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Geometric conditions
of regularity

in some kind of minimal time problems

Abstract

The work is devoted to the problem of reaching a closed subset of a Hilbert space in minimal
time from a point situated near the target subject to a constant convex dynamics. Two types
of geometric conditions guaranteeing existence and uniqueness of the end point of an optimal
trajectory are given. We study the mapping, which associates to each initial state this end point,
and under some supplementary assumptions prove its Holder continuity outside the target.
Then we estabilish the (Holder) continuous differentiability of the value function in an open
neighbourhood of the target set and give explicit formulas for its derivative. From the same
point of view we treat the close problem with a nonlinear Lipschitzean perturbation and obtain
some regularity results for viscosity solutions of a kind of Hamilton-Jacobi equations with non
trivial boundary data.
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Condicoes geométricas
de regularidade
numa, classe de problemas de tempo minimo

Resumo

O trabalho é dedicado ao problema de se atingir um subconjunto de um espaco de Hilbert
em tempo minimo a partir de um ponto situado préximo do conjunto-alvo com uma dinamica
convexa constante. Sdo dados dois tipos de condicdes geométricas que garantem existéncia e
unicidade do ponto final de uma trajectéria 6ptima. Estudamos a aplicagdo que associa a cada
estado inicial esse ponto final, e sob algumas condigdes suplementares provamos continuidade
de Holder da respectiva aplicagéo fora do conjunto-alvo. Depois mostramos a diferenciabilidade
continua (de Holder) da fungéo valor também numa vizinhanga do alvo apresentando férmulas
explicitas para a sua derivada. Do mesmo ponto de vista tratamos o problema com uma per-
turbacdo ndo linear Lipschitzeana e obtemos alguns resultados de regularidade para solugoes
viscosas de um certo tipo de equagdes de Hamilton-Jacobi com dados na fronteira néo triviais.
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Extended abstract

Let H be a Hilbert space, F C H be a closed convex bounded set containing the origin in its
interior, and C C H be nonempty and closed. The main problem considered in Thesis is to
attain the (target) set C in minimal time from a point z close to C by trajectories of the control
system £ = u, u € F. Denoting by wg (z) the set of end points of all optimal trajectories in
this problem (so called time-minimum projection), we study first the conditions, under which
the mapping x — w5 () is single-valued and continuous in some neighbourhood of C. These
conditions have a geometric character and involve some concepts of Convex Analysis such as
rotundity, uniform smoothness, curvature, duality mapping, which are introduced and studied in
the first chapter. One of the hypotheses guaranteeing the well-posedness of the time-minimum
projection is completely new, while the other is a sharp generalization of the assumptions known
for the case F = B (B stands for the unit closed ball in H).

The next step in our investigation is the further regularity of the mapping = — 7k (z).
Assuming, in addition, smoothness either of the target set or of the dynamics F' we establish the
local (Holder) regularity of 7% (-) first in a neighbourhood of a fixed boundary point zg € C and
then in an open set around the target. It is proved that the well-posedness and the regularity
of the time-minimum projection are strictly related to the regularity properties of the value
function & — & (z) (so called minimal time function). In particular, we obtain some results
concerning the (Holder) continuous differentiability of TF (-) near (but outside) the target.

In the last part of the work we apply the same technique to the perturbed optimization
problem (Pp) by adding a Lipschitz continuous function 6 (-) satisfying some controllability
assumption. Denoting by Wg’o () and u(-) the set of minimizers in the problem above and the
value function, respectively, we obtain results justifying the connection between the continuous
differentiability of the mapping u(-), on one hand, and existence, uniqueness and stability of
minimizers in 7rg"9 (-), on the other. Similarly to the case § = 0 the (Holder) continuity of
both the (single-valued) mapping WS’B (-) and the gradient Vu (-) near (but outside) the set C
is proved under some natural assumptions involving the regularity of all three elements C, F,
6 (-) as well as their geometric compatibility. The last results are specially important because
the value function u (-) is nothing else than the viscosity solution to a certain Hamilton-Jacobi
equation with a non affine Lipschitzean boundary data, and it becomes the classical solution (at
least near the boundary) whenever our conditions are fulfilled.

In Thesis we used the Geometry of Hilbert spaces as well as methods of Convex, Nonsmooth
and Variational Analysis. The obtained results develop and generalize those known until now.
In the particular case F' = B they reduce to the respective properties of the distance function
and the metric projection. However, we consider much more general dynamics F (asymmetric,
not necessarily strictly convex nor smooth) and very sharp sufficient conditions for the well-
posedness, which in some situations are close to necessary ones. On the other hand, by our
opinion there is a strong relation between the perturbed problem (Pp) and some minimal time
problem with a regular but nonconstant dynamics (the respective research is out of our Thesis
and we plan to occupy it in the nearest future).
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Resumo alargado

Sejam H um espaco de Hilbert, F C H um conjunto fechado convexo limitado que contem a
origem no seu interior, e C C H néo vazio e fechado. O problema principal considerado na
Tese é atingir o conjunto (alvo) C em tempo minimo a partir de um ponto :L' préximo de C
através de trajectérias do sistema de controlo # = u, u € F. Denotando por 75 (z) o conjunto
de todos os pontos finais de trajectérias deste problema (chamado prOJecgao tempo-mfnimo),
estudamos primeiro as condigBes, sobre as quais a aplicacao z — “C (z) & de valor singular e
contfnua nalguma vizinhanca de C. Estas condigdes tem carscter geométrico e envolvem alguns
conceitos da Anslise Convexa, que foram introduzidos e estudados no primeiro capitulo, tais
como rotundidade, suavidade uniforme, curvatura, aplicagéo dualizante. Uma das hipéteses que
garante a boa posi¢ado da projeccao tempo-minimo é completamente nova, enquanto a outra é
uma generalizacio abrangente das condi¢bes conhecidas para o caso F' = B (B representa a bola
unitdria fechada em H).

O passo seguinte na nossa investigacio é a regularidade mais forte da aplicagéo z — 7rC (z).
Supondo ainda suavidade do conjunto-alvo ou da dindmica F' podemos estabelecer primeiro a
regularidade local (de Holder) para 7f (-) numa vizinhanca de um ponto fixado na fronteira
zg € C, e depois num conjunto aberto em torno do alvo. E provado que a boa posi¢io e a
regularidade da projecgio tempo-minimo estdo estritamente relacionadas com as propriedades
de regularidade da funcio valor z — T% (z) (chamada fungéo de tempo minimo). Em particular,
obtemos alguns resultados relativos & dlferenc1a.b1hdade continua (de Holder) para 37 (-) préximo
(mas fora) do alvo.

Na dltima parte do trabalho aplicamos a mesma técnica para o problema de optimizagéo
perturbado (P,) adicionando uma fungdo Lipschitzeana 6 (-) que verifica alguma condigdo de
controlabilidade. Denotando por ﬂ‘g’e () e u(-) o conjunto dos minimizantes do problema acima
e a funcdo valor, respectivamente, obtemos resultados que justificam a ligagio entre a diferencia-
bilidade continua da aplicacdo u (-) com a existéncia, unicidade e estabilidade dos minimizantes
em 7"0 ( ). Analogamente ao caso § =0 supondo algumas hip6teses naturais é provada a con-
tinuidade (de Holder) da aplicagdo univoca 7"0 % (.) e do gradiente Vu (-) préximo (mas fora) do
conjunto C. Estas hipéteses envolvem regularidade dos trés elementos C, F, 6 (-) assim como
uma sua compatibilidade geométrica. Os ultimos resultados sdo especialmente importantes
porque a funcio valor u (-) & a solugdo viscosa de uma certa equagdo de Hamilton-Jacobi com
dados na fronteira Lipschitzeanos nio afins, e torna-se a solugéo cldssica (pelo menos préximo
da fronteira) sempre que as nossas condicoes se verificam.

Na Tese usamos a Geometria dos espacos de Hilbert assim como métodos de Anélise Convexa,
Nio-suave e Variacional. Os resultados obtidos desenvolvem e generalizam os conhecidos até
a0 momento, e no caso particular F' = B reduzem-se as propriedades respectivas para a funcéo
distancia e para a projecgio métrica. Contudo, nés consideramos dindmicas F' muito mais gerais
(assimétricas, nio necessariamente convexas ou suaves) e condiges suficientes para a boa posi¢ao
muito abrangentes, que em certas situagdes sdo préximas das necessérias. Por outro lado, na
nossa opinido, existe uma forte relacio entre o problema perturbado (Pg) e algum problema
de tempo mfnimo com uma dinamica regular mas néo constante (a respectiva pesquisa nao se
encontra na Tese e pretendemos ocupar-nos disso no futuro préximo).
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Introduction.

The question is: for a point z in some space H there will be a unique Z in a fixed C C H which
is more close to 7 And how this T will depend on z?

The goal of the Thesis is to search the answer to this question specifying H and C, and
giving a certain sense to the proximity. Let us first give a little of history.

We start with the case of a (real) normed space (H, ||-||) and a linear subspace C C H. For
any € H the (possibly empty) set of best approzimations (or nearest points) to z in C is
defined by

mc(z) ={y € C: |z -yl = de (=)},
where d¢ (z) := inf {||z — y|| : y € C}, « € H, is the distance function associated with C, and
the set valued mapping m¢ : H — C is called the metric projection onto C. The subspace Cis
said to be prorimal (respectively, Chebyshev) if m¢ () is nonempty (respectively, is a singleton)
for each z € H. The last concept was introduced by S. B. Stechkin (see [48, 49]) in honour of
the founder of the best approximation theory P. L. Chebyshev.

In 1859 P. L. Chebyshev showed that (in actual terminology) in the space H = C({0,1]) of
continuous functions on [0, 1] the subspace C' = P, of polynomials of degree non greater than
n is a Chebyshev set. He also considered the set P, of rational functions Py (-) /@m (-), such
that Qm (-) does not have roots in [0, 1], and proved that it is Chebyshev too (we refer to the
papers [78, 77] for review of the classic P. L. Chebyshev’s works).

Further on, the best approximation results were generalized to an arbitrary nonempty set
C C H. The definitions of the distance and the projection remain the same.

A Chebyshev set is necessarily closed. On the other hand, it is a long-staying problem
whether a Chebyshev set must be convex. In finite dimensions the answer is positive but in
infinite-dimensional setting the problem is still open. However, as was conjectured first by V.
Klee and proved then by E. Asplund [1], if a Hilbert space contains a nonconvex Chebyshev set
then it contains also one whose complement is bounded and convex (so called Klee cavern).

Another problem, in some sense symmetric to the problem above, involves the farthest points.
Namely, given a point z in a normed space H the elements of the (possible empty) set

Yo (@) = {y €C e -yl =suplz - zn}
zeC
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are called farthest points from x in a bounded subset C. The set C' is said to be remotal if
xc (z) # 0 for every x € H and uniquely remotal if x¢ (z) is a singleton for every x € H. An
important question is: under what conditions on the space H does every uniquely remotal subset
of H reduce to a single point? In other words, in a "good" space H, if C' is not a singleton then
it must have a "central" point which admits at least two farthest points in C.

This problem is strictly related with the problem of convexity of Chebyshev sets, and it is
not also resolved till now. There are some opinions (see, e.g., [59, 25]) that the solution of one
of them leads to the solution of the other.

Returning to the nearest points, we are interested to find necessary and suficient conditions
for their existence and uniqueness. Many sufficient conditions for a closed set to be Chebyshev
and also for a Chebyshev set to be convex have been obtained. We pay the main attention for
the first question, while for the second we refer to [50, 59, 1, 3, 79, 24, 81, etc.], giving here some
brief comments only.

In 1961 V. Klee [59] found the first condition in infinite dimensions guaranteeing convexity
of a Chebyshev set. Namely, he showed that in a Banach space which is both uniformly smooth
and uniformly strictly convex, every weakly closed Chebyshev set is convex. Thus, in such a
space a set is closed and convex if and only if it is a weakly closed Chebyshev set.

In the same year N. V. Efimov and S. B. Stechkin (see [50]) proved that in an uniformly convex
and smooth Banach space each Chebyshev approzimatively compact! set is convex. Applying
their criteria, they, in particular, established that the set Py, of rational functions (see above)
does not satisfy the Chebyshev property in the space LP[0,1], p > 1.

It was also V. Klee who proved in [59] that in a smooth reflexive Banach space a Chebyshev
set is convex if the associated metric projection is both continuous and weakly continuous. Later
E. Asplund in [1] essentially weakened the Klee theorem for Hilbert spaces showing that if a
metric projection onto a Chebyshev set is (norm to norm) continuous at all points then the
set is convex. Further, the last result was refined in [3, 79] where the authors proved that for
the convexity of a Chebyshev set it is enough that the set of discontinuity points of the metric
projection is at most countable. Finally, the papers [24, 81] contain another type of conditions
for the convexity of a Chebyshev set involving differentiability of the distance function.

As we already said, in R™ the classes of Chebyshev and convex closed sets coincide (see,
e.g., [78, 8]). Observe that in order to prove the existence of projection in this case it is not
necessary to assume convexity (which is needed, however, for uniqueness). Furthermore, J. M.
Borwein and S. Fitzpatrick proved in [11] that every nonempty closed subset of a Banach space
H is proximal if and only if H is finite-dimensional. Thus, in infinite dimensions the convexity
is important for the existence as well. In fact, it is sufficient for the proximality in each reflexive
Banach space (see [11]). Later some generic results were obtained in the lack of convexity. For
instance, M. Edelstein proved in [46] that in an arbitrary uniformly convex Banach space H for
each nonempty closed subset C C H the mapping 7¢ : H — C is well defined and single-valued

LA set C is said to be approzimatively compact if any sequence yn € C with ||z — yn| — dc (z) admits a
subsequence converging to an element of C.



the outside curvature of the set, while the others take a sense in more general setting. Speaking
about the curvature we mean the following: for each z € dC and each normal vector v to C
at T there exists a sphere with radius 1/ (2¢ (z)) centred in the half-line z + Av, A > 0, which
touches C at the point = only. Thus, this is a local property (some kind of an external sphere
condition) but as we will see later it can be treated as a global one.

The class of ¢-convex sets includes all convex sets and the sets with Cllo’i-boundary, i.e.,
those having the form {z € H : g (z) < 0}, where the function g (-) is continuously differentiable
with locally Lipschitzean gradient (we rigorously prove this fact in sequel). Moreover, if for
each zp € OC there exists a neighbourhood U (z¢) such that either C N U (zo) is convex or
OC NU (xo) is of class Czl (;i then C is y-convex as well. As a simple example of a y-convex
set, which does not satisfy any of these two properties (even locally) we can consider the set
{z € R™ : max|z;| < 1, Tz? > 1}. For a less trivial example of a ¢-convex set (in infinite di-
mensions) we refer to [16, Theorem 1.8 and Proposition 1.9].

Let us recall some important results regarding ¢-convexity. In [16] it was proved that the
metric projection onto a -convex set C is a single-valued mapping defined and locally Lip-
schitzean near C. This result was obtained earlier by H. Federer (see [53]) but only for C C R",
while F. Clarke, R. Stern and P. Wolenski considered in [24] its infinite-dimensional uniform
version. The last authors showed also that the distance function d¢ () is of class Cl1 o’i in a
neighbourhood of C (assuming C to be ¢-convex with a constant ¢ (-)). Later the complete
characterization of ¢-convexity was given (see [71, 27]). In particular, it was proved that C is
p-convex if and only if there exists an open set Z O C such that each z € U has a unique metric
projection ¢ (z), and the mapping = — ¢ (2) is continuous in U. Moreover, this is equivalent
to the continuous differentiability of the distance function de (-) on the set Z\C. In this case
the Fréchet derivative V d¢ (+) is given by the formula

z — 7o (T)

Vde (."E) = de (37) ’

z e U\C, (1)
being Lipschitz continuous in a neighbourhood of each point = € U\C with the Lipschitz constant
tending to infinity as = goes to the boundary 9. This is the reason why @-convex sets are said
to be also proximaly smooth.

Let us observe that the distance function and the metric projection can be interpreted in
another way. In fact, for C C H and z € H the distance d¢ («) is nothing else than the minimum
time necessary to reach the set C starting from the point « by trajectories of the control system

z(t)y=v(t), lv@®l<1, (2)

while the projection 7¢ (z), for = not in C, is the set of all points in OC, attainable from z for
the minimal time. Slightly extending this problem we can consider in the place of the closed unit
ball in (2) (denoted further by B) an arbitrary closed convex bounded set F' C H, containing
the origin in its interior (we need the last condition in order to guarantee controllability). So



that, given a point z € H we are led to study the following time optimal control problem with
constant dynamics:

min{T>0}:3:c(-),cc(T)€C’, z(0) =z, and z (t) € F ae. in [O,T]}. (3)

Taking into account this interpretation, we refer to the sets F and C as the dynamics and
the target set, respectively. The value function in this problem (denoted further by TE£ () and
called the minimal time function) is the suitable substitute of dc¢(-). While the set of the
terminal points « (T) for all functions z (-), which are minimizers in (3), called further the
time-minimum projection of x onto C' (with respect to F') and denoted by 7& (), generalizes
the metric projection w¢ (z). We keep the same name and notation for the unique element of
’/Tg () in the case when it is a singleton. Since each terminal point can be achieved by an affine
trajectory (due to convexity of F), T& (-) can be also given as

TE (z) =inf {t > 0: CN(z+tF) # 0},

or, in other words,
T (z) = inf pp (y — ),
yel

where pp () is the Minkowski functional (or gauge function) of the set F,
pp (&) :=inf{A>0:£ € \F}.

Clearly, if F = B then pg (), TE (z) and 7£ (z) are reduced to the usual norm ||z||, to the
distance d¢ () and to the metric projection 7¢ () of z onto C, respectively. Observe that in
general we do not suppose the set F' to be either symmetric or smooth or strictly convex unlike
this particular case. The generic properties established by M. Edelstein [46] and 1. Ekeland [51]
for the metric projection were subsequently generalized in [43, 19, 20] to the function 71'5 (-) with
an arbitrary dynamics F', even in Banach spaces.

Some conditions guaranteeing the well-posedness of the time-minimum projection (i.e., exis-
tence, uniqueness and continuity of the mapping = — 75 (2)) near the target were obtained in
[31], which turned out to be appropriate for the regularity of the value function Tg () as well.
These conditions combine -convexity of the target set C' (with ¢ = const) and some type of
uniform strict convexity of F controllable with a parameter v > 0. Then a neighbourhood of C,
where the well-posedness takes place, is given by some relation between ¢ and . However, these
hypotheses are not so sharp as for the usual metric projection and can be essentially refined.
The first part of the present work is devoted to this question.

On the other hand, in [20] a relationship between the existence of time-minimum projection
and the directional derivatives of the minimal time function was proposed. Namely, under
suitable suplementary conditions on the dynamics (including a kind of uniform convexity) it
was proved that 2 € H\C admits a unique time-minimum projection onto C if and only if
DTE (z) (v) = 1 for some v € OF. Here and further on we denote by Df (z) (v) the directional



derivative of the function f : H — RU{+oo} at = € dom f, domf ={re H: f(z) < +oo},
with respect to (w.r.t.) the vector v € H, i.e.,

Df (@) (v) = lim L& =S (@)

A—0+ A

(4)

Tt is interesting to observe that the "symmetric" property (DTE (z) (v) = —1 for some v € —0F)
is equivalent to the existence of at least one projection.

There are many papers devoted to the study of the subdifferentials of the distance function
de (). For example, in [12, 15] the authors give explicit formulas for the Clarke subdifferential
of d¢ (+) under various hypotheses on the closed (not necessarily convex) set C' C H and on the
normed space H. These formulas link the Clarke subdifferential either with the Clarke normal
cone to C at the point = (in the case z € dC), or with the respective normal cone to the sublevel
set {y € H:de(y) <dc ()} (if z € H\C), both generalizing the well-known relationships in
the case of convex C. The similar relationship for the proximal subdifferential of d¢ (x) in Hilbert
spaces and ¢ does not belonging to C was obtained in [24], while in [13] the proximal and the
Fréchet subdifferentials (for both cases ¢ € OC and z ¢ C) in a normed space were considered.
Further, the formulas for the various (Clarke, Fréchet and proximal) subdifferentials of dc (-)
were generalized to an arbitrary dynamics F and to the respective minimal time function ‘IF ()
(see [80, 29] for R™ and [30, 31] for an infinite-dimensional Hilbert space). Recently, the case of
a Banach space, or even of a normed space without completeness, was treated (see [83, 82]).

Let us pass now to once more interpretation of the distance function (and of the minimal
time function as well), which comes from partial differential equations. We start by considering
the general first order equation in finite dimensions

T (z,u(z),Vu(z)) =0, (5)
z € Q, with the boundary data

u(z)=6(x), ze€df, (6)

where T : Q x R x R® — R and 0 : ! — R are given functions,  C R" is an open bounded
set with the closure (7, and Vu (z) means the gradient of u(-) at z. A function v : @ — R"
of class C! (Q) satisfying both (5) for all z € ©Q and (6) is said to be a classical solution of
the boundary value problem (5)-(6). As simple examples show this problem may not admit
any classical solution (for instance, the equation |Vu (z)| = 1 with u(z) = 0 on the boundary
never has such solution). So that we are led to another weaker concept. Namely, we say that
a Lipschitz continuous function u : Q — R™ is a generalized solution of the equation (5) if
the relation (5) holds true for almost each (a.e.) & € 2 (observe that the gradient Vu (-) exists
almost everywhere by the Rademacher’s theorem [52, p. 81]). But in this way we lose uniqueness
of solution in most of the cases. So that one needs an intermediate definition.

Observe that (5) is the stationary version of the (time-dependent) Hamilton-Jacobi-Bellman
equation R
ut + I (¢, z,u, Vu) =0, (7)



appearing as a necessary condition of optimality in an optimal control problem. The first
attempts to define a class of solutions to (7), where existence and uniqueness (and may be some
regularity w.r.t. the initial data) take place, are due to O. A. Oleinik [68] and A. Douglis [45]
in the scalar case. Their definitions were based on some kind of "semi-decreasing" property of
solution, which is usefull in the study of nonlinear conservation laws. Later S. N. Kruzkov studied
the stationary equation (5) (see [61] and the bibliography therein) motivating his research by the
problem arising from the geometrical optics. In particular, when n = 3 and I (z, u, p) = |p| —q,
with a constant a > 0, one has the so-called eikonal equation describing the propagation of a
light wave from a point source placed at the origin in a homogeneous medium with refraction
index 1/a. If, instead, this medium is anisotropic and has constant coefficients of refraction of
light rays parallel to the coordinate axes (say ¢;) then the propagation of light can be described
by the (more general) eliptic equation

3
Zc?ugi —-1=0. (8)
i=1

If, besides that, the medium moves with a constant velocity w = (w1, w2, w3) then the equation
(8) contains a linear additive term and admits the form:

2
chugi + c <wvu$) -1=0,

i=1

where ¢ is the speed of light in a vacuum. Extending more, one gets the Hamilton-Jacobi
equation (5) with the hamiltonian " in R™ do not depending of z and « and convex w.r.t. the
third variable. For such type of equations (and with some dependence on x and u as well)
S. N. Kruzkov looked for solutions in the class E () of locally Lipschitzean functions with a
supplementary property involving the uniform boundedness of its second order finite differences.
In such a way S. N. Kruzkov proved existence and uniqueness of solution in E (£2) and its stability
w.r.t. the so-called viscosity approximations. Observe that he was the first who related well-
-posedness of a solution with the "vanishing viscosity", proving that each solution u (-) € E (£2)
(2 C R™ is a bounded domain) is the uniform limit of the sequence of solutions u° (-) of the
respective problems for the nonlinear elliptic equations®

I'(z,u, Vu) —eAu =0, (9)

as € — O+ (notice that the equation (9) has a unique classical solution for each € > 0 small
enough in accordance with Theorem 3.2 [61]). This construction itself can be admitted as the
definition of solution to the boundary value problem and it was motivated by the method of
"vanishing viscosity" in fluid mechanics.

