamics of the
TLM. Then, in 4D-Var, the analysis increment at the time of the observation is given by the
column of the evolved covariance matrix (Thepaut et al., 1993). Therefore, both the covariance
matrix at the observation time and the analysis increments are flow-dependent. Nevertheless, the
flow-dependent covariances which are used implicitly during the assimilation are not propagated
to the next cycle.
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Appendix B

The background cost function in
ARPEGE 3D-Var and 4D-Var

B.1 The square-root of the covariance matrix

This section describes the formulation of the B matrix that was used in the operational ARPEGE
4D-var until January 2005.

In this formulation, the balance relationships between mass and wind fields have an important
role, because due to them the observations of the temperature field gives information about the
wind field and vice-versa.

As in section A.2, the J, term can be written in the space of a new variable, x:

1
o= 5x"x (B.1)

such that y = L~1x and L verifies LLT = B.

In the operational practice, the initial point of the minimization is the background, so initially
dx = x = 0. The minimization is carried out in the space of x, as referred before in section A2
At the end of the minimization, the analysis increments are reconstructed in the model space
by éx = Lx.

In this formulation, in order to calibrate the L operator, it is necessary to compute the
balance operator X and the covariance matrix B,. The B matrix is not explicitly calculated
and stored in memory, but rather implicitly by the definition of L, which has the form:

L =X Bl/? (B.2)

where X is a balance operator that transforms the variables (¢, 7, (T, Pourf)u,q) of the control
vector, to the model variables (¢, 7, (1, Psurf), q), in the following way:

¢ =
n = M(+n

(T, Psnrf) = NC + Pﬂu + (T, Psurf)u
q = q

where Py, 5 is the surface pressure.

B.2 The balance operator X

In the matrix from, according to Derber and Bouttier (1999), the balance operator X is given
by
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1 00
M [ 0
X=| N P I (B.3)

-~ O O

0 0 0

The M, N and P balance operators have all the same structure: block-diagonal, with one
full vertical matrix per spectral component. The vertical matrices depend only on the wave
pumber n. M and N are both the product of a so-called horizontal balance operator H by
vertical balance operators M, N:

M=MH N=NX

The H operator is a block-diagonal matrix of horizontal operators transforming the spectral
coefficients of vorticity, independently at each level, into an intermediate variable /}, which is a
linearized mass variable defined as:

Py(m,n) = fi(n,m){(n,m+1) + Bz2(n,m)((n,m — 1) (B-4)

The coupling between P, and ¢ is justified by the geostrophic equilibrium, which on the sphere
can be expressed by

b, = A1 div(f A7)
where ®, is the geostrophically balanced part of the geopotential, f is the Coriolis parameter
and A refers to the Laplacian operator.

It is important to mention that in Jp, the balance expressed by the equation (B.3) and (B.4)
depends on latitude and on model levels. Obviously the geostrophic coupling is weaker in the
lower troposphere and in tropics. This coupling is also weaker for the small horizontal and
vertical scales of the fields than for the large scales.

The horizontal balance coefficients (31, 32) of H are computed by a linear regression between
the errors in vorticity and in the linearized total mass P;,¢, assuming the functional relationship
defined by the equation (B.4) with Pt = By. Piot is calculated using the linearized hydrostatic
relationship at level {:

1
Pot() = Y RTiAlnpi+ RTresIn Poury (B.5)
i=nlev
where nlev is the number of model levels and p; refers to the pressure at the interfaces of the
model layers. 1. is a reference temperature and the linear regression is only slightly sensitive
to its choice.
The M vertical operator is computed for each wave number n by a linear regression between
the spectral vertical profiles of balanced mass, [/3]7 and divergence, [n]7’, according to:

[l = M)’ + [l (B.6)

where 7, is the residual of the regression and is also named the unbalanced part of divergence.

The coupling between F; and 7 corresponds to the Ekman pumping, which causes winds to
deviate from the geostrophic balance due to the presence of surface friction. This creates an
inflow near the surface towards the center in extra-tropical low-pressure systems and a com-
pensating upper-tropospheric outflow. This establishes a partial coupling between the divergent
wind component and vorticity, which is much stronger in the middle latitudes, near the surface
and in high troposphere.

The N and P operators are computed for each wave number n exactly like M, except that
now the linear regression is given by:

(@, psurp)ln = wlPsln + Palnuln + (1, P, surfJuln (B.7)

where (1, Pyyrg)u is the residual of the regression. It is also called the unbalanced part of
(T, P, sur f)-
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B.3 The covariance matrix B,

In equation (B.2) the operator B,l/ ’isa symmetric square root of B,. The background error

covariance matrix B, is assumed to be diagonal, with no correlation between the parameters:

C; 0 0 0

| 0 Cn 0 0
Bu B 0 0 C(T,Psurf )ﬂ 0 (B-8)

0 0 0 c,

In the operational practice, the vertical autocovariances (C) of ¢, 7, (T, Psurs)u, q are com-
puted for each wave number n, using some forecast differences, provided by the NMC method.
This method is described in chapter 2.

Since there are 2n + 1 wave numbers m for each n and for each forecast difference, it is
necessary to have as many linearly independent differences as model levels, in order to ensure
that the autocovariances are positive definite at the very large scales. Moreover, it is advisable
to use several times more forecast differences than model levels in order to reduce the sampling
noise at large scales, which is important for the performance of the assimilation/forecast system
(Derber and Boutier, 1999).

Additionally, the variance spectra are slightly modified to ensure that the horizontal error
correlations are compactly supported (they are set to zero beyond 6000 km). This operation
removes the residual sampling noise in the error covariances.

The ¢, u, (1', Psurg)u vertical profiles of total standard deviation were estimated by the NMC
method. Moreover, these vertical profiles were rescaled by an arbitrary factor (Ry,.) of 0.9,
in order to account for the mismatch between the amplitudes of 12/36-hour forecast differences
and of 6 hour forecast errors (Derber and Bouttier, 1999).

In this formulation, vorticity plays an important role, as its statistics determine the main
part of the wind covariances, and also the main part of the temperature and surface pressure
covariances. The vorticity correlations do not vary horizontally, but the vorticity standard
deviations are allowed to vary geographically.

In the ECMWF 4D-Var, a cycling algorithm is used to determine some space and time
variations of these vorticity standard deviations, as described in the appendix of Derber and
Bouttier (1999). Since the average vertical profile of the standard deviation is provided by the
NMC method, only the normalized values of vorticity standard deviations given by the cycling
technique are used. In other words, the cycling algorithm is used only to modulate horizontally
the average vertical profile of the standard deviations (provided by the NMC). This cycling
algorithm is not implemented in the operational Arpége 4D-Var (at Météo France). Instead, the
ECMWTF maps that were produced for the 20th of October 1998 were used. As it is illustrated
in section 3.4.1, these maps allow to represent e.g. some typical data density contrasts over the
globe. Finally, the three-dimensional pattern of background error variance of { is obtained by
multiplying the normalized background error variances by the global vertical profile of variances
times Ri e

Moreover, some randomization techniques (Andersson and Fisher 1998) are applied to deduce
some maps of standard deviations for wind, temperature and geopotential. These latter maps
are used in the quality control of the Arpege 4D-Var, when a first-guess check is performed to
reject observations whose values are too different from the background values.

The background error standard deviations for g are specified in gridpoint space, in order to
allow geographical variations, using an empirical function of temperature and specific humidity
(Rabier et al., 1998).
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B.4 The implied covariance matrix

It is important to notice that assuming that the unbalanced variables are uncorrelated is not
too restrictive because the form of the X balance operator introduces significant correlations
between the meteorological variables. The multiplication of B, by X allows to write explicitly
the implicit background error covariance matrix in terms of the meteorological variables ¢, 1,
(T1 Psurf) and ¢:

Ce cMm” CNT 0
B—%B. %T — MC, MCMT +Cy, MC,NT +C, PT 0 (B.9)
=*5E =1 No; NCMT +PC,, NCNT+PCpPT+Crpppya 0 '
0 0 0 C,

From last equation it is possible to see that only the specific humidity analysis is independent
from the other variables. Moreover, the structure of the balance operator defines the form of the
multivariate correlations between the meteorological variables. It is also important to notice that
the vertical correlations in C¢, the unbalanced divergence covariances Cy,, and the unbalanced
temperature covariances C(r,p,,, ). are both homogeneous and isotropic. Nevertheless, the
terms involving the horizontal balance operator have a dependency on latitude.

As seen before, the structure of the horizontal operator J is related to the geostrophic
balance, which is itself closely approximated by the equation F}, = FA~Y, when the f-plane
approximation is used. Thus, on a narrow band around a given extratropical latitude, ¢, the
covariance matrix of the balanced geopotential Cp, = .‘}CCcﬂfT can be approximated by a func-
tion of the Coriolis parameter and of the covariance of the vorticity background error according
to:

Ch, ~ Cp(p) = fPA7%C;

Substituting the expression HC,HT ~ Cp, () into equation (B.9), the effective B matrix in
extratropical regions can be written as:

B = | MCh MORMT 4Gy, MCpNT + Cy, PT 0 (B.10)
¥ NCP], MCP}, MT ~+ PCrI“ Népb NT + PCTIuPT + C(Typsurf)u 0 .
0 0 0 Cq

It is important to notice that the vertical correlations of ¢ are independent of the latitude.
However, in the matrix B(y) there are two latitude dependent vertical autocovariances: the
" vorticity-balanced divergence”, MC’R MT, and the ”vorticity-balanced (1, Psurs)”, NCA’H, N
Moreover, all the terms that depend on ¢ p, are modulated by the square of the sine of latitude
according to épb () = F2PA~2C; (Derber and Bouttier, 1999).

In tropical regions, f is very small, so Cp, is negligible when compared to the other covariance
matrices and then the effective B matrix is

C. 0 0 0

— 0 Cflu C"IuPT 0
B= 0 PCflu PCWPT + C(T,Pgurf)u 0 (B.ll)

0 o0 0 C,

In the tropics, there is a coupling between temperature and divergence, which is stronger near
the ground and near the tropopause. For instance, an increase in temperature (or a decrease
in Pyyus) is associated with weak convergence near the ground and weak divergence near the
tropopause.

In summary, when the gridpoint variances do not vary horizontally, the autocovariance model
is non-separable, homogeneous and isotropic in gridpoint space. Thus, when the variances are
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horizontally constant, the vertical correlation structures do not depend on geographical location,
but they depend on the horizontal scale (Derber and Bouttier, 1999). Large horizontal scales
have deeper vertical correlations than small horizontal scales. However, the vertical correlations
of temperature and divergence vary also spatially, depending on latitude. The shape of the
horizontal correlations is determined by the covariance spectra. Furthermore, the horizontal
correlations are assumed to be spatially homogeneous and isotropic.

B.5 The explained variance

The balance operator X is calibrated using a linear regression principle. According to Derber and
Bouttier (1999), the performance of this operator can be quantified by diagnosing the explained
variance ratio Vezp from the meteorological fields, which is determined as:

Vigp = 1 — 222 (B.12)

where 07 = 02,,+0Z, is the total variance of the fields, 02, and o2, are respectively the variances
of the unbalanced and of the balanced components of the fields.
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Appendix C

Local length scale and anisotropy

C.1 An economical estimation of the local length scale

The background error variance of each variable and of its derivative can be used to estimate the
horizontal correlation length scale. For the sake of simplicity, the derivations are presented for
the unidimensional case. For any error e, the covariance of the error denvatlve = between two

points can be expressed as:
ey Jeq
<8:c1 55;> 39313:::2 ({ere2)) (C.1)

Here e; = e(x;) and ez = e(z32), where ; and z3 refer to the coordinates of the two points being
correlated.

Furthermore, the background error covariance can be defined as a function of its autocorre-
lation function (p), and of its variances o(e1) and o(e2) at points z1 and z, respectively:

{ere2) = oler)o(e2) p (C.2)
Thus, the second derivative of {e1ez) is
o do (e ) do(e2) &p
Fod, (ere >) - dj p+o(eole)z——+

Defining Z = z2 — z; allows to write that 5—-— = _ZE and %‘ EE In addition, the first
derivative of p (it is supposed that p is derlvable) can be assumed to be equal to zero at Z = 0.
This assumption looks reasonable, knowing that the value of p decreases when the separation
distance increases from the origin (Z = 0), and assuming that p is continuous near its origin.

Replacing equation (C.1) into equation (C 3), and considering the case Z = 0, provides the
following expression for the local variance of < (after replacing the notation by z):

de do 2 &2

Finally, using the definition of the length scale given by Daley (1991), for the unidimensional
case

=0

L2=_ p(m)
dp/dz? |,

(C.4)
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we obtain the correlation length scale for the background error of any variable e, as a function
of the background error variances of e and g—’;:

& = a*(e) . (C.5)
o2(ge) - (42)
It is important to emphasize that this estimate is only valid when using the length scale definition
from Daley (1991).
It is interesting to note that due to the Helmholtz’s theorem, for streamfunction () the
correlation length scale can be written as a function of the background error variances of 9 and
of the rotational part of the meridional wind (v¥ = %)

¥ _ o?()
= Jaz(v«ﬁ)— (@) ©0

C.2 Anisotropy: two simple examples

In order to illustrate the behaviour of the inertia matrix N of the correlation function p (see
equation 3.2), it is useful to consider two simple examples. Let us consider the following matrices:

N=Nm=(_41 ‘21) (C.7)

and

N=N, = ( _21 “41 ) (C.8)

Thus, the tilting term is the same for N,,, and N;. However, for Ny, L2 = 212 and for N,
L2=212

These matrices have two eigenvectors and eigenvalues. The two eigenvalues are the same for
N; and Np,. They are obtained by setting the determinant of N — A1 equal to zero, which gives:

N_-6A+T7=0

Thus, the eigenvalues are A\; = 4.42 and A; = 1.59. Hence, the magnitude of the anisotropy of
the correlation functions, given by the oblateness (0) of N; and Ny, is: 0 =1 — A2/A; = 0.64.
The two eigenvectors are found by substituting each of the eigenvalues into the matrix N-A I
Therefore, the eigenvector of the matrix Ny, assomated to the eigenvalue Ag is X = e i t+2.421 zy
and the normalized eigenvector is Xn =0.38¢ zm +0.924 zy.
In this case, the main anisotropy axis, which identifies the direction of the largest elongation
of the correlation function, is given by the following vector:

Xm = 0.64 X, = 0.244; +0.59 4.

For the matrix N; the eigenvector associated to the eigenvalue A; is X =i,+042 z; and the
normalized eigenvector is X,, = 0.93 iz +0.38 z; Therefore, the anisotropy vector is:

Xt =0.64X, =0.604, +0.243,.

The shapes of the two correlation functions associated to N; and Ny, are plotted in figure
C.1.

In this figure it is visible that the correlation function associated to Ny, is mainly elongated
in the SW-NW direction, while for N, p is elongated in the WSW-ENE direction.
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Figure C.1: Shape of the correlation function associated to Ny, (left panel), and to N; (right
panel).
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Appendix D

Innovations of temperature

This appendix presents the vertical profile of the RMSE computed for the innovation vector of
temperature, for certain regions (see table 3.1). These computations were done for one month
period between 21 of February to 21 of March 2002. This period is included in the period used
for the ensemble simulations (4/2/2002 to 24/3/2002).

The innovation vector, d =y — H(x}), can be written as

d=y-x=(y-%) - (—-%X)=e —e

if the model grid coincides with the observation location, i.e., H =1.
In this case, if the observation and background errors are not correlated, the covariance of
the innovation vector can be written as:

(v = %)y — x)T) = {(e0)(€0)T) + {(e5) (e5)")

Thus, the variance of the innovation, 03, is the sum of the background and observation error
variances: 02 = o + o2.

In practice, H # I. Therefore, ag also contains the contribution of the representativeness
error, which corresponds to small scales that are observed but not represented by the model

(and which are a part of the observation errors, rather than a part of the background errors).
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Figure D.1: RMSE of the innovation vector (solid line) and of the observation-minus-analysis
differences (dashed line) for temperature (K) over the TROPIQ region, computed with obser-
vations from radiosondes (left panel) and from ATIREP (right panel).
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Figure D.2: RMSE of the innovation vector (solid line) and of the observation-minus-analysis
differences (dashed line) for temperature (K) over the SUD20 region, computed with observations
from radiosondes (left panel) and from AIREP (right panel).
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Figure D.3: RMSE of the innovation vector (solid line) and of the observation-minus-analysis
differences (dashed line) for temperature (K) over the EUROPE region, computed with obser-
vations from radiosondes (left panel) and from AIREP (right panel).
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Figure D.4: RMSE of the innovation vector (solid line) and of the observation-minus-analysis
differences (dashed line) for temperature (K) over the AMERNOR region, computed with ob-
servations from radiosondes (left panel) and from ATREP (right panel).
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Appendix E

Changes in resolution, horizontal
diffusion and physical

parametrizations

In order to simulate the model error in the ensemble approach, some tuning parameters
from certain parametrizations have been perturbed. The modifications for vertical diffusion,
cloudiness and deep convection were chosen among some changes which became operational for
Arpége in April 2003. The T449 resolution and its specific coefficients for horizontal diffusion
correspond to some experimental high resolution trials, which were also conducted during this
period for Arpége. A brief description of these parametrizations is introduced here. In addition,
the changes in the tunable parameters of these parametrizations are presented.

E.1 Summary of the model changes
The model changes are the following, by decreasing order of expected importance:

o Increase of resolution and horizontal diffusion:
o The coefficients of horizontal diffusion have been adjusted in accordance with the increase
of horizontal resolution (T449 instead of T299). The main expected effect is that small
scale structures are less dissipated than in the T299 integration.

o Turbulent fluxes:
o Some vertical diffusion parameters have been changed, with the effect that turbulent
fluxes are smaller in stable cases, which reduces erosion of low layer inversions.

e Cloudiness scheme ; the spatial extension and the amounts of cloud condensates have been
reduced, by introducing the following modifications:
o A parameter that controls the triggering of stratiform clouds has been changed.

o A parameter that controls the shallow convection effects on cloudiness (at the top of the
Planetary Boundary Layer (PBL)) has been modified.

o Less importantly, a parameter that controls the effect of convective precipitation on the
convective condensate has been changed.
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¢ Deep convection:

o The contribution of the large scale precipitation flux to the available humidity (for deep
convection) has been removed.

o The compensation of turbulent fluxes by convective fluxes has been changed to reduce
the cyclogenetic tendencies.

o The modulation factor of moisture convergence has been increased, which means that
there is more available humidity for deep convection.

E.2 Horizontal diffusion scheme

In the absence of horizontal diffusion, enstrophy will accumulate at the smallest scales of the
NWP model, instead of being transferred to the very small scales, where it would be dissipated.
It is thus necessary to apply "some” horizontal diffusion. At the model top, horizontal diffusion
is also useful to filter waves reflected spuriously at the rigid top boundary of the model. The
contribution of the horizontal diffusion to the tendency of any variable % is the following one:

(%f—) = ~Kymp V" ¥
horizdif fus

where r is the power of the horizontal diffusion scheme (r = 4 in Arpége), and " is the reduced
gradient operator. The diffusion coefficient X is given by:

Ky = exp(-0.57rir)(‘/1—v££%+—l)) —rﬂh'ﬁy

where 0 is the angular velocity of the Earth rotation and hy is a constant coefficient for each
prognostic variable. The values of the coefficients b’%i'.; for divergence (HDIRDIV), for vorticity

(HDIRVOR), for temperature (HDIRT) and for specific humidity (HDIRQ) used in experiments
are presented in table E.1.

Table E.1: Values of the constant coefficients used in the horizontal diffusion scheme.

Parameters EXP T299 HD(T449)

HDIRDIV 1085 362
HDIRVOR 5425 1810
HDIRT 5425 1810
HDIRQ 5425 1810

E.3 Turbulent fluxes

According to the K-theory it is assumed that the turbulent eddies behaves similarly to molecular
diffusion. Therefore, the turbulent fluxes Fy;, for any conservative variable 4 can be considered
to be proportional to the local gradient of the mean field:

o4 _19k — ok, (2
5t~ p oz and Fy = pKy % (E.1)
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where K, is the eddy exchange coefficient. In the Arpége model, ? represents u,v,s,q (s =
¢ '+ gz is the dry static energy).