Much later M. Crandall and P.-L. Lions (see [34]), considering the general problem (5)-(6)
without convexity assumptions and basing on the same idea of "vanishing viscosity", introduced

3 A is the Laplace operator



a new notion of solution, called wviscosity solution. In [34, 32] also other equivalent definitions
appeared. The exact definitions of viscosity solution will be given in Chapter 4, while now let us
mention that two of them use the suitable test functions (similarly as the notion of the generalized
solutions of linear PDE in the sense of distributions), and the other involves a generalization
of the gradient of a continuous function at the points of nondifferentiability. Notice that so
introduced solutions need not to be differentiable anywhere (they are supposed to be continuous
only). Nevertheless, as follows directly from the definitions, a function u (-) € C ! (-Q) is a classical
solution of the problem (5)-(6) if and only if it is a solution in the viscosity sense.

At present, Theory of Viscosity Solutions is a very developed and powerful field of the modern
mathematics having numerous applications in partial differential equations as well as in control
theory, differential games and so on. The fundamental results in this theory besides its creators
M. Crandall and P.-L. Lions were obtained by such mathematicians as L. Evans, H. Ishii, G.
Barles, M. Bardi, I. Capuzzo-Dolcetta and many others (see, e.g., [32, 6, 38, 33, 63, 7, 5]). The
large bibliography concerning this theory can be found in the last three books.

To summarize everything said above about viscosity solutions in finite-dimensional spaces
we refer to the excellent tutorial lessons by A. Bressan [14] where the following properties were
emphasized (23 () denotes here the family of viscosity solutions):

(i) for each suitable boundary data 6 (-) a unique solution u (-) € 28 (£2) of the problem (5)-(6)
exists, and it is stable with respect to both 6 (-) and T'(-);

(ii) the solution u () € 20(Q) is also stable with respect to the "vanishing viscosity" appro-
ximations. Namely, denoting by u° (-) the (unique) solution of the equation (9) one has
uf () — u(z) as € — 0+ uniformly in x € {;

iii) whenever (5) is the Hamilton-Jacobi equation for the value function in some optimization
p
problem, the unique viscosity solution u () € 20(Q) should coincide exactly with that
value function (see, e.g., [7]).

Afterwards, the concept and the main results concerning with the viscosity solutions were
generalized to some classes of infinite-dimensional Banach spaces (see, e.g., [35, 36, 37, 7]).
Notice that passing from finite to infinite dimensions one meets three main difficulties. First,
in order to prove uniqueness of a viscosity solution in finite-dimensional setting, one essentially
uses the fact that continuous functions attain their maximal and minimal values on a closed
ball, which is false in infinite dimensions. However, in [35] the authors have proposed another
way to do this basing on the Radon-Nikodym property (briefly, (RNP)), which is equivalent
to attainability of maxima and minima for arbitrarily small linear perturbations of continuous
functions (see [36] and bibliography therein). In what follows we have this property because H
is always supposed to be Hilbert, and Hilbert spaces (and even reflexive ones) possess the (RNP)
(see [44, p. 100]). Let us only mention here that the case of Banach spaces without (RNP) was
treated in [37). However, in this case an (alternative) coercivity condition for the mapping I'(+)
should be posed. Next, in infinite dimensions the property (ii) above has no sense by the simple
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reason that the Laplace operator is not defined. So that we can not use more the "vanishing
viscosity" argument to motivate the necessity of introduction of such type of solutions. The
motivation, however, comes now from the Theory of Differential Games. The third dificulty
appearing in infinite dimensions is concerned with the Arzeld-Ascoli theorem which is no longer
applicable in this case. So, one needs an alternative Convergence Theorem proved in [36].

Let us return now to the eikonal equation (with T (z,u,p) = ||pl|). It follows from (1) that
the distance function d¢ (-) with C' = H\Q is a generalized solution of the problem

IVu(@)] -1=0

with the boundary condition
u(z) =0, z¢€of.

Moreover, it turns out that the distance is exactly the unique viscosity solution.

The existence of viscosity solution to (5)-(6), when I () is an arbitrary (continuous) function
of the gradient, was investigated, e.g., in [18, 39], in the finite-dimensional case. Denoting by
F the closed convex hull of the set of zeros {¢ € H : T'(£) = 0} the authors of the first paper
reduced (5)-(6) to the following specific boundary value problem

{ pro (—Vu(z))—1=0 ifz el (10)

u(z) =6 (x) if x € 09,

where F° means the polar set. They proved that under appropriate conditions involving a kind
of geometric compatibility of F, 8 () and the domain 2 the (unique) viscosity solution of (5)-(6)
exists and coincides with the viscosity solution of (10). Moreover, this solution can be given by
the formula

u(@) = inf, {pr(y—x)+06(y)}. (11)

Notice that already S. N. Kruzkov (see [61]) considered the function (11) as the candidate for
solutions to eikonal equation or to its generalizations belonging to the class F (£2) introduced
by him. We postpone the direct proof of this fact and the study of the function (11) to the
Chapter 4, while now let us observe that the viscosity solution of (10) (consequently, of (5)-(6))
is the further generalization of the minimal time function Tg (+), being reduced to this function
whenever § = 0. Probably, M. Bardi (see [4]) was the first who characterized the minimal time
function as the unique solution to a Hamilton-Jacobi equation using viscosity methods.

In the second part of Thesis we are interested in attainability of the infimum in (11), in
uniqueness of the minimum point as well as in the regularity of the function «(-). As in the
case of the time-minimum projections we will see that these three questions are linked each with
other. Furthermore, the answers for them permit to make the conclusions about resolvability
of the problem in the classical sense. On the other hand, due to the dynamic programming
principle the gradient equation in (10) is the Hamilton-Jacobi equation for the minimal time
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problem. Therefore, the study of such equations (with an arbitrary enough regular boundary
function @ (-)) has also an independent interest due to possible applications to Optimal Control
or to Differential Games Theory.

Besides this Introduction, Thesis consists of four chapters, conclusion and bibliography com-
ments. Throughout the whole work we assume H to be a Hilbert space, F C H (dynamics)
to be a closed convex bounded set with the origin in its interior, and C C H (the target set)
to be nonempty and closed. Our main goal is to obtain local conditions on F' and C, which
would guarantee the existence of a neighbourhood of C, where the time-minimum projection is
well-posed (i.e., continuous as a single-valued mapping), providing, furthermore, Lipschitz (or,
in more general, Holder) regularity of the time-minimum projection Wg (1) and the differentia-
bility of the value function ‘Ig (). Moreover, we generalize these conditions for the respective
problem with non linear perturbation 6 (-).

The Chapter 1 is an auxiliary one, having nevertheless an independent interest. Our purpose
here is to bring together various concepts concerning the geometric structure of convex solids in
a Hilbert space, to study quantitatively their dual properties such as rotundity and smoothness,
and to put the introduced numerical characteristics into general settings of Convex Analysis.

In the Chapter 2 we present two types of geometric conditions on both F and C, which
guarantee existence and uniqueness of the time-minimum projection locally (i.e., in a neigh-
bourhood of the target), and the continuity of the mapping 7% (-) as well. One of the main
tools used for proving of our theorems is the Ekeland’s variational principle (see [51, Corollary
11]), which enables to establish some regularity property of minimizing sequences in the respec-
tive problems. Besides that, we strongly use the fuzzy calculus of the proximal subdifferentials
of lower semicontinuous functions, which permits to prove the well-posedness theorems in the
most general setting. Any way we give the exact formulations of these fundamental principles of
Analysis in the preliminaries. Under these conditions we prove first a local retraction theorem
(Theorem 2.2.1). In the case of p-convex target this result leads then to the explicit formula
for the neighbourhood of C' where the retraction is defined (or, in other words, where the well-
-posedness holds). In the last section we concretize the obtained results for the case when either
dC is smooth (theorems 2.3.1-2.3.3) or OF° is of class C2 (Theorem 2.3.4).

Using the same geometric conditions as in Chapter 2 and the same technique (involving, in
particular, the fuzzy sum rule) we show in Chapter 3 that under some natural extra hypotheses
the regularity of the time-minimum projection ﬂ'g () can be essentially improved. Namely, we
prove Lipschitz (or, in more general, Holder) continuity of 7% () in a neighbourhood of C.
Finally, we study differentiability of the value function Ig (1) near the target and give explicit
formulas for its (Fréchet) gradient. Based on these formulas we conclude that VZE (-) is locally
Lipschitzean (or Holderian) as well.

In the last chapter we study the problem of minimization of the Minkowski functional with
some additive nonlinear perturbation (see (11)), adjusting the existence and uniqueness results
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of the Chapter 2 for this case. Under appropriate assumptions we obtain also a local regularity
result for the corresponding mapping ﬁg’e (-), which associates to each € H the (unique)
point where the minimum in (11) is attained. We prove, in fact, that = — ﬂg’e (x) is Lipschitz
continuous near C, deriving then the classic differentiability of the viscosity solution u (-).

In comments we give some remarks regarding to the place of our work among other investiga-
tions in this area. We clearify various intersections with the results known in the literature and
compare our hypotheses with the known ones. We give also a more detailed and more concrete
(related more to our particular problems) historical sketch than in Introduction.



Chapter 1

Rotundity and smoothness in a
Hilbert space

This chapter is devoted to some notions of Convex Analysis that will be used in sequel. First of
all we give in Section 1.1 the basic definitions and some notations concerning with the geometry
of convex solids, which is the main technique throughout the whole Thesis. Further, in Section
1.2 we introduce some moduli of local rotundity for the convex set F' that seem to be more
suitable for our objectives. They are inspired essentially by the geometry of Banach spaces
(see, e.g., [65]) and adapted here for the case of "asymmetric norms". By using of one of these
moduli we define then the concept of strict convexity graduated by some parameter o > 0 and
associated with a dual pair of vectors (£,£*). The main numerical characteristics resulting from
these considerations is the curvature (and the respective curvature radius), which shows how
rotund the set F is near a fixed boundary point watching along a given direction. The Section
1.3 is devoted to the dual notions. Namely, considering the polar set F'° we define the so-called
modulus of smoothness of F° and local smoothness (also associated with a dual pair, in this case
(€*,€)). In particular, we prove here the local asymmetric version of the Lindenstrauss duality
theorem quantitatively establishing the duality between local smoothness and local rotundity.
Thus, the curvature of F can be considered also as a numerical characteristics of the polar set
F°, showing how sleek F° is in a neighbourhood of a boundary point £* if one watchs along a
direction £. Applying this theorem, we obtain a characterization of the curvature of F' in terms
of the second derivative of the dual Minkowski functional. In the last Section 1.4 we give some
examples.

1.1 Basic notations and definitions

Let us consider a Hilbert space H with the inner product (,-) and the norm ||-||, a closed convex
bounded set F' C H such that 0 € int F' (“int” stands for the interior of F'), and denote by F*
its polar set, i.e.,

Fo.={¢" e H: () <1 VEeF}.

13
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Together with the Minkowski functional pp () defined by
prp (&) :=inf{A>0:£€AF}, £€H,

we consider the support function op : H — RY, op (€*) := sup {(£,£") : £ € F'}, and observe
that (see [31, Proposition 2.1])

pr(§) =0re(§), {€H, (1.1)
and, consequently,
1 [e]

TEl €l < pp (§) < NFCIIEN, €€ H, (1.2)
where || F|| := sup {||¢]| : £ € F}. The inequalities (1.2) mean that pp (-) is a sublinear functional
"equivalent" to the norm ||-||. It is not a norm since —F # F in general. As a consequence of
(1.1) and (1.2) we have the Lipschitz property

lor (61) — pr ()l S FPI 1€y — &all V€1, €2 € H. (1.3)

In what follows we use the so-called duality mapping Jr : 0F° — OF that associates to each
£* € OF° the set of all functionals that support F° at £* :

Jr () :={6€dF :{¢&) =1}.
We say also that (£,£*) is a dual pair when £* € OF° and € € Jr (£*).

Remark 1.1.1 Notice that I (£*) # O for every £* € OF°. Indeed, fixed £ € OF° let us
consider a sequence {£,} C F such that

1= ppo (€7) = sup (€%,9) < (€6,) + =, meEN. (1.4)
yeF n

Since F is obviously weakly compact, {{,,} admits a subsequence converging weakly to some
£ € F. Passing to limit in (1.4) we obtain

(€6 =2 1.

On the other hand,

1<(€%,¢) < sup (¥, &) =pp(§) <1,
yreFo

which implies that pp (§) = 1, i.e., { € OF.

Let us denote by Np (¢) the normal cone to F at the point £ € F and by 9pp (§) the
subdifferential of the function pp () in the sense of Convex Analysis. Notice that for each
£* € OF° the set Jr (¢*) is nothing else than dpp. (£*), and Np (§) N OF° is the pre-image of
the mapping J (+) calculated at the point £ € OF. Here we use the following result
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Remark 1.2.1 In the above formulas the infimum can be taken for n € OF. Let us prove this
for the modulus € (r,€,£"), the others are similar. We have always the inequality

Cp (r,&,€%) <inf{(€ —n,€") :n € OF, € —n| > }. (1.7)

Now we suppose that the equality does not hold. Then there exists 7 € int F with ||€ —7| >

such that
-7, < inf -1, 1.8
(€-7,¢€") n]e%p<§ 7€) (1.8)
lg=nll2r
Then by the separation theorem there exists a line passing through 7, which does not intersect
the open ball £ +rB. Since 7] € int F, this line meets OF at ezactly two points, let 7y and n,.

Consequently, there exists A € [0,1] with 7 = Ay + (1 — X) 9. Hence
(€-7,8) =2, + 1= ({€=n, &) > (€ -78,
that contradicts (1.8).

Remark 1.2.2 Observe that for all T > 0 the inequality €L (r,£,£*) > 6F (r,€) holds. Indeed,
for each n € F with pp- (n —§&) > by (1.1) we have

0p (1 €) S2—pp(E+n) S2(€) = (€+n,€) =(—n¢).

But the opposite inequality is violated even in the simplest cases. For ezample, if F = B,
€l =1 and € = &* (Jr (%) = {&} is singleton) then direct calculations give

r2

Op (&) =inf 2= [¢+nll: ne S, e —nll=r}=—r—=

while QZ;? (r,&, ") = EF (r,&,6") = T;—, 0<r<.

Due to (1.2) we also have the following inequalities:

r

5 (m,ﬁ,f*) < Cp(r6,6%) < CE (||F°||r,6,€7), r>0. 1.9)

The Definition 1.2.2 suggests another concept of strict convexity. Namely, the set F' is said
to be strictly convez at the point £ € OF w.r.t. & € Jp' (€) if ¢p (r,€,€*) > 0 for all 7 > 0.
The modulus Cp (r, £, £*) here can be, certainly, substituted by @ii (r,&,€") (see (1.9)). This,
obviously, implies that £ is an ezposed point of F, and the vector £* ezposes € in the sense that
the hyperplane {n € H: (n,€*) = op (")} touches F only at the point £, or, in other words,
that Jp (€*) = {£}. Therefore, we can speak just about the strict convezity w.r.t. the vector £*
(do not refering to the unique £ € Jp (€%)).

The following statement characterizes the local strict convexity in terms of the duality map-
ping (and of the dual Minkowski functional as well).
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Proposition 1.2.1 The set F is strictly convezx w.r.t. £ € OF° if and only if one of the
following assertions holds:

(i) € is a strongly exposed point of F w.r.t. &%, e, Jr(€*) = {£} and each sequence
{€.} C F such that {€,,,£*) — (,€*) =1, n — oo, converges to § strongly (||€, — €[l — 0

asn — co);

(i) the duality mapping Jr (-) is Hausdorff continuous at £* with Jp (£*) = {}, which in this
case means
sup |In—¢&|| =0 asn* —¢&*, n* € OF°; (1.10)
neIr(n*)

(i4) the function ppo (+) is Fréchet differentiable at £* and Vppo (£*) = &.

Proof.

Let us show first that the strict convexity of F' w.r.t. £* is equivalent to the property (i).
Assuming that the unique point ¢ € Jp (€*) (here and further on we write £ = Jp (%)) is
not strongly exposed for F' (w.r.t. £*) we can choose ¢ > 0 and a sequence {{,} C F with
¢, — €|l > € such that (£ —¢&,,,&") — 0 as n — co. Hence, 0 < Cr (6,€,€") < (£ —&,,€") =0,
and the strict convexity is violated. On the other hand, if Ep (r,&,&%) = 0 for some r > 0 then,
by Definition 1.2.2, there exists a sequence {£,,} C F such that ||£, — £|| > rand (£ = §,,,£") =0
as n — oo. But this is impossible if £* strongly exposes £ € OF.

The equivalence (i)« (iii) was proved in [70, Proposition 5.11], while the equivalence between
the conditions (iii) and (ii) follows from [2, p. 460] where general properties of the convex
functions in topological vector spaces were studied. However, let us give here an alternative
direct proof, which is useful from the methodological point of view (its idea is due to [65]).

(iii)=(ii) Assume that there exist € > 0 and sequences {n},} C 9F°, 0}, = &*, n, € Jr (n3)
such that pp (0, — &) > I, — &Il /IIFll = e, n=1,2,.... Let us fix n € N. Using (1.1) we can
choose v}, € OF° with

<nn - §>v:1,) 2 €. (111)
By Fréchet differentiability of pgo () there exists ¢ > 0 such that

pro (€7 +108) = ppo (€)= 6, 007) < 5 (1.12)

On the other hand,

pro (€ +1tvp) — ppo (€7) 2 (10, € +1v7) — (M, 7)
= (nn)E* - 77;) + (nn - 5; tv;:,) + (57 tv;) )

and combining with (1.11) and (1.12) we obtain

IS

&
et + (N, & —np) < (0 — & tup) + (1,8 —n) < 5

Therefore

o+

€

7 < My r = €%) < ppo (M — £7),
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which contradicts the convergence pgo (77, —¢§*) — 0, n — oo.
(ii)=-(iii) By the Lipschitz continuity of pp. (-) we have

pro (€7 +10*) 2 ppo (€7) — I|IF || tv*|| =1 - [[F[t >0,
S0 that ppo (€* + tv*) s 0 for all v* € B and for ¢ > 0 small enough. Moreover,
£ + to*
pro (£° +tv*)
uniformly in v* € B. Fix ¢ > 0 and by (1.10) choose § > 0 such that
[(n =& v <lin-&ll "]l < e

for all n € Jp (n*) and v* € B, with n* € 9F° such that ||n* — £*[| < J. In particular, we have
(n—§&v*) <eforallne Jp((€"+tv*)/ppo (€ +tv*)), v* € B and 0 <t < 4. For such ¢, v*
and 7 we have

— & ast— 0+

(6, 07) = (€,€" +t0") = (6,€7) < ppo (6" + ") — ppo (€7) (113)
On the other hand, by the definition of the duality mapping we can represent
pro (" +10%) = (1, € + tv7),
and, consequently,
pro (§" +10") — ppo (€7) = (1,€7) + (m, ") — ppo (£7) < (n,207) . (1.14)
Finally, from (1.13) and (1.14) we conclude that
0< ppo (€ +107) = ppo (§7) — (6, t07) < (n — & t0") < et

whenever 0 <t < § and v* € E, and the Fréchet differentiability follows. W

>From Definition 1.2.2 we get also a "strict monotonicity" inequality:
<77 - 67 77* - 6*) > <p (Ty &, 6*) +<CF (T7 n, 7)*) (115)

whenever £ € Jp (¢*) and 7 € Jr (n*) with ||€ — n|| > r, which permits to prove an uniform
version of the previous statement. Namely, given U C 0F° let us call the set F' uniformly strictly
convez w.r.t. the set U if

By (r) :=inf {EF (r,§,€%):& € U} >0

for all » > 0. Here as usual £ denotes the point Jr (€*) for respective £* € U. If, in the definition
above, U is a neighbourhood of a point £; € OF° then we say that F' is uniformly strictly convex
w.r.t. £5. This property makes sense mainly in infinite-dimensional spaces, where it is stronger
than the strict convexity w.r.t. all the vectors near &j.
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Proposition 1.2.2 If the set F is uniformly strictly convex w.r.t. U C OF° then the duality
mapping Jr (-) is single-valued, uniformly continuous on U and coincides with the gradient

Voo ()

Proof.

It is enough to show only the uniform continuity of the mapping Jz (-) on U. Let us assume
the contrary, i.e., that there exist ¢ > 0 and two sequences {£,}, {n%} C U such that ||§}, — n;|| —
0 as n — oo but |Jr (&) —Ir(my)l 2 &, n = 1,2,... . Denoting by &, = Jr(£y) and
N, = Jr (nk), it follows from (1.15) that

(M = Eny T = €2) 2 Tr (6,60, 67) + Tr (17, 0) 2 2By (€),
which implies
0 <28y (e) < (M = &ni — &x) < lIn = &alllInf = Eall S 20 F ) lIn7, = €l = O,
but this is a contradiction. W
Let us give now a stronger (graduated) concept of (local) strict convexity.

Definition 1.2.3 Fiz £* € OF°, and let £ be the unique element of Jr (§*). The set F' is said
to be strictly convex of order & > 0 (at the point £) w.r.t. £* if

. . Cp (r,n,1%)
o (&) = lim inf -
’YF, (E 6 ) (T’n’77g)_)(0+’€'£*) ra
n€Jr(n*),n*€dF°

>0, (1.16)

and o is the least number such that (1.16) holds.
Remark 1.2.3 The condition (1.16) means that for some 6 > 0 and d > 0 the inequality
p (r,n,n") > 6r® (1.17)

takes place whenever ||n* —&*|| <4, In—¢él <6, n € Jr(n*), n* € OF° and 0 <r < 4. By
the monotonicity of the function r — ¢ (r,n,n*), diminishing if necessary the constant 6 > 0,
we may suppose that (1.17) is valid for all positive r. In fact, ¢p (r,€,€*) = +oo whenever
r > 2||F| and for § < r < 2||F|| we have

~ ~ 6 (s 5 o4
Cp (Ta 77,77*) > < (6777)7}*) > 65% =0 <_> r¢ 2> g (——) re.
r 2(|F
Hence, F is uniformly strictly conver w.r.t. £, and by Proposition 1.2.2 the duality mapping
is single-valued and uniformly continuous in a neighbourhood of £*. In particular, the condition
n— & in (1.16) is superfluous.

The numbers 5, (£,€%) in (1.16) possess the following invariantness property (we do not
assume here that 0 € int F).
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Proposition 1.2.3 Let y1,y2 € intF, £ € OF and &] € 3;1 (€ —y1). Then there exists a

-y
unique &5 € 3;1_” (€ — y2) colinear with ] and such that
1. 1. "
EH’YF—yl,a (E — Y1, g{) = ET[FYF—yz,a (6 - Y2, 62) ’ (118)

for each o« > 0.

Proof.
First notice that £ € (F —y;)° implies {y —y1,€]) < 1 for each y € int F. Therefore

1+ (y1 — y2,€7) > 0.

. * o, __._EJ.__
Now setting &5 := 1+ {y1—y2.£1)

*

we see that £} has the same direction as £] and

* _ 1 B ,
-1 = T Y y2,41)
1 ) o
= T W mE T e <1

for all y € F, which implies that £5 € (F — y2)° and (€ —12,&3) = 1, ie., &3 € 3;{” (€ = y2).

Given n € OF close to &, n] € 3’}1_y1 (n — y1) close to &7 and setting n3 = m—yl—%m (which
"

belongs to some neighbourhood of £€3) we obtain, directly from Definition 1.2.2,

1~ * 1+<y1 _y217’*>
Q:F~y2 (Ta n—y2 772) “(’7’{” !

3]l
1.
= —— inf{(n—y,n)):y€F |In—yl=r}
fIn1l]

Sy ( 1)

= —= Cp_y, (10— y1,7]

i3l u ’

inf{(n—y,m5):y€F, |n—yll =7}

i.e.,
1 -~ 1 -~
i Ty, (1,0 = y2,M3) = =7 Ty, (11— Y1, 77) (1.19)
lim5 I v 1] v

for all » > 0. Dividing both parts of (1.19) by r* and passing to liminf as r — 0+, n — &,
nt — £} (and, consequently, 73 — £3) we easily come to (1.18) (see (1.16)). W

Observing that the common direction of the vectors &] and &} from Proposition 1.2.3 is
normal to F' at the point £ (since obviously Np_y, (§ —y;) = Np (£), @ = 1,2), we may extend
the concept of strict convexity for the case of an arbitrary closed convex bounded solid (do
not assuming that 0 € int F). Indeed, given £ € OF and v € Ng (§), |[v| = 1, we say that
F is strictly convex of order @ > 0 (at the point ) w.r.t. the vector v if the translated set
F — y is strictly convex of order « (at the point & — y) w.r.t. the same direction v (or w.r.t.
v/ p(p—yy (v) € O (F —y)°, see Definition 1.2.3), where y is an arbitrary element from int F. We
use such generalization in Section 2.3 (see Proposition 2.3.5 (i)). Furthermore, since this is a
local property, it can be extended also for the case of an unbounded set.