E.3.1 Surface layer

In the surface layer the turbulent fluxes are parametrized following the Monin-Obukhov’s simi-
larity theory. Thus, they can be written as ‘

Fy = pCy|Vn|(n — s) (E-2)

where Cy, represents the surface turbulent exchange coefficient for the variable ¢. The indexes
N and S refer to the lowest model level and the surface level, respectively.
The exchange coefficients for momentum are given by

L Ch if R; > 0, stable case
(1+2b(ﬁk=)) M

Cy =
— bRy nif Ry tabl
(1 1+3bcCYy (\/Et—:ﬂ(—Rf))) fr M i <0, mstable case
and for energy (dry static energy and specific humidity) are given by
1 n . A

(1+3bR,— (m))CH if R; > 0, stable case
Cyg=

(1 - 3b.Ey )C,'} if R; < 0, unstable case

vy ()

where b, c and d are tunable parameters, z, is the surface dynamical roughness length, z,, is
the surface thermal roughness length, and R; is the Richardson number, which characterizes the
stability of the atmosphere and is given by

o0 g 0s

R, = %55 ~ 22 oz
R 1%P
oz bz

v and C}; are respectively the exchange coefficients in neutral conditions for momentum and
energy, which are computed as function of z, z,, 2,5.

E.3.2 Above the surface layer

Above the surface layer the turbulent fluxes are parametrized following the K-theory and the
exchange coefficient Ky, is given by

av
K¢ =9lml¢ l'é‘z—lf(R:)

where the mixing length Ly, is {, for energy and {,,, for momentum and R/ is a modified Richardson
number.

The original Richardson is modified in order to include shallow convection effect (which is
dependent on the specific humidity) according to Geleyn (1986).

Furthermore, in stable cases, a limitation on the Richardson number has been introduced
through the definition of a critical value (R;.). This modified Richardson number is computed
in the following way:

_ R;
= 07 aR/ Ry Te

if R; > 0, stable case
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(and otherwise R, = R;), where R;,,. depends on the height according to

USURICE
1/Riey(2) = USURIC(I +(USURICL - 1) (7{(;':%;5) )

Here USURIC, USURICL and USURICE are tunable parameters.
For momentum o = 1 and for energy fluxes o = %}R%ﬂ, where R;; depends on the height
according to

HmHh )2)USURIDE

1/Ria(z) = USURID(I + ( CETACTT

where H,, (respectively H),) is the scale height for which I, (respectively l;) decreases to the
asymptotic mixing length for momentum (respectively for energy). USURID and USURIDE are

tunable parameters.
The introduction of R;., and R;; in the computation of the Richardson number was imple-

mented in order to have realistic simulation of the storm activity, while avoiding the negative
feedback between stability and surface cooling.
The functions f(R}) for momentum and energy are given by

if R} > 0, stable case

1
(1+2bR;/,/1+dR—;)

1

fM(R:) - 2bR;

— i
) 2 [f(—r)
1+3bc(z+zo) 37

if B! < 0, unstable case

1 .
(m) if R, > 0, stable case

1- 3bf, if B! <0, unstable case

5 2 [(~H,
1+3bc(z-:-zo) (27)

fa(R}) =

More details about the parametrization of turbulent fluxes used in Arpége are described in
Louis (1979), Louis et al. (1981) and Geleyn et al. (1995).

Table E.2: Values of tunable parameters used in the parametrization of vertical turbulent fluxes

Parameters OBS T299 PHYS T449

USURIC 1.0 0.175
USURICL 4.0 1.0
USURICE 0.5 0.5
USURID 0.042 0.1
USURIDE 1.0 0.25

E.4 Cloudiness scheme

In the Arpége model the stratiform (or large scale) condensed water content is a function of the
excess of water vapor (Agez):
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{ lsmax(l — e—“asAQem/lsmaa:) ifa;g; > Tc)
ly =

0 if - <r,

gsat —
and
Ader = g = Tcqsat(1', ) (E3)
where I, is the specific humidity of the stratiform condensate water, {gp,; is its maximum value,
g and g4 are respectively the specific humidity and the saturation specific humidity, and oy is
a tunable parameter.

Here . is the minimum relative humidity necessary to create a cloud, r. = f(HUCOE, z)
in such a way that r. is 1 at the top and at the bottom of atmosphere, and minimum in middle
troposphere. HUCOE is a tunable parameter, which controls the triggering of stratiform clouds.
The bigger HUCOE is, the larger both the spatial extension and the amount of condensate of
these clouds are.

In order to include a shallow convection effect on cloudiness, the equation (#.3) is replaced
by the following one:

f: *(¢* - T g )W ("'k)dpk
L2 W (rk)dpt

n

Agg, = (E-4)

where n and k are indices of vertical levels, and with r* = min(—’—’fg”-ggv, 1), and W(rF) =

Q
1-3(r%)2 + 2(r%)3.

The vertical integral in (E.4) is performed downwards from the current level n to the level
np, where the difference in the dry static energy reaches the threshold value of QSSC, which is
a tunable parameter. When QSSC = 0, ny = n and the equation (E.4) becomes (E.3). Setting
QSSC > 0 permits the clouds to form at the top of PBL.

The convective condensate amount is derived from the convective precipitation:

lomas(1 — 700 5 Atpuflomas) 508 >
l.=
0 if 8% <0
where [ is the specific humidity of convective condensate water, F, is the convective precipitation
flux, Atppy is the time step and a, = QSSUSC is a tunable parameter, which controls the
amount of condensate water in the convective clouds.
The total condensate water contents { is

l=l3+lc

Finally, the total cloudiness is a function of [, [; and gg4.

Table E.3: Values of the tunable parameters changed in the cloudiness scheme.

Parameters EXP T299 EXP Phys

HUCOE 1.7 0.3
QSSC 1600 200
QSSUSC 1 2
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E.5 The moisture convergence used in the deep convection
parametrization

In the Arpége model the deep convection parametrization is based on the scheme described by
Bougeault (1985). In this scheme the deep convection occurs when two conditions are fulfilled:

e there is convergence of humidity at low levels

o the vertical temperature profile is unstable

Moreover, this scheme uses a Kuo-type closure, i.e., it assumes that the available humidity is
the sum of the large-scale moisture convergence and the humidity tendency produced by the ver-
tical diffusion, and this available humidity must be equal to the sum of convective precipitation
and the detrainment by the environment.

Thus, mathematically the available humidity for deep convection is given by

- dq oF,

LSCON;¢ = R(V -vq + wa—-p) g 3 (E.5)
where F, is the turbulent flux of ¢ and R is modulation factor, which takes into account the
mesh size effect. 1

R = Azye
(1 + my FZ2 )

Here m,, is the local map factor, v is a tunable parameter and Az., = %EN'-:, where r, is the
earth radius and N, is the model truncation. Az,.y = REFLKUO when a Kuo-type closure is
used in the deep convection parametrization.

However, in Arpége, the available moisture can be computed in two different ways. If
LSRCON = false, the equation E.5 is used. But, if LSRCON = true then the available
moisture to deep convection is given by

0Prs
dp

LSCON = LSCONy ~g
where Prg is the large scale precipitation flux.

The tuning parameter GCVPSI determines the way turbulent fluxes (enthalpy and humidity)
are compensated in the convection scheme. It allows a continuous transition between the non-
averaging state (GCVPSI=1) to the complete averaging one (GCVPSI=0). A completely local
compensation (and not any more a partially "smoothed” one) of turbulent fluxes by convective
fluxes has been chosen to reduce the cyclogenetic tendencies (frequency and intensity) at various
scales.

Table E.4: Values of the parameters changed in the closure of the deep convection scheme.

Parameters EXP T299 EXP Phys

REFLKUO 10000 5000
LSRCON TRUE FALSE
GCVPSI 0.5 1
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Appendix F

The use of an ensemble approach to study the Background Error
Covariances in a Global NWP model
(paper to appear in Monthly Weather Review)

M. Belo Pereira*! and L. Berre?
* Instituto de Meteorologia - DVM/VPN, Lisboa, Portugal
2 Météo-France - CNRM/GMAP, Toulouse, France

ABSTRACT

The estimation of the background error statistics is a key issue for data assimilation. Their
time average is here estimated by using an analysis ensemble method. The experiments are
performed with the nonstretched version of the Arpége global model, in a perfect-model context.

The global (spatially averaged) correlation functions are sharper in the ensemble method
than in the so-called NMC method. This is shown to be closely related to the differences in the
analysis step representation.

The local (spatially varying) variances appear to reflect some effects of the data density
and of the atmospheric variability. The resulting geographical contrasts are found to be partly
different from those that are visible in the operational variances and in the NMC method.

An economical estimate is also introduced to calculate and compare the local correlation
length scales. This allows to diagnose some existing heterogeneities and anisotropies. This
information can be useful also for the modeling of heterogeneous covariances, based e.g. on
wavelets.

The implementation of the global covariances and of the local variances, which are provided
by the ensemble method, appears moreover to have a positive impact on the forecast quality.

lemail: margarida.belo@meteo.pt
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F.1 Introduction

Most of the major operational NWP centers use variational methods to combine observations
with a background state provided by a short-range forecast, in order to produce an optimal
estimate of the atmospheric state. However, this estimate is only optimal if both the observa-
tion and background error covariance matrices are correctly specified in the analysis. Therefore,
an accurate specification of these covariance matrices is very important for the quality of the
assimilation system. However, the estimation of the background error statistics is not straight-
forward, since the truth is never exactly known. In an NWP operational context, the so-called
NMC method is an example of one possible approach used to estimate the background error
covariances. This method was first implemented in the National Meteorological Center (nowa-
days named National Center for Environmental Prediction) (Parrish and Derber 1992). This
approach is based on an empirical assumption: the differences between forecasts of different
lengths, but valid at the same time, have similar structures to those of the short range fore-
cast errors. This method has the advantages of being easy to implement and of providing an
estimate for the whole globe. This explains probably why this method was or is operational
in many NWP centers: at ECMWEF (Rabier et al 1998), at CMC in Canada (Gauthier et al
1999), at Météo-France (Desroziers et al. 1995), at the UKMO (e.g. Lorenc et al. 2000). This
method was used in limited area models too (Berre 2000; Gustafsson et al 2001).

More recently, an interesting alternative technique was proposed by Houtekamer et al
(1996). It is based on an ensemble of assimilation experiments: for each ensemble member, the
observations are randomly perturbed, as well as the physical parametrizations. This method
has been also implemented operationally at ECMWF (Fisher, 2003). This ensemble approach
has also been tested and studied at Météo France in the Arpége global model and in the Aladin
limited area model (Stefénescu et al. 2006, Berre et al 2006). The present paper describes
the results that were obtained for the Arpége global NWP model. A perfect-model framework
has been used for the ensemble experiments in order to simplify the interpretation of the first
results. This will also allow the investigation of the role of the model error at a later stage.

The resulting covariance estimates have been compared with those that were previously op-
erational, by performing both diagnostic and impact studies: the global (i.e. spatially averaged)
ensemble covariances have been compared with those of the NMC method, and the local (i.e.
spatially varying) ensemble variances have also been compared with the local operational vari-
ances (the latter correspond to a static 3D map of variances, that reflects some typical data
density contrasts). Some emphasis has been given to study the role of the analysis step in this
context.

Some significant effort has been devoted to the diagnosis and examination of the local ensem-
ble correlations. This has been done by developing an economical method to estimate the local
correlation length scales. The study of these local correlations gives interesting informations
about the existing heterogeneities and anisotropies. This can be also useful for future evalua-
tion of heterogeneous covariance formulations, such as those based on wavelets (Fisher (2003),
Deckmyn and Berre (2005)) or recursive filters (Wu et al. 2002).

The structure of the paper is the following. The formalism of the ensemble simulation of the
model state error is presented in section F.2, where it is compared with the implicit formalism of
the NMC method. Section F.3 concerns the comparison between the global covariance estimates
of ensemble and NMC methods. The local covariance estimates are diagnosed in section F.4.
The impact studies of the ensemble global covariances and of the ensemble local variances are
then described in section F.5.
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F.2 The formalism of the ensemble simulation of the error evo-
lution

In this section, the formalism of the method based on an ensemble of assimilation experiments is
briefly described. It will be also compared with the implicit formalism of the NMC method. A
linear framework is considered to make the derivations simpler. The reader is referred to Berre
et al. (2006) for more detailed derivations (a formalism in a non linear framework is described in
Zagar et al. (2004)). In the current paper we summarize the main features that are important
for the interpretation of the experimental results. This concerns for instance the differences
between the two methods regarding the analysis step representation.

The exact evolution of the model state error is first introduced. The way this error evolu-
tion is simulated in the ensemble approach is then explained. It is finally contrasted with the
corresponding implicit formalism of the NMC method. The true errors will be noted e, while
the simulated errors will be noted ¢ and €, respectively in the ensemble and NMC methods.
The experimental environment of the ensemble runs is finally described in the last part of the
current section.

F.2.1 The exact model state error evolution

The involved assimilation experiments correspond to a succession of analyses and forecasts. This
process implies a specific evolution for the model state errors.

Starting from an uncertain analysis =} (valid at time ¢;), one will obtain an uncertain six-
hour (6h) forecast $z+1 (valid at time ;317 = t; 4+ 6h) by integrating the NWP model. The
evolution of the analysis errors €, into the background errors e;;"'l, corresponds to the following
equation:

ez"'] = Mef, -+ e’;;';l
where M is the six-hour forecast operator, and ei}! is the accumulated model error (during the
six-hour period).

The six-hour forecast field .'1:;;'H will then be used as the background for a new analysis (that
is valid at time ¢;;;, and which will use the observation vector yt!). The evolution of the

background errors ej*! into the analysis errors e+! corresponds to the following equation:

el = ! + K(ei! —~ Hel'') = Keit! + (1 - KH)el ! (F.1)

where K is the classical gain matrix (K = BHT(HBHT 4 R)~!, where B, R. are the specified
background and observation error covariance matrices), eit1 is the observation error (which
is itself the sum of the measurement error and of the representativeness error), and H is the
observation operator.

F.2.2 The ensemble simulation of the error evolution

The method based on an ensemble of assimilation experiments may be seen as a technique that
intends to simulate the exact error evolution. This can be illustrated by deriving the equations of
evolution of the ensemble dispersion (which aims to simulate the involved uncertainties) during
a basic forecast/analysis step. The ensemble method is illustrated schematically in figure F.1.
Considering that at a given time an ensemble of (perturbed) analyses is available, from
this ensemble one can obtain an ensemble of (perturbed) six-hour forecasts, by integrating
the NWP model. The analysis differences (%) between different perturbed analyses of the
ensemble simulate the analysis error (€!). The evolution of £ into the background differences

E;;"'l corresponds to the following equation:

i+l _ nAet oy i
gy = Me, + ¢,
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Figure F.1: Schematic illustration of the ensemble method, where DA stands for data assim-
ilation. For each member n (for n = 1,...,N), §(n) represents the random realization of
the observation perturbations at time ¢;, and the background field valid at ¢;43 = &; + 6h is
m;;“ (n) = Mz (n). The analysis for each member is zit1(n) = x;;"'l (n)+K (' (n)—Hzi (n)).
For the first analysis step, the operational (unperturbed) background is used, for all ensemble
members.

where £i+1 represents the simulated model error, which results from some model perturbations
that can be added.

Similarly, the background differences ei"’l will be evolved into analysis differences i1, ac-
cording to the following equation:

et = gt + K(ebH — Hept') = Kett + (1 - KH)eH! (F.2)

where 4! are observation differences (between the ensemble members) that simulate the ob-
servation errors e;tl. For each ensemble member, the observations are perturbed by adding
independent random Gaussian perturbations §,, which are drawn from the specified observation
error covariance matrix R.

It is important to notice that the basic form of the last two equations and the involved
operators are the same as in the exact error evolution. Thus, the ensemble approach has the
advantage of simnlating two basic and important components of the exact error evolution: the
forecast evolution provided by the model (represented by M), and the analysis step (represented
by K and I — KH, which are the respective analysis weights of the observations and of the
background). In practice, these two components are simulated by applying a succession of
analyses and forecasts to some perturbed states.

Finally, one may mention that with the ensemble approach the model errors e,, can be sim-
ulated, either by using different NWP models for the different ensemble members (Houtekamer
et al. 1996), or by drawing random realizations from an estimate of the model error covariance
matrix (Mitchell et al. 2002).

In the case of a perfect model framework, &, is simply set to zero. This approach is expected
to lead e.g. to an underestimation of the error variances. Nevertheless, it is a simpler approach
when starting the experimentations. It also gives the possibility to assess the impact of the
possible future model error simulations.

F.2.3 The NMC simulation of the error evolution

The NMC method may also be seen as a technique that simulates the evolution of the model
state errors. One may consider the case where differences are taken between 36h and 12h
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Figure F.2: Schematic illustration of the NMC method. a:‘+4 is the 24h forecast that is valid at
time t;44. Similarly, x} ,x;;“ are respectively the 36h a.nd 12h forecasts that are valid at time
ti+6. (See the text for the other notations.)

forecasts that are valid at the same time (see figure F.2). It may be noted that there is a 24h
period between the respective starting dates of these two forecasts. During this period, there
is a succession of analyses and 6h forecasts. After this 24h period, there is a final forecast step
(over a 12 h period).

In order to show the main differences between the NMC approach and the exact and ensemble
error evolutions, it is useful to write the equations for the first and for the final analysis steps
in the NMC method.

For the first analysis step of the NMC method, the simulated analysis error ea N M is simply
equal to the analysis increment:

i+ - i+1 i+1
o, NnMc = Keg™ — KHej

Comparing this equation with equation (F.1), it is possible to summarize important features of
the NMC method.

Regarding the estimated variances of the analysis errors, in a similar way as discussed in
Bouttier (1994), one may consider the following three limit cases:

¢ In regions where the data density is high, and the observation errors have similar variances
and similar spatial correlations as the background errors, KH and K are close to I/2. This
implies that et ~ 1(eit! + ef*l), while ea NMC ~ 3(eit! — ef*1). The consequence is
that, in this case, the variances of the analysxs increments are similar to the variances of
the exact analysis errors. (Note that the variances of e, and e; are added, rather than

subtracted: <(€;T1\1[MC)2> & 2;1'( <(ef:+l)2) + <(e§,+1)2> ))

¢ In regions where the data density is high and the observatlons have a high quality, KH
and K are close to /. This implies that eft! =~ eit!, while eu NMC ~ eitl — eft!. In other
words, the variances of the analysis increments are likely to be an overestlmatlon of the
variances of the exact analysis errors.

o In regions where the data density is low and the (few) observatlons have a low quality, KH
and K are close to 0. This implies that eit! ~ e+, while ea’ N mc = 0. In other words, in

data sparse areas, the simulated analyms error variances are likely to be underestimated
by the NMC approach.

Regarding the estimated correlations of the analysis errors, one may note that the exact
operator (I — KH) is replaced by KH. If the observation error covariances are similar to the
background error covariances (as evoked in the first limit case above), these two operators are
similar, and the analysis error correlations can be expected to be well approximated. However,
the observation errors are usually less spatially correlated than the background errors: this
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implies that (/ — KH) acts as a high-pass filter, while KH is rather a low-pass filter (e.g. Daley
(1991), section 4.5). The consequence is that in this case the analysis error correlations are likely
to be overestimated by the NMC method. ’

For the "final” analysis step (which corresponds to the fourth analysis step in the 24 h
period) in the NMC method, the simulated analysis error is:

i+4 i

3
+4 i —~ i i
€anme = G nmc + dz T =( Z M** doith ) 4 dotH (F3)
k=1

where e,:;:, Mmc can be seen as the NMC background perturbation, which contains the contribu-
tions of the earlier analysis increments, that were evolved in time and accumulated.

Thus, in the NMC method, the analysis step consists in adding the (unperturbed) analy-
sis increment to a background perturbation (which corresponds itself to some earlier evolved
increments). In contrast, in the exact and ensemble evolutions, the analysis step consists in ap-
plying the analysis equation to a vector of background differences and to a vector of observation
differences (the differences are the "true errors” in the exact evolution).

The last equation can be re-written as:

4
i+4 _ 4—k 7 i+k
oo =, M** dz
k=1

In addition, in the NMC method, this final analysis perturbation is evolved during 12 ad-
ditional hours, which provides the final 36h-12h forecast differences, e,:;;MC (that intends to
simulate e}+°):

4
i+6 i+ _ .
eonme =M e yme = M2 () MR dgith)
k=1

which can be compared with the corresponding equation for the background differences in
the ensemble method: . .

€6 — M £i¥S

The comparison between the last two equations allows to summarize the main three pecu-
liarities of the NMC method, compared with the ensemble method:

e the involvement of longer forecast ranges (see the occurrence of the matrices M2, M4~

instead of the 6h matrix M) ;
¢ the accumulation of several increments (see the occurrence of the operator ) ;

¢ the involvement of analysis increments dz, instead of analysis differences &,.

The involvement of longer forecast ranges has been evoked by Fisher (2003), to explain the
differences between the NMC and ensemble methods. We will show in the section F.3.3 that the
differences in the representation of the analysis step (i.e. the third item in the list above) also
play an important role.

Although the previous derivations are presented in a linear framework, it should be also
mentioned that, in practice, both the ensemble and NMC methods involve a non-linear model
during the forecast step, and a non-linear analysis scheme (such as 4D-Var) may be used for
the analysis step. This allows to represent some non-linear effects in the simulation of the error
evolution, such as the error growth saturation in the small scales during the forecast step.
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F.2.4 The experimental framework and the operational covariances

The results shown in the present paper were produced from one ensemble with five 4D-Var
assimilation cycles, that were performed from 1 February to 24 March 2002. The first analysis
ensemble is created by randomly perturbing the observations, and by using the (unperturbed)
operational background field. The model integration will then provide an ensemble of back-
grounds (see figure F.1). Thus, after the first analysis step, the perturbed analyses result from
both observation and background perturbations. The amplitude of the background differences
grows from zero to stable values during the first three days. This preliminary period is therefore
not included in the statistics, which are rather calculated from 04/02 to 24/03 (which is a 49
day period).

The members were arbitrarily numbered from 1 to 5 (zp(1), zp(2), zs(3), zs(4), zp(5)), from
which four sets of member differences were calculated (xp(1) — zp(2), 25(2) — z4(3), zp(3) —
zp(4), zp(4) — zp(5)). So, the correlations and standard deviations of the background error
are computed from 4 x 49 = 196 differences between 6h forecasts, for each of the four daily
analysis times (00, 06, 12 and 18 UTC). Mostly, the results from fields valid at 18UTC will be
shown.

It may be mentioned that using differences between background states from separate per-
turbed experiments is equivalent to the use of differences between a perturbed background and
the background from an unperturbed control experiment, except for a factor 2 in the implied
covariances (see e.g. Berre et al. (2006): it can be shown that the covariance of the difference
between two perturbed backgrounds is equal to twice the covariance of the single background
perturbations).

The experiments have been performed with the Arpége global model (in its non-stretched
version, i.e. with a uniform resolution), and its 4D-Var scheme (Rabier et al. (2000); Veersé and
Thépaut (1998)). The model has been integrated at T299 triangular truncation with 41 levels.
The formulation of B matrix that is used in the Arpége 4D-Var is described in Derber and
Bouttier (1999). The global covariances were those calculated by using the NMC method. In
this formulation, vorticity plays an important role, as its statistics determine the main part of the
wind covariances, and also the main part of the temperature and surface pressure covariances.
The vorticity correlations do not vary horizontally, but the vorticity standard deviations are
allowed to vary geographically.

Previous studies (Rabier et al. (1998), Bouttier (1994) and McNally (2000)) indicate that
the geographical variations of the NMC standard deviations are not expected to be realistic.
Therefore, at ECMWF, a cycling algorithm is used to determine space and time variations
of these vorticity standard deviations, as described in the appendix of Derber and Bouttier
(1999). This cycling algorithm is not implemented in the operational Arpége 4D-Var (at Météo
France). Instead, the ECMWF maps that were produced for 20 October 1998 are used. As
will be illustrated in section F.4.1, these maps allow to represent e.g. some typical data density
contrasts over the globe.

Since in the operational Arpége 4D-Var the average vertical profile of the standard deviation
is provided by the NMC method, only the normalized values of vorticity standard deviations
given by the cycling technique are used. In other words, the cycling algorithm is used only to
describe the horizontal deviations from the NMC average standard deviation (at each vertical
level).

Some randomization techniques (Andersson and Fisher 1998) allow moreover to deduce some
maps of standard deviations for wind, temperature and geopotential. These latter maps are
used in the quality control of the Arpége 4D-Var, when a first-guess check is performed to reject
observations whose values are too different from the background values.
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Figure F.3: Vertical profile of standard deviation of the vorticity (10~%s™!) and temperature
(K) background errors.

F.3 Global background error covariances

In this section we present the comparison between the ensemble and NMC methods, relatively
to the estimation of the global background error covariances.

The covariances were computed in spectral space at truncation T179 and the results will be
presented for the following variables: vorticity, temperature and logarithm of surface pressure
(#s) (referred to ”surface pressure” in the remainder of the paper).

The influence of the analysis step on these differences will be studied in the final part of this
section.

F.3.1 Standard deviations

The standard deviations of temperature and vorticity background errors estimated by the NMC
and ensemble methods is presented in figure F.3. One can notice that there are some similarities
between the two methods. For instance, both methods indicate that the background errors of
temperature show small variations with height in troposphere. Another common feature is that
the background errors of vorticity increase significantly with height, with a maximum near the
tropopause. This maximum is related to the jet winds in the middle latitudes. Nevertheless,
the contrast between the jet level and the low levels is less strong in the ensemble method than
in the NMC method.

The standard deviations are obviously larger in the NMC method than in the ensemble
method. The absence of model error simulation in the current version of the ensemble ex-
periments is likely to contribute to this difference. Moreover, the accumulation of four analysis
increments and the involvement of long forecast ranges in the NMC method contribute probably
also to this result.

F.3.2 Horizontal correlations

The correlation spectra will be shown instead of the covariance spectra, since this allows to
compare more directly the relative contributions of the different horizontal scales, in the two
methods. The figure F.4 presents the correlation spectra for temperature. One can see that
compared with the NMC method, the ensemble approach emphasizes the relative contributions
of the small scales (i.e. compared with the contributions of the large scales). This result is
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Figure F.4: Autocorrelation spectra of the background error of temperature at level 21 (near
500hPa) for NMC (full line) and ensemble (dotted line) methods.
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Figure F.5: Horizontal length scale of the autocorrelation function of the vorticity and temper-
ature background error, estimated by the NMC and ensemble method.

also found for the other variables. As illustrated in figure F.5, this implies that the correspond-
ing correlation length scales (as defined by Daley (1991, p.110) and Rabier et al. (1998)) are
smaller in ensemble than in NMC method. The usual increase of length scale with height can
also be identified in figure F.5, in accordance with the increase with height of the large scale
contributions.

The enhancement of the small scale horizontal contributions implies also that the vertical
correlations are sharper in the ensemble method (see section F.4.3). Another consequence is that
the contributions of the unbalanced components are emphasized in the multivariate formulation
(not shown). All these results are consistent with those mentioned by Fisher (2003).

F.3.3 The influence of the analysis step

In section F.2, it has been noticed that the ensemble and NMC methods differ regarding the
representation of the analysis step. The ensemble method simulates the reduction of the model
state errors when combining an uncertain background with uncertain observations. To contrast
with this, the NMC method is rather relying on the accumulation and time evolution of four
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estimated by the ensemble (dashed line) and the NMC method (solid line). Bottom panel:

spectra of the analysis dispersion in the ensemble method (dashed line) and of the analysis

increment in the NMC method (solid line).

successive analysis increments.

An indication of the influence of these analysis representation differences is shown in figure
F.6. The top panel represents the background error correlation spectra of F;, estimated by the
ensemble and NMC methods. The contributions of the small scales and of the planetary scales
are emphasized in the ensemble method.

The bottom panel corresponds to the comparison between the correlation spectra of the anal-
ysis increment (in the NMC method) and of the analysis dispersion (in the ensemble method).
It appears that the analysis increment spectrum is much larger scale than the analysis dispersion
spectrum. Such a difference is consistent with the expectation that the spatial correlations of the
analysis increment are an overestimation of the analysis error correlations (see section F.2.3). As
the analysis increment is one fundamental ingredient of the NMC method, this contrast explains
the larger relative contributions of the small scales to the background errors in the ensemble
method. This indicates that the analysis representation differences play an important role in
the scale differences between the two methods.
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F.4 Local background error covariances

In this section, the geographical variations of the ensemble covariances are studied. The ensemble
local standard deviations will be compared with the operational local standard deviations, and
also with the NMC local standard deviations.

The geographical variations of the ensemble correlations will also be examined. This will be
done in particular by introducing an economical estimation of the local correlation length scales.
Concerning this aspect a comparison will be also done with the NMC method.

Finally, the corresponding differences in the vertical correlations and in the analysis/background
errors will be also illustrated.

F.4.1 Standard deviations

All the statistics presented in this subsection (as in the whole section) were computed on a
1.5 x 1.5 latitude-longitude grid (which is comparable to a truncation T127 approximately).
However, the standard deviations maps presented here have been truncated at T21 for vorticity
and at T79 for temperature. These truncations have been chosen in order to filter the sampling
noise, while retaining the relevant features.

The figure F.7 shows the maps of normalized standard deviations of vorticity background
error at 500hPa, estimated by the ensemble method and used in the operational experiments.
(The normalization consists simply in a division by the horizontal average of the standard
deviation: the values in the figures correspond to some horizontal modulations, that are to be
applied to the global covariances (see section F.2.4)).

Some common features can be identified, e.g. regarding the latitudinal variations and the
influence of the data density: the standard deviations are smaller in the tropics than in the
middle latitudes, and they are also relatively small over data rich regions, such as Europe and
the United States of America (USA).

On the other hand, in the ensemble method, the local minima are more marked over the
tropics, and less pronounced over the data rich areas. In addition, the local maxima over the
mid-latitude oceans are enhanced, such as over the Northern Pacific, the Northern Atlantic,
and the circumpolar ocean of the Southern Hemisphere. The ensemble method provides also
some local maxima near the North Pole and over the Himalayas, which are not present in the
operational map.

The geographical variations of the ensemble standard deviations have been also compared
with those provided by the NMC method. The results for temperature at the levels 37 (near
970hPa) and 27 (near 700hPa) will be used to illustrate some typical differences (figures F.8 and
F.9, respectively).

Near 970hPa, some similar latitudinal variations are found according to the two methods.
For instance, the mid-latitude values are larger than in the tropics, and some large values around
the North Pole are visible in the two estimates.

One of most striking differences is the occurrence of some strong maxima in the central
regions of North America, according to the NMC method. When the ensemble method is used,
the background errors have a local maximum in Canada, near the Hudson bay, but they have
relatively small values in USA. A local minimum over Europe is also more visible in the ensemble
method than in the NMC method.

Over e.g. FEurope and North America, the differences between the two methods can be
partly explained by the tendency of the NMC method to overestimate the background errors in
data rich areas, as explained in section F.2.3. On the other hand, it may be that the perfect
model assumption leads to an underestimation of the background errors in some regions by the
ensemble method. For instance, one could consider that the temperature errors in the Boundary
Layer in mountainous areas (e.g. Rocky mountains and Alps) might be underestimated by the
ensemble method.
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Figure F.7: Normalized standard deviations of the vorticity background error (around 500 hPa),
(a) estimated by the ensemble method and (b) used in the operational experiments. (The bottom
map has truncation T42, as used in the former operational 4D-Var).
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Figure F.8: Normalized standard deviations of the temperature background error at level 37
(i.e. around 970 hPa), using the ensemble method (top) and the NMC method (bottom).

The figure F.8 also indicates that, according to the ensemble method, large values of back-
ground errors occur in Equatorial Africa. This is consistent with the large atmospheric vari-
ability observed in this area, associated with the Inter-Tropical Convergence Zone (ITCZ). Such
a feature is not well captured by the NMC method. More generally, in the tropics, the mag-
nitude of the background error is larger when estimated by the ensemble method than by the
NMC method. These differences may be explained by the fact that the NMC method tends to
underestimate the background errors in data sparse areas, as mentioned before.

Near 700hPa, when the background errors are estimated by the ensemble method, the con-
trast between data rich and data sparse regions is very clear (figure F.9). Generally, the NMC
method is not able to represent such a feature. Moreover, in the Southern Hemisphere, the
largest background errors of the ensemble method are located in the Tropical Eastern Pacific,
and in the Tropical Atlantic. This corresponds to areas of marine stratocumulus. This may
reflect that some large uncertainties exist in these regions: these uncertainties may be related to
some strong sensitivity of the shallow convection and radiation parametrizations, with respect
to the initial conditions of the NWP model. The NMC method also reflects such uncertainties,
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Figure F.9: Normalized standard deviations of the temperature background error at level 27
(i.e. around 700 hPa), using the ensemble method (top) and the NMC method (bottom).

but less clearly than the ensemble method. This may be due to an underestimation of analysis
errors (by the NMC method) over these data-poor oceanic regions.

F.4.2 Horizontal length scales

Diagnosing the full geographical variations of the correlations is a significant challenge: the
total number of correlation values to be calculated is the square of the number of gridpoints.
This is much larger than what is required for e.g. the calculation and the representation of
the geographical maps of standard-deviation. In this context, it is meaningful to introduce an
economical estimation of the local correlation length scale. This has been achieved by using the
background error variance of each variable and of its derivative.

For any simulated error ¢, it is indeed possible to define a zonal length scale (L) and a
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Figure F.10: North-south variation of the length scale of surface pressure, estimated by the
ensemble (dashed line) and NMC (full line) methods.

meridional length scale (L;) as (see appendix for derivations):

L, =

: )= ) (F.4)
- T ()

where 3% and % are respectively the derivatives in = and y directions, o%(e) and 02(-35) are

respectively the variances of the background error € and of the derivative g;—. The 2D correlation

length scale is given by L° = /(L5 + L;z) /2.

This method of computing L is economical: for a domain with N gridpoints, one needs
to calculate 3N variances, instead of computing N2 correlations or covariances. Moreover, it
provides a synthetic view of the geographical variations of the correlation functions.

In order to validate this estimate of the length scales, the global length scales have been
compared with the ones computed in spectral space. It was found that the length scales estimated
in gridpoint space are similar, but slightly larger than those estimated in spectral space, which
is consistent with the different resolutions used in the two spaces.

The length scale estimates that are provided by the ensemble and NMC methods will be noted
L, and L;M - Tespectively. The latitudinal variations of L:, ue and L;Ns were examined, for
different meteorological variables. According to both methods, the correlation length scale is
larger in the tropics than in the middle and high latitudes, for all the variables. This is illustrated
in figure F.10 for surface pressure. Following the physical explanation from Lindzen and Fox-
Rabinovitz (1989), Ingleby (2001) suggested that the increase of the horizontal correlation length
scale, when approaching the equator, reflects the latitudinal dependence of the Rossby radius of
deformation.

From figure F.10, it is also clear that L;Ns is much shorter than L:, uc+ Moreover, in the
middle latitudes, the correlation length scale of F; is smaller in the Northern Hemisphere than in
the Southern Hemisphere. The global map of the local length scales of ¥; (not shown) indicates
that this is related to the larger presence of land surfaces in the Northern Hemisphere.

The length scales for different regions of the globe were also examined. The corresponding
vertical profiles of length scale are shown for temperature in figure F.11. The regions are defined
in table F.1. According to the ensemble method, the length scale is largest in the tropics and
smallest in the data rich regions (for instance, in EUROPE and NORAMER areas). This result
is in agreement with other studies concerning the effects of latitude on the length scales (e.g.

€
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Lindzen and Fox-Rabinovitz (1989), Ingleby (2001)) and the effects of data density (Bouttier,
1994).

Table F.1: Regions used to study the heterogeneities of the background error statistics and to
compute the forecast scores (as it will be shown in section F.5).

Acronym Region latitudes longitudes
NORD20 Northern Hemisphere 20°N - 90°N
EUROPE Europe (over land) 30°N-T70°N 10°W - 35°E
EURATL Europe and East region of North Atlantic ~ 30°N - 70°N  10°W - 35°E
NORAMER North America (over land) 25°N - 60°N  145°W - 50°W
AMNORD North America and surrounding ocean areas 25°N - 60°N  145°W - 50°W
ASIE Asie 25°N - 65°N  60°E - 145°E
TROPIQ tropics 20°S - 20°N
SUD20 Southern Hemisphere 20°S - 90°S

Australia/New Zealand

. 10°S - 55°S  90°E - 160°E
and surrounding ocean areas

AUS/NZ

In contrast, between 950hPa and 500hPa, the largest L;mc values are found in the NO-
RAMER region, rather than in the TROPIQ area. This is related to the fact that the differ-
ences between L;, uc 3nd L;N < are largest over NORAMER. This indicates that the background
correlation overestimation is more pronounced over data rich areas. Moreover, contrarily to the
ensemble method, it was found that in the middle troposphere, the L; uc value for temperature
is larger over land than over sea (not shown). The comparison between L;Ns and the length
scales of e:l';, MC» e;f; mc and of the analysis increments (not shown), suggests that these dif-
ferences are majnly,caused by an inadequate representation of the analysis step (which relies
on the accumulation and time evolution of several analysis increments during a 24h period, as
shown in section F.2.3) in the NMC method.

It is also possible to diagnose the main direction and intensity of the local correlation
anisotropies (see appendix). The figure F.12 illustrates the kind of features that can be high-
lighted. The correlations appear to be mainly elongated along a South-West/North-East direc-
tion in the 10 — 20°N latitude belt over Africa, and have a South-East/North-West elongation
in the South Atlantic. It also worthwhile to mention that the areas of largest anisotropy appears
to be associated to the maximum strength of jet stream. From figure F.12 it is also visible that
the shape of the local correlation function (at the two selected points) is consistent with the
direction of the main loeal anisotropy axis. This kind of local anisotropy diagnosis is likely to
be particularly interesting in the future, to evaluate the properties of heterogeneous covariance
formulations. For instance, these diagnostic equations appeared to be very informative when
studying the properties of wavelets for the error covariances of the Aladin model (Deckmyn and
Berre 2005).

F.4.3 Vertical correlations

The latitudinal dependence of the vertical correlations of temperature is illustrated in figure
F.13. Both ensemble and NMC methods indicate that the vertical correlations become narrower
in tropics.

Moreover, it appears that the mid-tropospheric background errors are negatively correlated
with levels near the tropopause. However, when the NMC method is used, the vertical correlation
functions are broader, and the negative correlations near the tropopause have a larger amplitude.
When using the ensemble method, a negative correlation between middle and lower troposphere
is visible, while in the NMC method, the positive correlation extends from the mid-troposphere
to the surface.
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Figure F.11: Length scales of the background error of temperature, estimated by the ensemble
method (top) and by the NMC method (bottom). The acronyms of the 3 areas are defined in
table F.1.
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Figure F.12: Anisotropy vector of the local autocorrelation functions of the temperature back-
ground error at model level 21, overlapped with its autocorrelation function at (20°S, 5°W) and
(20°N, 14°E). The isoline interval is 0.15 starting at 0.25. The arrows are arbitrarily oriented
northwards, and their scaling is such that half of the vector length from the legend corresponds
to an oblateness of 0.5.

The top panel of figure F.14 shows the vertical correlation functions of vorticity at level 21,
estimated by the ensemble method, for the global average and for the EUROPE and TROPIQ
areas. It is obvious that the vertical correlations are narrower in the TROPIQ area, as expected
from other studies (Ingleby, 2001). Compared with the global average, the vertical correlation
function over Europe is slightly broader in the short distances, and sharper in the long distances.

F.4.4 Analysis versus background errors

The NMC and ensemble methods differ regarding the representation of the analysis step, as
mentioned in section F.2. In this section, the corresponding estimates of the local standard-
deviations are compared, for both analysis errors and background errors.

In the NMC method, the vectors e::, Mo e;:;sMc. may be seen as some estimates of the

analysis errors and forecast errors, respectively (see section F.2.3: e:}:, Mc corresponds to some

24h-00h forecast differences and e;}s mc are the final 36h-12h forecast differences). The corre-
sponding vertical profiles of standard deviation are represented in figure F.15, for the SUD20
(top panel) and for NORAMER (bottom panel) regions. These profiles can be also compared
with the corresponding ensemble estimates, that are represented in figure F.16. These ensemble
estimates correspond to the respective dispersions of the analyses and of the backgrounds of the
ensemble.

For the NMC method, it appears that the maximum magnitude of both the analysis and the
background errors is slightly larger over NORAMER than in SUD20 region. On the contrary,
for the ensemble method, the analysis and background dispersions are larger in SUD20 than
over NORAMER region. The ensemble results appear therefore to be more consistent with the
expected effects of the data density contrasts (i.e. more observations over North America than
in the Southern Hemisphere).
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Figure F.13: North-South variation of the vertical correlations of temperature background error
(at level 21, i.e. around 500 hPa), estimated by the ensemble method (left) and by the NMC
method (right). Isoline spacing is 0.1.

For the ensemble method, it can be also noticed, e.g. around the jet level, that the difference
between the analysis and background dispersions is relatively larger over NORAMER than over
SUD20 region: as expected, the analysis effect is stronger in the data rich area than in the data
poor area. Similarly, the background dispersion appears to be smaller at 18 UTC than at 12
UTC. This seems to be consistent with the larger amount of available observations at 12 UTC
than at 06 UTC.