In what follows we use the strict convexity of order o = 2 only denoting ¥p o (§,£*) simply
by 4 (§,€7).
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Curvature

Finally we are able to define curvature (and the respective radius of curvature).

Definition 1.2.4 Fiz £ € F and £* € J7' (€). The numbers

ep (6,€7) = HQTH&F (&,€) (1.20)
and )
Rr (£,€") := e 8 (1.21)

are said to be the (square) curvature and the curvature radius of the set F' at the point § € OF
w.r.t. £*, respectively.

Roughly speaking, the curvature shows how rotund the boundary OF is in a neighbourhood
of ¢ (watching from the end of the vector £*). As follows from Proposition 1.2.3 it does not
depend on the position of the origin in int F' and can be defined also when 0 ¢ int F'. By using
(1.21) we give the following geometric characterization of the curvature radius.

Proposition 1.2.4 Given & € OF and £* € 37! (€) we have

R * - —
—F-(—é;’—é——z = limsup  inf {r >0:Fn(n+eB) cn—rn*+r|n*|B}. (1.22)
”§ ” (e,n,n*)—(0+,€,£%)
n€Ir(n*),n*€dF°
Proof.

Let us prove first the inequality "<" in (1.22) assuming without loss of generality that the
right-hand side (further denoted by R) is finite. Taking an arbitrary p > R we can affirm that
for each & > 0 small enough and for each dual pair (n,n*) from a neighbourhood of (£,£*) the
relation

inf {r >0: FnN (n+eB) Ccn—rn* +r|n*|B} <p

holds. In particular,
Fn(n+eB) Cn—pn"+pln"|IB,
implying that
IS =0+ pon*1* < o* In"|?
whenever ¢ € F with || — 7| =&, or, in another form,

& 23
- > . 1.
(=) 2 & (1.23)
If w € F is an arbitrary point with |w — || > € then setting ¢ := Aw + (1 — A\)n € F, where
=&/ lw-n| <1, we have [( —n] = € and (n—(,n*) = A(n—w,7). Using (1.23) we

obtain
2

;_p.SAO?_w:TI*) _<.<7)—wa77*>>
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and therefore (see Definition 1.2.2)

1 Crlenm)
20~ g2
Hence, passing to liminf as € — 0+, (n,7*) — (£,€*) and p — R+ we conclude the fist part of
the proof.
In order to show the opposite inequality let us assume that R > 0 (in the case R = 0 it is
trivial). If now 0 < p < R then by the definition of lim sup there exist an arbitrarily small ¢ >0
and a dual pair (n,n*) arbitrarily near (£,£") such that

inf {r >0:FN(n+eB) Cn—rn*+r|n*| B} > p.

Therefore the set F'N (n + ¢B) is not contained in n — pn* + p ||7*|| B, or, in other words, there
exists ( € F with ||¢ — || £ € such that

¢ =n+en"I* > o I |l*
Consequently, setting 7 := ||{ — 77|| < € we have
2(n = ¢,pn") < [I¢ —ml® =r*

that implies R
Cp(rmn*) 1
—_— < —. 1.24
72 < 2P ( )
Passing in (1.24) to liminf as r — 0+, (7,7*) — (£,£") and then to limit as p — R— we prove

the inequality ">" in (1.22). H

Besides of 4 (€,£*) in what follows we also use the one-sided characteristics 'y} (€,€*) and
vz (€, €") defined by the same way as (1.16), « = 2, but with the modulus Cp (r,m,1*) substituted
by Qf (r,m,n*), respectively. However, they do not satisfy the invariantness property given
by Proposition 1.2.3 (see Example 1.4.3 from Section 1.4), being connected with the "true"
curvature through the inequalities

1 + , * ) .
T 'Y—Flffl—f—) <|IF|? ser (€,€7)

(see (1.9) and (1.20)).

According to Remark 1.2.3 it makes sense to define
vr (€,€%) :=sup {9 >0:3 >0 such that Cp (r,m,n*) > 6r whenever |n—¢|| <e¢,
[n* =€ <e neIr(n®), n* € OF° and r >0}, (1.25)

or, in a compact form,

* L. . EF (7",77777*)
vr(&,E7) = lim inf inf ——————
PG = i, BT
ne€Ir(n™), n*€OF°

. (1.26)
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Remark 1.2.4 We see directly from the definition that the function (€,&*) — vp (§,£") is lower
semicontinuous (and the functions (€,€%) — 4p (£,£") and (§,£*) — ’yji (€,€%) as well). In fact,
by (1.25), for each v > 0 small enough there exist > 0 and € > 0 such that

Tr(§,€) <0+v (1.27)

and R
& (ryn, ") > 00 (1.28)

whenever |n — €| < e, |[n* —€*| < e, n € Ir (n*), n* € OF° andr > 0. Now, let us fir (¥ € OF°
and { € Jr (C*) such that ||€ — C|| < /2, ||€* — ¢*|| < €/2. Thus, for everyn € IJr (n*), n* € OF°
with ||n = ¢|| < /2, |In* = ¢*|| € /2 and r > 0 the inequality (1.28) holds, since |ln —§&|| < ¢,
ln* = €*|| < e. Consequently,

Combining this with (1.27) and passing to liminf as ({,¢*) — (£,€") and v — 0+ we obtain

YF (576*) S lim inf Tr (C) C*) .
(€,¢*)—(&:£")
¢eIr((*), ¢ €oF°

Furthermore, arguing as in Proposition 1.2.4 we have

1 —
—— = limsup inf{r>0:FCn—rn*+r|n’|B}. (1.29)
29r (§:€7) (=)
n€Ir(n”) n*€dF°

It follows readily from (1.19) that

s (€,67) = 1%9 (1.30)

is invariant with respect to translations similarly to the curvature g (§,£*). On the other hand,

»p (€,€%) and .
Rr (£,€) = T .8 (1.31)

are not only local characteristics of the boundary OF at the point { but depend also on the size
of the set F. In particular, R (£,€*) can not be too small, namely (see (1.29)),

Rr (£,£°) > vp, (1.32)

where tp > 0 is the Chebyshev radius' of F (notice that, 1/[|F°| < tr < |F|l). This dis-
tinguishes it from the "true" curvature radius Rp (§,¢*). In what follows we sometimes call
xp (€,€6%) and Rp (€, £*) scaled curvature and scaled curvature radius, respectively.

'The Chebyshev radius Tx of a bounded set K C H is defined as

7k :=inf {p > 0: 3k € H such that K C k+pB}.
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1.3 Local smoothness

As well-known (see [2, 56, 62, 64, 65, 66, 70, 84] and others) the strict convexity of a convex
closed bounded set F' with 0 € int F' is strongly related to the smoothness of its polar set F°.
Here we are interested in quantitative aspect of such connection. In particular, we found some
relationships between the functions ’yf (¢€,€*) introduced in the previous section and the local
characteristics of F°.

Definition 1.3.1 Let us fir £€* € OF° and € € Jr (§*) C OF. Fort € R we define a modulus of
smoothness of the set F° at the point £* w.r.t. £ by

Gpo (t,€",€) = sup {ppo (§* + %) — ppo (€*) =t (£, ") : m* € F°}. (1.33)

Since € € Jr (€*) = Oppo (£*), we always have Spo (t,£",€) > 0. By Proposition 1.2.1 (i),
if F' is strictly convex w.r.t. £* then ppo () is Fréchet differentiable at £* and consequently

o S5 (4E7,6)

lim ; =0, (1.34)

where ¢ is the unique element of Jr (£*). In the case of the condition (1.34) holds we say that
F° is uniformly smooth at £* w.r.t. §.

Remark 1.3.1 Notice that the uniform smoothness of F° at £* (w.r.t. §) is equivalent to the
Fréchet differentiability of the functional ppo (-) at £€*. In turn it follows from the Proposition
1.2.1 (see the equivalence (ii) < (iii)) that the gradient Vpp. (-) should be continuous at this
point. Consequently, by the same result the uniform smoothness of F° at £ w.r.t. § is equivalent
to the strict convezity of F' at £ w.r.t. £*. In this case we have

Ir (€%) = 0ppo (€") = {Vppo (§)}

(see Section 1.1). Then
OF NNpo (§7) = {Vpp. (£7)}
and consequently
* VPFO (6*)
Npo =
R ]

is the unique (unit) normal vector at the set F° at the point £*.

There is a relationship between the modulus of smoothness and the modulus of rotundity
given by the following statement, which is nothing else than a one-sided local version of the
Lindenstrauss duality theorem (see [62, Theorem 1]).
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Proposition 1.3.1 Let £ € OF and £* € OF° be such that (§,£*) = 1. Then for eacht >0 the
equalities
Spo (£t,€%,€) = sup {tr — CF (1,€,€) : v > 0} (1.35)

hold.

Proof.
Let us prove the equality (1.35) for €} (r,€,£*) only. The other one can be proved similarly.
Given € > 0, from (1.33) we choose n* € F° and n € F' such that

GFO (t,f*,g) (77)5* +t7)*> - <§:£*> —t<§an*) +e
(77"5,5*) +t(7)"§77l*>+5
m—&&) +top(n—§) +e

sup {top (N — &) —({—n,&")} +e
ner

Sggsup{tr— E-n¢&):neFpp(n—§ =r}+e

sup {tr — Cf (r,§,€")} +¢,
r>0

IA

IA A

IA

and the inequality "<" in (1.35) follows.
In order to prove the opposite inequality let us fix ¢ > 0 and choose first 7 > 0, 7 € F' with
pr (n— &) > r and then n* € F° such that

sup{tr—QF(r,é,g*)} < tr‘(f—n,f*)+%
>0

tor (=€) = (€= +3
t(n—-&n") —(€-n€)+e

(7’?5* + tn*) -t <§an*) - (§7€*> +e€
pro (EF +10") = ppo (§7) —t(&;n") + ¢
€5F" (t)‘f*)g) + €,

AN

IN A

and the proof is concluded. W

If we put
¢h(r,g€) ifr>0
Cp(r,€,€") =40 ifr=0
Cp (&€ ifr<0

then (1.35) can be written in a more symmetric form
6F" ('76*’6) = Q; (')676*)) (136)

where "% " means the Legendre-Fenchel transform.
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Now, by using Proposition 1.3.1, we obtain a dual characterization of the second order strict
convexity, which makes more precise the equality (1.34).

Proposition 1.3.2 Let (£,£*) be a dual pair of elements: £ € OF, £ € 0F°, £ € Jp (£%). Then

1 Spo (L, 1%,

T e = hm sup —“E‘—(";]—nl

A9 (6€7)  (tnnt)—(0%66") t
neIr(n*),n*€9F°

(1.37)

Proof.
We prove the formula (1.37) for v} (&,€*). The respective proof for v (§,£*) is similar.
While proving the inequality ">" in (1.37) we can assume without loss of generality that
v} (£,€*) > 0 (i.e., F is strictly convex of second order w.r.t. £*). Then the mapping Jr )
is single-valued and continuous in a neighbourhood of £* (see Remark 1.2.3), and taking an
arbitrary 0 < 8 < vE (&, £*) one can choose € > 0 such that

< (r,3r ("), ") > B (1.38)
for all 0 < r < e and n* € OF° with ||n* — £*|| < e. As it is easy to see,

2
sup {tr — € (r,Jr (0*),n") : 0 <r < e} <sup {tr —pri0<r<e}= 15 (1.39)
for all 0 < t < 2¢B. On the other hand, as €} (r,Jr (7*),n*) = +oco whenever r > D :=
2||F|| | F|| (see (1.2)) and the function r — €k (r,Jp (n*),n*) is increasing, using (1.38), we
obtain

sup{tr—@l}(r,(jp(n*),n*):r>s} < sup{tr—@}(s,ﬁp(n*),n*):s<r<D}
2
< — Bt < = .
< D= < (1.40)

forall 0 <t <28 (D —+/D? — 52). Thus, applying the duality formula (1.35), we obtain from
(1.39) and (1.40)
Spe (6,0 3r (") 1
t2 48
Hence, passing to limsup as t — 0+, n* — £* and to limit as 8 — ’Y}t (&,&") — we conclude the
first part of the proof.

In order to prove the converse inequality let us suppose that the right-hand side of (1.37)
(further denoted by L) is finite. Then, taking any 8 > L we can find € > 0 such that

SF" (tan*an) < ﬁtz (141)

for all 0 < t < € and for each dual pair (n,7*) such that || —¢&|| < e, [|[n* — €*|| < e. Applying
the Legendre-Fenchel transform to (1.41) we have

(‘5?0(7",77*,77) > sup{tr — Gpo (t,n*,n): 0 <t < e}

2
> sup {tr—ﬂt2 0<t<e} = ZTB’ (1.42)
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0 < r < 2efB. Since the double conjugate function is always below the original one, it follows
from (1.42) and (1.36) that

< &K (r,n*,n) < €k (rn,n0*).

=% ‘§|ﬁ“

asr — 0+, n* — £* n — £ we obtain

1

443’

and now by passing to the limit as § — L+ the desired inequality follows. W

Dividing by 72, passing to limin

vE (6,64 >

Let us concretize the formula (1.37) in the case when the boundary of F° is second order
smooth.

As we know (see Remark 1.2.3 and Proposition 1.2.1 (iii)) if 7% (£,€*) > 0 then ppo (+) is
Fréchet differentiable on 0F°N (f ¥+ EE) for some ¢ > 0, and, furthermore, the Fréchet derivative
Vppe (+) is (uniformly) continuous in a neighbourhood of £*. Remind that the functional pgo (-)
is said to be twice (Fréchet) differentiable at £* € OF° if there exists a (self-adjoint) linear
bounded operator VZppo (%) : H — H (called second Fréchet derivative) such that

Voo (£* +tv*) — Vppo (€¥)

n — V2pp. (£)v* as t— 0+

uniformly in v* € F°. Let us define the F°-norm of the operator V2pp. (£€*) by

1V20p0 (69| po == sup. (V2ppo (€¥)v*,0%). (1.43)

Finally, the boundary OF® is said to be of class C? (or second order smooth) at the point
€* € OF° if ppo (+) is twice differentiable at each point of a neighbourhood of £*, and the
mapping n* — VZpFO (n*) is continuous near £* with respect to the operator topology. This
is the same to require the continuous differentiability of the (unique) unit normal vector to F*°
near the point £* (see Proposition 1.2.1). Hence, in particular, the continuity of the functional
n* — ||V2ppe (1*)|| o in a neighbourhood of £* follows.

Proposition 1.3.3 Assume that the boundary of the set F° is of class C* at the point £* € OF°,
and & € OF is the unique element of Jr (§*) (in other words £ = Vppo (£*)). Then
1

Y (€,€) =7 (E,é*)=2”v2pF G (1.44)
\ o

Fo

Proof.
Given n* € OF° in a neighbourhood of the point £* by the Taylor formula (see, e.g., [10, p.
75]) for each v* € F° and t > 0 small enough we have

t
pro (N +10") = ppo () + £ (n,v*) + / (V2ppo (n* + Tv*) v*,0%) (t = 7) dr, (1.45)
0
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where 1 := Vpgo (n*) = Jr (n*). Hence, by using the mean value theorem for integrals, given
t >0 and v* € F° we find 7* = 7 (t,v*), 0 < 7* < t, such that

¢
/2

/ (V2ppo (n* +Tv*)v*,v") (t—7) dr = 3 (Vippo (0" + T*0*) v*,v").

0

Then (see (1.33))
Spo (t,n ,T]) - 1 sup <V2PF° (n* + T*U*) ’U*,’U*> . (1.46)
t2 2 v*eFe

By continuity of the second derivative we have the convergence
V2 ppo (0" +T"0*) = Vppo (€7)
asn* — €%, n* € OF°, and as t — 0+ in the operator topology uniformly in v* € F°. Therefore,

lim sup sup <v2pFa (n* + 77v") v, v*>
(tnm*)—(0+,£,£%) v*EF°
n€Jr(n*),n*€OF°
: 2 * * % 2 * * ok 2 *
lmsup  sup ((Vope (1" +7°0%) = Vippu (69)) v*,0°) + || V205 (€°)
(tmm*)—(0+,E,£") vreF°
ne€Jr(n*), n* €dF°

= ||V?op. (€%

Since the reverse inequality is obvious, we conclude that

AN

Fo

Fo -

1 6 o t1 *1

L limep SeGT)

95 (6,€%)  (tmmm)—>(0+£8) t
neIr(n*), n*€OF°

1 .
5 HVZPF° (§ )| Fo

(see (1.37)). In order to find the same representation for v (§,£") it is enough to apply the
Taylor formula (1.45) for ¢ < 0 instead of £ > 0. W

1.4 Examples

Example 1.4.1 In a Hilbert space H for a fizedv e H, ||v|| =1,0< 8 <1 and a > 1 let us
consider the set
F:={¢e€H:(v,f+v)>0]|&+v||*}.

Clearly, F is convex closed bounded with 0 € int F. We prove that it is uniformly strictly
convex (w.r.t. the whole 9F°) and even strictly convex of second order with curvature uniformly
bounded from below whenever 1 < o < 2, while in the other case (a > 2) the curvature of F' is
bounded from above, admiting the value 0 at some point. Indeed, for € := —v € JF setting

<% —V

¢ _ —y

~ ppo (=)
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(the unique normal direction at E) we directly have

p(rn&€) = wf{{-n€)nekF, [E-n|2r}
= inf {{v+n,v) :n€dF, v+l =}
or® r >0,
and, consequently, g (Z, E*) >0if @« <2 and ixp (E’, E*) = ( otherwise.
Taking instead ¢ € OF, € # —v, notice that the function k (y) := ||y||* is of classe C? near ¢
with
(67

S 1 PR 7 ) R
VAW = ey e (VE@ww) [n T } €

Then for € OF enough close to £ we obtain by the second order Taylor formula (see, e.g., [10,
p. 75])

ol = [l + o)) — e (n— £,6+
I+ vl* = I +0l® = s (=6 +0)
1
”77_6“ — (92— <77‘r+va"7_€>2 1— d
a{ ol O e [0
-7 oo =1) 7 = €J°
— 1) ln —&|j? d , 1.47
= el / o+l = T2+ 0P e

where 9, :=m+ (1—-7)§ € F, 7€[0,1],if 1 < o <2, while in the case a > 2 analogously we
have

I+ vl* = 1I€ + o] - (n—&&+v)

e+
< ala=Dln=gl* [ =7l +0]*? dr ()

< 5la=Dln=¢* (7] + 1

Observe that Ng (&) = Vg (&) RT where g (§) := || +v[|* — (v,§ +v). It follows from
(1.47) and (1.48) that

(€—n,Vg(§) = <£—n, “—v—v>

e+ o7 e
- ((€+v)—(n+v),—v>+“§+—af”2:,;(§—m£+v>
- 9[Hn+vll°‘—||§+v||"—“?;L—jF<n—E,§+v)
bala=1) p—gp? (1.49)

T o2(IF+ DT
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forl <a<2and

P a—
(€ =n.Vg(©) < 5 (=1l (1F + 1) (1.50)
for o > 2, respectively. Here we used the fact that £, € OF, i.e., g(€) = g(n) = 0. Moreover

a20? ab
ey T ) — 22—
€ + ]| 22=2) Ewito) € + vl

= o2+ v 2 -2 Bll¢ +v)|* +1

Vg (&)]? (€ +v,0) + |||

ab
I +v)*~*
= af? ¢+ P (a-2)+1<1

for 1 < a <2 and ||[Vg(€)| > 1if a@ > 2. Therefore, denoting by &* := Vg (§) /pp. (Vg (§))
from (1.6) and (1.49) (or (1.50)), we obtain for > 0 small enough

~ 1 fa (o — 1 B (o — 1
(6.8 2 e TR T 2 T o] et D
ifl<a<?
Cp(r,6,€") < 9701 (&= D F (IF] + 1) (1.52)
when o > 2.

Finally, dividing both parts of the inequality (1.51) (respectively, of (1.52)) by 2 and passing
to liminf as r — 0+, we find the estimates for the curvatures

fa(a —1)

sep (§,€7) 2 — >0, 1<a<2,
2| F|| |Fell (|1F]| +1)°
and ;
~ * a oa—
sp (€,€7) < 5 (e = DIIF[HIF|(FT+1) <400, a>2.

Example 1.4.2 Let F = {(£1,6,) e R2: &) <1-¢, =1 < ¢ <1}

Observe that F is closed convex bounded with 0 € int F. Let us estimate the curvatures
»p (€,€%) and 5 (&, £*) for an arbitrary dual pair (£,£*) (i.e., & € OF° and € € Jr (€)). Setting
€ = (€,€3) € R x R, by symmetry we can consider, clearly, only the case when §, > 0 and
£, <0.

If £, > 0 then the (unique) normal vector £* to F at £ such that pp. (£*) = 1 is given by

1

- (43,1).

6*
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>From Remark 1.2.1 we have, after some simple transformations,

EF (Taéaf*) = 1nf{<§—"7:§*> N € 8F7 ”5—77” Z T}
Tj?g inf {43 (& —m) +nf—€1: 1< <1, |€=nll >}
1
1
= o {n - -6+
+4€1 (m — &) +6€3] € =nl=r, —1<m <1}, r>0.  (1.53)

Since
e = nll? = (= €)% + (nf =€) = (1 = €20 [1+ (o +mdey +megd +€)7)

and —1 <71y <1, we obtain the inequality

2
1€ =nll < lm — &l \/1 + (1 + (6] + |6 * + |§1|3) ; (1.54)
and the condition [|§ — 7| > r can be writen as

le=nl .
SE) - SE)

Im — &1l =

2
where X (&) := \/1 + (23: |§1|k) . Consequently (see (1.53))
k=0

(ny — €)% +4& (n, — &) + 662
22 (&)

+—6§%].

(€ —n, &%) (€—n¢")

K=m&) 5 >
r? 1€ —nj®

1 r? €1
Z S [22 IR

Then, by (1.53),

Cp (r,€,6%) 1 r? 3 2]
e (P VAN SEATN) [22 @ T raey T (155)

Notice that the right-hand side in this inequality is continuous in . Therefore, in order to obtain
an estimate of the scaled curvature from below it is enough only to pass to infimum in (1.55)
for r > 0 (see (1.26)), while for the "true" (local) curvature we let r — 04 (see (1.16)). Thus,

since [|€*] = 4/1 + 16£8/ (1 + 3¢1), we obtain

2¢2

\/1 4166582 (¢)

e (€,67) = 15”(5_|f2 > K (&) =

(1.56)
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and . *
S (€,6%) = 1&'%“5—2 > 3K (£)). (L57)

In the same way (employing the inequality || — n]| > |{; — n;| instead of (1.54)) we obtain

Cr (r,€,€%)

= - +13£4 inf {(771 - &) [(771 — &))"+ 46 (m - &) + 65%] i—1<n<1, ||€=9]> 7.}
1
< gm0l [l + 46y e —nll+oet] 1< <1 g -l =r
1
2
- 1+T3€4 (r? + 4&yr + 663)
1

and hence
2¢? 6¢3

J1+ 1668 1+ 1668

Combining estimates (1.56), (1.57) and (1.58) we see that the curvatures sxp (£,£€%) and 5 (£, £")
are of order O (£2) (as |¢;] — 0). In particular, both »p and jp are equal to zero at the points
(0,=£1).

If € := (~1,0) then we have

xp (€,§7) < sep (§,67) < (1.58)

Npg (E) = {(’l)]_,’vg) S R2 < —-41'()2|},

and for £* € ONp (E ) by the lower semicontinuity we can apply the same reasoning as above but
not for ¢* € int Np (€). In this last case we have jp (£,£") = +oo (see (1.22)) while »p (£,€%)
is a finite positive number depending on the size of both sets F' and F°, and on the proximity of
£* to the boundary ONp (E) To obtain a precise estimate we can proceed, e.g., as in the proof
of Theorem 2.3.4 below (see Example 2.4.3 in the Section 2.4).