These results support therefore the idea that the analysis effects (on the error evolution) are
more adequately represented in the ensemble method than in the NMC method.

F.5 Impact on the forecast scores

F.5.1 Experiments

Some assimilation and forecast experiments have been performed in order to investigate the
impact of the ensemble statistics, compared with the statistics that were used in the operational
configuration (as described in section F.2.4). The impact of both the ensemble global covariances
and of the ensemble local standard deviations has been studied. In a similar way as for the
operational local standard deviations, two different types of ensemble local standard deviations
are involved. Firstly, a 3D map of vorticity standard deviations is used in the minimization. In
other words, this map is a part of the B matrix which is involved in the cost function, and which
determines the weights of the background in the analysis solution. Secondly, some 3D maps of
standard deviations (for wind, temperature, and geopotential) are used in the quality control.
These quality control maps are obtained from the ”vorticity maps” and from the ensemble global
covariances, by using a randomization technique (Andersson and Fisher 1998). These two maps
are both truncated at T21, in order to provide some smooth geographical variations.

The list of experiments and their features are summarized in table F.2. The experiments
were performed for the period between 5 February and 4 March 2002. Some experiments have
been also performed over an October/November 2002 period and the main results were roughly
similar.

In addition, some experiments have been performed in order to investigate the impact of
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Figure F.14: Vertical correlations of the vorticity background error (at level 21, i.e. around 500
hPa). Top panel: ensemble estimations over different parts of the globe. Bottom panel: global
estimates by the ensemble method and by the NMC method.
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Figure F.15: Standard deviations of the analysis error (solid line) and of the background error
(dashed line), for zonal wind, estimated by the NMC method. Top panel: SUD20. Bottom
panel: NORAMER (see table F.1).
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Figure F.16: Standard deviations of the analysis error at 12 UTC (solid line), and of the back-
ground error at 12UTC (dashed line) and at 18UTC (dotted line), for zonal wind, estimated by
the ensemble method. Top panel: SUD20. Bottom panel: NORAMER (see table F.1).
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diurnal cycle on the ensemble statistics. For this purpose, different global and local background
error statistics have been used at each analysis time in the 4D-Var assimilation cycle. The
impact of these changes was mostly neutral.

The forecast scores were calculated by comparing the forecasts with both ECMWF analysis
and TEMP observations, for geopotential, wind, temperature and relative humidity. The main
results were similar with both verification sources. The impact of the ensemble statistics were
mostly neutral for humidity. The largest impact in the scores was found for geopotential and
wind (in a similar way). Therefore, we will simply present the wind scores with respect to the
ECMWF analysis.

Table F.2: Experiments. The following letters are used to refer to the different statistics: ENS
= ensemble statistics, NMC = NMC method’s global covariances, OLS = operational local
standard deviations. The last two columns refer to the local standard deviations that are used
in the minimization (min.) and in the quality control (q.c.), respectively.

Experiment Global covariances Local std. dev. {(min.) Local std. dev. (q.c.)

OPE NMC OLS OLS
EBO ENS OLS OLS
ER3 ENS ENS OLS
GR3 ENS ENS ENS

F.5.2 Impact of the ensemble global covariances

In the operational version of Arpége 4D-Var, the global NMC standard-deviations are multiplied
by a scaling factor R, which is equal to £ = 0.9.

As mentioned in section F.3.1, the ensemble estimates of the global standard deviations are
much smaller than with the NMC method. Therefore, a scaling factor equal to B = 1.5 has been
applied to the ensemble standard deviations, so that the resulting magnitudes are similar to the
operational ones. In addition, some sensitivity studies have indicated that this choice of i was
close to optimal (the scores were slightly degraded or neutral, when decreasing or increasing £
by 10%).

The left panels of figure F.17 correspond to the impact of the ensemble global covariances,
compared with the NMC global covariances. The impact appears to be clearly positive over
the AMNORD and EURATL domains, with some increase of the impact amplitude when the
forecast range increases. The scores are also generally positive over the tropics. In the other
regions, the scores are slightly positive or nentral.

F.5.3 Impact of the ensemble local standard deviations

The middle panels of figure F.17 correspond to the total impact of both the ensemble global
covariances and the ensemble local standard deviations (of vorticity). The generally positive
impact, which was visible in the left panels, appears to be enhanced due to the use of the
ensemble local standard deviations. This is particularly noticeable over the ASIE and EURATL
areas. This result suggests that the enhancement (by the ensemble method) of the standard
deviation in these regions (see figure F.7) is relevant.

The right panels of figure F.17 correspond to the total impact of the three types of ensemble
statistics, compared with the operational statistics: the third involved ensemble statistics are
the local ensemble standard deviations, that are used in the quality control stage of the 4D-
Var analysis. The addition of this third ingredient appears to strengthen the previous positive
impacts. This is more obvious over the AMNORD, ASIE and EURATL areas.
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Figure F.17: Difference between the root mean square errors (RMSE, in m s™1) of wind forecasts (as
function of pressure levels and forecast range) of the operational experiment (OPE) and those of the
following experiments: EBO (left panels), ER3 (middle panels) and GR3 (right panels). Forecasts are
verified against the ECMWEF analysis. Solid (resp. dotted) isolines indicate ranges and levels, for which
the scores of the involved experiment are better than (resp. similar to) the scores of the operational
experiment. The isoline spacing is 0.10 m s~1. The acronyms of the 5 areas are defined in table F.1.

138



All these results support the idea that there is some relevant and useful information in the
ensemble estimates, for both the global and local statistics.

F.6 Conclusions and perspectives

The estimation of the background error covariance matrix plays an important role in data
assimilation. In the last years, the global covariances used in the Arpége 4D-Var, as in other
NWP models, have been determined by using the NMC method. More recently, an interesting
alternative technique based on an ensemble of analysis experiments was proposed by Houtekamer
et al. (1996) and Fisher (2003). This technique has also been tested at Météo France, where it
became operational in January 2004.

In the present paper we describe the results of the analysis ensemble experiments performed
with the nonstretched version of the Arpége global model, in a perfect-model context. The
ensemble estimates of the covariances were compared with those that were operational, and in
particular with the results of the NMC method.

Globally, the ensemble approach appears to emphasize the relative contributions of the small
scales to the background errors. Consequently, the correlation functions are sharper in ensemble
method than in NMC method. These results are in accordance with the ones described by
Fisher (2003), where these differences were considered to be caused by the involvement of longer
forecast ranges in the NMC method. Nevertheless, the analysis increment is in fact one of the
basic components of the NMC method and its spectrum was found to be much larger scale than
the analysis dispersion spectrum (in the ensemble method). This suggests that the different
representations of the analysis step (in the simulation of the error evolution) explain also an
important part of the differences between the two methods.

Bouttier (1994) suggested that the analysis error variances estimated by the NMC method
are expected to be underestimated in the data-poor areas, and overestimated in regions where
the observations are dense and have a high quality. For these reasons, in the Arpége 4D-Var, the
NMC method is not used to provide the spatial variations of the background error variance. The
examination of the local covariances, and the comparison between the analysis errors and the
background errors estimated by the NMC method, support the idea argued by Bouttier (1994).

In contrast with this, the local ensemble background error variances capture some interesting
features, such as the contrasts between data-rich and data-sparse regions, and also the areas
of large atmospheric variability (the ITCZ, for instance). Moreover, the analysis dispersion
provided by the ensemble approach appears to give some relevant information about the analysis
error, for instance concerning the influence of data density.

The local correlation structures were also examined. Generally, in NWP models, the compu-
tation limitations are an hindrance to the diagnosis and representation of the spatial variations
of the horizontal correlations. An economical method was therefore presented to estimate the
local correlation length scale. The corresponding estimates provided by the ensemble method
show that the length scale is largest in the tropics and smallest in the data rich regions, as it
would be expected from other studies (e.g. Lindzen and Fox-Rabinovitz (1989), Ingleby (2001),
Bouttier (1994)). In addition, these estimates from the NMC method differ from the ensem-
ble ones, mainly for temperature. In particular, the results suggest that the overestimation of
the length scales by the NMC method is more pronounced over data rich areas, such as North
America. These differences suggest that the expected data density effects on the correlation
structures are not well represented by the NMC method.

Moreover, this local length scale diagnosis allows also to examine the correlation anisotropies.
These informations about the heterogeneities and anisotropies can be useful to model spatially
varying correlations in the B matrix, by wavelet techniques (Fisher (2003), Deckmyn and Berre
(2005)) for instance.

Some impact studies were finally performed with the Arpége 4D-Var. The use of the ensemble
global covariances (compared with the NMC global covariances) had a general positive impact
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on the forecast quality. This positive impact was found to be enhanced when the ensemble local
standard deviation maps (instead of the former operational ones) are nsed in the minimization
and quality control stages. These results confirm the indications of the diagnostic studies: there
is some relevant global and local information in the ensemble method, and this technique is in
particular more appropriate than the NMC method.

Nevertheless, the ensemble approach applied here assumes that the forecast model is perfect.
It is expected that this assumption causes an underestimation of the error variances. Therefore,
in the near future we intend to introduce and test some model perturbations, in order to study
the impact of the model error on the background error covariances.

The ensemble simulations presented in this paper have been done during a winter period. In
the future, it would be also interesting to perform such experiments during other seasons. This
would allow to examine the seasonal variations of e.g. the standard deviation maps (including
for instance a detailed comparison with the results of the cycling algorithm that is described
in Derber and Bouttier (1999)). More generally, the relevance of the ensemble local estimates
suggests that there may be some interesting flow-dependent information to be extracted from
the ensemble dispersion. In this perspective, it would be interesting to examine the potential of
e.g. wavelets to extract these local flow-dependent signals.
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F.7 Appendix: Local length scales and anisotropy vectors

The background error variance of each variable and of its derivative can be used to estimate the
horizontal correlation length scale. For the sake of simplicity, we present here the denvatlons for
the one-dimensional case. For any simulated error ¢, the covariance of the derivative & 3= between
two points can be expressed as:

(Jada) - o (@) (F3)

Oz dx2

Here, 1 and z2 are the coordinates of the two points being correlated.
Furthermore, the background error covariance can be defined as a function of its antocorre-
lation function (p), and of its variances o(¢;) and o(ez) at points z; and x2, respectively:

(e1€2) = a(er)o(ea) p (F.6)

So, the second derivative of <€162> is

do (61) do(ez)
e ((a2)) = S 1 ooty
40(62) aP do(e1) Op
o) G2 ro@ gL (P.7)
Defining & = x2 — z; allows to write that %‘9; = —— and ﬁ— = £ In addition, the first

derivative of p (it is supposed that p is derivable) can be assumed to be equal to zero at £ = 0.
This assumption looks reasonable, knowing that the value of p decreases when the separation
distance increases from the origin (Z = 0), and assuming that p is continuous near its origin.

Replacing equation (F.5) into equation (F.7), and considering the case & = 0, provides the
following expression for the local variance of gf;:

Finally, when using the definition of length scale given by Daley (1991), for the one-dimensional
case

z=0

L2 - p($) F.
& P/ dx? z=0 ( 8)
we obtain the correlation length scale for the background error, €, of any variable, as a function
of the variances of ¢ and of gg:
2
I = O N (F.9)
o2(e) - (42)

It is interesting to note that due to the Helmholtz’s theorem, for streamfunction () the
correlation length scale can be written as a function of the background error variances of ¢ and
of the rotational part of the meridional wind (v¥ = 3;)

' 2
I = o @b .. (F.10)
o2(v¥) — (42)

Hollingsworth (1987) and Bouttier (1993) have studied the anisotropy of correlation, by

computing the inertia matrix of the correlation function. In a similar way, the anisotropy of p
can be determined from the eigenvectors and eigenvalues of the following matrix N:
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1/Naw 1/N.
(I/ny 1/N§”,,) (F-1)

where Ny = L2 and Nyy = Lg (where Ly, Ly are the zonal and meridional length scales, that
are defined in section F.4.2). The term of tilting of p is determined by:

N PO
Y T 8¢ B¢ 8o(e) Bo(e
<3§%> - 3: é
for any error €. Here <g‘5 a‘) is the covariance between 2 and g—;.
The oblateness (O) of the correlation function is defined as @ = 1 — A\3/A;, where A; and Ay
are the largest and the smallest eigenvalues, respectively. The anisotropy of p is defined by a
vector, which has the direction of the eigenvector of N corresponding to its smallest eigenvalue.
In other words, the main anisotropy axis identifies the direction of the largest elongation of the
correlation function. Moreover, the norm of the anisotropy vector is given by O: therefore, a

null vector is equivalent to an isotropic p. An oblateness equal to 0.5 means that the value of p
decreases with distance twice faster in one direction than in the perpendicular one.

(F.12)
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Appendix G

The representation of the analysis effect in three error simulation techniques
(vaper to appear in Tellus)
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Abstract

Three error simulation techniques are compared formally, in particular regarding their representation
of the analysis step. The associated results are moreover examined for the Aladin-France limited area
model, which is coupled with the Arpege global model.

It is first shown that the analysis error equation involves the same operators as the analysis equation.
This implies that the analysis ensemble approach is appropriate, as the analysis equation is used to
transform the background and observation dispersions into the analysis dispersion.

By contrast, the standard NMC method relies essentially on the analysis increment equation, which
contributes to a large extent to the excessive emphasis on the large scale structures. The so-called lagged
NMC method is shown to be closely related to the Arpége/Aladin model differences.

The analysis ensemble approach gives error spectra that are intermediate between those of the two
other methods. This is in agreement with the representation of the initial and lateral boundary uncer-
tainties, in a way that is consistent with the influence of the analysis equation and with the short forecast
ranges.

G.1 Introduction

Data assimilation schemes, such as three-dimensional variational systems (3D-Var), combine observations
and a background, which is for instance a six hour (6h) forecast. In such schemes, the background error
covariances determine the filtering and the propagation of the observed information. Nevertheless, the
estimation of these error covariances is not straightforward, e.g. because the truth is never exactly known.

In this study, a method based on an ensemble of analyses is compared to two other simulation tech-
niques, which are two variants of the NMC (National Meteorological Center, nowadays named National
Center for Environmental Prediction) method (the so-called ”standard” and "lagged” versions of the
NMC method, according to the terminology of Sirok4 et al., 2003). These three methods will be com-
pared formally, with respect to the equations of the error evolution. In particular, the representation of
the analysis step will be examined. This will allow to highlight, the strong role of the analysis equation in
the exact error evolution and in the ensemble simulation. The contrast between this and the involvement
of the analysis increment equation in the NMC method will be made explicit and discussed. Moreover,
some experimental results will be presented for the Aladin limited area model (LAM) (Bubnov4 et al.,
1993 or Radnéti et al., 1995), which is coupled with the Météo France global model Arpége.

Techniques such as the NMC method are used in many NWP centres, but the related formalism and
approximations are not often explicit. The long forecast ranges of the NMC method (for example 12
and 36 hours) are a well known drawback. In the present paper, the analysis step representation will be
shown to be another critical component in the error simulation.
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Some efforts to derive the implicit formalisms have nevertheless been done in the past. For instance,
the formalism of the (standard) NMC method is made explicit and discussed in Bouttier (1994). The
equations are presented in matrix form, and they concern essentially the covariance matrix equation of
the first analysis increment. We propose therefore to explicit the NMC formalism in vector form (which
facilitates e.g. the comparison with the ensemble formalism), and also to extend the discussion to the
addition of several analysis increments (which is usually involved).

The results of the method based on an ensemble of analyses are described in Houtekamer et al. (1996)
and Fisher (2003). A description of the corresponding formalism is presented in Zagar et al.(2004). The
formalism of this approach will be established here in a partly different way, in the sense that it will
be based on the usual BLUE ("best linear unbiased estimator”) equation. Firstly, this facilitates the
comparison with the NMC method. Secondly, this will show that the analysis equation can be applied
to the error fields, even if the prescribed statistics and actual observation operator are not exact.

The formalism of the lagged NMC method will also be made explicit and discussed. It will be
shown that this approach relies strongly on the Arpége/Aladin model differences (without a proper
representation of the initial and lateral boundary uncertainties).

The paper is organized as follows. In section G.2, the equations that govern the evolution of the
model state errors are derived, in particular to highlight the role of the analysis equation. Section G.3
describes the corresponding equations for the evolution of the model state differences in the ensemble
error simulation method. A similar involvement of the analysis equation is in particular pointed out.
Section G.4 deals with the implicit formalism of the standard NMC method. This allows to exhibit the
strong role of the analysis increment equation. The associated formal expectations are then examined
experimentally in section G.5, by comparing the Aladin-France results of the ensemble and standard
NMC methods. In section G.6, the link between the lagged NMC method and the Arpege/Aladin
model differences is examined, and the variance spectra of the three simulation methods are compared.
Conclusions and perspectives are outlined in section G.7.

G.2 The evolution of the model state errors

The equations that govern the evolution of the model state errors (i.e. the analysis errors and the
background errors) will be derived. This will allow later on (sections G.3 and G.4) to explain the different
representations of the analysis step in the ensemble and standard NMC methods. It will be shown that
this analysis step difference contributes much to the experimental differences between the ensemble and
standard NMC techniques in the Arpége/Aladin system (section G.5).

For simplicity, in the forecast and analysis steps, the operators will be considered to be linear. Similar
equations can be derived in a non linear framework, for example by introducing some Taylor developments
(Zagar et al., 2004).

G.2.1 The forecast step
At time t;, the analysis z is an estimate of the true atmospheric state %, with uncertainties that

correspond to the analysis error e}, = =¥, — 2%.

The 6h forecast field a:;;"’l, that is valid at time %;4, = &; + 6h, is then obtained from this initial
condition z%, by integrating in time the forecast model, according to: zj*! = Mzi, where M is the
operator that corresponds to the six-hour evolution which is provided by the forecast model. The true

fields will evolve according to: zit1 = M,x%, where M, is the exact 6h forecast operator. This gives the

following expression for the background errors ejt! = zit! — 2i+1:

et = Mé}, + eit? (G.1)
where ei}! is the six-hour accumulated model error (see e.g. Daley, 1991, page 376) eit! = (M —
M,) zi.

G.2.2 The analysis step

The 6h forecast field xi‘“ will then be used as a background for the analysis at time ¢;,;. The analysis
equation is the equation that transforms the background and observation vectors into the analysis vector:

il = gt L Ky — Hz}t) (G2)
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where y*+! is the observation vector at time ¢;,;, H is the observation operator, and K is the classical
gain matrix, namely K = BHT(HBH?T + R)~1. B and R are the specified spatial covariance matrices
of the background errors and of the observation errors respectively, and the exponent T is a notation for
the adjoint operator.

It is then possible to consider the application of the analysis equation to ! as a background field,
and to y=5} = Hzi*! as an observation vector. The vector y}"; is the projection of this true field onto
the observation space, that is provided by the observation operator H. As the definition of y:"'}} implies

that y:";} — Hz*l = 0, it appears that the analysis equation applies well to the previous two fields:

zit = gt + Kyt — Halth) (G3)

The result K(0) = 0 is valid as K is linear. More generally, this is also the case for a non linear

analysis, if the analysis does not modify the background field, when the observations are exactly consistent
with the background (i.e. when the observation vector is equal to H :c;,"‘1 .

By calculating the difference between the last two equations, it becomes obvious that the analysis

equation is also the equation that transforms the background and observation errors into the analysis
errors (note that the related operators are the same as in equation (G.2)):

et =it + K(eit! — Hejtl) (G4)

where eit! = y™! — yi¥l = y* — Hzl*! is the observation error (which is itself the sum of

the measurement error eitl = yi+l — yi+1, and of the representativeness error eit! = yitl — ity =
yit! — Haitl where yit! is the exact atmospheric state in the observation space).

It may be interesting to notice also that the derivation of the analysis error expression does not require
the assumption that the analysis is perfect: in particular, the gain matrix K may be suboptimal (i.e. the
specified error covariance matrices B and R can be different from the exact ones), and the observation
operator may be erroneous.

G.3 The ensemble simulation method

The ensemble method that has been used e.g. by Houtekamer et al. (1996) and by Fisher (2003} consists
in simulating the evolution of the model state errors. This is realized by introducing and evolving some
perturbations, which have similar statistical features as the error contributions.

This approach may be described formally when considering the difference between two members of
the ensemble, which will be referred to by the indices k and [.