Now let us give a simple example illustrating the lack of the invariantness property for
’yf (&,£*) unlike the curvature (see Proposition 1.2.3).

Example 1.4.3 Fiz a € H with ||a]| <1 and consider the set
F={¢eH:|¢-a| <1}.
It is easy to see that

pre (€)= or(§") = sup (£€—a)+ (£ a) =[€"] +({%a), € € H.

flé—all<1

This function is twice continuously differentiable at each £* # 0, and taking £* € OF° we have

SR
va" (é ) =a+ ”6*”
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and )
* ”5*” v — <§*7'U*> E*
lex)I® ’

Vippo (€*)v v e H.
The || F°||-norm of this operator (see (1.43)) is

| V2pre (€%))]

— v2 L (€* *, *
Fo sup (Voo (€7)v",0)

v

W;—“g sup {IlE°I* 1o"I* = (¢",0")? : (", @) + ")l < 1}

Applying Lagrange multipliers after some calculations we find a vector v* € F° giving maximum
to the quadratic form v* — <V2pFo (&%) v*, v*), which satisfies the relations

<€*,’U*> =- (‘E*)a) “U*”

and
” *”2 ”§*|l2 -2 (5*,01)2 -+ “5*“2 ||CL||2 + 2\/(”€*”2 _ <E*’a)2> (”a”2 ”§*||2 _ <€*’a)2)
(112 - ") (1 = hal?)’
Hence
*|(2
|V?0pe (E|pe = ||||Z*||||3 (“5*“2 _ (5*,a)2)

(- ||12)2 el Gt lall®) = 2(€",a)" +

+2\/ (e = &%, )) (lall® 1€ - <s*,a>2)> o (159)

and the rotundity characteristics 7? (&,€%) can be found from Proposition 1.3.3. Here as usual
¢ € OF is the unique point with (£,£*) = 1. In particular cases when £ is colinear to a the
square root in (1.59) vanishes, and we obtain

1-]la o opk a
2 8= EraiEn

+ *
Tr (675 ) = 14+jla ek a
% 8 = — D

Thus, 'yf (&,€%) depend essentially on a (on position of the origin inside the ball). Namely, they
tend either to 0 or to 1 as ||al| — 1 whenever the origin is either more distant from the point £ or
more close to &, respectively. This distinguishes 'ﬁ (&, &%) from 4 (€,€") (see Proposition 1.2.3).
Observe that in the case a = 0 the formula (1.59) gives ||V2pF0 ({*)| po =1, and 'ﬁ; (&,¢&) =1/2
for each £* € H with ||€*]| = 1 and € = £* (see Remark 1.2.2).




Chapter 2

Well-posedness of the time-minimum
projection

We begin this chapter recalling some concepts regarding with the general (nonconvex) sets and
functions in a Hilbert space, in particular, definitions of various kinds of subdifferentials and
normal cones, which will be used throughout the work. We rigorously define ¢-convex (proximal
smooth) sets and construct the function ¢ (+) in the special case when the set has boundary of
class Cl1 0’2. In the end of the first section we obtain a very useful property of minimizing sequences
in the minimal time problem, whose proof is based on the Ekeland’s variational principle. In the
Section 2.2 we present two types of geometric conditions (on F' and C) guaranteeing the well-
-posedness of the problem. One of them essentialy generalizes the konwn hypotheses, employing
p-convexity of the target set C and the second order rotundity of the dynamics F'. The other does
not use any of these properties. The boundary of C can even have "inward corner" points. We
just require a certain Lipschitz condition on the duality mapping and (simple) strict convexity
of F near given boundary points. Under these assumptions we prove a general (local) retraction
theorem (Theorem 2.2.1) by using the property of minimizing sequences mentioned above. In
this section we also give an explicit formula for the neighbourhood of C where the time-minimum
projection & (+) is well-posed (although in the case of a p-convex target only). The obtained
results are then concretized for the case where either dC is smooth (see theorems 2.3.1-2.3.3 in
Section 2.3) or OF° is of class C? (Theorem 2.3.4). At the end of the chapter we present some
examples (see Section 2.4).

2.1 Properties of nonconvex sets. Auxiliary results

Subdifferentials and normal cones

We start with definitions of some subdifferentials to a lower semicontinuous function ¢ : H —
RU {+o0}.

Forz € dom ¢ := {z € H : ¢ (z) < +o0}, the prozimal subdifferential 97¢ () is the (possibly
empty) convex not necessarily closed set (see [23, p. 29])

8p¢(x)={C:377>0, o >0 so that ¢(y)2¢(x)+((,y—:n)—0||y—x||2 Vy€x+7]§}.

34
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The Fréchet subdifferential 8/ ¢ (z) is defined by

y—e ly — I

and it is convex and closed (see {13, Proposition 3.1]).
The limiting (Mordukhovich) subdifferential 0'¢ (z), in the case of a Hilbert space, is given
by (see [66, p. 240])

0(0) = {w-lin G GePOE), mom s -s@), (1

where "w- lim " denotes the weak limit. If ¢ (-) is locally Lipschitzean around z then 8'¢ (z) # @

11— o0

(see [66, Corollary 2.25]).
If ¢ () is Lipschitzean near z then the Clarke subdifferential 0°¢ (z) is the nonempty convex
closed bounded set given by (see [22, Proposition 2.1.2])

8 () = { ¢ : limsup ‘“y“”t) —90) . (¢, v) YoeHy. (2.2)
y—T
t—0+

Given sequences {z;} and {(;} in H such that {; € 0°¢ (z;), if z; — = and {(;} converges to §
weakly as ¢ — oo, one has ( € 9°¢ (z) (see [22, Proposition 2.1.5]). We say that the multivalued
mapping 0°¢ (-) has strongly xweakly-closed (or briefly s x w-closed) graph. Moreover, it was
proved in [23, p. 88] that

8°¢ (z) = @ {w - Im (o Gy €7@ (n), Tn— m} (2.3)
and that
079 (z) C ¢ (z) C ¢ () C 0°6 () (2.4)

for each = € dom ¢.
If ¢ is a convex function then all subdifferentials coincide with the subdifferential 8¢ (-) in
the sense of Convex Analysis.

Since the target set C' C H is assumed to be nonempty and closed we obtain the various
concepts of normal cones to C at a point € C through the respective subdifferential of its
indicator function I¢ () at = (which is equal to zero on C and to 400 elsewhere). Namely, the
prozimal normal cone, the most used throughout the work, is the convex (not necessarily closed
and possibly trivial, i.e., equal to {0}) cone defined by (see [23, p. 25])

N% (z) = {'v € H:30 > 0 such that (v,y —z) < o ||y — z||® forally € C}.

The Fréchet normal cone is the closed convex (and hence weakly closed) cone in H defined
by (see [13, p. 229])

N/ (z) := (v € H:limsup <'u, u> <0
¢ ly — 2l

y—z
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The limiting (Mordukhovich) normal cone, in the case of a Hilbert space, is given by (see
(66, p. 240])

N (z) := {w = lim Cp (o €NG(20), Tn— 2, 2o € C} (2.5)

can be trivial (see [66, Corollary 2.24]) and is not necessarily convex (see [66, p. 5]) neither
closed, in general (see [66, p. 11]). However in R™ the mapping N, (-) has closed graph (see
(66, p. 11]).

The Clarke normal cone defined as 0°I¢ (x) satisfies the following useful property (see [23,

p. 88])
N (z) = ©NL (z).

It can be proved that
N2 (z) ¢ N, (z) c NL (z) € N& (z), VzeC.

If C is convex then all cones coincide with the normal cone N¢ () in the sense of Convex
Analysis.

Proximal convexity

For each v € N¥, (z), v # 0, let us define the function

{v,y—=)

o @) = oy e

that measures the degree of "prominence" (or "cavity") of the set C at the point z with respect
to the direction v.

Recalling the distance function d¢ (z) := inf {||z — y|| : y € C} in the case ¥ (z,v) > 0 we
have another representation:

1
2|lvll e (z,v)
Le., each sphere centred on the half-line {z + Av: A > 0} and touching the boundary 6C at z

has radius r < Wcl(m Otherwise (if ¥ (z,v) < 0) such sphere can have a radius arbitrarily
large. Setting

=sup{A>0:dc(z+ Iv) = A},

12’0 (z,v) := lim sup M
” ” y—>z ”y - m||

we get a local characteristic of the set C. Observe that C is "concave" at z with respect to the
direction v whenever ¢ (z,v) > 0, and is the "concavity radius".

Wo ( z,v)
For some purposes (compare, for instance, with the definitions of the Section 1.2) the number

—t¢ (z,v) can be interpreted as exterior (negatlve) curvature of the (nonconvex) set C. It is
convenient to set also ¥ (z,0) = g (2,0) = 0. Since P (z,v) < +o0 iff Yo (z,v) < 400 (see
(23, p. 25]), we have



2.1. PROPERTIES OF NONCONVEX SETS. AUXILIARY RESULTS 37

NZ (z) = {fueH:@C(m,fu) <+oo}.

If Yo (z,v) is majorized by some continuous nonnegative function (say ¢ (-)) uniformly in
v € N% (z) (ie., Yo (z,v) < ¢ (z) for all z € OC and v € N%, ()) then the set C is said to be
p-convez (or prozimally smooth). In this case we have

v,y —z) <o (z) v lly —zl|* Vz,ye€C and VYve NP (z).

Another definition in terms of "almost monotonicity" of the normal cone can be given. Namely,
a closed set C C H is p-convex iff for some continuous function ¢ : C — R™* the inequality

(v—w,z—y) >~ (p(@) vl + ¢ @) wl) |z~ yl*

holds whenever z,y € C, v € N¥, (z) and w € N%, (y). In [27] it was proved (see Theorem 6.3)
that op-convexity is equivalent to the following geometric property: for each z € C there exist
r > 0 and p > 0 such that for all 21,23 € C N (z + rB) one has

T 4+ T2
dc( 5 > < pllz — =z

If C is convex then we clearly set ¢ (z) = 0. Since all the normal cones defined above to a
p-convex set coincide (see, e.g., [17, 27]), there is no ambiguity to write N¢ (z) in the place of
N? (z).

Finally, we say that a closed set C C H has smooth (or C') boundary at the point =g € OC
if there exist € > 0 and a continuous mapping n: 8C N (:r:o + sﬁ) — OB such that n(z) is the
unique vector in N% (z) with ||n (z)|| = 1. If this property is satisfied globally (i.e., N} (z) N 9B
is a singleton continuously depending on z € 9C) then the boundary of C is said to be smooth.

Let us define the "reduced” boundary
0*C = {m € 0C : NY, (z) # {0} },

which is dense in 0C (see 23, p. 49]).

A special case

Let us consider now the case when the set C is represented via some regular function and prove
its y-convexity.

Let us suppose that C := {z € H : f (z) <0} where f : H — R is a differentiable function
with local Lipschitz continuous derivative V f (-} such that Vf (z) # 0 for all z € 0C (following
the tradition we write f () € Cllo’i). This is the most simple and natural example of a non convex
but ¢-convex set (see, e.g., [16, 17]). Since it often appears in the further considerations and
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examples, we think that it will be opportune to set here the complete proof of the ¢-convexity
of C.

Let us fix o € 8C and § = & (zo) > 0 such that V£ (-) is Lipschitzean in z¢ + 6B with the
Lipschitz constant L = L (zg). We prove first that there exists p = p(zg) > 0 such that

(v, 22 = 21) < pllofl 21 — 22’ (2.6)

for all 21,29 € C N (z9+0B) and v € NZ (z1). Then we construct a continuous function
¢ : C — R* such that the inequality

(v,y —2) < ¢ () vl ly — =® (2.7)

takes place whenever z, y € C and v € N%, (z).

To prove (2.6) we assume that N7, (z1) # {0} (otherwise (2.6) holds trivially for any p > 0).
Consequently, z; € 8C. Since f(-) is continuously differentiable at z; (it is obviously locally
Lipschitzean), we have 8°f (z1) = {V f (z1)} # {0} (see [23, p. 78]). Hence (see (22, p. 56])

{0} # N2 (21) C N§ (1) = | JAV/S (1)
A>0
which implies

N (¢1) = |JAV S (z1).

A>0

Observing that f (z1) = 0 and f (z2) < 0, we find by Lagrange theorem y = Az1 + (1 — A) x3,
A € (0,1) such that (Vf(y),z2 —z1) = f(z2) — f(z1) < 0. Therefore, by the Lipschitz
continuity of V£ (+),

(Vf(z1),z2 — 21) (Vf(z1) = Vf(y),z2 — 1)
IVf(21) = V@) z2 — 1]

Lljzy — z||%. (2.8)

ININIA

Now let us fix v € N¥ (z1) different from zero (in the case v = 0 there is nothing to prove).
Then v = AV f (z1) for some A > 0, and by (2.8) we obtain

d 1
<m,m2 —.7?1> = m <Vf(a)1) , T2 — 1'1)

L
sy lzz = a®

= V7@l
L

S e =15

Certainly, we should choose § > 0 sufficiently small (remind that V f (zo) # 0).
Thus we choose p := -IW)—“—_—L? and the inequality (2.6) is proved. The point z in (2.6)

|zo — 212

can be any point from C in fact (it is not necessary that zs is close to zp). Indeed, given
€ CN(zo+IB), ve Ny (z)and y € C\ (z0 + ¢B) we obtain

1
(v,y = 2) < Jolllly = 2ll < 5 llelllly = 2 < p (o) vl lly — I,
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where p (z0) :=p + 3.

Notice that in the case zo € int C' we can choose § = § (zg) > 0 arbitrary small such that
zp + 6B C C. Then (2.6) in this point clearly holds as well.

The sets (o + 6 (zg) B)NC, 2o € C, form an open covering of the paracompact set C (C is
a closed subset of a metric space). Therefore it admits a locally finite refinement {{f;},.,. For
each i € I let us choose a point z; € C such that

U C (z; +0(z;)) B)NC.

If {e; (-)};cs is a continuous partition of unity associated to {U;},.; (see, e.g., (47, p. 23]) then

we set
= Z ei (z) p(zs) .
€]
>From the local finiteness of the covering {U/};.; and the continuity of each function e; (-) it
follows that the function ¢ : C — R™ is well defined, finite and continuous. For each z € C and
i € I with e; (z) # 0 we have z € Uf;, and

(vy—z) <p(z) ol ly-<I® VyeC.

Multiplying each inequality by e; () and summing them we obtain

(vy—o) = ei(e)(v,y—2) <Y ei(@)p(@)|v]lly -2l = ¢ (@) o]l Iy ~ 2|*

i€l el

that proves (2.7).

A property of minimizing sequences

Let us formulate three fundamental results of nonsmooth analysis that will be used in sequel.

Theorem 2.1.1 (Fuzzy sum rule [23, p. 56]) Let ¢, ¢, : H — RU{+o0} be lower semicon-
tinuous functions, not identically equal to +o00, g € dom ¢;Ndom ¢y, and let § € 6P (¢ + @) (z0)-
Suppose that either ¢, and ¢, are lower semicontinuous w.r.t. weak topology on H (automa-
tically the case if H is finite dimensional) or one of the functions is Lipschitz continuous near
zo. Then, for any € > 0, there exist points z; € zo +eB, 1 = 1,2, with |§; (z0) — ¢; (z:)| < €
such that

¢ € 8P¢ (z1) + 0Py (z2) +€B.

While in the case of limiting subdifferentials we have the following exact sum rule:

Theorem 2.1.2 ([23, p. 62]) Let ¢1,¢y : H > RU{+00} be lower semicontinuous functions,
not identically equal to 400, To € dom¢; Ndom ¢,. If one of ¢y, ¢y is Lipschitz continuous
near g, then

8 (¢1 + b3) (z0) C 8¢y (o) + 8", (o) -
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Theorem 2.1.3 (Ekeland’s variational principle [51, Corollary 11]) Let ¢ : H — RU
{+0o0} be a lower semicontinuous function, not identically equal to +oo. If zg € H 1is such that

< 3
¢ (z0) < zlgggb (z) + ¢,
then there exists T € H such that

¢ (z) < ¢ (x0);
Iz — zoll < Ve;
P@) <o) +Velz—yll, Yy#T

The following lemma is crucial for proving the main theorems contained in the next sections.

Lemma 2.1.1 Let C C H be a nonempty closed set, z € H\C, and {zn,} C C be a minimizing
sequence for the function = — pp(z—2) on C, ie., such that pp(zn —2) — TH(2)+ as
n — oo. Then there exist another minimizing sequence {z},} C C and sequences {z,}, {vn},
{€r} such that v, € N% (), &, € Opp (2, — 2) and

Iz = @al| + |27 - 2all = 0, (29)

v + pr (2 — 2) €3]] = O, (2.10)
as n — oo.
Proof.

Given an arbitrary sequence e, — 0+ with p% (z, — 2) < (L (z))2 + €2, by Theorem 2.1.3
there exists {y,} C C satisfying the conditions

2
PE (yn —2) < (3G (2)) +en; (2.11)
”-'L'n - yn“ < &n;
Prlum—2) <prly—2)+enlly—wall  WyeO, (2.12)
n =1,2,.... The inequality (2.12), in particular, means that y, minimizes the functional

F(y):=pr(y—2)+enly—yall +Ic ()

on H, where I (+) is the indicator function of the set C. Then we obviously have 0 € 0P F (yn)
(see [23, p. 37]). According to Theorem 2.1.1

0 € OFLo(a))+0(p% (2 — 2) +en ||z — val|]) +€xB

no__ N
= Nlé ("E:l) + 2pF (CE,,,; - Z) apF (:E;: — z) + gn_m:",—.y_n_ +e,B
”‘Tn - yn“

C N% (al,) +2pp (2 — 2) Opp (zh — 2) + 2¢,B
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for some sequences {z),} C C and {z!!} C H, ||z}, — ynll < &n, ||z}, = ¥nll < €n, n € N. We
are able to apply Theorem 2.1.1, since the function ¢ — pp (z — 2) and the norm are convex
and, consequently, locally Lipschitzean. Therefore we can find vectors v, € N7, (z},) and &;, €
Opp (i — z) such that

[lon + pp (25 = 2) & < €,
and the property (2.10) holds. It follows from (2.11) that {z,} is a minimizing sequence of
z+— pp(z—2)on C:

pr (e = 2) < pp (20— vn) + pp (Un = 2) S TG (2) + (L+ [ F7l) en,
and (2.9) is also valid. W

Remark 2.1.1 The relation (2.10), in particular, shows that x;, belongs to 8*C for all n large
enough, since otherwise either &, — 0 or " — z, but both are impossible since §;, € OF° (see
Proposition 1.1.1), while =, — z would tmply y, — 2z and z € C = C.

Remark 2.1.2 The vectors v, in Lemma 2.1.1 can be chosen such that

Pro (—Vn) = pp (Eg - z) ; (2.13)
n =12 ... Indeed, setting v, := vp %F((’Lz(i:—:g € N’é (z!,) we have, by the Lipschitz continuity

of pro (*) (see (1.3)) and by (2.10),

= o (@ 2) e (60) = e (o0

Pro (—vn
< NFLIFN o (2 = 2) & +val| = O,

lon = v

and, therefore, v}, can substitute v,.

Remark 2.1.3 In the case when all the basic normal cones to the set C coincide (e.g., if C is
p-convez), in the proof of Lemma 2.1.1 we may use the limiting subdifferential (see (2.1)) in
the place of OPF (y), and apply the precise sum rule (see 2.1.2) instead of the fuzzy one. In this
way we obtain a stronger statement of Lemma 2.1.1, which gives z, = z)i.

2.2 Neighbourhood retractions to nonconvex sets

Basic hypotheses

Let us introduce two types of local hypotheses for the sets F and C.

We say that the pair of sets (F,C) satisfles the condition (A) at a point zg € OC' if there
exists § > 0 such that

(A1) the mapping z — Jr (—N% (z) N OF°) is single-valued and Lipschitz continuous on
Cs (zg) := {2z € 3*C : ||z — zol| < 0}
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(Aj) F is uniformly strictly convex with respect to
Usg (zo) =0F°n | ] [-N&(z)NIF°+B] (2.14)
z€Cs(z0)

for some &' > 0.

Alternatively, we say that (F,C) satisfies the condition (B) at zg € 8C if for some § > 0
(B1) the function ¥ (z, v) is upper bounded on the set
{(z,v) 1z € Cs(z0), v € NG (z)}
(or, in other words, C is proximally smooth in a neighbourhood of the point Zo);

(B2) there exist &' > 0 and K > 0 such that
2p (3p (€%),€%) 2 K for all & € Us 5 (20)

where )
Us 5 (zo) =0F°n | [-N2 (z) N OF° + 6'B] . (2.15)
z€Cs(zo)\{zo}

We are ready now to formulate the main results of this chapter.

Main results

Theorem 2.2.1 Assume that at each point zo € OC the pair of sets (F,C) satisfies either the
condition (A) or (B). Then there exists an open set U D C such that for each z € U the
time-minimum projection 75 (z) is a singleton, and the mapping z — 7E (2) is continuous on

Uu.

Proof.

We prove first that given g € 8C one can find an (open) neighbourhood U (zo) such that
for an arbitrary z € U (zo) each minimizing sequence {z,} of z — pp (z — 2) on the set C'is a
Cauchy sequence.

Case 1. The condition (A) holds at the point xg. Then we set

)

U (zg) := {zEH: |z — zoll < T
N IES

TF (2) < %} (2.16)

where L > 0 is the Lipschitz constant of z — Jp (=N%, (z) N 8F°) on Cs (z0) (see (A1)). Fix
z € U (20) \C and a minimizing sequence {z,} C C. Let us choose {z,} C 8*C, {z;} C H,
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v, € N2, (2!) and &, € Opp (¢}, — z) as in Lemma 2.1.1 and such that pp (275 — 2) = ppo (—vn),
n=1,2,... (see remarks 2.1.1 and 2.1.2). Since by (1.2)
lzn — 2ol < IFllpp (T — 2) + ||z — 20|
1| (pp (@n = 2) = TE (2)) + 1z = 20]l + I FI| TG (2)
IF1 (pr (@n — 2) = T& (2)) + (IFIIFN + 1) 12 = 2ol (2.17)

IA

and Tp —2) — TE(2) — 04, |lzn — 2] — 0 as n — oo, we can suppose, without loss of
PF C n

generality, that z/, € C5 () for all n =1,2,... . Consider a decreasing sequence v, — 0+ such
that
H.’L‘;L - "L'n” + ||$Z - xn” S Vn, (218)
pp (zh — 2) < TE (2) + vn; (2.19)
1
lon + pr (a7, = 2) &3] < 536 (2) v, (2.20)

n=1,2,.. (see Lemma 2.1.1). It follows, in particular, from (2.20), (2.18) and from
T6 (2) < pp (a0 — 2) S |F°|l ||z = znl| + pr (27 — 2)
that

Un

ORI T (2)
Pro (—vn)

< vn <
= 2pp (25— 2) 2(TE (2) = I Foll |z, — znll)

+€:L Vn < Vn, (221)

for every n large enough. Furthermore (see Proposition 1.2.2), the hypothesis (Aj) implies
that the (single-valued) mapping Jp (-) is uniformly continuous on U s (o), and, therefore, the
(decreasing) sequence

= sup I3F (€*) = JIF (%))
l€" —n*||<vn
& n*€Us g (wo)

n

tends to zero as n — oo. .,
Observe that & € Opp (z) — z) = Np (—iﬂl) N OF° (see Proposition 1.1.1), and hence

pr(zh—2)
zh -z
pr (x5 — 2)
(recall that 37! (&) = Np (£) N OF° for £ € OF). By (2.21) we have &}, ooy € Uss (z0),
and, consequently,

=Jr (&) (2.22)

Un

3r (€)= 3n (-t )| < m=120e (2.23)

Given m > n we obtain from (2.18) and (2.19):

|or (2 — 2) = pr (25 — 2)|
1F| |z = &mll + |or (2 = 2) = op (25 = 2)| + [ F°Il |25 = 24|
2[|F°| vn + 2vy

IA A
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and
o (@l — 2) < | F?) ||t = @] + £ (8 = 2) < IF°N v+ TE (2) + v

Notice that here we use the fact that (v,) is decreasing. Now by using (2.22) and (2.23) we
obtain

et = znll = llor (zm —z)ap(5*> pp (2 — 2) Ir (€2)])
< pp (e, = 2) 13F (€5) = IF (€W + |or (@i — 2) = pp (an — 2)| | Fl
< (IF°) vn + vn + T5 (2)) I13r (€)= Ir E + 21 FIL (1F° + 1) va
< 5L (2) |13F (€5) = Ir (€ + 4va | F (1F°] + 1)

o (o) o (o) |
+ 235 (2) B, +4vn | F| (IF°| + 1) (2.24)

Since — ;F—(L_T) € —NZ (z},) N&F°, applying the condition (A1) we find from (2.18) and (2.24)
that

<TG (2)

(1~ LTE () [l — 4] < v

for some sequence v/, — 0+, as n — co. Hence, by the choice of z (see (2.16)) we conclude that
{z}.} (and {z,} as well) is a Cauchy sequence.

Case 2. If at the point zo the condition (B) holds then we set

é K
U (zo :={z€H: PN [ " — TF(z)<——}, (2.25)
( ) ” 0“ ”F” ||FO||+1 C M

where the constant M > 0 is such that 9 (z,v) < M for all z € Cj (zo) and v € N% (z). Let
z € U(z0)\C and {z,} C C be a minimizing sequence of z — pp (z — z) on C. Everythmg
is already proved if z, — zp, n — oo. Otherwise, as we’ll see in sequel, there is no loss of
generality to suppose that zg is not a cluster point of {z,}, and that the sequence {pp (zn — 2)}
is nonincreasing. By using Lemma 2.1.1 similarly to the Case 1 we choose sequences {z},} C 0*C,
{zI'} C H, v, € N} (2}) and &, € Opp (2], — 2) satisfying (2.9), (2.10) and (2.13). Observe
that, in virtue of the hypothe31s (B1), a simpler version of Lemma 2.1.1 holds that gives z], = z;,
(see Remark 2.1.3). But, for the sake of uniformity, we prefer to keep all the notations. We can
assume, certainly, that 0 < ||z}, — zo]| < §, n = 1,2, ... (see (2.9) and (2.17)). Let us choose a
decreasing sequence v, — 0+ satisfying the inequalities (2.18)-(2.21), and assume that v, < &,
n € N. Since 2/, € Cs (o) \ {zo} and —vp/ppo (—vs) € —NZ (2,) N OF°, we obtain from (2.21)
that & € Us 5 (o) (see (2.15)).
For convenience we introduce the following notations:

Pn = PF (x'lr; _z);
G = z—}—pnF

e
'Q[)n = ¢C’ (xm'vn) .

1

m (see (1.30), (1.31));
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Here £, := Jr (£) can be found as in the Case 1 (see (2.22)), because (Bz) implies that F is

k]

uniformly strictly convex w.r.t. the set U 5,6 (z0) and, by Proposition 1.2.2, Jr (+) is single-valued
on the same set. Combining the hypotheses (B;) and (B3) we have from the above arguments:

s @I, = el (2 g (v (o)
> leal (i - 55 () M)
> 2= ﬁ (K —%E (2) M) > 0. (2.26)

By (2.20), (2.18) and (2.19), respectively,

1 *
oal < 5T () vn+pp (w — 2) E3
1 x
ST (2 v (1F° = 2t + o (51— 2)) NER

1
515 (2) vn + (| F°) v + TE (2) +vn) €0

< T @I+ Hay

for some y,, — 0 as n — co. Using this, (2.26) and the boundedness of the sequence {¢,,} we
can choose v}, > 0 such that

IN

IN

1
oy~ Il 2 (227)

for n € N large enough (assume that for all n).
Let us consider the approximate curvature centre of the set G, (at the point ;)

tn = ! = py (R + ) €5 (2.28)

We claim that for each m > n

|2n = i || < ll2n — zl] + 2 FCI I F ]l vn (2.29)
Indeed, the monotonicity of the sequence {pp (z, — 2)} implies
pr (Tm — 2)
“Fo” ||93Z1 - xm“ + PR (Tm — 2)
I1F°| vn + pp (xn — 2)
1Fl v + pio (2 = 2) + [ F°)) [|2n — 2
pn+ 2| F°| vn.

Pm

ININ IN A

On the other hand, from the definition of G, from (1.29), (2.22) and (2.28) we obtain:

Gn C 2+ py (J(E5) — (Ra +v,) €6 + (Ra+ Vi) €51 B)
=zl — py (Rn +v3) 5+ pn (R + 1) €I B

n "
=2zn+ ||a:n - zn” B.
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Since the sequence {||z, — z.||} is bounded (due to (2.28), (2.18) and (2.19)), by the claim above
(see (2.29))
2 2
20 = @il < llzn = o[} + 4

for some u!! — 0 as n — oo. Now recalling (2.30), we can write the estimate (2.32) in the form:

1
5lam—ahl® < 5 @vat ot~ a0l

— b =

< b+ (Ra+vh) (Valall e — 2 + 40 ) +2 (v [l2 = <] +2)

Hence, by the a priori estimate (1.32), we have

1 2 _
(m -, ||v,,||> |27 — zp|l” < B,
for some %, — 0 as n — oo. The Cauchy property of the sequence {z/,} (and of {z,} as well)
follows from this inequality together with (2.27).

Let us pass now to the second part of the proof. Denote by

U= |Ju(=)>Cc,

o€l

where we put U (zg) := int C for zg € int C. Given zp € 9C, z € U (xp) \C and a minimizing
sequence {z,} C C of z — pp (z — 2) on C, in the Case 1 (i.e., when the condition (A) is valid
at 7o) we immediately find the (unique) projection 75 () as the limit of {z,}, existing since it
is a Cauchy sequence. Otherwise (when the condition (B) holds) we choose first a subsequence
{zk.} such that {pp (zx, — 2)} is nonincreasing, and o is not a cluster point of {z,}. Being
a Cauchy sequence it converges to an element z € 75 (2). Assuming that z,y € 75 (2) with
z # y we consider the sequence {z,} whose odd terms are equal to z and all even terms are
equal to y. Since {pp (z, — z)} is now stationary, we can again apply the first part of the proof
and conclude the convergence of {z,} to x = y. Notice that the above arguments are applicable
also if one of the points z or y coincides with zy (because for a pair of natural numbers n and m
with m > n we utilize the hypothesis (Bz) at the point 2/, only). In order to show continuity at
the point z € U let us observe that for each {z,} C U converging to z the sequence {Wg (zn)}
minimizes = +— pp (¢ — z) on C. Indeed,

PF (775 (zn) — zn) + pp (20 — 2)

PF (Wg (zn) — z) <
< TE(2) + 2|1 F NIz — 2]l — TE (2) +

Thus, by the same reasons as above, each subsequence of {ﬂg (zn)} admits a subsequence
converging to 75 (2). So 7E (2,) — & (2), and the theorem is completely proved. B
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Thus we have two types of local assumptions guaranteeing the well-posedness of the time-
-minimum projection in a neighbourhood of a fixed point o € OC. The first one (the condition
(A)) provides regularity of the superposition operator involving both the proximal normal cone
to C and the gradient Vpp. (+), while the other involves the curvatures of F' and C being square
characteristics of these sets. Therefore, we can refer to (A) and (B) as to the first and to the
second order condition, respectively. Although there is a large class of problems, which satisfy
both hypotheses (for instance, if F = B and C = {z € H: f (z) < 0}, where f(-) is a locally
CH! function with V£ (z) # 0 for z € 8C), simple examples show (see Section 2.4) that none of
the two ((A) and (B)) implies the other. At the end of Section 2.3 we amplify a little bit this
list of local conditions including some extreme cases.

If the set C is proximally smooth then we can give an explicit formula for a neighbourhood
where the continuous retraction 7rg (-) is defined, which has, however, mainly theoretic interest
due to the fact that it involves approximations to the projection itself. To this end let us consider
a slightly stronger hypothesis than (B2). Namely, we say that (F, C) satisfies the condition (Bj)

at a point 2y € OC if there exist 4,6’ > 0 and K > 0 such that

up (Jr(€7),€) > K for all £ € U; g (20),
where the set Us & (xo) is defined by (2.14).

Theorem 2.2.2 Assume that C C H 1is p-convez with a continuous function ¢ : C — R¥, and
at each point =g € OC the pair (F,C) satisfies the condition (BY). Then the mapping z + w5 (2)
is single-valued and continuous on the open set A (C) of all points z € H, which either belong
to C or satisfy the inequality

timint {ocr (35 (6,6 = 76 () 0 ()} >0, (2.33)

where § (2), z ¢ C, is the filter in H> generated by the sets
{(z,v,6*) : pp(z = 2) < TE(2)+¢, 1€ 0C, veNg(z), € +v| <e, €,—ve OF°}, e>0.

Proof.
In order to prove openness of 2 (C) let us take first z € 2 (C)\C and choose v > 0, ¢ > 0
such that

p (Jr (€7),67) ~TE () p(2) 2 v (2.34)
whenever z € 0C with pp (z — 2) < TE (2) +e and v € N¢ (z), £*, —v € OF° with ||€* +v|| <e.

By the a priori estimate (1.32) the function ¢ (-) is bounded on the set of z satisfying (2.34),
say ¢ () < M with some M > 0. Set

¢ := min { I v }
' A||Fel’ 2" 2M ||Fe|l )
Assuming, moreover, that (z +&'B) N C = 0, for each 2’ € z + &'B let us define the set

P(z') = {:z: €0C : pp (a:—z’) ST@ (z') +€'} # 0.
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For each z € P (2) by the choice of ¢’ we have

pr(@—2) +|F°| [« - 2

TE (&) + +|F°| €

TE(2) + I1Fl |2 = 2| + € (L + 1F°))
T6(2) +¢ (14 2[1Fel)

TE (2) +e.

pr (T — 2)

[VANEE VANR VAN VANEE VAN

Then, by (2.34) for arbitrary vectors £*, —v € 0F° with v € N¢ (z), = € P(2) and |[§* +v| <
¢ < g, we have

wr (3 (€7),€) —TE () p(z) = »p(Frp(€),6) — (T @) +IF°| |7 — =) ¢ (2)
> wp (IF(€7),8) =36 (2) e ()~ |F°| M
> 2, (2.35)

which implies that 2’ € 2(C).

Let now z := zg € 8C. By the hypothesis (Bj) and continuity of the function ¢ () there
exist 6,6’ > 0 and positive constants K, M such that scp (Jr (£*),€*) > K for all £* € Us 5 (20)
and ¢ (z) < M for all z € Cs (zo). Set

e '—-lmin{ K d }
C2 IFel M IF(IFel +1) )

For 2’ € (29 +¢'B) \C and z € P (2'), taking into account that [|F|| |[F°|| = 1, we have

z'),
lz =20l < |IF|pp (z—2) +]|2' — =0
< 1PN (SE () +€) +¢
< NFN(IFN ||lzo = 2| +€') +€
< SUFIUAFN+1) +1) <6,

and

K
TE (<) p (@) < 1Pl |lzo — || M < | Foll M <

If, furthermore, v € Ng (), pgo (—v) = 1, and &* € §F° with [[§* +v] <€ < 8’ then clearly
£* € Us g (z0), and we obtain the inequality (2.35) with v = K. Consequently, 2z’ € 2(C)
and therefore 2 (C) is an open neighbourhood of C.

Proving the well-posedness of the projection 75 (-) we can proceed as in the proof of Theorem
2.2.1 with some minor changements. Let us fix z € %(C), z ¢ C, and take a minimizing
sequence {z,} for z — pp (z — z) on the set C, assuming that {pp (z, — 2)} decreases (may be
not strictly). Then we choose the sequences {z},} C 8C, vn, € N¢ (2},), &, € Opp (7, — 2) from
Lemma 2.1.1 (see remarks 2.1.2 and 2.1.3). Observe that (2.10) implies that

TE (2) 1En] = llvnll < pr (af = 2) I€RI — llvnll = O
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and

lonll = 6 @Ml < Noall = (or (2 — 2) = va) &3
= (llvall = o (27 = 2) I21) + va Nl = 0.

Hence, we can choose a decreasing sequence v, — 0+ such that vn, < &', |77, — zn| < vn,
pp (zh — 2) < TE (2) + v, and

1T (2) l€nll = llvnll] < vn, (2.36)

n=12 ...
Since —v,/ppo (—vn) € =N¢ (2,) N OF° and by (2.10)

Un

PFo (—Un)

—0

+&

as n — oo, we find (see (2.33)) a number v > 0 such that

ser (3F (€1)60) — TG (2) ¢ (a7) = 2 || F| (2.37)

for n > 1 large enough (assume that for all n).
Notice that the vectors £ belong to the set Us 5 (},) where the mapping Jr (-) is single-
-valued. Let us set, as usual, £, = JF (§,). Denoting by

1

B = e oer G €

and ¢, := ¢ (z},) we obtain from (2.37)

= —TC(2) €0l n = €]l (2P (60, 62) — FE (2) @ () 2 2v. (2.38)

Due to the estimate (1.32) the sequence {1/R,} is bounded (and {¢, } is bounded too as follows
from (2.38)). Taking into account the inequality (2.36), we come to (2.27), and the remainder
of the proof is exactly the same as respective reasoning in Theorem 2.2.1. W

Remark 2.2.1 In a finite-dimensional space due to the compactness of the set Us & (o), the
condition (B) can be substituted by the second order strict convexity of F' w.r.t. each vector
¢ € —Ng¢ (zg) N OF°. However, in general, we have to require the local uniformity of this
property through lack of the strong convergence of normals.

Following the definition given in [31, Definition 5.2] we say that a convex closed set F' C H
is y-strictly convez (for some y > 0) if

(n—&n* =€) >vln—¢£?,
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whenever &,n € F, & € Np ()N B and n* € Nf () N B, or, equivalently, if

(n-¢,6) < ~2In-¢I*.

The last inequality implies obviously that
e (3r (€),6) 2 5 (2.39)

for all £* € OF°, which is the global version of second order rotundity. In this case as an
immediate consequence of Theorem 2.2.2 we obtain the following well-posedness result.

Corollary 2.2.3 Let F C H be a closed bounded «y-strictly convex set with 0 € int F, and let

C C H be a nonempty closed and p-conver set with a continuous function ¢ : C — R*. Then

the projection mE (2) is a singleton continuously depending on z € B (C), where

B(C):=4z€H: limsup pp(z—2)p(x)<
Pp(z—z)—gg(z)‘F
T€

(2.40)

o2

is an open set containing C.

Proof.
Let prove that B (C) C 2 (C). To this end fix z € B (C) \C. Then, by (2.39),

lirsrg)nf {5r Qr(€9),6) - TE(2) 0 ()} > 1in31(izr)1f »r (JF (E*),E*)Hif&j)nf (-%& (2) ¢ ()

> T lim sup T& (2)  (z)
2 %
> %— limsup pp(z—2)p(z) >0

pi(a—2)—~TE(2)+
zedC

and consequently z € 2 (C).
The openness of the set B (C) can be shown by the same reasons as the openness of 2 (C)
in Theorem 2.2.2, and the statement of the corollary follows from Theorem 2.2.2. ®

Remark 2.2.2 If the target set C is perfect, i.e., it has no isolated points, then B (C), which
can be smaller than the neighbourhood 2 (C), coincides with

B (C) = {z € H:T5(2) e (rh(2) < 1} . (2.41)

Let us take z from the set (2.41) and let {x,} be a minimizing sequence of z +— pp(z —z) on
C, ie.,
pr (zn — 2) = SE(2) = pp (T~ 2),
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T= 7rg (2) (we assume that the projection exists and is unique). We should prove that T, — Z.
To this end we fix an arbitrary subsequence (denoted also by {z,}) and construct its subsequence
converging to . Since T is not an isolated point of C, there exists a sequence {z/.}cC,z, — I,
and such that T, # T, consequently, by the uniqueness of projection,

pF(x;—z)>‘Ig(z), n € N,

Since pp (zn — 2) — TE (2), in particular, there exists a number ki such that pp (zk, — 2) <
pp (z} — 2). But we have also pp (), —z) — TE(2). Therefore, one can find ky > ki with

Pr (m;c,l - z) < pp (zk, — 2). By the same reasons there exist ky and ky, ky > ka > ky such that

PF (%5 - z) < pr (Tey, —2) < pF <m;c'1 - z) :

Continuing this process we construct two subsequences {zk,} of {zn} and {:I);c‘l } of {z},}, res-
pectively, such that

PF (%;Hrl - Z) < pp (Bhpyy = 2) < pr (m;c; - Z) < pp (Tk, — 2)

for each n. Let us define now another minimizing sequence {yn} of z — pp(z—2) on C
by setting yon—1 = Tk, and Yan = xfc;, n € N. Then by the previous inequalities we have
Pont1 < Pan < Pan—1, Pk = Pp (Yx — 2) and ya, — T. By the continuity of ¢ () we can suppose
that

TE(2) e (an) < 3 (2.42)

for all n. Literally repeating the reasoning of Theorem 2.2.2 (see also the estimates in the proof
of Theorem 2.2.1) we can show that ||ym — yon|| tends to zero as m > 2n — oco. Since yon — I,
we have also Ty, = yan—1 — T as we need. Thus, the minimizing sequence {T,} itself converges
to %, and for all n € N large enough pp (zn — 2) ¢ (zn) < v/2. In particular,

limsup pp(z—2)p(z) < :21

pp(a—2)—TE(2)+
zeC

and z € B (C). The opposite inclusion is obvious.

2.3 Some particular and special cases

Let us concretize the results obtained in the previous section. First, we consider the case of a
p-convex target set with smooth boundary, denoting by n(z) the unit normal vector to C' at
the point z € 0C and setting

(@)
0(@) =~y (2.43)
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Theorem 2.3.1 Let C be a closed set with smooth boundary, which is @-convez with a conti-
nuous function ¢ : C — R*, and let F be a closed bounded set with 0 € int F', which is strictly
convez of second order w.r.t. each vector v(z), = € OC. Then the time-minimum projection
75 () is well-defined on the (open) set 2A(C) (see (2.33)), which in this case admits the form

z€ H: lim inf {3r Jr (€),€") - TE(@)p(z)} >0 . (2.44)
pp(a—2)-TE(2)+
§*—o(z)—0
2€dC,{*€0F°

We put naturally liminf in (2.44) to be equal to +00 whenever z € int C.

Proof.
Let us show the validity of the condition (Bj) under assumptions of the theorem. Indeed,
for each zy € 0C and fixed
b
c.o 2FQF( (9200)) 0 (z0))
by the lower semicontinuity of the curvature at the point b (zg) there exists 8’ = ¢’ (xo) > 0 such

that

1€* — b (o)l < 26’
implies
np (IF (£7),€7) > ser (Jr (0 (0)) , b (%0)) — & (2.45)
On the other hand, by the continuity of v (-) we find § = § (zg) such that
llo (z) — v (zo) ]| < &'

for all z € C with |z — zo|| < . Then given &* € Us; 5 (o) let us choose z € JC satistying
both inequalities ||z — zo|| < & and ||£* — v (z)|| < ¢'. Since

ll€* = o (zo)ll < 16”0 (@)l + llb () — v (z0)]| < 26",
we have (see (2.45))

xp (Jr(€7),€") > »rQr (v (20)),0(20)) — €

_ g .o 2FQr(v(0)),0(20))

2 > 0.

Notice that, Jr (*) is single-valued and continuous near each v (z), z € 0C, due to second order
strict convexity.

Therefore the time-minimum projection 75 (-) is well-defined on the (open) set 2 (C) given
by (2.33) which can be represented obviously as (2.44). W
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Remark 2.3.1 In terms of the time-minimum projection itself (already defined and single-
-valued on A (C)) we can represent this neighbourhood as

2(C) = Cu{z € H\C: 35 (2) (%) <7 (37 (0(2)),0(3))} (2.46)

where T := 7k, (). Indeed, let us suppose that z ¢ C belongs to the right-hand side of (2.46)
and fir a minimizing sequence {zn,} C OC of the functional x — pp (z — z) on C and a sequence
{&:} C OF° such that ||o (zn) — &4]| — 0 and

it e (U0 (6,6 = T8 () (@) = Jim (o (O (6,60~ TE () o o)
d {*-—n(x)EO
z€dC,£TedF°
(2.47)

We should prove that =, — Z. To this end we fix an arbitrary subsequence (denoted also by
{z,}) and construct its subsequence converging to T. Proceeding as in Remark 2.2.2 we can find
a sequence {z},} C C, x|, — T with =}, # T and choose subsequences {zy,} of {zn} and {z;ca}
of {]} such that {pp (yn — 2)} is strictly decreasing (here yon—1 = Tk, and Yo, = )y, n > 1).
By the continuity of ¢ () and b(-), and by the lower semicontinuity of the curvature we can
suppose that

TE(2)p (zl) — »r (IF (v (z)),0 (m%)) <0, VneN.

Now using the estimates in the proof of Theorem 2.2.1 (see (2.81)-(2.82)) we show that ||ym — yon||
— 0 as m > 2n — oo. Hence, zp, = Yan—1 — Z (see Remark 2.2.2). Thus, the minimizing
sequence {zn} itself converges to T. Consequently, &, — v(Z) and by using both the continuity
of ¢ (*) and the lower semicontinuity of the curvature we conclude that

lim {5p (JF (62),60) = F0 (2) @ (2n) } 2 27 (JF (0(3)) 0 (7)) = TE (2) 9 (7) > 0.

Taking into account now the equality (2.47) we have z € UA(C). The opposite inclusion is
obvious.

Remark 2.3.2 If dim H < oo then each minimizing sequence has a cluster point and conse-
quently the neighbourhood (2.44) can be written in a simpler form:

A(C)=qz€H: liminf {5¢r (3 (v (z)),0(2) —TE () (z)} >0 . (2.48)
pp(m—:)eggc(Z)—F

Indeed, let us suppose that z belongs to the right-hand side of (2.48) and fix a minimizing
sequence {z,} C OC of the functional z — pp (z — 2) on C and a sequence {{,,} C OF° such
that ||o (zn) — £5|| — O and the equality (2.47) holds. Taking a cluster point x € OC of {z,} we
assume without loss of generality that z, — z, and by the hipothesis, in particular,

7= 3¢ (Jr (0 (2)), 0 (z)) = TE (2) ¢ (z) > 0. (2.49)
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On the other hand, by continuity v (z,) — v (), n — co. So that§;, — v (z), and, by Proposition
1.2.1 also Jp (€2) — Jr(b(x)) as n — co. Hence, by the continuity of ¢ (-) and the lower
semicontinuity of the curvature we have that

sep (IF (0(2)),0 () = TE(2) ¢ (2) < 20 (3r (€1) 1 60) — TG (2) 9 () + %
for n > 1 sufficiently large. This together with (2.49) gives

r (Ir (6),60) ~ 56 (2) p () 2 5

Finally, passing to the limit as n — oo we conclude

]
lim inf 3 * , * —‘IF p Z IS 0)
oiming Lo Qe (€),6) - T (e ()} 2 5

£*—o(z)—0
z€8C, £*€IF°

i.e., z € A(C). The opposite inclusion is obvious.

Concretizing now the local result given by Theorem 2.2.1 we have

Theorem 2.3.2 Let C be a closed p-convex set with smooth boundary and such that for each
point xg € OC one of the following assumptions holds:

(i) the set F is uniformly strictly convezr w.r.t. the vector v(zo), and the (single-valued)
mapping x — Jr (b (x)) is Lipschitz continuous near xo;

(i1) the set F is strictly convez of second order w.r.t. v(xp).

Then z — & (2) is a neighbourhood retraction of the set C.
Proof.

The hypothesis (i) is nothing else than the condition (A) at the point zg specified for the
case of smooth boundary, while (ii) implies the condition (Bj) at zq, because (§,£*) — sp (§,£")
is lower semicontinuous (see Remark 1.2.4). Notice that, in this case, (Bj) is equivalent to (Bg).
Thus, we are able to apply directly Theorem 2.2.1. B

Notice that if at each point zg € 8C the dynamics satisfies the hypothesis (i) from the above
theorem then we can entirely avoid the p-convexity assumption for the target set.