G.3.1 The forecast step

At time t;, two different analyses =} ,,z% ; are available. Their difference is equal to €f =z} , — 2} ;-
Two forecast integrations are performed from these two initial states. Moreover, some model pertur-
bations 671 §i+! may be added, for instance at the end of the 6h forecasts. This provides two 6h forecast

m.k? “m,l A N - N
fids: zit! = Mzt +6°F1 and 234! = M2t | + 671, The difference between these two backgrounds,
A bk N a.k m.k bl a,l m,l
gt = ol — i, reads:
& = Me, +e} (G-5)
a1 ikl _ gl _ skl
with e” = &.7% — 0.5
G.3.2 The analysis step
i+l it

The two different 6h forecast fields may then be combined with two different sets of observations 4,7, 477,
in order to provide two different analyses at time ¢;,4:

i+l _ it i+1 i+l
Tor =Ty + K@ — Hagy

1 _ i+l i+l i+l
oy =oy +K@yT — Haypy)

147



By calcunlating the difference between the last two equations, it appears that the analysis equation
is the very same equation that transforms the background and observation differences into the analysis
differences:

et = et + K(eiH - Hept) (©-6)

where 5! = yi+! —yi*? is the vector of the observation differences. In practice, the two different sets
of observations are obtained by adding two different perturbation vectors 8,4, 854! to the real observation

vector y*+1: gif! =yt + 5050 and g =t 4 5F

The comparison between the equation pairs (G.1), (G.4) and (G.5), (G.6) is interesting: it indicates
that the evolution processes and equations, that affect the ensemble difference fields, are the same as
those of the true error fields.

In addition to this representation of the 6h forecast and analysis effects, some other requirements
are involved, in order to achieve a realistic error covariance estimation. This involves the perturbation
covariances of the observations and of the model. This issue and its implications on the error covariance
estimations are evoked in the appendix.

G.4 The standard NMC method

The NMC method (Parrish and Derber, 1992) computes differences between forecasts that are valid at
the same time, but for different ranges, such as 12 and 36 hours. The 36h forecast may itself be seen as
another 12h forecast, whose initial condition is a 24h forecast, instead of the operational analysis. This
means that the initial differences between these two 12h forecasts correspond to the effect of the four
successive steps of analysis and 6h forecast, which occur during the 24h period.

We propose to write formally the related equations, in order to compare them with the evolution
equations of the errors and of the ensemble differences.

G.4.1 The first assimilation cycle

At time ¢; occurring 30h before the verification time, there will be a first analysis step: the corresponding
analysis increment dz* = 2% — 2} is the first difference that is introduced between the two integrations
that will be compared.

This first analysis increment may be seen as an analysis perturbation &, which is supposed to be an
estimate of the analysis error €:

dat

K(y* ~ Hz})

K(e} — He})

which allows to distinguish the respective contributions of the background and observation errors:

i
2

[ ]

et =-KHe, +K e
This can be compared to the exact analysis error equation (according to equation (G.4)):

ee=(U-KH)ei+Kée
and also to the analysis dispersion equation (following equation (G.6)):

ee=(I~KH) e +K el

The matrices I — KH and K define the respective weights of the background and observation errors,
in the analysis error equation. In the NMC method, the background error weight / — KH is approximated
by —KH.

As discussed by Bouttier (1994), this may be a reasonable approximation if KH ~ [/2. This
corresponds to the case where the observations are very dense (i.e. H ~ I'), and the two error covariances
are approximately the same (R ~ HBHT ~ B). The latter condition means that the observations are
considered to have a similar quality and similar spatial error structures (i.e. similar error variances and
correlations) as the background.
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Nevertheless, in regions where data density i8 poor or where observations have a poor quality, the
amplitude of the analysis increments is likely to be small, while the amplitude of the analysis error is
large.

Moreover, the observation errors are usually much less correlated spatially than the background errors:
the observation error spectrum tends to be white, while the background error spectrum is typically red.
As discussed e.g. by Daley (1991, section 4.5), this implies that the operator KH tends to act as a
low-pass filter. Conversely, the operator / — KH is expected to act as a high-pass filter.

This implies that the analysis increment is likely to be of a larger scale than the analysis error. In
other words, the analysis error correlations are expected to be overestimated by the NMC method.

The NMC analysis perturbation &% will evolve according to the forecast model during six hours, which
will provide a NMC background perturbation £i+!:

g Mé
M dz*

i

G.4.2 The next three assimilation cycles

A second analysis step, which introduces some additional differences, will occur 24 hours before the
verification time. This amounts to considering that a new analysis increment will be added to the
background perturbation (namely ej*! = Mei = Mdxz?), in order to produce the following analysis
perturbation:

el = Mda' +dzit!
= e L K(eit! - Hei™)

This last equation indicates that, in the evolution of the NMC perturbations, the representation of
the analysis effect consists in adding the analysis increment to some earlier increments (for instance
£i*! = Mdz* in the current case). This differs from the ensemble method, for which the representation
of the analysis effect consists in epplying the analysis equation to the perturbations £, c,.

After the fourth analysis, the final NMC analysis perturbation is as follows:
gits £43 4 doi+3
M3dzt + M2dx*! + Mdai+? 4 dzit3
where M7 is the operator that corresponds to the forecast evolution during a period of j x 6 hours.
£5t3 corresponds to the 00h-24h differences.
The final 12 hour evolution of the fourth analysis perturbation reads:

|

+5 _ pr2 i+3
gy =M=}

G.4.3 The three specific components of the NMC method

In order to interprete the observed differences between the ensemble and NMC methods, one may therefore
compare the following two synthetic equations. They summarize how the forecast differences (e.g. at
time i + 5) are obtained, respectively in the ensemble and NMC methods:

i+5 _ pr itd
g =M e,

4
gt =M? () M* doiti1)
g=1
These two equations allow to identify the main three specific components of the NMC method,
compared to the ensemble method:

¢ the involvement of longer forecast ranges (see the occurrence of the matrices M2, M4~ instead of
the 6h matrix M);

e the accumulation of several increments (see the occurrence of the operator }_);
¢ the involvement of analysis increments dz, instead of analysis differences &,.

The respective contributions of these three components will be diagnosed experimentally in the next
section.
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G.5 Analysis ensemble against the standard NMC method: ex-
periments

In this section, the results will be focused on the differences regarding the correlations and the contri-
butions of different scales. This will illustrate the importance of the analysis step differences. The total
variances will be presented later on in section G.6.3.

G.5.1 The Arpége/Aladin experiments

The results of the standard NMC method are compared to the results of the ensemble method over
a 48 days period (04/02/2002-23/03/2002), using fields valid at 12 UTC. The Aladin ensemble data
set has been obtained in two steps. Firstly, an ensemble of Arpége global assimilation cycles has been
performed in a perfect model framework (in accordance with the formal description in section G.3, and
with &,, = 0). The second step is the production of the ensemble of Aladin 6h forecasts, with initial
conditions and boundary conditions provided by the Arpége ensemble.

The Arpége assimilation system is a four-dimensional variational data assimilation (4D-Var) scheme
(Veersé and Thépaut, 1998). The Arpége experiments have been done with its stretched version (i.e. the
resolution is not uniform over the globe). The stretching factor is equal to 3.5, the truncation is T298,
and there are 41 vertical levels. The Aladin model was integrated over the Aladin-France integration
domain. The main geometrical characteristics for the Aladin-France integration domain are as follows:
there are 41 vertical levels, the domain is square with lengths equal to L,=L,=2850 km, and the number
of grid points in each direction is J=K=300; the grid resolution is thus dz=36y=9.5 km and the spectral
truncation corresponds to M=N=149 (M, N being the maximum wave numbers in each direction).

G.5.2 Comparison between the two final statistics

The respective error correlation spectra and correlation length scales, provided by the ensemble and
(standard) NMC methods, are shown in figure G.1. The correlation spectra are the variance spectra
normalized by the total variance: they allow to compare the respective contributions of the different
scales to the shape of the correlation functions.

The ensemble approach appears to provide error spectra that are shifted towards the small scales. As
expected, this leads to smaller correlation length scales. The situation is nevertheless the opposite for the
first 10 to 15 highest levels (near the tropopause and in the stratosphere). In particular, for temperature
in the stratosphere, the ensemble method does not show the (unexplained) length scale decrease of the
NMC method.

Moreover, the length scale differences are more pronounced for a large scale variable such as temper-
ature, than for a small scale variable such as divergence. This is related to the larger differences in the
large scale part of the correlation spectra.

The larger emphasis on the small scale contributions (by the ensemble method) is consistent with the
results of Fisher (2003) over the globe, in which the NMC overestimation of the large scale contributions
was attributed to the long forecast ranges.

On the other hand, another explanation of the observed discrepancies between the ensemble and
NMC methods could be the difference in the representation of the analysis effect.

G.5.3 Diagnosis of the three elementary contributions in the NMC method

The section G.4 has shown that the NMC method involves three main components: the analysis incre-
ments, their accumulation, and their time evolution.

In order to diagnose the respective influences of these three ingredients, some correlation spectra have
thus been examined at different stages of the two simulation techniques for surface pressure (figure G.3).
The uninitialized Arpége fields (projected onto the Aladin grid) have been used for the comparison, in
order to concentrate on the specific effects of the different steps of the NMC method. Moreover, it may
be noticed that the typical NMC/ensemble contrast for the Aladin spectra (top left panel of figure G.1)
matches well with the contrast for the corresponding Arpége spectra (figure G.2).

The top left panel of figure G.3 allows to compare the spectrum of the ”final” 36h-12h differences with
the spectrum of the "initial” 24h-00h differences. The difference between these two spectra corresponds
to the 12h evolution of the initial differences. This 12h evolution implies a slight increase of the relative
contribution of the largest scales (at the expense of the contribution of the smaller scales).
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{a) Horizontal cormetation spectra of surface pressure (b) Horizontal comelation spectra of vorticity at level 29
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Figure G.1: The error correlation spectra (top panels) and the correlation length scales (bottom
panels), for the Aladin standard NMC differences (full lines), and for the Aladin background
ensemble differences (dotted lines). The model level 29 is located around the 775 hPa pressure
level.
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Horizontal comelation spectra of surface pressure
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Figure G.2: The Arpége NMC correlation spectrum (full line) compared to the Arpége back-
ground ensemble correlation spectrum (dotted line).

The "initial” 24h-00h differences (which were described as the NMC analysis perturbations £:+3 in
section G.4.2) are themselves the result of the accumulation of four successive analysis increments, of
which the first three evolve in time:

g3 24__1 MA—idyiti—1
M“I’da:i + M2dgitt + Mdzit2 +dzi+3

It is therefore interesting to diagnose the effect of the successive forecast evolutions of the first three
analysis increments. This has been done by plotting the spectrum of the sum of the four analysis
increments:

4
Z d$i+j_1 - da:i + d$i+1 + d$i+2 + d$i+3
=1
which amounts to replacing the forecast evolution matrices M*—7 by the identity matrix.
The spectrum of the 24h-00h differences and the spectrum of the sum of the four analysis increments
are presented in the top right panel of figure G.3. It appears that the evolutions of the (first three)

increments contribute mostly to a slight enhancement of some intermediate large scales, corresponding
to wave numbers between 4 and 20.

It is also possible to compare the spectrum of the increment sum E;___l dz*+3-1 with the specific
spectrum of each increment dz*+7—1. It appears (not shown) that the four increment spectra are very
similar to each other, and that they are also close to the spectrum of the increment sum. Nevertheless, it
may be mentioned that there is a slight enhancement of the contribution of the largest scales when the
four increments are accumulated.

The bottom left panel of figure G.3 allows to visualize the total effect of the forecast evolutions and of
the analysis increment accumulation. This panel represents indeed the respective spectra of the 12h-36h
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Figure G.3: The error correlation spectra of the following Arpege fields: (a) the 12h-36h NMC
differences (full line) and the 00h-24h NMC differences (dotted line); (b) the 00bh-24h NMC
differences (full line) and the sum of the four (NMC) analysis increments (dotted line); (c) the
12h-36h NMC differences (full line) and the first (NMC) analysis increment (dotted line); (d)
the first (NMC) analysis increment (full line) and the ensemble analysis differences (dotted line).
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forecast differences, and of the first analysis increment dx®. As expected, the forecast evolutions and the
increment accumulation imply an increase of the large scale contributions globally, compared to the small
scale contributions. On the other hand, the relative contributions of some small wave numbers (such as
3 and 4) are slightly reduced, and the global differences between the two spectra are less strong than in
figure G.2.

It appears then interesting to compare (bottom right panel of figure G.3) the analysis ensemble
spectrum with the first analysis increment spectrum dz* (of the NMC method). The discrepancy between
these two curves corresponds to the influence of the differences (between the two simulation techniques)
in the analysis effect representation.

The increment spectrum appears to be of a much larger scale than the analysis ensemble spectrum.
This is consistent with the formal expectation that the correlations of the analysis increment are an
overestimation of the analysis error correlations (see section G.4.1).

The first step of the NMC method, which relies on the first analysis increment, thus already empha-
sizes much more the large scale features than the ensemble method. Now, the contrast between the two
related spectra is similar to what is observed in figure G.2, which confirms the importance of the analysis
representation difference between the two simulation techniques.

To summarize, firstly, it appears that all the three NMC specific ingredients contribute to the increased
emphasis on the large scales in the NMC method. Secondly, the different representations of the analysis
step appear to be the strongest contribution to the scale differences between the two simulation techniques.

G.5.4 The evolution of spectra during an analysis step

The influence of the analysis effect representation can be confirmed by examining what happens during
the second analysis step of the NMC method. The left panel of figure G.4 shows the variance spectrum
of the first increment after its six-hour evolution, namely Mdz*®, and its modification when adding the
second analysis increment dz**!. It appears that the addition of this second increment implies a general
increase of the variances (which is somewhat stronger in the large scales than in the intermediate scales).

There is a strong discrepancy between this variance increase and the modification of the variance
spectrum of the background dispersion during the analysis step (in the ensemble method) (right panel of
figure G.4). The analysis contributes to a decrease of the large scale dispersion, which implies a reduction
of the large scale contributions.

The latter result is consistent with the expectation that the analysis process uses the observations to
reduce the amplitude of the large scale part of the background errors.

In other words, the large scale NMC/ensemble differences are related to the following different evolu-
tion processes: the NMC method is strongly based on the analysis increments (and on their accumulation
and evolution), while the ensemble method is rather simulating the error reduction during the analysis
step.

G.6 The lagged NMC method

G.6.1 Description of the method

A variant of the standard NMC method has been used by Siroka et al. (2003), in order to derive
background error covariances for the Aladin model. This variant has been called the lagged NMC method.

The difference from the standard NMC method concerns the lateral boundary conditions (LBCs)
and the initial condition (IC) of the ”fresh” 12h forecast integration. Instead of the usual operational
("fresh”) fields, the LBCs and the IC of the 12h forecast correspond now to some fields that are derived
from the ”old” 36h forecast integration.

More precisely, the LBCs of the 12h forecast are taken as being identical to those that are used during
the last 12 hours of integration of the 36h forecast. Moreover, the IC of the 12h forecast is now taken as
being the coupling field that is involved in the 36h forecast, at the corresponding time (i.e. for the time
ty = tp + 24h, where 13,1, are the respective starting dates of the 36h and 12h forecast integrations). A
digital filter initialization (DFI) (Lynch and Huang, 1992, and Lynch et al., 1997) is then applied to this
coupling field, before the Aladin 12h forecast integration itself.

Compared to the standard NMC method, the implied forecast differences appeared to have some
similar variances in the small scales, but much smaller variances in the large scales (see top panels in
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Figure G.4: (a) The evolution of the variance spectra during an analysis step, in the NMC
method. This panel shows the variance spectrum of M. dz* (full line ; this is the first increment,
after its six hour evolution), and its modification when adding the second analysis increment
dzi+! (dotted line). (b) The evolution of the variance spectra during an analysis step, in the
ensemble method. This panel shows the variance spectra of the background differences (full
line) and of the analysis differences (dotted line).
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(a) Horizontal variance specira of surface pressure {b) Horizontal variance spectra of vorticity at level 29
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Figure G.5: Top panels: the error variance spectra for the standard (full lines) and lagged (dotted
lines) NMC methods, and for the 24 hour Arpége/Aladin differences (dash-dotted lines). Bottom
panels: the variance spectra of the 24 hour (full lines) and 6 hour (dotted lines) Arpége/Aladin
differences.
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figure G.5).

G.6.2 The link with the Arpége/Aladin model differences

In this section, it will be shown that the lagged NMC method is closely related to the Arpége/Aladin
model differences (although this was not explicit in the original description of the lagged NMC method).

The new IC of the 12h forecast x%4? is indeed simply the Arpege 24h forecast x5,”, interpolated onto
the Aladin grid, and initialized by digital filters:

284 = N2DH 257
where M is the Aladin 6h forecast operator, L is the DFI operator, and H is the interpolation
operator of an Arpége field onto the Aladin grid.

By contrast, the 36h forecast zgy! can be seen as another 12h forecast integration, whose IC is an
Aladin 24h forecast 33

3t = B o3
In other words, the final forecast differences correspond to the 12h forecast evolution of some initial

differences, which are the differences between an (initialized) Arpége 24h forecast and an Aladin 24h
forecast:

ald ald _ x12 (] OTP ald
zly — 3¢ = M® (DH 257 — z37)

This means that the initial differences are caused by the differences between the Arpége and Aladin
models (which are accumulated over a period of 24 hours):

DH %P — 2318 = (DAM* — M*DH) z2'®

where M is the Arpége 6h forecast operator.
Viewing the final forecast differences as being closely related to the Arpege/Aladin model differences
may help to interpret some features of the lagged NMC method.

In particular, the correlation spectra of the lagged NMC method are shifted towards the small scales,
compared to those of the standard NMC method. This is consistent with the fact that the Arpége/Aladin
forecast differences are likely to reflect, to a large extent, the small scale structures that are represented
by Aladin, and not by Arpege.

This appears to be confirmed by the examination of the variance spectra of the differences between
the (initialized) Arpdge 24h forecast and the Aladin 24h forecast (top panels of figure G.5): the large
scale variances are much smaller than those of the standard NMC method.

The final 12h forecast integration does not appear to change much the initial variance spectra (except
for a small decrease of variance at all scales). This suggests that the essential ingredient of the lagged
NMC method is indeed the Arpége/Aladin model differences.

The variance spectra of the Arpege/Aladin 24h differences were also compared to those of the
Arpege/Aladin 6h differences (bottom panels of figure G.5). The two additional 18h integrations ap-
pear to increase the large scale variances, while the small scale variances remain similar.

G.6.3 Comparison between the statistics of the three techniques

The variance spectra of the following three error simulation techniques can be compared: the ensemble
method, the standard NMC method, and the lagged NMC method (top panels of figure G.6). The spectra
of the ensemble method appear to be intermediate between those of the two other estimation techniques.

The smaller amplitude of the ensemble large scale variances, compared to the standard NMC method,
is consistent with a more accurate representation (in the ensemble approach) of the influence of the
analysis step and of the short forecast ranges (namely six hours).

Moreover, the larger amplitude of the ensemble large scale variances, compared to the lagged NMC
method, is consistent with the representation (in the ensemble approach) of the IC and LBC uncertainties.
By contrast, the lagged NMC method is in fact based on two assumptions. Firstly, the LBCs are assumed
to be perfect. Secondly, the IC uncertainties are assumed to be small: the Arpége and Aladin 24h forecasts
are based on the same Arpége analysis, and the small Arpege/Aladin 24h forecast differences may be
seen as approximating some rather small IC uncertainties for the additional Aladin 12h forecast.
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(a) Horizontal variance spectra of surface pressure {b) Horizontal variance specira of vorticily at leve! 29
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Figure G.6: The error variance spectra (top panels) and the correlation length scales (bottom
panels) for the Aladin standard (full lines) and lagged (dotted lines) NMC methods, and for the
Aladin background ensemble (dash-dotted lines).
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(a) Verlical profiles of standard deviation for temperature (b) Vertical profiles of standard deviation for divergence
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Figure G.7: The vertical profiles of the standard deviations for the Aladin standard (full lines)
and lagged (dotted lines) NMC methods, and for the Aladin background ensemble (dash-dotted
lines).
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The vertical profiles of the length scales (bottom panels of figure G.6), and of the total standard
deviations (figure G.7), can be examined also. The results are consistent with the variance spectra: the
ensemble results appear to be intermediate between those of the two NMC methods. The contrasts are
more pronounced for a large scale variable such as temperature, than for a small scale variable such as
divergence.

G.7 Conclusions and perspectives

An analysis ensemble approach has been compared, formally and experimentally, with two other error
simulation techniques. A formal examination of the model state error evolution has been done first, with
respect to the influence of the analysis and forecast steps. It appeared in particular that the analysis
equation is the very same equation that transforms the background and observation errors into the
analysis errors. This is the case, even if the specified covariance matrices are suboptimal, and even if the
observation operator is imperfect.