Theorem 2.3.3 Let C be a closed set with smooth boundary, and let F' be uniformly strictly
convez w.r.t. each vector v (), z € OC. If, moreover, the (single-valued) mapping x +— Jr (b (z))
is locally Lipschitzean on OC then the statement of Theorem 2.3.2 holds.
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On the other hand, we can obtain the well-posedness of 7% (+) in a neighbourhood of a ¢-
convex set C even with lack of the strict convexity of F' w.r.t. £* € —N%, (z) N OF° for some
isolated points z € 8C where smoothness of the boundary is also violated (see Example 2.4.4).

Observe that the formulas (2.33), (2.44) as well as the neighbourhood U given by Theorem
2.2.1 (see (2.25)) involve the function sp (¢,£*), which can not be in general substituted by
the "true" curvature i (€,£*). Let us propose a method to estimate s (€,£*) from below
basing on the differentiability properties of the duality mapping Jr (-) similarly as it was done
for 'yf (€,€%) (see (1.44)). This permits us to find a smaller neighbourhood of C, expressed in
other terms different from scp (£,£*), where the well-posedness of the projection takes place. To
this end we assume that the set F° is second order smooth (at £* € 0F°). Let us associate to
each § > 0 some positive number S (4, ") such that

V2050 (1%) — V2ppe (€7)|| < 6

whenever n* € OF° with ||n* —€*|| < B(4,£"). This number exists by the continuity of the
mapping 7% — V2ppo (n*) near £*. In particular, given § > 0 and 0 < A < 1 the inequality

192050 (n° + t0°) = V2 (€7)]| < 6 (2.50)

holds for all 0 < t < (1 = A) B(6,£*) /| F°||, v* € 8F° and n* € OF° with ||[n* — £*|| < AB(4,£").
Recalling the proof of Proposition 1.3.3 we obtain from (1.46), (1.43) and (2.50) that

~ * t2 * *\ k%
Spo (t,0*,n) = 5 sup (Vippe (n* +70") 0", v")
y*eFe
t2 *Y kK * * * *
< 5 ((sup (92 (€)007) 4 sup ((Poope (07 +707) = Voo (€)', )
v*eF° v*eFe

< 5 (9% € + 8 1F7I) 22 (2.51)

where as usual 7 := Jp (7*), and 7 = 7 (¢,v*) is some number between 0 and ¢. Applying the
Legendre-Fenchel transform to both parts of (2.51) we obtain

SF (r,1%,7) 2 sup {tr—ﬁpo (60" m):0<t< (1—,\)ﬂ(‘5’5 )}

1Ell

o2\ 42 . _ ﬁ(éaé*)
o+ 0| F ||)t 0 << (12 S }

> sup {or— 3 (V20 (€7

2

_ | (2.52)
2 (117200 (€] e + 6 17°I7)

which holds true for all 0 <7 < (1 — A) ¢(4,£%), where

[Vore ()]l + S UFI
17l

q(6,€7) :=B(6,¢%)
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By using the duality between the moduli of local smoothness and of local strict convexity (see
(1.36)) we obtain from (1.9) and (2.52) that

< * . T ok T * ~% T *
Cp(r,mn*) > ¢t (——,n,n*)z ¢t (—,n,n>=b a<——,n,n)
) 2 %\ @)™ 1 T

2

(2.53)
21F|12 IV (€7)]

po+81IF|?)

whenever 0 < r < (1= X) q(8,£*)||F|. Obviously, € (r,7,7*) = +oo for 7 > 2||F||, while in
the case (1~ )) q(4,£*)||F|| < r < 2||F, by the monotonicity of the function Cr (-,7,7*), we
have

~

Co(rmn?) = Cp((1=X) q¢(6,€) |F,n7)
(1= ) ¢ (5,69 IF])?
2|12 (IIV2pre (€] o + 6 11F2I17)
1— )72 ¢ (6.¢) r2, (2.54)
BIFI2 (92080 (€] o + 1 F°I1)

\Y

v

Finally, comparing the inequalities (2.53) and (2.54), which hold for all 7* near £*, by arbitrarity
of A, 0 < A < 1, we obtain (see (1.26)):

o~

* 1m 1 : Q:F (T‘, m, "7*)
1r(&,€7) = lim inf inf £ b
(mm)—(&em) ™0 T2
n€Ir(n*),n*€GF°
1

v

268 1) . (@255)

2P ([ 92050 (€] 5o + 6 I1F2]?) o ( 1

This estimate together with Theorem 2.3.1 permits us to formulate the following result.

Theorem 2.3.4 In addition to the hypotheses of Theorem 2.8.1 let us suppose that the polar
set F° has boundary of class C* near v(z) for each x € 0C. Then, for a given § > 0, the
time-minimum projection 75 (-) is well-defined on the (open) set

W (C)=<zeH: liminf {005, -TE(2)e(z)} >0y, (2.56)
pp(z—2)—TE(2)+
£*—o(z)—0
z€dC, £*€dF°
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where
. 82 5,€%) (IIV20re (€ 5o + S IFI1)
06,67 = ————mi , 2.57
CE= ErE ™ Ik (257)
1 }
V2050 (€|l o + S I1Fel* |

We put naturally iminf in (2.56) to be +-00 whenever z € int C.

Remark 2.3.3 From (2.57) and the definition of 8 (6,£*) we see that the neighbourhood 2s (C)
is larger whenever the second derivative V2pFO () grows slower. Varying 6 > 0 we can control
slightly the size of this neighbourhood.

The Theorem 2.8.4 perfectly works, in particular, when V2ppo (+) 4s Lipschitz continuous
locally at each point £* € OF° (say in a ¢+ -neighbourhood of £* ) with Lipschitz constant Lg=, in
which case we can choose B (6,£*) equal to min (8§/Lg+,e¢+) (see Ezample 2.4.8).

Concluding this section let us give two special hypotheses involving local convexity of the
target set, which also guarantee the well-posedness of the projection.

Proposition 2.3.5 Suppose that for a given zq € 0C one of the following conditions holds:

(i) C has smooth boundary at zg, and for some € > 0 the set C' N (:1:0 + aﬁ) has nonempty
interior, and it is strictly convexr of second order at zo (w.r.t. the corresponding normal
vector);

(i) for some & > O the set C N (zo + EE) is convex, and F 1is strictly convex of second order
w.r.t. each v € —N¢ (z) NOF°, where z € 9C with ||z — x| < e.

Then the function z — 7& (2) is single-valued and continuous in a neighbourhood of xo.

Proof.

Let us consider each case separately.

(i) Without loss of generality (translating if necessary the set C') we can suppose that
0 € int G, where G :=CnN (a:g + EE). Let us denote by

v = T
pge (n(z0))’

where n (zg) is the unit normal vector to C (as well as to G, certainly) at the point zg. Since
G is convex, closed, bounded with 0 € int G and vy € G° N N¢ (z0) = Jal (zo) (consequently,
Ja (vo) = {zo}), the number v := 74 (o, vo) is well defined and strictly positive by assumption.
By (1.25) there exist § > v/2 and ¢’ > 0 such that € (r,z,v) > Or? whenever |z — zo|| < &,
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lv— ol <&, z=3g (), veEdG® and r > 0. Since the mapping z ~— n(z) in continuous in a
neighbourhood of zg, setting v := n(z) /pgo (n(z)) let us find 0 < § < min {¢’,¢} such that

1
pge (n(2)) pge (n (o)) lpge (n () In (o) — n(z)]| +

+n (@) loge (n(2)) = e (n ()]

“Go” T nx N{Ty) —nix
T 161 U @1+ I )l I o) = n ()]
211671 |Gl (a0) — 1 (@)] < &

v =l <

whenever ||z — zg]| < d. So that Cc (r,z,v) > 072 for all z € 8C, ||z — zo]| < 6, and all r > 0.
Setting now

0 —
u (.’1:0) =z + BB,

where D := 2||F°|| ||F|, take z € U (zo) and a minimizing sequence {z,} C 8C of the function
€ — pp ( — z) on C. Similarly as in the proof of Theorem 2.2.1 we see that ||z, — zol| < 4. By
Definition 1.2.2,

S <ot <8o(nav) < @-yv) WeG ly—al2n,

whenever z € 8C with ||z — zo]| < J, v =n(z) /pge (n(x)) and r > 0. In particular, substituing
into the above inequality

n(zn)
T = Ip, Vi= —————, YI=2Ty, and 7= ||Tym — Tal|,
m U ey YT Iz =zl
for sufficiently large m > n > 1 we have
v
‘2‘PG° (n (z0)) lm — mn“2 < {@p = T, (20)) - (2.58)

In accordance with Lemma 2.1.1 and remarks 2.1.2 and 2.1.3 we do not lose generality if suppose
Tn—=2

P z)) NAF° and for some sequence v, — 0+

that for some vectors &), € 9pp (¢, — 2) = Np (
the inequality

v

o (zn) — &1l < =57 (2.59)
RO

n = 1,2, ..., takes place, where v(z,) is given by (2.43). In fact, Lemma 2.1.1 affirms the

existence of another minimizing sequence {z/,} C C close to {z,} (due to Remark 2.1.3 we

can set z/ = z!) and of the vectors &, € Np (;;%) N 8F° and v, € N% (z]) such that
lvn + pp (2, — 2) €%l — 0, n — oco. By the smoothness we obviously have v, = —0 (zy) pp (Tn — 2)
(see Remark 2.1.2). Therefore we can consider the sequence {z,} itself in the place of {z},} and

¢ satisfying the equality (2.59). Let us set

 ppe (=1 ()
= e (2 (@)
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and z, := T, + A&, Hence, by (2.58) and (2.59), we obtain that

(Zn = Tn,Tm — Tn) = Mn [(0 (Zn) , Tm — Tn) + (€5, — 0 (Tn) , Tm — Tn)]
2 ({5 o =5 — e v ol e —
M Y e e — 2l = A2 Nz — z
2 o (—n(:cn))2pG°( (@n)) |lzm all /\nTg (2) l|zm nll

Zm — znll (2.60)

v 2 Vn
= S lzm = zall” = An
2 TE (2)
for all m > n > 1. On the other hand, &}, is a normal vector to the set z 4+ pp (z, — 2) F' at the
point z,, and z,, belongs to this set by the eventual monotonicity of {pp (zn — 2)}. Therefore,
(2n = T, Ty — Tn) = A (€}, Ty, — Tn) < 0, and combining this with (2.60) we find
v v
5 lem = zall < =7 =An,
for allm > n > 1. Hence {z,} is a Cauchy sequence because {A,} is bounded, and the remainder
follows by the same line as in the proof of Theorem 2.2.1.
(ii) In this case we set

I —
B
(WENIEN + 1)

u (mo) =g+ 5
and show directly that 75 (z) # @ for each z € U (2¢). Indeed, if {z,} C C is a sequence with

pr (zn — 2) < TE (2) +1/n then by the boundedness there exists an its subsequence converging
weakly to some z € H. Hence

z, €CN (z + (sg (z) + %) F) C CN (zo+eB) (2.61)

for n > 1 large enough. In fact, the relations pp ( <1 and {z,} C C imply that

i@(z)ll/n>
1
T, € CN <z+ (zg(z)+;> F) ,

and for every y € CN (2 + (TE (2) + 1) F) we have

n

AN

lo=aoll < 1Fl ey =)+ == ol < [P (352) + ) + =l

IA

121 (B b = ol + 2 ) + = a0l < e (2:62)

for every n large enough. Since the last set in (2.61) is weakly closed, we have z € C. On the
other hand, choosing a sequence y, € z + T§ (2) F such that pp (zn —yn) < 1/n we observe
that the weak limit of some its subsequence is equal to z too. Notice that such subsequence
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exists because {y,} is bounded, and its weak limit belongs to the weakly closed set z+T% (2) F.
Hence z € (2 + T (2) F)NC = nf; (2). Therefore we prove that 7E (2) # 0 for each z € U (zq),
as we want.

Let us assume now that the projection ﬂg (2) consists at least of two different points, say
z and y. As we said above 7,y € (2 +TE (2) F) N C. Also similarly as (2.62) we have z,y €
zo + ¢B impling that z,y € G = C N (zp+¢eB). By the convexity of z + TE (2) F and
of G the projection 75 (2) contains the whole segment {Az + (1 —A)y: A € [0,1]}. Fix some

&= z+ (1 — ;\> y with 0 < A < 1. Then being & € 7& (2) the point £ minimizes the functional
y— pp(y — 2) +1g (y) on H. Consequently

0€ 0 (pp (%~ 2) + I () = Bpp (3 — 2) + N (3). (2.63)
Hence, there exists a unit normal vector it € N¢ (Z) such that

T—2z
£ —2) = 2=z F©
€ B,DF (IL‘ z) NF (Tg (z)> no )

Bim ——
 ppe (1)

or, equivalently, b € 35! ((& — 2) /TE (2)). In fact (£ — 2) /TE (2) is the unique element of Jr (b)
because F is strictly convex of second order w.r.t. 6 € —Ng (£)NJF° and Z € (mo + sB) NocC.
It is easy to see that the vector © is orthogonal to the vector subspace

-z -2 I—=z

— Y . —
L._{Agg(z)+(1 )\)ig(z).)\e]R} T

Indeed, for each w € L, we have

. . T—2 T—=z . Y—=z T—z
(o,w)=/\<u, - >+(1—A)<n, - >§O,
ISP SABNE AP
since b € Ny ((2 — z) /TE (2)), and, on the other hand, 6 € —N¢ (&) that implies

<a,w>=@l(z—)ma,m-ﬁw(l—x)(a,y—ﬁ)] > 0.

Thus R (JF (6),6) = +oco contradicting the condition of theorem and showing that 7 (2)
is singleton for each z € U (zg) .

Finally, let us consider a sequence {z,} C U (zy) converging to some z € U (zp). By the
arguments above, without loss of generality we may suppose that {ﬂ’g (zn)}, being a minimizing
sequence for £ — pp (z — z) on C (see the end of the proof of Theorem 2.2.1), converges weakly
to the unique projection Wg (2). So it remains to show that convergence is also strong. Setting
& = 7wk (2), from the relation (2.63) we find again a normal vector i € N¢ (2) such that
(& — 2z) /TE (2) is the unique element of Jp (b) where 6 := —fi/ppo (—f). Since by assumption
F is strictly convex of second order w.r.t. © then (see Proposition 1.2.1(i)) (8 — z) /25 (z) is a
strongly exposed point of F. So that the weak convergence of { (75 (2n) — zn) /T (22)} C F
to (ﬂg (2) - z) / Tg (z) implies its strong convergence, and the continuity of the mapping z —

7E (2) follows. W
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2.4 Examples

Example 2.4.1 In a Hilbert space H for a fizedv € H, ||v]| =1, and 0 < 0 < 1 let us consider

the convex closed cone
Kyo:={z € H:{v,z) 20|z},

so={seH: (0,22 V1-0|al}.

Taking now 0 < 81 < 83 < 1, we define C := H\K’vﬁ1 and F = (K, 9, — v) NnB.

whose polar cone is

The set C neither has smooth boundary, nor is ¢-convex, and, moreover, the origin is its "inward
corner” point, N% (0) = {0}. On the other hand, F'is not strictly convex, because the boundary
OF contains a lot of linear segments.

However, the hypotheses of Theorem 2.2.1 are fulfilled, and =% (-) is a (global) continuous
retraction of C. Indeed, let us represent the target set in the form C = {z € H: f(z) < 0}
where f(z) := (v,z) — 61 ||z||. Then

N2 (z) = Vf (z) R = <v " ”>R+

for each z € 8*C = 0C\ {0}. In particular, taking z € 8C\ {0} and &* € —N% (z) N OF° we

- o) =3 (e vr o) = (e ) =2,

for some A > 0, and

1 =0 (vt s o) =¥ (12 v ) =00 1),
so that
(—u, &) = 4/1-6} "]l > /1 - 63 ]I€”]l,
le., £ €int K}y, Since
¢ € K2y NOF° = Ng (0)NOF° = Np (—v) N 0F° = 35" (—v)
then —v € Jp (£*) and consequently (¢*, —v) = 1 and, on the other hand,
feint Ky, = (£%9) <0 Vy €& Kyp,\ {0}
= ("y—v) <1l VyeK,p,\{0}
= <£*7§> <1 V€ € F\{"'U},

so Jr (€*) = {-v}. Therefore the mapping z — Jr (—N% (z) N OF°) is constant, and the
condition (A;) is satisfied trivially at the point zg = 0 (with arbitrary d > 0). In order to justify

(Ay) let us choose 0, /1 — 03 < o < 4/1—62, and & > 0 such that

(—u,7) _ (~v,€)
TiREE] ‘(Vl"eg‘”)
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for all £* € 8F° and n* € H with ||n* — £*|| < 24'. If, moreover, £* € —N?, (z) N 0F°, z € OC,
z # 0, then

(v, ) 2 alln*]. (2.64)
Now for each n* € Us & (0) (see (2.14)) we have n* € 0F°, and there exists £* € 0F° such that
¢* € ~N% (z) and ||€* — n*|| < §'. Therefore ||n* + §'v — ¢*|| < 26" and by (2.64) the inequality

(—v,n" + vy >0 ||n* + 5"0“ > /162 Hn* + 5'v||
follows, or #* +d'v € K7, . Hence, for each n* € Us 5 (0) and each n € F' by duality of the cones
we have (n* + 6'v,v 4+ n) < 0, and recalling that Jr (n*) = {—v} and v + 7 € K, g, we obtain

o~

€F (Ta —U,U*) = lnf{<_v - 77777*> ne F) ”'U + ’l']“ > T}
> dinf{(v+n,v):n€F [lv+nl=>r}
> 5’927‘ > 0,

which means the uniform strict convexity of F' w.r.t. the set of directions U; & (0). In this

example, certainly, it is easier to observe directly the uniform continuity of the mapping Jr (7*) =
—v on Us  (0) (this is what we really need for proving Theorem 2.2.1) than to construct an

estimate of the modulus ,QEF.

Example 2.4.2 Let us modify slightly the previous example, taking arbitrary v € H with ||v| =
1;0< 61,02 <1;1 < a< 2 and setting

C:={z€H:(vz)<0|z|*};
Fom €€ H: {n,640) 20 +0]°)

Clearly, F is convex closed bounded with 0 € int F', and C is closed admitting at each point
xz € 0C\ {0} an unique unit normal vector directed as
Vf(z)=v—af —e—
A P
(here f (z) := (v, z) — 61 ||z||*), which is also continuously extendable up to the origin (we have
Vf(0) = v). So that N4, (z) = V£ (z) R*, z € C, and the boundary of C is smooth. However,
N% (0) = {0} (as it is easy to verify there is no point except the origin itself whose metric
projection onto C is 0), while N% (z) = N, (z) at other points z € 8C. Therefore, C is not
p-convex, and the condition (B) can not be applied (at least in a neighbourhood of the point
0). Notice that in Chapter 1 we already considered the set F' and its rotundity properties (see
Example 1.4.1). We showed there that F' is uniformly strictly convex (w.r.t. the whole 9F°). It
is even y-strictly convex with some 7 > 0. Therefore, the hypothesis (Aj) is fulfiled.
In order to verify (A;) let us fix an arbitrary point € 0C, z # 0, with the proximal normal
vector V f (z) and determine a (unique) £ € OF such that —V f (z) is normal to F' at £. Since
Nr (§) = Vg (€) R, where

9(&) =02l€ +v[% — (v,£ + ),



2.4. EXAMPLES 64

solving the equation —V f (z) = AVg (£), A > 0, we find immediately that A = 1 and

Thus, the (single-valued) mapping

1
6, \ =1
z— Jr (-NE (z) N OF°) = (0—1) zT—v
2
is Lipschitz continuous on Cs (0) with & > 0 arbitrarily large, and the Lipschitz constant is

1
L = (92) *~'. Applying now Theorem 2.2.1 we can affirm that «5(-) is a neighbourhood
retraction defined on the open set (see (2.16))

uz{zeH:‘Ig(z)< <§%)a_li}

The following example (in the space H = R? for the sake of clarity) illustrates the second
order condition (balance between the curvatures).

Example 2.4.3 Let

F:.= {(61752) € R2 : |€2| S 1 —61]%) -1 S 51 S 1}
and
C = {($1,$2) eR?:z; < mg} .
Observe that C is closed and has smooth boundary with the unit normal vector
1

n@=7 F 423 (

The target is also p-convex with

1,-2z9), x:=(z1,z2) € 0C.

1

¢($)=m-

In fact, for any z, y € 8C with z1, y1 > 0 (the other case is similar) and v € N%, (z) we have

(2.65)

1
m (v,y—w) = \/H—42'<(1 2(E2 ( xg,yZ _m2)>
Ty
\/——1—+——57‘; (y3 + 75 — 229%2)
2

| 2 (y2 )2

<y -
V1+422 |y — o

= Jy- I

1
V1+4da2
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The closed convex bounded set F with 0 in its interior already been considered in the Example
1.4.2. Let us recall some estimates obtained there.

Let us fix an arbitrary dual pair (£,£*) (i.e., £* € 8F° and £ € Jp (£%)) with &€ =: (£1,&3)
€ R x R. By symmetry we can consider only the case when £; > 0 and §; < 0. If &, > 0 then
we have (see Example 1.4.2)

26}

\/ 1+ 166552 ( El)
3 2
where £ (¢,) := \ﬁ-f- (z ;m’“) , and
k=0

K(€1) < 5{ (£ § ) 7F (6 E ) < 65% ) (2.67)

(1 ,/1.{.16&(13

In particular, both »p and sp are equal to zero at the points (0, £1). Therefore, the set F is
not y-strictly convex, and the results of [31] can not be applied here. Notice that the estimates
(2.66) and (2.67) are valid also at the point £ = (—1,0) (i.e., when §{; = 0) with respect to
the normal vector £* = (—1,1/4) € OF°, which belongs to the boundary of the normal cone
Nrg(-1,0).

However, there is a local uniform rotundity along the boundary of C that permits us to
apply Theorem 2.3.2 (ii). To be more precise let us estimate the respective curvatures. Direct
calculations give

p (6.6 = EEE) 2 (2.66)

e~ ‘/1+16§(13’

3 *14/3
ks + g3 it 1g3] > B

PFeo (6;:5;) =0F (5){:5;) = { " :
13 if [63] < "41"

Considering now = = (21, z2) € 9C with |z2| > 1/8 we see that for the vector

1/3
() = ——t8) . Blml oy e o (2.68)
pre (—1(2)) 3+ 162
there is a unique ¢ € Jr (v (z)), which can be easily found from the relation v (z) €

= (£1,€2)
Np (¢) where N (€) = t %4{1,sgn (&3)) : A= 0}. Namely,

1

PIPEE €[-1,0[ and & = (1—£7)sen(z2). (2.69)
2

§1=—

Setting for simplicity £2 (¢;) < 17, from (2.66) we have at this point:

1 |$2|1/3
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Otherwise (if }za| < 1/8) the vector b (z) = (—1, 2x3) belongs to the interior of the normal cone
Npg (—-1,0) = {(Ul,’l)Q) € R?: vy < -4 |v2|} , (2.71)

and the second order strict convexity also follows. In this case the curvature jcp at £ =(-1,0)
w.r.t. the vector b (z) is equal to +oco (see (1.22)), while s¢z (£, b (x)) is a finite positive number
depending on the size of both sets F' and F°, and on the proximity of v (z) to the boundary
ONFp (E) To obtain a precise estimate we can proceed, e.g., as in the proof of Theorem 2.3.4,
since ppo (+) is of class C? at each ¢* € int Np (E) Namely, let us denote by d () the minimal
distance of v () from e* := (—1,£1/4) that are extreme vectors among those {* € 0F° with
Voo (€*) = Jp (€*) = €. Therefore, the function £* — V?pp, (€*) is Lipschitz continuous (it is
to identical zero) on
OF° N (b(z) +d(z)B) C 0F°NNp (-1,0).

Substituting ||V2pFo (0 (z))| ro = 0; B(8,0(x)) = d(z) (see (1.43) and Remark 2.3.3)) and
choosing a suitable § > 0 (e.g., such that (2.55) gives the better estimate of the curvature from
below, namely g (8,0 (z)) /2 = 1) from the inequality (2.55) we obtain

1 1 g (6,0 (z))
o @2 1712 (|25 (0 @) o + S I1FoIF) 2
d(z)
LIFIPIFeN o ()]

AR (g) 0 (l‘))

(2.72)

where || F|| and || F°|| can be found through the radii of two balls: one containing the set F' and
another contained in it. In our case, for instance, ||F|| < 7/6 and || F°|| < 9/8.

Summarizing everything said above, we affirm (by Theorem 2.3.2 (ii)) that the time-minimum
projection 75 (-) is well-posed locally (near C), and, furthermore, the inequalities (2.70) and
(2.72) together with (2.65) allow us to estimate the radius r (z) of a ball centred at a given

z € C where such well-posedness takes place. In particular (see (2.25)), r (z) = O (|x2|1/ 3) as
|za| — oo.

Notice that in this example the mapping z +— Jp (v (z)) is locally Lipschitzean, and so we
are able to apply the condition (A) as well (see Theorem 2.3.3), which gives even a larger radius

r(z) =0 (|$2|4/3) as |zz| — oo (see (2.16) and (2.69)).

In the conclusion let us consider the mixed case (when there are points of both types: either
satisfying the condition (B) only, or the condition (A)) emphasizing the situation when the
boundedness of the curvature from below should be verified only in a neighbourhood of a given
point zg € 8C but not at zg itself.
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Example 2.4.4 Let us define two continuous real functions f : [-1,1] - R* and g : R* — R
as follows:

f(t);z{ 1—¢ iftgé[_%’_%]

affine otherwise,

)
g(t) =4 t if H<t<?d

Set

Fi={(£1,6) €R®:|gg| < f(&1), 1K€ <15
C = {(x1,72) €R*: 21 < g (Joa) } -

In this modification of the previous example the boundary F has two affine pieces, and the
target set is neither (p-convex (because it has an "inward corner" point a = (—ﬁ,O)), nor
smooth (besides of the point a, where the normal cone is trivial, it has multiple normals at
b* = (55, £1)):

For each zg € 8C, zy # a,b*, we may proceed as in Example 2.4.3 since at these points both
conditions (A) and (B) hold. If zg = a then we can not apply (B) because the boundedness
of ¥ () near a fails. However, for each z € 9C close to a the (nontrivial) cone —N%, (z) is

contained in the interior of N (—1,0) (see (2.71)). In particular,
Jr (=N (z) N 9F°) = (-1,0),

therefore the mapping z — Jp (—N% (2) N 8F°) is (trivially) Lipschitzean on Cs (a) and uni-
formly continuous on Uy & (@), for some 5,68’ > 0, so the condition (A) follows (see the end of
Example 2.4.1). The well-posedness of 75 (-) near a follows from Theorem 2.2.1.

Let now z¢ = b* (the symmetric point is considered similarly). Although at this point C
is not smooth (the normal cone is generated by two noncolinear vectors e; = (1,—1/2) and
ez = (1,-3/2)), the function 9 (-) is upper bounded in a neighbourhood of zy, namely,

Yo (z,v) < max ! L <1, (2.73)

\/1+4x%,\/1+(2$2—1)2 -

z = (z1,32) € Cs(z0), v € N (z), for some § > 0. Notice that Jr (—;ﬁl_e—l)> and

3r (-t

convexity of the set F' with respect to the vector —e/ppo (—e), where

=(07-0"6"-07)

) are different, hence the condition (A;) is violated. Also we have no strict
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is normal to F at the affine part with £, > 0 and belongs to the interior of —N%, (b*), impeding
to apply the condition (Bj). Nevertheless, for each € Cs (b*)\ {b™} the (unique) unit normal
vector n (z) to C (also belonging to N7, (b¥)) is far enough from e/ ||e||, and F is strictly convex of
second order w.r.t. v (z) := —n () /ppo (—1 (z)). Moreover, the curvature is uniformly bounded
from below, and the hypothesis (Bs) holds. In such a way constructing a neighbourhood of
o, where 75 () is well-defined, we may take into account balance between (2.73) at the points

z € OC near zp and the curvature of F' only at (§;,&;) € OF with &; € [— (%)1/3,— (%)1/3],
which are close to the end-points of the respective arc.



Chapter 3 |

Regularity results

We assume the same hypotheses as in the previous chapter, that is, H is a Hilbert space with
the inner product (-,-) and the norm |-||, F# C H is a nonempty closed convex bounded set
with 0 € int F, and C' C H is nonempty and closed. Based on the geometric conditions (A),
(B) used in Section 2.2 here we show that the time-minimum projection 7§ (-) (well-defined
and single-valued near the target set) satisfies in fact stronger regularity conditions than simple
continuity (see Section 3.2). Namely, it is Lipschitz continuous under the hypothesis (A), while
under (B) it is only Hélderian with exponent 1/2. However, as we will see in sequel the last
result can be essentially improved if either the target set, or the dynamics is supposed to be
enough regular (at least locally). Using these supplementary conditions in the next Section
3.3 we prove (Fréchet) differentiability of the minimal time function Tg (-) near the target C
and give explicit formulas for its derivative (which vary according to the hypotheses involved).
Observe that the results obtained in Section 3.2 also allow to prove the Holder regularity of the
derivatives. We finish the chapter with some examples (see Section 3.4).

3.1 Various concepts of regularity

Let us start this chapter by recalling some important properties of the subdiferentials of non
convex functions in a Hilbert space introduced in Section 2.1, which will be used in sequel.

Definition 3.1.1 Let ¢ : H — RU {400} be a lower semicontinuous function, and x € H with
¢ (z) < +00. The function ¢ (-) is said to be

(i) proximally regular at z if 87¢ (z) = 8'4 (z);
(i) lower regular at z if 87 ¢ (z) = 8'¢ (z);
(i) Fréchet regular at z if 0P¢ (z) = 07 ¢ (z);
(iv) Clarke regular at = if 87 ¢ (z) = 8°¢ (x).

Since the target set C C H is assumed to be nonempty and closed that implies the lower
semicontinuity of the indicator function I¢ (-), we are led to various notions of regularity for C
at a point x € C through the respective concept given for I (-).

69
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Definition 3.1.2 A closed set C is said to be
(i) proximally regular at z € 8C if N, () = N, (z);
(11) normally regular at = if NC (z) = NL (z);

(idi) Fréchet regular at z if N%, (z) = Né (z);

() Clarke regular at z if Né (z) = Ng (z).

All the definitions of subdifferentials as well as of normal cones are given in Section 2.1.
Notice that the proximal regularity is a very strong property. Even the continuous (Fréchet)
differentiability of ¢ (-) at a fixed point does not imply (in general) the proximal regularity at this
point. A simple example of such situation just in R is glven by the function y = — |x|3/ 2 whose
gradient at z = 0 is —3/]z], but nevertheless §7¢ (0) = @ (while 0'$ (0) = {0}). However, if the
gradient V¢ (+) exists and is Lipschitz continuous near z then ¢ (-) is proximally regular (and
Clarke regular as well) at this point. Indeed it can be shown easily that 0P¢ (y) = {Vé (v)}
for y close to z (see [23, p. 36] for the respective proof in the case of ¢ (-) of class C?) then by
usmg the definition of the limiting subdifferential we obviously have 8'¢ (z) = {V¢ (z)}, and

°p(z) = {V(z)} as well. Observe that the lower regularity (normal regularity in the case of
sets) as well as Fréchet regularity are weaker properties than the proximal regularity.

Let us emphasize specially the class § of functions ¢ (-) (the class 91 of sets C), which are
simultaneously proximally and Clarke regular, i.e., such that for them all the subdifferentials
(respectively, the normal cones) coincide at each point z € dom¢ (z € 8C). In particular,
all p-convex sets (but not only) belong to 9. In turn the class of y-convex sets contains all
convex sets as well as the sets C' admitting at each point z € 8C a (proximal) normal vector,
which is locally Lipschitzean w.r.t. = (see Section 2.1). Similarly, the class § contains all convex
functions as well as the (Fréchet) differentiable functions with locally Lipschitzean gradient.
The class of functions w1th the last property, which are defined on an open set U C H, is
traditionally denoted by Cl o (U ). Generalizing slightly this concept, we introduce the class of
functions ¢ (-) € C! (U), whose gradient V¢ () is Holder continuous near each z € U with an
exponent 0 < a < 1, i.e., given z € U there exist a constant K = K (z) > 0 and € > 0 such that

IV (z1) = Vo (z2)]| < K floy — 22"

whenever ||z; — z|| < ¢, i = 1,2. In this case we say that the function ¢ (-) belongs to the class
Cloc (U)

One of the purposes of this chapter is to study the regularity introduced above for the
minimal time function Ig (), and, in particular, to emphasize the conditions guaranteeing that
TE () is of class Cllof‘ for some 0 < @ < 1 in an open neighbourhood of the target C.

First of all let us collect here well-known results concerning with the representation formulas
for the various subdifferentials of the distance function (as well as for the minimal time function)

and derived from them regularity properties.
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As was said in Introduction one should consider separately two cases: z ¢ C and z € 9C. In
the first case one kind of formulas links the subdiferential with the respective normal cone to the
sublevel set C( y:={y € H:dc(y) <7}, r :=dc (), for the distance (or to the enlargement
set C(r) == {ye H:TE(y) < r}, r = TL (z), for the value function TE (). Namely, for a
nonempty closed set C C H and z ¢ C we always have the following relations (see (24, 13])

& dc (z) = NYy,, (z) N 0B,

&/ do (z) = Nf,, (z) N 6B,
while in the case of an arbitrary dynamics

673§ (z) = N, (2) N (—0F°), (3.1)

0/ () = NL,, (2) N (-0F°) (3.2)

as was proved in [31] (see Theorem 3.1). Since inverting the formulas (3.1) and (3.2) we can
equivalently write

Ng (@ = | JA0P3E (=)
A>0

and
NL,, (@) = [J20/TE (a),
A0

it follows immediately that the function TZ (-) is Fréchet regular at = ¢ C if and only if the
respective enlargement set C (r), 7 := T5 (), is Fréchet regular at the same point. Observe that
for the Clarke subdifferential the situation is more complicated: even in the case of the distance.
For the validity of the formula

one should require some a priori regularity assumption (see [15, Theorem 14]). The respective
regularity condition guaranteeng the validity of the relation

8°T6 () = Ng,) (@) N (—OF°) (3.3)

was studied, e.g., in [83].
Assume now that z € OC. Then for the distance we have (see [13]):

0P dc (z) = N (z) N B,

& de (z) = NL (z) n'B.

Observe that in these formulas the whole ball B stands in the place of the sphere, which, in
particular, shows that the subdifferentials 87 d¢ (z) and 8/ d¢ (z) can not be single-valued (equi-
valently, the distance is never differentiable at the boundary points). The respective formulas
for the value function TL () are (see [80, 83, 82]):

PTE (z) = NY () N (- F9), (3.4)
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/5L (2) = NL () N (- F°), (3.5)

which could be complemented with the similar relation involving the limiting constructions as
well (see [67, Theorem 3.6))
%L (z) ¢ N (z) N (=F°). (3.6)

Observe that in (3.6) we have only one sided inclusion, in general. In spite of this the following
(inverse) representation takes place

NG (z) = [ J20'3E (2), (3.7)
A>0

while it is obvious for other types of subdifferentials (as follows from (3.4) and (3.5)).

Hence, on one hand, we again see that T5 () can not be differentiable at z € 8C while, on
the other, it is Fréchet (proximally, lower) regular at some point € 0C if and only if the target
set C is Fréchet (respectivelly, proximally or normally) regular at z.

As we see in the case of in-set points the subdifferentials of the minimal time function (in
particular, of the distance) split into two parts: one depends only on the target set (the respective
normal cone) while the other depends on the dynamics (minus polar set). For out-of-set points
instead we have a different situation. Indeed, the enlargement set C (r) involved into the right-
hand of (3.1)-(3.3) is defined by stirring the properties of both sets C and F. In order to avoid
this inconvenience we should, first of all, associate to each z ¢ C a point Z € 0C and then try
to represent the subdifferential of ‘Ig (-) at z through the corresponding normal cone to C at Z.
It turns out that this point Z is nothing else than the (time-minimum) projection of z onto C,
and the one-sided inclusions for 87F5 (z) and 87T (z) take the form (see [31, Theorem 3.3])

8°TE () C NG (2) 0 (~0pp (2 — @), (3.8)

0/5E (z) C N§ (2) N (—0pp (2 - 1)), (3.9)

where 8pp (+) is the subdifferential in the sense of convex analysis of the (convex) guage function,
which can be found by the formula

T—x
Opp (Z —x) =Np <—————_—) NoF°.
pr (T — )
Unfortunately, it is not possible to obtain the exact equalities in (3.8) and (3.9) with no sup-
plementary regularity conditions for C' and/or F. But assuming such conditions we can prove
the reverse inclusions. For instance, if the target set C' is supposed to be proximally (normally)
regular then by using a simple argument based on the necessary condition of optimality

0ed'F(z), (3.10)

where F (y) := pp(y—2z) + Ic(y), y € H, we deduce first that the right-hand side in (3.8)
(respectively, in (3.9)) is nonempty (see [31, Proposition 5.5]) indeed, by the well-known formula
for the limiting subdifferential (see Theorem 2.1.2)

0 € dpp (2 —z) + 8¢ (2).
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Then, taking into account that oM (2) = Nlc (Z), we see that the nonemptiness of the inter-
sections above follows from the respective regularity properties. In Section 3.3 we exploit this
fact to prove the equalities in (3.8), (3.9) and we even obtain there a stronger equality:

ach (.T) = Nzé (i‘) N (—3PF (S-C - .’L‘)) )

which under some extra hypotheses would imply the (continuous) differentiability of the minimal
time function.

3.2 Holder continuity of the time-minimum projection

Let us consider separately the conditions (A) and (B) (see the beginning of Section 2.2).

The condition (A)

Theorem 3.2.1 Let us fix a point g € OC. Suppose that the pair of sets (F,C) satisfies the
condition (A) at zg. Then the time-minimum projection 5 (+) is locally Lipschitz continuous

in some neighbourhood of z¢ (outside of C).

Proof.

We set
)

Fn <L
DGR ED A L}’

where L > 0 is the Lipschitz constant of the mapping z — Jr (—N%, (z) NOF °) on Cs (zo)
(see (A1)). Notice that U’ (zo) is contained in the neighbourhood U (zq) defined by (2.16)
where 75 () is well-posed, i.e., 75 (z) is a singleton continuously depending on = € U’ (o). Let
§,8" > 0 and the open set Uy 5 (z0) be as in (Ap).

Let us fix € U’ (2o) \C and let the numbers 7 >0, 0 < § < gFer be such that

U' (zg) == {z € H:|z—zof <

1
TE =
clz)+7< I

x+ 6B cU (z0)\C.

Take arbitrary z, w € z + 0B, z # w, and set 3 := M > 0; % := 75 (2) and W =: 7& (w). By
the condition (Aj), there exists 0 < v < ¢’ such that

I3F (w) = 3Fr (W) < B, (3.11)

whenever u,v € Uy g (o), with ||u —v|| < v. We set also

T
€ = min —,1/,5}.
{2IiF°II
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Since Z minimizes the functional F (y) := pp (y — 2) + I¢ (y), by the necessary minimum
condition (see [23, p. 37]) 0 € 6PF (%) and using the fuzzy sum rule (Theorem 2.1.1) we find
21,22 € Z+ B with 2; € 9*C and vectors v, € —0F° NNZ, (21), £} € Opp (22 — z) such that

vz + &Il <e.
Notice that the Lipschitz continuity of TZ (-) implies
TE(2) < IFe )2 = ol (3.12)
and, hence,

< e =2l + 1 Fllpr (Z = 2) + 12 — 2ol
< e+ |IFIZE (2) + N1z — ol
< e+ (IFIHIFN+ D) llz — 2ol <9,

llz1 = zoll

Le., z1 € Cs (xo). Since &, —v, € OF° N (=N%, (21) N OF° 4 §'B), by (3.11), we obtain

137 (62) = 3r (—va)|| < B-

Similarly, considering the point w and its time-minimum projection W in the place of z and %,
we find wi,ws € W+ B, wy € 8*C, and v, € —9F° N NE, (w1), &}, € Opp (w2 — w), satisfying
llvw + €5 || < €. By the same reasons as above we show that |3 (§,) — JF (—vw)|| < B. Joining
together these two inequalities and taking into account the hypothesis (A;), we have

136 (€3) = Ir (€Ml < 28+ |3F (—v2) = IF ()|l
< 28+ L2y —wil|
< 28+ L(la -z + 12 -0 + [[w — wi)
< 2B+ L(2e+|Z—w]). (3.13)

On the other hand, from the inequalities
lop (22— 2) = TG (2)| < |F°lle and  |pp (wp — w) = TG (w)] < || F°)le
it follows that

2[|F°)| e + |TE (2) — T (w)]
11} (2€ + |z — wi]) - (3.14)

lop (22 — 2) — pp (w2 — w)]

IN A

Also

pr (22— %) + T (2)
IF| |22 = 2|l + TE (=) + 1 |z — 2|
IFll e + TE () + | FOI| 8 < TE () + 7. (3.15)

pr (72 — 2)

IANIN A
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By Proposition 1.1.1 Jr (§3) = ﬁgf—a and Jr (&) = M—’z’fu—;—%ﬂ. Hence, by using, respectively,

(3.15), (3.13) and (3.14) we obtain

2=l < |Z-22f + [lz2 — well + w2 — v
< 2+ |13r (€3) pr (22 — 2) = IF (€) pr (w2 — W) + |z — w]|
< 2+ pp (22— 2) [3r (€)= Ir DI +HI3F € |or (22 — 2) — pp (w2 —w)| +
+llz —
< 2+ (TE(2) +7) 28+ L (2 + |7 - @) + | FI [1F°) (2 + |z — w]) +
+ ||z — wl.

Now taking into account the definitions of 8 and € we obtain
(1- (@) +7) L) Iz- @] <tz —wl,

where
E=2(1+||F|[[IF°]) + (F& (&) +7) (1 + L).
F

In the case 2 = w the same inequality holds due to uniqueness of the projection. Thus, 7 (-) is
Lipschitz continuous on z + 8B with the Lipschitz constant ¢/ (1 — (TE(z) +7) L). W

The condition (B)

Theorem 3.2.2 Let us fix o € C. If the pair of sets (F,C) satisfies the condition (B) at zg
then & (+) is locally Holder continuous with exponent 1/2 in U’ (z0) \C for some neighbourhood
U' (zg) of the point xg. Furthermore, if the mapping

T—z

) NOF°, where T =7k (z),

is single-valued, say {v(z)}, and v (-) is Hélder continuous near zo (outside of C) with an expo-
nent 0 < a < 1, then 7rg (+) is locally Hélder continuous with the exponent 1—"2'—"‘ In particular,
the Lipschitz continuity of v (-) implies the same property for & (-).

Proof.
We set U’ (zg) := U (z0) the same neighbourhood as in (2.16) which is given by
) K
U (zp) = {zEH: z— ool < 3= TF(z)<——}, (3.16)
’ ” HIER A

where the constant M > 0 is such that ¢ (z,v) < M for all z € Cs(zo) and all v € N, (z)
(see (B1)). Let us fix z € U (z0) \C and let 7 > 0 such that

K
F —_—
Sc(m)+T< M
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Now we fix 0 < 8§ < ”Pfo“ such that z + 0B C U (z0) \C, and take arbitrary z,w € z + 0B.

Setting % := 75 (2), w =: w& (w), by (3.12) we have

17— zoll < IFll op (2 — 2) + 12 — ol < (IFIIE°] + 1) |z = moll <6,

i.e., Z € Cs(z9), and analogously W € Cjs (o).

Applying, similarly as in the proof of the previous theorem, the necessary condition of
minimum (but in the limiting form, i.e., the condition (3.10)) and using the fact that the
proximal normal cones to C at the points Z and @ coincide with the limiting ones (since C is
p-convex in a neighbourhood of zg), we conclude that the sets

w—w
pr (W —w)

zZ—Z
pr(Z —2)
are nonempty (see the end of the previous section). Choosing an element from each of these sets

(say n, and n,, respectively), we have 9 (Z,—n,) < M (see (B1)) and »p (Jr (nz),nz) 2 K
(see (B3)). Then, denoting by

)nBF" and —Ng(w)mNF( )naF"

—-NZ (Z)NNp (

R. .= Rr Or (ns),7m2) _ 1
i flmz|l 2 |||l #r (IF (n2) 1z’
"/}z = wC (Ev —nz) )
we have
st~ TE @ allnel = el (er @ (n2) me) = TE () )
> v = H_;“\—I (K — (35 (z) +7) M) >0, (3.17)

Furthermore, let v/ > 0 be so small that

1

TE T TE(2) ¥ [Ina]) > v (3.18)
By definition of R, and taking into account that Jr (n.) = pFE(;f 5 we have
Fc—2—% __ (R, + V') n, + (R + V') |In:|| B.
pr(Z—2)
Since PFE(°1;~w) € F, from the last inclusion follows, in particular, that
}’z_z+§§(ig:—3(w—w>+pF<s—z> (Ro + /) sl < pp (2~ 2) (Re + /) |mall,

or, in another form,

2 _ ., Pr(Z—2)

o, pr(Z—2) _ S~2pF(E—Z)(Rz+V/)<n27z—z+pF(E_w)

z—z+m(w—w)
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The rest of the proof is divided into two steps.

Step 1: Assume that pp (Z — 2) = pp (W — w) and denote their common value by p.
By (3.19) we have

le-w)=EZ-o)|* < 2 (Rs+ V) (~1s, (z — w) — (2~ T))
2 (Re + ') (e = 2) + 9, Ina || 2 = 3.

IA

Combining this inequality with

Iz —w) = G-I = Jz—wl?-2(z—w,Z-m) + |z -]

> -’ -2(: - w7~ )
we obtain
(1= 20 (Ra + /) 6. Inal)) 17 = B < 20 (Re + /) (mayw — 2) + 22 = w2 = ],

which implies

1 o o
(m—/)%”nzo Iz — @ Sp(nz,w——z>+Rz+Ul Iz — wl| ||z — o .

So that by (3.18)
- 1 -
Iz =Bl < pneyw = 2) + iz = il |7 - (3.20)

where tp > 0 is the Chebyshev radius of the convex set F' (see (1.32)). Since n, € F°, we can
rewrite (3.20) in the form:

_ . 1
7=l (v =l - =l wl) < o170z = w
Therefore, one of the inequalities

Iz - @l < Ve [F ||z — w||"?
or

= 1
viz=ll < VelFlllz = wl*? + =z - wl, (3.21)

tp

clearly, takes place. Observe that p = 5 (2) < ||F°| 6 and ||z — w|| < &. The last follows from
the fact that 2z, w € U (zp) and from the inequality || F|| ||F°|| > 1. Finally, from (3.21) we obtain

Iz~ < tllz —w|*? (3.22)
where

¢ := vV max {HF"H , [ + L} . (3.23)

14 TRy
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Step 2: Now let us fix z, w € 2+6,B where 5y = ﬂl—F'IlllgF_"IH-l_ and denote by p, = pp (Z — 2)
and p,, := pp (W — w) do not assuming more that p, = p,,.
For the sake of determinancy we assume that p,, > p,. Write W = w + p,,u, with pp (u) = 1,
and let w' = w + (p, — p,) u. We have by [31, Proposition 2.6 (a)]
TE (W) = TE (w + (py = p2) u) < TE (w + pyu) + p, = TG (W) +p, = p;,

and, on the other hand,

F / = ] — =] — hat —
T (v) = ;ggpp(y w') inf pp (y —w = (py = P2) W)
> inf (pp (¥ —w) — pr ((Pw — P2) W)
yeC

;gg P (Y —w) = (P — P;) Pr (1)

il

TE (w) = (py — P;) = Ps-
Observe that
|w' —z|| = |lw+(py—p2)u—2z| <llw—zl| + (o, — p2) ull
lw - 2| +|T& (w) = TE ()| |1F]] < 81 + |F| | FI| f|lw — =]
(14 2||F°|| |F|l) 61 = 4,

VAN VAN

and also ||z — «|| < 3; < 8. Moreover, since

pr (T —w') = pp (w+pyu—w—(py, — p)w) = pp (pu) = p. = T (v'),

and w' € U (z0), we have W = 7§ (w’). Thus, we can apply the Step 1 to the points z and w’.
Namely, by (3.22) we deduce

Z—wl < tlz - <e(lz—w| +|jw—w])
= ez —w| + (py — po) lul)*’?
< e+ FOIFINA ||z - w] 2, (3.24)

where the constant & > 0 is given by (3.23).