This allows to notice some strong similarities with the evolution of the ensemble differences, in
the ensemble technique. It can be shown that the analysis equation is the equation that transforms
the background and observation perturbations into the analysis perturbations. This suggests that the
influence of the analysis step is well represented in this ensemble technique.

By contrast, the representation of the analysis step can be shown to be inaccurate in the standard
NMC method. Indeed, this estimation technique relies essentially on the accumulation and the evolution
of some analysis increments. Two results confirm that this process of analysis increment accumulation is
not a good approximation of the analysis process.

Firstly, the filtering properties of the gain matrix K imply that the analysis increment is expected
to be of a larger scale than the analysis error. This is supported experimentally by the comparison with
the analysis dispersion spectrum. Moreover, this difference appears to be one of the main contributions
to the larger scale spectra in the NMC method (compared to the ensemble method).

Secondly, another related experimental result is that the analysis increment accumulation implies an
increase of variance for all scales, while the analysis process contributes to a decrease of the large scale
dispersion (as expected in particular over a data rich region such as the Aladin-France domain).

The representation of the initial errors and of the analysis effect is even more poor in the so-called
lagged NMC method. This variant appeared in fact to be closely related to the Arpége/Aladin model
differences. This suggests that some ingredients of the lagged NMC method, such as the latter model
differences, may rather be used in order to estimate the contributions of some of the involved model
errors. The close link between the lagged NMC method, and the Arpége/Aladin model differences, also
explains why the implied forecast difference spectra are shifted towards smaller scales.

The variance spectra of the Aladin background errors provided by the ensemble method were com-
pared to those of the other two techniques. The ensemble spectra were found to be intermediate. Com-
pared to the lagged NMC method, the amplitudes of the large scale variances are increased: this is
consistent with the representation, in the ensemble method, of the influence of the initial and lateral
boundary conditions uncertainties. These large scale ensemble variances are however smaller than those
of the standard NMC method: this is consistent with the more accurate representation (in the ensemble
approach) of the analysis step and of the short forecast ranges.

Due to this accurate representation of the analysis and forecast effects, the ensemble method will be
used to specify the corresponding error statistics of the Aladin 3D-Var. The latter may include a term
which will control the distance to the Arpege analysis (Bouttier, 2002).

Moreover, these Aladin 3D-Var analyses will allow to compare the Aladin background and the Arpege
analysis with the available observations. This will also give the possibility to calculate the corresponding
departures of the two model states from observations. The statistics of these departures, and more
generally, the use of a posteriori diagnostics (e.g. Desroziers and Ivanov, 2001, Sadiki and Fischer, 2005)
may also provide some complementary estimates of the error statistics.

The introduction of model perturbations may help to increase further the realism of the ensemble
simulation. In a forthcoming publication, a first step towards this will be described, which relies on a
detailed examination of the Arpége/Aladin model differences.
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Finally, the present study deals with some time- and space-averaged error covariances. Time- and
space-dependent features may be explored in the future, e.g. by integrating a larger number of ensemble
members, and/or for instance by relating the error structures to the background field structures. More-
over, it may be particularly attractive to use wavelets in this context, both on the globe (Fisher, 2003)
for Arpége and in a limited area (Deckmyn and Berre, 2005) for Aladin: this would allow to diagnose
and to specify the local error structures.
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G.9 Appendix: design of the observation and model perturba-
tions in the analysis ensemble approach

The evolution of the model state errors and of the ensemble differences have been examined in sections
(.2 and G.3. The ensemble approach may thus be summarized as follows, e.g. in the perfect model case.

The forecast model is applied to e.g. two perturbed analyses, which provides two backgrounds for
the next analysis time. The analysis scheme is then applied to these two perturbed backgrounds, and to
two sets of perturbed observations. This provides two new perturbed analyses, and so on. This process
ensures that the ensemble perturbations evolve in a similar way as the model state errors.

Beyond this representation of the 6h forecast and analysis effects, some additional choices are intro-
duced, in order to achieve a realistic error covariance estimation.

If one drops the time index notation, the equation of the analysis error can be expressed as follows:

es = (I— KH)ep, + Ke,

where 1 is the identity matrix. This implies the following expression for the associated exact error
covariance matrices, namely the analysis error covariance matrix A, = e,(e,)7, the background error
covariance matrix B, = e,(e,)7 and the observation error covariance matrix R, = eo{eo)T (if es(€0)T =0,
where the overbar corresponds to an ensemble average):

A, =(I-KH)B,(I-KH)T + KR KT

Similarly, the equation of the analysis ensemble difference (between two members) is the following:

e = (I—-KH)e, + Ke,

which implies the following expression for the associated ensemble difference covariance matrices
A, =g4(€4)T, Be = &5(e5)T and R, = £,(e,)T (if eu(e0)T = 0):

A, =(I-KH)B.(I- KH)T + KR KT (G.7)

In practice, the two sets of observation perturbations are obtained as random realizations of the Gaus-
sian probability distribution function (pdf) whose mean is zero, and whose covariance matrix corresponds
to the specified observation error covariance matrix R:

60,]:; ’So,l ~ N(O) R)

i.e. 60']5((50,]‘)’1' = 6011(60‘1)T = R.
These two random realizations are uncorrelated, which implies that the covariance matrix of the
observation difference £, = §, x — 85,1 is equal to twice the specified covariance matrix R:

R, £ol€0)”
60,1«:(60,]:)’1‘ + 60,! (Jo,l)T - 6o,k(60,l)T - Jo,l(éo,k)T
2R

If the specified observation error covariance matrix R is a good approximation of the exact observation
error covariance matrix R,, namely R =~ R,, then one obtains:

HoH

R.=2R. (G.8)

Similarly, the background difference ¢, can be seen as the difference between two background per-
turbations (that are relative to an unperturbed background zp): 8px = Tk — Zb, 01 = Tp1 — T, and
€ = Op,k — Ob,1-

If these two background perturbations are uncorrelated, and if their spatial covariances are those of
the exact background error covariance matrix B,, then the covariance matrix of &, will be twice the exact
error covariance matrix:

B, = Eb(sb)T =2B. (G.9)
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By replacing these expressions of R, and B in the equation (G.7), one obtains:

A.=2A, (G.10)

In other words, the covariances of the analysis ensemble differences are expected to be equal to twice
the covariances of the analysis errors.

As shown above for the observations, the factor 2 results from the construction of perturbations that
are mutually uncorrelated (between different members), and whose (spatial) covariances are made to
approximate the error covariances.

A similar principle applies to the possible model perturbations &,,: the specific model perturbation

Ok of a given member k should ideally be mutually uncorrelated with the model perturbation of any
other member, and e.g. its variance should approximate the variance of the model error e,,,.
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Appendix H

The evolution of dispersion spectra and the evaluation of model differences
in an ensemble estimation of error statistics for a limited area analysis
(paper accepted by Monthly Weather Review)
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! National Meteorological Administration, SMDCA, Bucharest, Romania
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ABSTRACT

An ensemble of limited area forecasts has been obtained by integrating the Aladin
limited area model, in cold-starting mode, from an ensemble of Arpége global analyses
and forecasts. This permits error covariances of the Aladin six hour forecast and of the
Arpége analysis to be estimated. These two fields may be combined in a future Aladin
analysis.

The evolution of dispersion spectra is first studied in a perfect model framework. The
Arpege analysis reduces the large scale dispersion of the Arpége background, by extract-
ing some information from observations. Then, the digital filter initialization reduces
the small scale dispersion, by removing the noise caused by interpolation of the Arpége
analysis onto the Aladin grid. Finally, the Aladin six hour forecast strongly increases the
small scale dispersion, in accordance with its ability to represent small scale processes.

Some model error contributions are then studied. The variances of the differences
between the Aladin and Arpége forecasts, which are started from the same Arpége anal-
ysis, are smaller scale than the Aladin and Arpége perfect model dispersions. The small
scale part of these Arpége/Aladin model differences is shown to correspond to structures
that are represented by Aladin and not by Arpege. Therefore, this part may be added
to the Arpege analysis dispersion. The residual large scale part is more ambiguous, but
it may be added e.g. to the Aladin dispersion: this may reflect some effects of the cou-
pling inaccuracies, and strengthen (in a future Aladin analysis) the use of the large scale
information from the Arpége analysis.
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H.1 Introduction

In data assimilation, a short range forecast (known as background) is often used as a source
of information in addition to observations. The typical range of this forecast is six hours (6h),
or even one hour for some regional assimilation schemes. Moreover, the background error co-
variances are used to filter and propagate the observed information. However, estimating the
forecast errors is not trivial, because the true atmospheric state is never exactly known. An
ensemble method has been proposed by Houtekamer et al. (1996). This method relies on the
time evolution of some perturbations, that are constructed to be consistent with the involved
error contributions. There are three basic steps or components that can be involved in the
time evolution. First, the analysis scheme is applied to some perturbed observations and to
a perturbed background, which provides a perturbed analysis: this simulates the effect of the
two information errors (namely the observation errors and the background errors) and of the
analysis equation on the initial state uncertainties. Secondly, the perturbed analysis leads to a
perturbed forecast, by using the forecast model integration: this aims to reproduce the effects of
the atmospheric processes on the evolution of analysis errors into forecast errors. Thirdly, some
model perturbations may be added, to reflect the effect of the model errors: this can be done
either explicitly at the end of the forecast (or even during the forecast), or implicitly by using
different model versions for the different members of the ensemble.

This kind of approach has also been applied at ECMWF by Fisher (2003), using the first
two components only, i.e. without adding some model perturbations (partly due to the lack of
knowledge about model errors); this version of the method has also been tested at Météo France
(Belo Pereira and Berre 2006), to derive statistics for the global model Arpége (Courtier et al.
1991). A similar approach is also presented in Buehner (2005).

While this ensemble method has been used previously for global models, we propose to
consider its possible applications in the context of a limited area model. The involved limited
area model is Aladin (Bubnovi et al. 1993, or Radnéti et al. 1995), which is coupled to the Météo
France global model Arpége. The Aladin model is integrated to provide a dynamical adaptation
of large scale fields to topography and to other surface characteristics at high resolution. The
integration is currently based on a cold-starting mode. This means that its initial condition is
basically supplied by the Arpége analysis. An ensemble of Aladin forecasts can thus be produced,
with initial conditions and boundary conditions provided by an Arpége ensemble.

There are three main aspects of interest in the experimental results of this ensemble method.
The idea is first to study how the ensemble dispersion evolves, through the different steps of the
Arpége/Aladin integration. The first step of an Aladin integration is a global Arpége analysis,
which is itself a combination of an Arpége 6h forecast with some recent observations. This
analysis is then interpolated onto the Aladin grid. This is followed by a digital filter initialization
(DFI) (Lynch and Huang 1992) to remove imbalances introduced by the interpolation (Lynch
et al. 1997). Finally, a forecast is obtained by integrating the Aladin model, with boundary
conditions provided by the Arpége model. In order to understand the statistical features of
the Aladin forecast dispersion, it is natural to examine how the dispersion changes through the
successive aforementioned processes.

A second point of interest is to study the differences between the Aladin forecasts and
the Arpége forecasts that are started from the same Arpége analysis field. This is interesting
in itself and also concerning some possible model error representation. Indeed, as mentioned
previously, model errors are sometimes simulated by integrating different numerical weather
prediction (NWP) models or different versions of a NWP model (e.g., Errico et al. 2001). Thus,
it seems interesting to examine the differences between the two NWP models that are involved
here, namely the global (low resolution) coupling model (Arpége) and the limited area (high
resolution) coupled model (Aladin).

A third issue is the possibility, offered by the ensemble approach, to estimate and compare
the error statistics of the Arpége analysis (over the Aladin domain), with the error statistics of
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the Aladin forecast. Generally, the global model analysis is thought to be particularly accurate
in the large scales, while the limited area forecast tends to be considered to be especially useful
in order to provide some small scale information. This general idea is evoked e.g. when trying
to design a limited area analysis that accounts both for a limited area model forecast and for an
available global analysis (Gustafsson et al. 1997, Brozkova et al. 2001, Bouttier 2002).

The paper is organized as follows. Section H.2 gives a short description of the data set
and of notations. In section H.3, the evolution of the dispersion spectra is studied, through
the successive basic steps of an Aladin integration. Section H.4 deals with the evaluation and
decomposition of the Arpége/Aladin model differences. In section H.5, the implications for the
specification of the error statistics of the Aladin forecast and of the Arpége analysis are discussed.
Conclusions and perspectives are summarized in section H.6.

H.2 Description of the data set

The ensemble statistics were computed over a 48 days period, from 4 February 2002 until 23
March 2002. A two-member Aladin ensemble was obtained as follows. First, a two-member
ensemble of Arpége assimilation cycles was produced. Each of these two cycles was then used as
a source of initial and boundary conditions for the corresponding Aladin experiments. Therefore,
the Arpége ensemble is first briefly described, and then the features of the Aladin integrations
are presented.

H.2.1 The Arpége ensemble experiment

The Arpége perturbed analysis and first guess fields were taken from two independent assim-
ilation cycles (Belo Pereira et al. 2002). The basic steps of the Arpége ensemble experiment
simulate the time evolution of the Arpége uncertainties, during the data assimilation cycle and
in a perfect model framework. Starting from a perturbed analysis that is valid at time #g, a
perturbed 6h forecast (valid at time ¢; = ¢y + 6h) is obtained by integrating the Arpége model.
A perturbed analysis that is valid at time #; is then obtained by applying the analysis scheme
to the perturbed background and to the perturbed observations. The observation perturbations
are constructed as random values, which have a Gaussian distribution with a mean equal to zero
and a variance equal to the assumed variance of observation errors. The analysis perturbations
will thus result from the background and observation perturbations and from the analysis equa-
tion. Each perturbed analysis is then integrated in time to provide a perturbed 6h forecast that
is valid at time t; = t; + 6h. These basic steps are repeated during successive analysis/forecast
cycles.

The very first initial state of the two Arpige experiments is the operational analysis that is
valid on 31 January 2002 at 18 UTC: it is therefore the same for the two members, which means
that there are no background differences on 1 February 2002 at 00 UTC, at the beginning of the
ensemble experiments. The amplitudes of the background differences then grow during the first
days, but typically stabilize after three days. Therefore, the period of the data set over which
the statistics are calculated starts after this preliminary three days period.

The configuration of the involved Arpége system is based on the operational version of the
Arpége model. The corresponding grid is not uniform. It is stretched by a factor ¢, in order to
obtain a higher resolution over the European area than over the rest of the globe (Courtier and
Geleyn 1988). The stretching factor is equal to ¢ = 3.5, and the spectral truncation is T298,
which leads to a grid length of about 19 km over the Aladin-France area. There are 41 vertical
levels, and the model top is at 1 hPa. The analysis is provided by a four-dimensional variational
data assimilation (4D-Var) scheme (Veersé and Thépaut 1998). The assimilated observations
are surface pressure from SYNOP, temperature and wind from aircrafts, temperature, wind
and humidity from soundings (TEMP radiosondes and PILOT messages), ATOVS AMSU-A
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and HIRS cloud-cleared radiances, and atmospheric motion vectors from SATOB. Marginal (in
number) data also come from drifting buoys and 10 m wind observations over sea.

H.2.2 The Aladin integrations and data

In order to obtain an Aladin ensemble, one Aladin 6h integration has been performed in cold-
starting mode, from each of the two members of the Arpége ensemble, and for each date of the
48 days period, at 06 UTC and at 12 UTC. The results are similar at 06 UTC and 12 UTC, and
they will be shown for fields valid at 12 UTC mostly.

Two additional Aladin members have also been generated (from two other Arpége members),
and it has been verified that their time-averaged statistics are quite similar to those of the first
two members. This test confirms that the statistics are already stable with the first two members,
whose statistical features will be shown in this paper.

The basic steps of an Aladin integration are the following. The Arpége analysis is first inter-
polated onto the Aladin grid: the Arpége fields are interpolated horizontally (by a twelve points
quadratic interpolation; the interpolation points are the twelve nearest points of a 4x4 stencil,
which means that the four corner points are not used), and then vertically (in a linear way as a
function of pressure) to account for changes in surface pressure (which are induced by changes in
the orography). A DFI is applied afterwards. This provides the limited area initial state. Then
numerical integrations of the Aladin model are forced by lateral boundary conditions, which are
interpolated Arpége forecasts (obtained simply from the Arpége integrations, after the analysis).

These steps were applied to derive a two-member Aladin ensemble from a two-member Arpége
ensemble. The interpolation and initialization procedures were also applied to the Arpége 6h
forecast fields, for diagnostic purposes. The Aladin model was integrated over the Aladin-France
integration domain. The main geometrical characteristics for this integration domain are the
following: there are 41 vertical levels as in Arpége (with the model top at 1 hPa), the domain is
a square with sides of length L;=L,=2850 km, and the number of grid points in each direction
is J==K =300; the grid resolution is thus dz=4y=9.5 km and the spectral truncation corresponds
to M=N=149 (M, N being the maximum wave numbers in each direction). The basic physics
and dynamics are the same as in Arpege.

The time-averaged variance spectra of four variables (divergence, vorticity, temperature and
surface pressure), at four model levels (13, 22, 29 and 41), were studied for several types of state
differences which are listed in section H.2.3. The humidity statistics have not been examined,
but they will be the subject of a future study. The ranges which have been studied are Oh and
6h. The model level 13 is located around 225 hPa pressure level, model level 22 corresponds to
aproximatively 535 hPa pressure level, model level 29 is located around 775 hPa and model level
41 is located near the surface. The main results will generally be illustrated by the variance
spectra of a small scale variable, namely vorticity at level 29, and of a large scale variable,
namely the logarithm of surface pressure (in the remainder of the text it will be referred to as
surface pressure). In addition, the vertical profiles of standard deviation for temperature and
divergence will be studied in section H.3, and also partly in section H.4 for the Arpége/Aladin
model differences.

H.2.3 Notations and terminology

Section H.3 presents results of the Arpége/Aladin assimilation ensemble experiment in a perfect
model framework. This allows the contributions of initial condition errors to be simulated under
the assumption that models are perfect. Section H.4 deals with a study of 6h accumulated
Arpége/Aladin model differences. The corresponding contributions to model errors are discussed
farther in section H.5. Initial condition and model error contributions are added in section H.5
to provide total error variance estimates, for the Aladin background and also for the Arpége
analysis. The corresponding notations will be summarized here.
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CONTRIBUTIONS OF INITIAL CONDITION ERRORS (IN A PERFECT MODEL FRAME-
WORK)

In section H.3 the time-averaged variances of differences between the two members k and ! will
be shown at different stages of the Aladin ensemble experiment, such as for the initial state:

V(ed™) = V(&P (k) — 25 (1)) (H.1)

where for member k for example, the initial state xﬁr’"(k) is the Arpége analysis, interpolated
onto the Aladin grid, and initialized by DF1:

Z¥P(k) = D P X°P(k) (H.2)

a T (k) is the Arpége analysis field over the globe (for member k), P is the interpolation operator
onto the Aladin grid, and D is DFL z3'"* will be refered to as the initialized Arpége analysis.
Similarly, the variances of the Aladin 6h forecast differences correspond to:

V(edd) = V(2@ (k) — z(l)) with z@d(k) = MY 22 (k) = M®¢ D P XZP(k) (H.3)

where M ¢ is the Aladin 6h forecast operator. The variances of the differences between the
Aladin 6h forecasts will be compared in particular to the variances of the differences between
the initialized fields of (interpolated) Arpége 6h forecast:

V(™) = V(i (k) — 2P (1)) with =3P (k) =D P M X2 (k) (H.4)

where M *'? is the Arpége 6h forecast operator. xgrpi will be refered to as the initialized Arpége
6h forecast (or background). Note that the initialization of the Arpége field is indicated by the
letter ¢ in the super-script arpi. This is introduced to distinguish these fields from the variances
of the uninitialized Arpége fields (which will also be studied at the beginning of section H.3),
namely:

V(2P) = V (22P(k) — z2P(l)) with z2P(k) = P X%"P(k) (H.5)
V(2?) = V(zPP(k) — z2(l)) with z2P(k) = P M*P X2P(k) (H.6)

CONTRIBUTIONS OF MODEL ERRORS

In section H.4, the time-averaged variances of the differences between the Aladin and (initialized)
Arpége 6h forecasts (noted by E‘,’,.ld—“m), which are started from the same Arpége analysis field

(i.e., differences between the Aladin and Arpége forecasts which belong to the same member),
will be studied:

V(emd=o) = V(zpl — zp) = —;-[ V(z§i4(k) — zp (k) + V(=g (1) — =57 (1)) ]
with zf4(k) — i (k) = (M*?DP — DPM*?)X2"P(k) (H.7)

For simplicity, all operators have been assumed to be linear. The model difference expression
Me4pP — DPMOP indicates that 2% P corresponds to 6h accumulated differences between
the Aladin and Arpége models. The examination of such model differences is similar to the
approach in Errico et al. (2001) for instance.

Cohn and Dee (1988, page 592, equation (2.6c)) and Dee (1995, page 1131, equation (5)) also
discuss the estimation of model error by using model differences. While a projection operator
of a low-resolution to a high-resolution representation is used in our study, these two references
present a similar approach in which a projection in the opposite direction (i.e., a truncation
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operator transforms a high-(or infinite-) resolution representation to a lower resolution repre-
sentation) is performed.

In practice, the respective model differences statistics for members k and ! are very similar to
each other as expected (since they describe the basic differences between the Arpége and Aladin
integrations, independently from the details of their initial conditions). They were averaged to
formally greserve an equal statistical weight for both members in the examined statistics.

V (247 will also be compared with V(z84) and with V (zJ"), which are variances of
the full forecast fields. As for V(e ~47P) they are calculated as an average of the respective
results for members k and {. The detailed expression of e.g. V (zf!?) is thus the following:

V(eg) = %[ V(' (k) + V (=5(0) ] (H8)

V(zf?) and V(mgrpi) describe the atmospheric variability, as seen by the Aladin and (initialized)
Arpége forecast fields respectively.

In section H.5.1, the respective model error variances of Arpége and Aladin will be estimated
from V (e24-*"""). They will be denoted V(e5*) and V (c%9) respectively.

TOTAL ERROR VARIANCE ESTIMATES
A total error variance V (219) will be defined as follows for the Aladin 6h forecast:

V(epd) = V(egd) + V() (H.9)

This amounts to summing up the following two contributions to the Aladin 6h forecast er-
ror variance: the errors induced by initial condition uncertainties (under the assumption that
the models are perfect), and the Aladin model errors. This is analogous to the Kalman filter
equations such as described in Daley (1991, equations (13.3.5) p.376 and (13.3.7) p.377).

Similarly, a total error variance V (e ) for the (initialized) Arpége analysis will be defined
as follows, to account for the two contributions to the corresponding uncertainties:

V(e2TP) = V (e27P%) 4 V (e27P%) (H.10)

H.3 Contributions to the evolution of dispersion spectra

The dispersion of the Aladin 6h forecasts results from a rather complex evolution: the contribu-
tions to this evolution are studied in the current section, by examining the spectral and vertical
variations of the dispersion, after the successive steps of the Aladin integration.

H.3.1 The effect of the Arpege analysis

The effect of the Arpége analysis can be diagnosed by comparing the respective dispersions of
the Arpége analysis and of the Arpége background (both being first projected onto the Aladin
grid). The corresponding horizontal variance spectra for surface pressure and vorticity at level
29 and the vertical profiles of standard deviations for temperature and divergence are presented
in figure H.1.

The analysis dispersion appears to be smaller than the background dispersion. This is
consistent with the expected reduction of uncertainty, when assimilating observations to correct
the Arpége background.

This reduction of dispersion is somewhat stronger in the large scales than in the small scales,
which is particularly visible for surface pressure. This is consistent with the large amplitude of
background errors in the large scales (compared to observation errors) for the main observed
variables, such as surface pressure, temperature, radiances and wind. The analysis is expected
to correct more efficiently background components whose error amplitude (compared to the
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Figure H.1: The respective effects of the Arpege analysis (seen on the Arpége uninitialized fields)
and of the DFI: the solid, dotted, and dash-dotted lines correspond to the dispersion statistics of
the Arpége uninitialized background, uninitialized analysis, and initialized analysis respectively.
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corresponding observation error amplitude) is large, as discussed also in Daley (1991, the final
paragraph of section 4.5 on page 130 and figure 5.9 on page 174) and Daley and Ménard (1993,
figure 2 on page 1558).

Similarly, the reduction of dispersion is also more pronounced in the mid-troposphere than
near the surface, which may be linked with the greater importance of large scale features at
these middle levels. The analysis effect is smaller at the highest levels, probably due to the
lower observation density there.

The resolution of the Arpége model over the Aladin-France integration domain is about 19
km, which corresponds roughly to wave number 40. The shape of the dispersion spectra for wave
numbers larger than 40 is therefore completely determined by the interpolation itself (there is
no information about these small scales from the Arpége model itself). The peak of the small
scale variance at wave numbers 70-90, which is particularly visible for vorticity in figure H.1,
is therefore likely to correspond to some artificial noise that is introduced by the interpolation.
Such interpolation effects are consistent with those observed in previous studies relying on the
NMC method (Sadiki et al. 2000). As discussed in this latter reference, they are related to
the fact that the interpolation is essentially mathematical (rather than physical), compared for
instance to what a high resolution NWP model can provide. In particular, physically, the only
meaningful information in the interpolation is the assumption of hydrostatic balance in the
vertical.

H.3.2 The effect of the DFI

The effect of the DFI (applied on the Aladin grid) can be examined by comparing the respective
dispersions of the (uninitialized) Arpége analysis and of the initialized Arpége analysis (figure
H.1). The dispersion of the initialized fields is smaller than for the uninitialized fields. The
comparison of the dispersion spectra indicates moreover that the reduction of dispersion is
rather small in the large scales, and that it increases towards the small scales.

It can be observed in particular that the artificial peak of the variance for vorticity in the
small scales, which was present in the uninitialized analysis, has been removed by the DFI. The
DFI thus appears to remove the noise that is introduced by the interpolation. The reduction of
the dispersion is particularly large for divergence in the mid-troposphere. At these levels, the
artificial peak of variance was strong.

For diagnostic purposes, it is interesting to apply DFI to the Arpége 6h forecast field as well:
it allows to visualize the Arpége analysis effect, without the contribution of the interpolation
noise itself (figure H.2). Note that the Arpége 6h forecast is the field used as background for the
Arpége analysis, and therefore the Arpége analyses and forecasts are valid at the same time. A
comparison of figures H.1 and H.2 indicates that the analysis effect on the initialized background
is similar to the analysis effect on the uninitialized background. The dispersion variance is indeed
reduced by the analysis, as expected.

H.3.3 The effect of the Aladin 6h forecast

Similarly, in order to visualize the effects of the atmospheric evolution during the Aladin 6h
forecast, it is convenient to compare the dispersion statistics of the Aladin 6h forecast with
those of the Arpége initialized fields. It is better to use the Arpege initialized fields (instead
of the Arpége uninitialized ones), as DFI is able to remove the main part of the interpolation
noise.

A first way to evaluate the effect of the 6h integration of Aladin is thus to compare the
respective dispersion statistics of the Aladin initial state (which is an Arpége analysis initialized
by DFI) and of the Aladin 6h forecast (figure H.3). Note that the latter field is valid 6h later
than the former. A general increase of the variance can be observed. The large scale increase of
variance likely reflects the increase of the dispersion induced by some atmospheric instabilities
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(a; Horizontal variance spectra of surface pressure (b) Horizontal variance spectra of vorticity at level 29
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Figure H.3: The effect of the Aladin 6h forecast: this figure shows the evolution of the Arpége
initialized analysis dispersion (valid at 12 UTC, solid lines) into the Aladin 6h forecast dispersion
(valid at 18 UTC, dotted lines).

174



(a
10';

Variance [dimensionless]

Model level
N - -
[} (] o

N
(4]

8

LRI WL BN A AN S B L N A B

35

40

Horizontal variance spectra of surface pressure

T T T LI B MR LR

~

Lob Aty

Ty
rasingl

T
sl

T
T

T
el

T
- »"
i

V) ——
Vier)
ald ami

Vx, X, ) — -

T T T

10
Wave number

-

{c) Vertical profiles of std dev for temperature

MRS RS RELALES RS REREE L

g o by oo by g b a b v s U e ey

T T T

10

(b)gHotizontal variance spectra of vorticity at level 29

T T

E T ¥ llll' T ¥ ¥ L3 I'll' E
E ]
1010 - e -
i ‘\‘_\‘ ]
- a
'|01‘I E D
F RS-
o ¥ v ]
...‘2- - s “", N
@ . '\-‘
8,02 L - : 3
K] F E
3 -
10" F 3
W[ Ve — 1
3 = ald
VO vg) :
- id_arpi ]
[Vog ) < ﬁ
'15 L 1 1 L IIIII L L I L lIlII
10
1 10 100
Wave number
(d) Vertical profiles of std dev for divergence
IS S LS R e
5 7]
10 | .
15 | .
® I ]
220 I ]
] r ]
2 I ]
= - ]
25 7
30 F -
35 | .
40-“....;.......,|....|,.‘..;
0 1605 2¢-05 3e05 4e05 5e-05

0 01 02 03 04 05 06 07 08

Standard deviation [°C]

Standard deviation [s ]
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(such as baroclinic developments for instance). Moreover, probably the increase of the small
scale variance is induced by the higher resolution of the Aladin model.

To confirm this, it is useful to compare also the respective dispersion statistics of the Arpége
(initialized) 6h forecast and of the Aladin 6h forecast (figure H.4). It has been noticed previously
that the DFI step implies essentially the removal of some small scale interpolation noise. In
contrast, as can be seen especially from the vorticity variance spectrum, the Aladin 6h forecast
provides a relatively large amount of additional small scale energy. This is consistent with the
representation of small scale dynamical effects in the Aladin model, as discussed in Sadiki et al.
(2000). The increase of small scale energy is somewhat more pronounced at low levels, which
may be related to the higher resolution topography, and more generally to the larger importance
of small scale processes at low levels.

The increase of the small scale dispersion by the Aladin 6h forecast implies an increase of
the total variance. As expected, this effect is much stronger for a small scale variable such as
divergence than for a large scale variable such as temperature (see bottom panels of figures H.3
and H.4).

The smaller amplitude of the small scale variance in the Arpége 6h (initialized) forecast field
is expected to some extent, due to the lower resolution of the Arpége model. The latter implies
naturally that the contributions of some small scale processes, that exist on the Aladin grid,
are dissipated by the Arpége numerical diffusion, or not even represented explicitly in Arpége.
On the other hand, this result may also be seen as unrealistic, knowing that the dispersion
is supposed to reflect the involved uncertainties: one could consider in fact that the smaller
variances of the Arpége forecasts suggest that the Arpége forecast is more accurate than the
Aladin forecast in the small scales, which would be rather unexpected knowing that the Arpége
model has a lower resolution. In order to study these issues more deeply, differences between
the Arpége and Aladin forecasts will be examined in the next section.

H.4 Model differences evaluation and decomposition

In this section, differences between Aladin and (initialized) Arpdge 6h forecasts, which are
started from the same Arpége analysis field, will be studied. As mentioned in section H.2.3, this
amounts to examining the influence of the 6h accumulated model differences between Arpége
and Aladin. First, the nature of the involved model differences will be summarized. Secondly,
the resulting forecast differences will be examined and compared to the Arpége and Aladin
perfect model dispersions (which were studied in section H.3). Thirdly, the respective variance
spectra of the Arpége and Aladin full forecast fields and their difference will be studied. This
will allow to highlight the strong contribution of the associated forecast amplitude differences
in the small scales. Finally, this will lead to consider a scale decomposition of the variance of
the Arpége/Aladin forecast differences.

H.4.1 The nature of the Arpége/Aladin model differences

Three basic features are expected to contribute to the differences between Arpége and Aladin
forecast fields on the Aladin grid, when they are started from the same Arpége analysis.

Firstly, the difference of horizontal resolution means that some small scale structures are
either not represented at all by Arpege, or dissipated by Arpége numerical diffusion.

Secondly, Arpeége is a global model, while Aladin is a limited area model. The Aladin cou-
pling is based on a Davies-Kélberg relaxation scheme (Davies 1976), with a three-hour coupling
frequency. Any coupling technique is imperfect, which means that the large scale information
which is provided by Arpége may be distorted.

Thirdly, Arpége fields are interpolated onto the Aladin grid, in order to obtain fields which
can be used by Aladin. As evidenced in section H.3.1, this interpolation is not perfect, and likely
produces some unrealistic small scale features beyond the Arpége resolution.
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The interpolation noise was also shown to be reduced by DFI in section H.3.2. Moreover,
in the remainder of the paper, we will concentrate on initialized Arpége fields. This means
that the horizontal resolution and the coupling are the main two factors contributing to the
Arpége/Aladin forecast differences.

The basic physics and dynamics are the same in both models, consequently the Arpége/Aladin
differences are not expected to provide a full model error simulation. On the other hand, this
allows us to focus on the aforementioned specific differences and on their implications for the
estimation of error statistics. In other words, this is a first natural step in order to go beyond
the perfect model approach.

H.4.2 Comparison of model differences with the Arpége and Aladin perfect model
dispersions

Figure H.4 presents the spectral and vertical distribution of the Arpége/Aladin forecast dif-
ferences, together with the respective perfect model dispersions of the Arpége and Aladin 6h
forecasts (which were studied in section H.3). The examination of the vorticity variance spec-
trum indicates that the dispersion of the Arpége/Aladin differences is more shifted towards the
small scales than the Arpége and Aladin dispersions, with a maximum around wave numbers
30-40 (instead of 10-20 for the two other curves). This is expected, given that the Arpége and
Aladin models are based on similar equations and that the model differences result to a large
extent from the resolution differences. The vertical profiles presented in figure H4 (bottom
panels) show larger standard deviation values of the Arpége/Aladin differences at low levels
(than in the mid- and high-troposphere): this is consistent with the effect of the higher resolu-
tion topography, and more generally with the larger importance of small scale processes at low
levels.

On the other hand, it can be noticed that the non-zero variance values of the Arpege/Aladin
differences do not concern only the scales that are resolved by Aladin and not by Arpége. The
Aladin-specific scales correspond indeed to wave numbers that are larger than 40. This is visible
in particular in the variance spectra of surface pressure: the variance of the Arpége/Aladin
differences appears to be maximum in the largest scales, rather than in the small or intermediate
scales. It may therefore be interesting to identify more specifically the part of the Arpége/Aladin
differences that corresponds to resolution differences. This is the object of the next section.

H.4.3 Decomposition of the Arpége/Aladin differences

The difference of resolution implies that some small scale structures will be represented by Aladin
and not by Arpége (either not at all, or dissipated by the Arpége numerical diffusion).

In order to estimate the contribution of these small scale structures, one may first express
the variance of the Arpége/Aladin difference field, as a function of the variances of the two full
forecast fields:

V(e;ld—aM) = V(@ - x:”’i) = V(z‘,j“) + V(:z::"’i) -2 cov(x‘;“, x:”";) (H.11)

where V (z}) = ;;x? is the variance of the full forecast field z;, and cov(:z:,‘:‘d, a:,;'”’i = :cg‘d(x:""i)T

is the covariance between the two forecast fields. As mentioned in connection with equation

(H.8), note that V/(z;) describes the full atmospheric variability, as seen by the forecast field zp.
It is possible to rewrite equation (H.11) as:

V(g — 2™ = V(g 1+ 8- 2v/Bp) (H.12)

Iarpi
where 8 = VV((Z:";,TH)) is the ratio between the Arpége variance and the Aladin variance (which

can also be seen as the percentage of the Aladin variance that is represented by Arpége), and
p is the correlation between the Aladin and Arpige forecast fields. The parameter 8 describes
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(a) Horizontal variance spectra of vorticity at level 29

(b) Horizontal variance spectra of vorticity at level 29
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Figure H.5: The difference between the Arpége and Aladin variances (dash-dotted lines). Left
panel: comparison with the variances of the Arpége (dotted line) and Aladin (solid line) forecast
fields. Right panel: comparison with the variance of the Arpége/Aladin differences (solid line).
Missing values in the largest scale range of the curve V (z#¢) — V(zy' ") correspond to negative
values. In the right panel, the small scale part of the variance of the Arpége/Aladin differences
is also shown (dotted line).

the influence of the average amplitude differences, while the parameter p corresponds to the
influence of the average phase differences. For instance, 3 is likely to be close to zero for small
scale structures which are dissipated by Arpége, and p is likely to be close to zero if the Arpége
and Aladin waves are in quadrature. These two contributions may be partly distinguished, by
rearranging the equation (H.12) as the sum of the following two terms:

V(e — i) = V() (1= B) + V() 28 (1~ T5)
where the first term of the right hand side can be easily shown to correspond to the difference
between the full forecast variances of Aladin and of Arpége, namely V (z2!?) (1 - B8) = V (z24) —
V(zp™).

This term has been calculated and is plotted in figure H.5, where it can be compared with
the variances of the Arpége and Aladin full forecast fields V (z§'"") and V (z{!¢) (left panel). The
Arpége and Aladin variances are very similar in the large scales, while the Aladin variance is
much larger than the Arpége variance in the small scales, as expected (see the beginning of the
last paragraph in section H.3.3). This implies that the difference between these two variance
spectra will correspond to a spectrum that has its maximum in the small scales.

This difference between the Arpége and Aladin variances can also be compared with the
variance of the Arpége/Aladin differences (right panel of figure H.5). The two curves look very
similar in the small scales (for wave numbers larger than 10), which means:

V(&:,fd_arpi) ~ V(xgld) - V(xg"'?')

(H.13)

(H.14)
In other words, the (energy) amount of the Arpége/Aladin forecast differences tends to be the
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Figure H.7: The decomposition of the variance of the Arpége/Aladin differences (solid lines), as
a function of a small scale part (dotted lines) which is induced by resolution differences, and of
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same as the (energy) amount of Aladin structures which are not represented by Arpége. This is
consistent with the expectation that the small scale structures which are represented by Aladin
and missed by Arpége predominate in the Arpége/Aladin forecast differences. Therefore, one
may conclude that the small scale Arpége/Aladin forecast differences correspond essentially to
some resolution-induced Arpége model errors with respect to the Aladin grid.

It should also be mentioned that, in general, some possible small scale noise of the interpo-
lation (of Arpége fields onto the Aladin grid) is another potential contribution to the variance
of the Arpége/Aladin forecast differences. Nevertheless, there are two results which indicate
that this is not a major contribution in the present case, which deals with initialized Arpége
fields. Firstly, while some spurious noise is visible in the small scale spectrum of uninitialized
Arpége fields, the DFI appears to remove most of it (top panels of figure H.1). Secondly, if
the possible remaining interpolation noise had been a major small scale contribution to the

Arpége field z; ¥ and to the associated Arpége/Aladin forecast differences e2d-07 one would
expect a strong statistical link between the structures of =, 7" and those of gdd-aPi  Thig

can be measured by the amplitude of the corresponding cross-covariance cov(z'P, gld-arpty

(which can be compared to V(em® *") and cov(z¢¥, £44-aTP%y for instance). In fact (see ap-
pendix A), the result V (e227%7) ~ V (z2) — V (z3'"") (right panel of figure H.5) indicates that
cov(ziP B 0 < cov(zid, M40 | Y (gh?"*P). Therefore, the small scale struc-

tures of g4~ TP appear to be much more linked to the structures of xgld. This is consistent with

the idea that £2%*P* corresponds essentially to some (resolution-induced) structures which are
represented by Aladin and which are missed by Arpége.

The sharper decrease of V (z#?) — V(zp'F") towards the large scales (compared to the cor-
responding decrease of V(e‘,’,.“’“rpi)) suggests moreover that there may be some large scale
components in the Arpége/Aladin differences that do not correspond to the former resolution-
induced structures and differences in the variance amplitudes. Therefore, one may decompose

the variance of the Arpége/Aladin differences as the sum of two components:

V(i — i) =a V(zgd - xg"’i) +(1—a) V(af — 25

~ v ~ (H.15)
VRt Viemes™™) Viemia"™)

where a is a parameter that varies from 0 in the large scales to 1 in the small scales. V(e#'f;“”’i)
corresponds thus to a small scale part of the Arpége/Aladin differences, which are induced by the
resolution differences. V(Ef:'f,; WP = V (apld 2P - V (634,77} is a residual, that corresponds
rather to a large scale part of the Arpége/Aladin differences.

The parameter & may be modelled by a simple hyperbolic tangent function, as a function
of the two-dimensional (2D) horizontal wave number k*: a(k*) = a ( tanh|(k* —b)/c] + d),
with @ = 0.5, b =10, ¢ = 3 and d = 1 (figure H.6). These values were chosen in order to have
variations between 0 and 1, and in order to ensure that V(e’,'n",i:“"'i) = aV(zfd — a::'pi) has a
similar shape as V (z#4) — V (z;'7") (right panel of figure H.5).

The results of the decomposition are shown in figure H.7. It illustrates how the two parts
contribute differently to the variance of the Arpége/Aladin differences as a function of scale.

H.5 Implications for the specification of the Arpége and Aladin
error statistics

H.5.1 Implied changes in the variance spectra

The possibility of estimating some model error contributions V(s}',fpi) and V(€%9) will now be
considered, on the basis of the variance of the Arpége/Aladin differences and of its decomposition
(as discussed in section H.4). The resulting total error variances V (cim') and V(efi?) of the
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(a; Horizontal variance spectra of surface pressure

(b)gHonzonlal variance spactra of vorticity at level 29
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(c; Horizontal variance specfra of surface pressure

(d)gHorizontal variance spectra of vorticity at level 29

10 E T LA B A | T T T T TrTeg é 10- E T T T T L3 LENLENL B L | g
8 | . _ s ]
10 10—10 - 3
10° | 3 al T
2 - i 10 F E
o L ] 3 ]
& 10 Nl Z ]
% 10 g_ ";' ‘», i
£ L 3 12 - 3
5 | . .§1° 3 E
11 | a u ]
S107 ¢ 13 - ]
S E 3 ! 4
5 i 3 13
> 12 | ] F 3
10° F 3 i ]
i -14
- Id 3 ] 3
1013 E V(€: )y — E 10 F V(S: ) — 3
- ald ald-arpi 3 ! Id N
: Viey F2Vlepye ) T ] [ 10w - il SRS _
'14 i L i lJlll' L L 1 1 lIllI ‘15 L L L 1 Illll 1 L 1 H lllll
10 10
1 10 100 1 10 100
Wave number Wave number

Figure H.8: Top panels: the variance spectra of the Arpdge analysis, before (solid lines) and
after (dotted lines) adding the contribution of the small scale part of the model differences.
Bottom panels: the variance spectra of the Aladin 6h forecast, before (solid lines) and after
(dotted lines) adding the contribution of the large scale part of the model differences.
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(a) Horizontal variance specira of surface pressure
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{b) Horizontal variance spectra of vorticity at level 29
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(d)gHon‘zonml variance spectra of vorticity at level 29
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Figure H.9: Top panels: the variance spectra of the Arpége analysis (solid lines) and of the Aladin
6h forecast (dotted lines), before the addition of the contributions of the model differences.
Bottom panels: the "total” variance spectra of the Arpége analysis (solid lines) and of the Aladin
6h forecast (dotted lines) (i.e., after adding the model differences contributions, according to
the first scenario).
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(a; Horizontal variance spectra of surface pressure (b)QHorizontal variance specira of vorticity at level 29
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Figure H.10: The "total” variance spectra of the Arpége analysis (solid lines) and of the Aladin
6h forecast (dotted lines), according to the other two scenarios. Top panels: when the contri-
bution of the large scale part of the model differences is added neither to the Aladin dispersion,
nor to the Arpége dispersion. Bottom panels: when the contribution of the large scale part of
the model differences is added to the Arpége dispersion.
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Arpége (initialized) analysis and of the Aladin 6h forecast respectively will also be examined,
following equations (H.9) and (H.10) of section H.2.3. The former field is the actual initial
state of the Aladin forecast, when Aladin is integrated in cold-starting mode; the latter field is
a possible background for an Aladin three-dimensional variational data assimilation (3D-Var).
These two fields may also be combined, either within a variational analysis, or through a blending
technique (Brozkova et al. 2001). )

The small scale part of the model differences variance, V(e;’nl',i;“’p'), appeared to be closely
related to the small scale structures that are represented by Aladin, and which are missed by
Arpége. Therefore, it can be considered that these small scale variances correspond to some
Arpége model errors, with respect to the truth on the Aladin grid:

V(elPt) = 2V (g2t arrt) (H.16)

It may be mentioned that the contribution of the small scale model differences, namely
2V(e?,.l‘fs§“"”), can be considered to be applicable equally to the Arpége 6h forecast and to the
Arpége analysis: this is due to the same low resolution of both Arpége fields. Another remark
is that the factor 2 in equation (H.16) yields a proper weight for this model] error contribution,
compared to the contribution of the dispersion arising from the perturbations of the Arpége
assimilation cycle. The detailed equations are presented in the appendix B, and the explanation
can be described briefly as follows. The assimilation dispersion corresponds to the variance
of the difference between two perturbed fields, involving two independent realizations of the
perturbations: the resulting variance can easily be shown to be twice the variance of the basic
perturbations. In contrast, the small scale part of an Arpége/Aladin model difference field may
be seen as a single realization of the associated model error probability distribution function
(pdf): a factor 2 is therefore to be used, in order to recover a contribution that is twice the
variance of the involved model error.

The implied changes in the variance spectra are shown in the top panels of figure H.8 (where
V(57*) and V (¢3) can be compared). While the large scale variance is practically unchanged,
the small scale variance is strongly increased, as expected. '

The large scale part of the model differences variance, V(e‘,’n“f,; %P} is more difficult to
interprete. It is likely to correspond to a mixture of several effects. One may consider in
particular two contributions to these large scale model differences.

A first contribution may come from the interactions between the small scales and the large
scales. This corresponds to the non linear effects of resolving smaller scale features on the
simulation of the large scale solution. One may consider, in particular, that a more realistic
simulation of small scale processes may also contribute to improve the simulation of the large
scale phenomena, if the involved processes are non linear.

A second contribution may come from the coupling inaccuracies. Any coupling technique is
imperfect, which means that the large scale information that is provided by the Arpege model
may be distorted.

By themselves, the Arpége/Aladin model differences, and the proposed scale decomposition,
are insufficient to distinguish the two aforementioned possible contributions. In order to go
further, one may consider some additional experiments in the future. For instance, one could
integrate some Aladin forecasts that have the same (low) resolution as the Arpége forecasts.
Statistics of the differences between the high and low resolution Aladin forecasts may thus be
calculated: this would provide an estimate of the contribution of the Arpége/Aladin resolution
differences to the Arpége/Aladin forecast differences variance. Statistics of the differences be-
tween the low resolution Aladin forecasts and the Arpége forecasts may also be calculated: this
would provide an estimate of the contribution of the coupling inaccuracies to the Arpége/Aladin
forecast differences variance.

Due to these two possible contributions, three different scenarios will be considered in the
remainder of this paper. A first possible scenario is to consider that the large scale model differ-
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ences provide an (upper bound) estimate of the contribution of the Aladin coupling inaccuracies:
V(€3 = 2V (€25, “7) (H.17)

The implied changes of the Aladin variance spectra are shown in the bottom panels of figure
H.8 (where V(§!®) and V(c4) can be compared). As expected, the small scale variance is
essentially the same, while the large scale variance is significantly increased.

The implications of this first scenario are illustrated in figure H.9. This figure represents
the comparison between the variance spectra of the Arpége analysis and of the Aladin forecast.
When the contributions of the model differences are not considered at all (top panels), the Aladin
variances appear to be larger than the Arpége variances, for all considered scales. In the large
scales, this is consistent with the reduction of error due to the Arpége analysis. But it does not
look realistic in the small scales, when considering that the dispersion is supposed to describe
the involved uncertainties, and knowing that Aladin has higher resolution than Arpége.

When the contributions of the model differences are added to the Arpége and Aladin dis-
persions, as described above, the situation changes. The small scale variances of Arpége are
now larger than those of Aladin: this is consistent with the lower Arpége resolution. Moreover,
the representation of the larger uncertainty of the Aladin forecast in the large scales has been
strengthened.

The second scenario is similar to the first one, except that the variance of the large scale
model differences is no longer added to the Aladin dispersion (or to the Arpége dispersion):
V(e®4) = 0 and therefore V (¢8l%) = V(e8!?). Compared to the previous scenario, this implies
essentially that the uncertainty of the Aladin forecast in the large scales is reduced (top panels
of figure H.10), although it remains larger than the Arpége analysis uncertainty.

A third scenario is to consider that the large scale model differences variance (in addition to
the variance of the small scale ones) should be added to the Arpége dispersion (by considering
e.g. that they correspond rather to the beneficial effects of the Aladin higher resolution on the

Aladin large scale simulation): V(e3P*) = 2V (e24-9") | 2V (¢, *™). Compared to the other
two scenarios, this would imply for vorticity (bott;om right panel of figure H.10) that the Arpege
variance in the large scales would be much closer to (although still smaller than) the Aladin
variance. For surface pressure (bottom lefi panel of figure H.10), this would make even the large
scale Arpége variance larger than the large scale Aladin variance.

The implications of these different scenarios on a possible Aladin analysis are discussed in

the next section.

H.5.2 Implied weights in an Aladin analysis

In order to determine the initial state of Aladin, one may consider to use the Arpége analysis, the
Aladin background and some observations. These three sources of information can be combined
through a variational formalism. The latter approach may be seen as a generalized formulation
of 3D-Var, in which the Arpége analysis is introduced as an additional source of information
(Gustafsson et al. 1997, Bouttier 2002). The first two sources of information may also be
combined, by using a preliminary blending technique, before doing a classical 3D-Var analysis
with the observations.

In this part, we will examine the implications of the ensemble variance spectra on the infor-
mation extraction in this generalized 3D-Var analysis. This will be done by considering the case
where one tries to combine the Arpége analysis and the Aladin background in a similar way as
in the blending technique, namely without using observations.

It may be mentioned that there are other issues which are involved in this generalized 3D-
Var, and which will not be studied in the present paper. For instance, ideally, when using also
observations, the Arpége analysis errors and the observation errors should be uncorrelated, in
order to make the analysis procedure less complicated. This means that it may be advantageous
to assimilate a large amount of observations which have not been used by the Arpége analysis.
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(a) Weights for surface pressure (b) Weights for vorticity at level 28
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Figure H.11: The respective weights of the Arpége analysis (solid lines) and of the Aladin
6h forecast (dotted lines), resulting from their total variance spectra. Top panels: when the
contribution of the large scale part of the model differences is added to the Aladin dispersion.
Middle psnels: when the contribution of the large scale part of the model differences is not
accounted for. Bottom panels: when this large scale part is added to the Arpége dispersion.
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Some examples of such observations (whose assimilation is planned for the Aladin analysis) are
surface-screen level data, Meteosat-8 infrared radiances from the SEVIRI radiometer and radar
data.

There may be also some correlations between the Arpége analysis errors and the Aladin
background errors, for instance as the basic dynamics and physics are very similar in the two
models. On the other hand, there are some model differences which arise from the Aladin high
resolution and from its coupling scheme. These correlations may also depend on the amount and
weight of assimilated observations in the Arpége analysis, as observation errors will contribute
to the Arpége analysis errors, and as they tend to be uncorrelated with the Aladin background
errors. In the remainder of the paper, we will only consider the simple case where the two
involved errors are assumed to be uncorrelated.

The Arpége analysis field considered here is the initialized Arpége analysis, which is the
initial state used in cold-starting mode. This implies that this Arpége field is on the same grid
as the Aladin background. In other words, the equivalent of the observation operator for the
Arpége field (when seeing the Arpége values as some observation values) is simply the identity
matrix.

The equation that would correspond e.g. to a 3D-Var analysis z%¢ (without observations)

is thus the following, if the two involved errors are uncorrelated (i.e., £am (e““)T 0):
g0ld = WP gatpi . Wgld gold (H.18)

WP = Bald(Aarpi 4 Beld)~1 and Wit = A*Pi(A%P + B9)~1 are the respective weight
matrices of the two fields, where A%P: a.nd B4 gre the error spatxal covariance matrices of the
Arpége analysis and of the Aladin background: A% = e5F* (ear*)T and B = 2 (epid)T.

While the previous equations are general, in order to simplify, one can consider a univariate
and 2D horizontal framework, and the case where the two covariances are homogeneous and
isotropic. In this case, the two welght matrices will be diagonal in spectral space. The corre-
sponding diagonal (scalar) values, Wz'"" and Wb , will only depend on the 2D horizontal wave
number k*, and their expressions become simple functions of the ratio between the Arpége and
Aladin error variances:

arpt V(Egrlnd) 1
WePt = —— = : (H.19)
V(eSE) 4+ V() 1+ V(eam)/V (eghd
%
Wit = ) . (H.20)

V(eST) + V(efd) 1+ V(edd)/V(eak)

The spectral variations of these weights are represented in figure H.11 for the three different
scenarios. In the small scales, the weight of the Aladin forecast is the largest: its value varies
from 60% (for vorticity) to 80% (for surface pressure). When attributing the large scale model
differences to the Aladin coupling inaccuracies (top panels of figure H.11), it is the Arpege
analysis that has the largest weight in the large scales: its maximum weight varies from around
70% (for vorticity) to around 85% (for surface pressure). The transition between these two
different regimes occurs for wave numbers around 11 and 12 (which corresponds to horizontal
scales of about 60-65 km), for which the two involved weights are both close to 50%.

This larger weight of Arpége in the large scales is reduced, but still present, if the term
2V (e ffl:“r’“) is not added to either of the two involved variances (middle panels of figure H.11):
the maximum weight is around 60% for vortxmty, and around 70% for surface pressure.

In the third scenario, the term 2V (e, st) is added to the Arpége variance (bottom panels
of figure H.11): this implies a maximum Arpége weight which is slightly larger than 50% for
vorticity, and around 40% for surface pressure.

These different figure panels thus illustrate the implications of the ensemble statistics on the
information extraction in such an Aladin 3D-Var. For instance, if one of the goals (of this Aladin
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analysis) is to rely on the Arpége analysis for the large scales, and on the Aladin background for
the small scales, then the first two scenarios (and in particular the first one) are more appropriate
for the specification of the error statistics.

H.6 Conclusions and perspectives

An ensemble of Aladin fields has been obtained by integrating the Aladin limited area model, in
cold-starting mode, from an ensemble of global Arpége analyses and forecasts. The latter global
ensemble was itself obtained by integrating two independent perturbed assimilation cycles in a
perfect model framework (involving perturbed observations, and perturbed backgrounds which
are provided by the evolution of the previous perturbed analyses).

The evolution of the perfect model dispersion spectra has been studied, in order to examine
the effects of the successive steps of an Aladin integration. The Arpdge analysis reduces the
large scale dispersion of the Arpége background, by using some recent observational information.
The DFI reduces the small scale dispersion, as it removes some noise which is induced by the
interpolation of the Arpége analysis onto the Aladin grid. Finally, the Aladin 6h forecast implies
a strong increase of the small scale dispersion, in accordance with its representation of small
scale dynamical and physical processes.

Then, the variances of the differences between the Aladin and Arpege 6h forecasts, that are
produced from the same Arpége analysis field, have been examined. These model differences are
smaller scale than the Arpége and Aladin perfect model dispersions. Moreover, it has been found
that, in the small scales, the corresponding variances are very close to the difference between
the variances of the Arpége and Aladin full forecast fields. This indicates that the small scale
part of the model differences corresponds to some structures that are produced by the Aladin
high resolution dynamics and physics, and which are not represented in Arpége (due to its lower
resolution). This has allowed to propose a decomposition of the model differences variance as
the sum of a small scale part which is induced directly by the resolution differences, and of a
residual large scale part.

Finally, the possible implications of these model differences have been studied, for the spec-
ification of the error statistics of the Arpége analysis and of the Aladin 6h forecast. This is
linked with the idea to combine these two fields (and observations) in order to provide an Al-
adin analysis. The variance spectra of the Arpége and Aladin dispersions indicate that the large
scale information of the Aladin analysis should be extracted preferably from the Arpége analy-
sis, which benefits from the use of some recent observations. The small scale part of the model
differences variance may be added to the Arpége dispersion: this allows the representation of the
larger uncertainty of the Arpége analysis with respect to the small scale features. This implies
that the small scale information of the Aladin analysis would tend to be extracted from the
Aladin background. The large scale part of the model differences variance is more ambiguous.
It may be added to the Aladin dispersion, if it is seen as corresponding to the effects of the
Aladin coupling inaccuracies for instance: this would emphasize the extraction of the large scale
information from the Arpége analysis. Another possibility would be to add this large scale part
to the Arpege dispersion, by considering that it reflects the beneficial (non linear) effects of
the Aladin high resolution on the simulation of the large scales. However, this approach would
reduce strongly the extraction of the large scale information from the Arpége analysis.

There are many natural extensions to this kind of study. Some other statistical features
may be examined, such as the multivariate and three-dimensional aspects (that involve the
vertical auto- and cross-covariances). Gridpoint and wavelet statistics could be computed, in
order to diagnose the local (space-dependent) features of the spatial structures of the ensemble
dispersion. It would also be interesting to calculate and study the cross-correlations between
the Arpége and Aladin errors, and time-dependent features may be studied as well.

Moreover, an Aladin 3D-Var analysis is being developed, including a term measuring the
distance to the Arpége analysis (Bouttier 2002): this will permit as well the possibility of
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integrating an Aladin ensemble, in data assimilation mode. A posteriori diagnostics can then be
calculated also, which may allow to compare the ensemble-based statistics with the estimates
retrieved from the observations (Sadiki and Fischer 2005). The study of the model differences
may be pursued, in particular by calculating differences between two models that differ either
by their resolution, or by the geometry of their integration domain (global versus limited area).
Another natural perspective is to assess the impact of e.g. model error modifications of the
statistics on Aladin/Arpége forecasts.
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] APPENDIX A .
Cw(x:'m’g#d—afpt) and cov(zg,ld,egnld—arpt)
a. The covariance cov(a;g'pi,ggn‘d—afpi)
By the definition of gd-arPi 1he Aladin forecast field zf'¢ can be written as follows: zgld =
z:rpi +s$‘"‘d—a'1’i, which implies the following expression for the variance of the full Aladin forecast

field: V(afi) = V(af™) + V (") + 2 cov(a} ™ em"""). This is equivalent to:
wv(x:'?i,g%d—arpi) =1 (V (z2ld) — V(a::"’i)) _ V(E;xnld—arpi) ]

Therefore, the result V(e#d_a'pi) ~ V(zfld) — V(a::rpi) implies that:

cov(a::rpi, gdld-arty 0

b. The covariance cov(zild,em? ")

By the definition of gld—arpi e Arpege forecast field mgrpi can be written as follows:
:z::rpi = ggld —gld—orpi G hich implies the following expression for the variance of the full Arpége
forecast field: V(a::"'i) = V(zf) + V(e?,l.d_“"i) -2 cov(x;,"d,s#d‘“m). This is equivalent to:

con(agld, et ) = [ (V(zg!d) - V (2f™)) + V(em™ ") ]

Therefore, the result V(52 %) ~ V (z2H4) — V(z2""") implies that:

wv(xgld, E#d-—afpi) ~ V(E#d—am)

which tends to be much larger than cov(z}™ ,edd-arriy 0,

APPENDIX B
The covariance of perturbation differences and of single perturbations

a. The covariance of perturbation differences

In the two-member ensemble experiment, two independent sets of observation perturbations
do(k) and 8,(1) are added to the unperturbed observation set y, for members k and { respectively:
y(k) = y + 8,(k) and y({) = y+8,(l). In practice, the two sets of observation perturbations are
obtained as random realizations of the Gaussian probability distribution function whose mean is
zero, and whose covariance matrix Ry corresponds to the specified observation error covariance
matrix R: 8,(k)(8o(K))T = 8,(1)(6,(1))" = Rs with Rs = R. These two random realizations are
uncorrelated, which implies that the covariance matrix of the observation difference £, = §,(k) —
5,(1) is equal to twice the covariance matrix of the observation perturbations: Re = o(go)T =
3o(K) (8.(k))T + 8(0)(Eo())T — 8.(K)(8o())T — 8.()(8:(K))T = 2 Ry. Similarly, the analysis
difference €27 can be seen as the difference between two independent analysis perturbations
8P (k) and 8T7F (1): €3 = 83" (k)—da 7 ({). This implies that the covariance matrix A of the
analysis difference will be equal to twice the covariance matrix A; of the analysis perturbations:
A, =2A,;.

b. The covariance of single perturbations

In sections 4 and 5, £297°* are the differences between an Aladin forecast and an Arpége
forecast which are started from the same Arpége analysis. These differences arise from errors
that are present in one model and not in the other one, such as the Aladin coupling errors,
or the lack of representation of some small scale structures by the Arpege model (due to its
low resolution). Said differently, either the Arpége model can be seen as a perturbation of the
Aladin model (e.g., with an excessive dissipation of small scale structures), or the Aladin model
can be seen as a perturbation of the Arpége model (e.g., with some distortions of Arpége large
scale fields by the Aladin coupling procedure). In both cases, the difference gHA-aTPi i to be
seen as a single realization of the probability distribution function of a model perturbation Om
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(related either to Arpége or to Aladin): gld-arpi _ 5, and thus V(eﬁdf“"’”’) = V(,,) instead
ald-arply (or to its subparts),

of 2V (8,,). This implies that a factor 2 has to be applied to V(em
when adding the initial condition and model error variance contributions. This allows to recover

a similar weight as for the initial condition error variance.
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