Let us prove now the second part of the theorem assuming that the (single-valued) mapping

z—v(z) = -N% (Z) NNp (pj(; x)) N OF° is Holder continuous with an exponent 0 < a <1
in the d-neighbourhood of zy.

We define U’ (zg) := U (zo) (see (3.16)), fix = € U (x0) \C and choose constants 7 > 0,6 >0
and v > 0 as above. Then for given z,w € z + 6B and for the associated normal vectors n, and
n,, (see the beginning of the proof) we have n, = v (2) and n, = v (w).

Let us consider first the simpler case when pp (Z — 2) = pp (W — w) =: p. As already shown
(see (3.20))

1
—_ —12 — —_—
vig—wl” < pfvle),w—2) + e —wll |z - 7]
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By the same reasons changing the places of the points z and w we obtain
v(z-wl* <plv(w),z—w)+ ;1; Iz = wil ||z — ]|
Now adding the last two inequalities we get
wlz-l < plo(w)=v(),zw)+ 2= ul |7~ 7|
< plv(w) —v(@)lliz - wl + ;2; Iz = wl |z -] (3.25)
Therefore

2
— —2 1 — —
2wz - < o Jlw — 2| + o e = wlliiz -]

_ _ 2
= ol (2=l - 2= ul) < o= 2

2
ozl < yoblw— o or izl <y — o+ 2 el
1 2 l1—a 14a
= |[z-9| < max{\/pb,ﬁz <\/pf) +; |z — w| 2 >}||z —w||'j2-‘"7

where § > 0 is the Holder constant of v (-) (i.e., the inequality ||v(2) —v(w)|| < bz — w|*
holds for all z,w € zp + 6B). So that

Iz — ol <tz —w| T, (3.26)

where

4

t:= 63 max {\/HF"H ,——-—'”;:”b + L} . (3.27)

In the general case instead (i.e., pp (Z — z) # pp (W — w)) we take arbitrary points z, w in a
smaller neighbourhood of z, namely, z,w € © + 4B where 6; := W_II—IISF"W and proceed as in
the Step 2 above substituing the point with the larger minimum time value (say w) by another
w' whose projection 75 (w') coincides with @ = 7§ (w) and pp (W — w') = pp (Z— 2). In this
way employing the Holderian inequality already proved for the last case

Iz-w) <l —w/| %,

similarly as in (3.24) we obtain

)l:t_

a lia
2 e —wl| 2.

Iz —wl| < e+ ||| F|

That concludes the proof. In particular, for & = 1 we have that the Lipschitz continuity of v (-)
implies the (local) Lipschitz continuity of 75 (-). W
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Remark 3.2.1 Observe that for proving of the previous theorem we need only that

#p (Jr (€7),€") 2 K

ﬁrwmekw>ommaug*e—NP()an( =25) NOF°, & € U (20) \C.

r(T- x)

Now we consider another type of regularity hypotheses.

Theorem 3.2.3 Let us fit zo € OC, and assume that the pair of sets (F, C) satisfies the condi-
tion (B) at z9. Moreover, suppose that one of the following conditions holds:

(i) C has smooth boundary at the point xgo, and the function ng (-) which associates to each x €
Cs (o) the respective (unique) normal vector ne (z) € N& (z) N 0B is Hélder continuous
with an exponent 0 < a < 1;

(ii) F is uniformly smooth (see Section 1.8) at & := Jr (€*) (w.r.t. £ ) for each £ € Us 5 (%0),
where the set Us p (z0) is given by (2.14), and the gradient Vpp () is Hélder continuous
near £ with an ezponent 0 < a < 1.

Then & () is (locally) Holder continuous mear zq with the ezponent 2—_1—a In particular,

7 () is (locally) Lipschitzean whenever either ng (-) or Vpp () is Lipschitzean.

Proof.
Let us define the neighbouhood U’ (zp) of the target set C as in Theorem 3.2.2 (see (3 16))
and fix z € U (z9) \C. As usual take 7 > 0 and 0 < 6 < mFey Such that TE(x)+7< &, and

z+ 0B C U () \C.
Let us prove first that the mapping z — TFC (2) is Holder contlnuous with the exponent
a. To this end given z,w € z + 0B we set Z = 75 (2), W =: 7"() (w) and denote by n.

(respectively, n,,) the unique vector belonging to —N%, (Z) " Np ( o ) N OF° (respectively,
_NP w o
to ~N7 (@) N Np (504 ) NOF®).

We consider the cases (i) and (ii) separately.

zz)

Case (i): Since 7 € Cs (zo) as shown in the proof of Theorem 3.2.2 and
N2 () 6B = N& (2) N 9B = {nc ()},

we have clearly

. ne ()
N, = ———————
pro (—nc (2))
and, similarly,
ny = nc ()

~ppe (nc (@)
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Now, taking into account that ||nc ()| = |inc (@)|| = 1 (consequently, ﬂ'Fl"’ﬂ < ppo (—n¢ (7)) <
| F'|| and similarly for W), we obtain

Inw —nzll < IF)? lope (—nc (@) ne (2) = pro (—nc (2)) ne (D)
< 2||F°|P ||l Ing (2) — ne (@)
< 2| F | Fe) Iz - o), (3.28)
where b is the Holder constant of ng (-). In the case pp (Z — z) = pp (W — w) (denoted this
common value by p) we may proceed as in the second part of the proof of the previous theorem
and obtain (see (3.25)):

= = 2 -
1 A pllnw-nzllllz—wll+;llz—wllIIZ—WII
] - — X 2 — J—
< 20h | FILIF)* |z - w] Ilz—wl|+;|1z—wll Iz-wl, (3.29)
where 1
2u:=m(K—(‘Ig(x)+7)M)>0

(see (3.17)). Hence, setting for the simplicity u := 2ph || F|| | F°||%, we have the following chain
of implications:

- ai e (2w = wl = 2 e = wl) < wlle—ul

— — —_ - — pu— 2 o
= |Z-o'"* < (ullz~wl)'™ o w|z-w| < o 2wl (1 llz = wll)

= — —-a 1 a 2 —a [
=l < max {ul = ol g (w4 Zhe—ul ) ple-uln. @30)

Since p = TL (2) < §||F°|| (so that p < 28 || F| |F°||), the inequality in (3.30) can be written
as
Iz —wll <bllz—w|?,

where

E — 6min{a,1—a}b/ (331)
and the constant §’ > 0 depends on the conditions of the problem and on the choice of the point
xeU (.’Eo)

In the general case (if pp (Z — 2) # pp (W — w)) we take arbitrary points z, w in the smaller

neighbourhood z 4 ;B where &1 := ﬁ“ﬂllil’w

In this way using the inequality (3.24) we obtain
Iz —@ll <5 A+ [FIIFID* Iz - w]®.

and proceed as in the Step 2 of Theorem 3.2.2.

Case (ii): Since Z € Cs(zo) and n, € —~N% (Z) N OF° we have n, € Usy (z0) and by

assumption F is uniformly smooth at £ := Jr (n;) = pFE(;iz)' By Remark 1.3.1 we obtain

OF°NNE () ={Vpr (6},
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so we can represent n, and n,, in terms of the gradient of pp Namely,

()-
zZ—Zz — W

2=V = N d w =V

K PE <pF (z—Z)) me PE (pp — w) )

Then we have

a
zZ—z

IA

(3.32)

[n: —null = ”VpF( (z — )_ Vor (pF(TU‘ ww))”
(w

)

where b is the Holder constant of Vg (-). Now assuming that pp (Z — 2) = pp (W — w) (= p)
by the same arguments as above (see (3.25) and (3.29)) we find

PF(Z—‘Z)

2 ||z — o2

2
< plne—malllz= wl + 2 =~ wl 7 -]
< _ —__ (a3 2
< lFZ2-E ﬂlw—wwh—w—wmw—m
p tF
o @ 2 -
< P (- T - wl) -l + e —ul - (339

Here we use the numerical inequality
(a+b)* < a®+ b (3.34)

which holds for every a,b > 0 and 0 < & < 1. In fact, for arbitrary 0 < a < 1 and ¢t > 0 we have
(t+ 1)1*0‘ > t1=%, This implies (¢ + 1)0‘—1 < t*71 and consequently

" ¢
/ (t+ 1)0‘_1 dr < / o dr,
0 0

t+1D)* 1 ™
u——g—&@(wl)“gt“ﬁ%.

which is equivalent to

(0% (84

Now for given a,b > 0 setting t = § we obtain (3.34).
It follows from (3.33) that

2
= = = =—12— = —1- 1
=1 (20 13 =01 = il =l = 2l = wl [ =0 ) < e -]

= |z-o)* < p ||z ~ w||
2 2
— o 2— — ——_nl-— -
e e e R e | A - T ERY
= |z-w| < p*lz - v (3.35)

= =l = = 2 afl— —a —ata?
or Jz-w @wv—mw;;m—wQSuHQWM T | E



3.2, HOLDER CONTINUITY OF THE TIME-MINIMUM PROJECTION 83

where p := p!~®h. On the other hand,

-1 (2 -l = 2 - wl) < o) (70 ) el
= 3T S p0 ) -

or 2l - Tl - = = w] < (W0 ) - w]®
7Tl < e - wl

y‘l—a (1 + #02>
2v

or |7l < e gz =) (3.36)
vep

Joining together the inequalities (3.35) and (3.36) we have

1-a 1 a?
17 = @l < max { u* [z — w]'~° 1+ )+—1—uz—wn1-a lz—wl®.  (337)
- ’ 2u vep ' )

So that we are led to the Holder inequality
Iz -l <bllz —wl|®,
where the constant § for small 6 > 0 can be represented as
b =602y (3.38)

and h’ > 0 again depends only on the data of the problem and on z € U (zo) (compare with
(3.31)).

In the general case (when T (2) and TZ (w) are different) as usual we conclude that

Iz =@ <B A+ FIIFID ||z — wl*.

Let us show now that the Holderianity above can be essentially improved. Observe that in
both cases ((i) and (ii)) we have
-z
—NZ (Z) " Np <_—> NOF° = {v(x)},

o o) {

where v (z) is either
ne () ( T—z )
————— or Vpp|———=

pro (—nc (Z)) F\pp@-2))’
respectively, T := n5 (z). Then by the first part of the proof the mapping v (-) is Holder
continuous on U (zg) with exponent o as the composition of two Holderian functions (either
ng () or Vpg (-) and 7 (-)) both with exponent o.. By Theorem 3.2.2 5 (-) is Holder continuous
with exponent # Applying again the first part we conclude that the Holder exponent of v (-)
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is in fact Q+—gzk Continuing these iterations let us suppose that the time-minimum projection
w5 (-) is Holder continuous with an exponent 8, > 0. Therefore v (-) is Holderian with the
exponent of3,,, Theorem 3.2.2 gives Holderianity of w5 (-) with the exponent 8,,; := ﬂ’f—l
Setting naturally 8; := «, by induction we show that the sequence {8,} is upper bounded
(namely, 8, < 2_%) and increases. Consequently, {3,,} converges to the limit (equal to —2—}5 as
well), which is also the Holder exponent of 7% (-) on the neighbourhood U (z¢). The theorem is
completely proved. W

Remark 3.2.2 Notice that in accordance with the representations (3.23), (3.27), (8.31) and
(8.88) the Hilder constant of the time-minimum projection w5 (-) is proportional to some degree
of & > 0 showing how distant the points are from the target set C. On the other hand, this
constant depends essentially on the distance from the boundary of the neighbourhood U (xq)
controlled with the parameters T and v, tending to +o0o whenever the strict inequality ‘Ig (2) < %
tends to become an equality (see (3.23), (3.27), (3.30) and (3.37)).

3.3 Smoothness of the value function

In this section we study the differential properties of the minimal time function through the
regular projection 7rg (). One of the versions of such connections is given by the following
theorem.

Theorem 3.3.1 Let us fit z ¢ C and assume that the mapping z — 7rg (2) is well-defined
and single-valued in some neighbourhood U () of x where also the following "one-point” Hélder
property holds: there are constants K = K (z) > 0 and % < B £1 such that

|7E (y) — 75 @)|| < Klly— 2l for ally e U(x). (3.39)

If the target set C is prozimally regular at T := 75 (z) then the function TE () is Clarke (and
lower) regular at .

Proof.
Let us prove the following equalities

' %E (z) = 0°FE (z) = —0pp (T — ) NN (T). (3.40)
First of all, since the (unique) projection 7 := 7 (z) exists, we have (see (3.9))
813L (z) € —0pp (T — z) NN (z)
and using the proximally regularity of C at T (Definition 3.1.2) we conclude that

'%E (z) € —0pp (Z— 2) NNE (T). (3.41)
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Let us prove now the opposite inclusion in (3.41). To this end we fix £ belonging to the right-hand
side. Then by definition of proximal normals there exists o = o (%, §) such that

(¢, z2-T)<ollz—F* VzeCl (3.42)
On the other hand, by the definition of subdifferential of a convex function
pp(W) > pp(T—2z2)+(—€u—-T+2) VueH. (3.43)
In particular, it follows from (3.43) that

pr (nE (2) = 2) = pp (7E (x) = 2) = (6,2~ @) 2 (=, 7 (2) — 7 () (3.44)

for all z enough close to z. Combining now (3.44) and (3.42) we obtain

bint Y0 =% (@) = (€2 )
z—oT ”z — 33”
= liminf £ (n&(2) — 2) — pp (7 (2) —7) — (6,2 — )
o Iz — =l
> liminf (=£,7C (2) =7 (2))
e Iz — |
> liminf — I7E (2) = 7§ (@)
e |z — =]

> liminf — oK ||z — z|**™! =0,
22—

where K is the constant from (3.39). Thus ¢ € 8/T% (z), and we have proved that
—dpp (T — ) NN, (7) C 8/%E (2). (3.45)

Furthermore, the inclusion 8/TE (z) C 8°TL (z) obviously holds (see (2.4)). In order to
show the opposite inclusion we represent the subdifferential 8615 (z) through the proximal
subdifferentials at close points (see (2.3)). Then by using the inclusion (3.8), the definition of
limiting normal cone in Hilbert spaces (see (2.5)) and the strongxweak closedness of the graph
of the subdifferential Opp (-) we successively obtain

T = w{w-lim g, & €O 5o
C ©o {w ~ lim §;, & € —0pp (75 (zi) — z:) NNE (wg (z:)), T — 3:}
C ® (-apF (v& (2) - ) NN (7 (2)) )

Since NL, (z) = N%, (7) = Né (Z), from the closedness and convexity of the latter cone and from
(3.45) we conclude that

8°3E (2) € —0pp (T — ) NNL (F) C 8/35 (2),
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(3.40) follows. Since the inclusions 8/ TE (z) C 8'TE (z) C 6°TE (x) are always true (see (2.4))
we have, in fact, the equalities

0'3E () = 0'TE (z) = 8°TC ()
and the Clarke and the lower regularity of the function %% (-) at  follows. W

If, in the place of "one-point" Hélder condition we have the usual Holder continuity of & ()

at z, i.e., if there exist constants K = K (z) > 0, % < B <1 and a neighbourhood U (z) of z
such that

1€ (v) = =& ()| < K |y — 2II° (3.46)

for all y,z € U (z) then we obtain the following smoothness result.

Theorem 3.3.2 Let us fir x ¢ C and suppose that the mapping z +— 71'5 (2) s well-defined,
single-valued and Hélder continuous with an exponent % < B <1 in some neighbourhood U (x) of
z. Assume, moreover, the target set C to be prozimally reqular at each pointy € Cs (Z) := 0CN
(Z + 6B) for some § > 0 where T := 75 (z). Then the function T () is (Fréchet) continuously
differentiable at x if there exists a continuous mapping v : U (x) — OF° such that

Nz @nNe (S ) noF = (v ) (3.47)

where § := 75 (y), y € U (2) \C. In this case VIE (z) = —v (z).

Proof.
By assumption for each y € U (z) the intersection

~NZ () N 0pp (T —y) = —Ng (7)) N Np (—y—__y—-—> NnoF°
pr (T —y)
is reduced to the single vector v (y) (see (3.47) and Proposition 1.1.1).

On the other hand, since the (unique) projection § = ﬂg (y) exists for each y enough close
to = and it is close to %, the set C is proximally regular at such § furthermore, the Holder
continuity of 75 () on U (z) implies the "one-point" condition (3.39) centred at each y near z.
So that by the previous theorem we obtain

056 (y) = —0pp (¥~ y) NNG (7).
Hence
0/3E (y) = —0pp (7 — y) N NG (§) = {—v (v)}

and the statement of the theorem follows. Wl

Remark 3.3.1 Observe that in a finite dimensional space we could require only that the mapping
v (-) in the Theorem 8.8.2 is single-valued because continuity follows immediately from the fact

that y — —N4L () N Np (%) NOF° admits closed graph (see Section 2.1).
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For convenience of further references let us formulate the following obvious statement.

Corollary 3.3.3 Under all the assumptions and notations of Theorem 3.3.2 suppose, moreover,
that the single-valued mapping

_ —y- —Y 0
y — —Ng (7) "\NF (————_ > NoF
cWONF o G-1)
is Hélder continuous with an exponent 0 < a < 1 in a neighbourhood of x ¢ C. Then the
function TL () is of class C1* in this neighbourhood.

The condition (3.47) splits into the following two particular cases.

Corollary 3.3.4 Assume as in Theorem 3.3.2 that the time-minimum projection Wg (+) is single-
-valued and Hélder continuous with an exponent 1/2 < B < 1 in a neighbourhood U (x) of a point
z ¢ C, and that the set C is prozimally regular at each point y € Cs5 (T), T := 75 (z), 6 > 0.
Then the value function TL () is (Fréchet) continuously differentiable at x if at least one of the
following conditions hold:

(i) C has smooth boundary at T;

PFz(f—x) )

(ii) F is uniformly smooth at § =
Furthermore, in the first case we have

F N _ ne (7)
Vig(z) = o (ne @) (3.48)

where ng (T) is, as usually, the unit normal vector to 0C at T, while in the second

ViE (z) = —Vp (-2—) . 3.49
§(x) = ~Vor (s (3.49)
Proof.
In order to prove this statement it is enough to observe that
_NZ (7) N Np (-@) NoF° (3.50)
pr (- y)

is contained either in

(i) = 7 (e

whenever the condition (i) or the condition (ii), respectively, is fulfilled. Since the set (3.50) is
nonempty, everything is proved. B

Similarly to Corollary 3.3.3 we can formulate the following result on the Holder regularity
of the minimal time function.
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Corollary 3.3.5 Under all the assumptions and notations of Corollary 3.3.4 the following im-
plications hold

(i) if no () is Hélderian near 7 = w5 (z) with an exponent 0 < a < 1 then TE (+) is of class
CY2# near the point x ¢ C;

i1) if Vpp () is Hélderian near £ := Z-2 __ with an exponent 0 < a < 1 then TE () is of
F C

pr(T—1)
class CV*# near z.

Proof.

(i) Taked >0 small enough such that all the conditions of Corollary 3.3.4 are fulfilled in
the neighbourhood z + 6B, and let us fix z1,z2 € z + dB\C. Using the formula (3.48) and
proceeding, e.g., as in (3.28) we obtain

IVSE (21) = VEE (2)|| < 20c IF) I1F°| 71 — 22

where o > 0 is the Holder constant of ng () near Z. Since T; := 71'15 (z;), 1 = 1,2, we continue
this estimate:

IVEE (1) — VIE (22)]| < 26c 1PN I F2IP K° |21 — 227,

where K > 0 is the Holder constant of 75 (-) near z.

(ii) Taking 0 < 0 < g_Hgf‘Sf—l)l again small enough such that all the conditions of Corollary 3.3.4

are fulfilled in = + 6B, and using the formula (3.49) similarly as above for each z1,z2 € z + 0B
we have the inequality

|VEE (21) = VEE (22)]| < br 161 — &all”, (3.51)

where hr > 0 is the Holder constant of Vpg (-) near £, and &; := p—f(-gf?m, i = 1,2. Setting

p; = pr (T; — x;), 1 = 1,2, we have

1 _ _
€1 =&ll = —I(F1— z1) p2 — (T2 — 22) p1|
P1P2
1 _ - _
< —(|m1 — zalllpa — o1l + o1 T2 — 21 — (T2 — z2)]])
P1P2
1 I _ _ _
< v (EIE®) o1 21 = 21 = (T2 — z2)|| + p1 |71 — 21 — (T2 — 22)))
Fil|Feil+1
S ” ” ” ” (K||LE2—$1”'B+”$1"$2“)
P2
_IFNE +1 1-8 B
- ey (K + oz = 2l °) o1 = mall”. (3.52)
Since
TE (2)

TE (22) 2 TE (@) — pp (22 — ©) 2 TE (2) = | FO Nl — 2ll 2 T (2) = [1F°)| 3 >

2
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from (3.51) and (3.52) we obtain
IVEE (1) = VIE (22)]| < e — 22|,

for some constant h > 0. M

Notice that the previous statements were proved under assumptions that the time-minimum
projection 7% (-) is enough regular (Holder continuous with an exponent § > 1/2) in a neigh-
bourhood of a fixed point outside of the target set. Applying now the results of Section 3.2 we
can emphasize the hypotheses guaranteeing such regularity. These hypotheses employ the first
and second order conditions studied in the previous chapter and allow us to formulate global
results.

Theorem 3.3.6 Let zg € 0C. Suppose that the following assumptions hold:
(i) the pair of sets (F,C) satisfies the condition (A) at xg;
(ii) the target set C is prozimally regular near xp;

(111) for each x ¢ C enough close to zo one of the properties below takes place:

(a) C has smooth boundary at T := w5 (z), and the unit normal ne (-) is Hélder conti-

nuous near T with an exponent 0 < a <1;

(b) F is uniformly smooth at { := %, and Vpp (-) is Holder continuous near £ with
an exponent 0 < a < 1;
(c) the mapping v(y) := —N% () N Np (ﬁ%) N OF° is single-valued and Hélder

continuous near ¢ with an exponent 0 < a < 1.

Then the value function TE (-) is of class (,’llo’g in a neighbourhood of the point zy.
Here and in what follows by the differentiability and the Holder continuity of the gradient
V‘Ig (-Ywe mean that these properties hold true only outside the target set.

Proof.

It follows from theorems 2.2.1 and 3.2.1 that the projection 7% (-) is well-defined, single-
valued and Lipschitz continuous (Hélderian with 8 = 1) in some neighbourhood U’ (z9) of .
Consequently, all the assumptions either of Theorem 3.3.2 or of Corollary 3.3.4 are fulfilled.
Then applying, respectively, Corollary 3.3.3 or Corollary 3.3.5, we complete the proof. W

Theorem 3.3.7 Let zo € OC. Suppose that the following assumptions hold:
(i) the pair of sets (F,C) satisfies the condition (B) at xg;

(i) for each x ¢ C enough close to g one of the properties below takes place:
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(a) C has smooth boundary at T := =% (z), and the unit normal ng (-) is Holder conti-
nuous near T with an exponent 0 < a < 1;

(b) F is uniformly smooth at § := "”(; 23 and Vpg (-) is Holder continuous near § with
an exponent 0 < o < 1;

then the value function T& (+) is of class C'loC * in a neighbourhood of the point . However,
if in the place of the condition (i) we assume that

—E—L) NOF®° is Hélder continuous
pr(T—y)

with an exponent 0 < o < 1 near z, for each z ¢ C close to xq,

(i) the single-valued mappingy — v (y) := —NJ, (7)NNp <

then TE (+) is of class Cllo’? near .

Proof.

Unlike the previous statement here we apply either Theorem 3.2.3 or Theorem 3.2.2 to be
able to use the results of this section. Then it is enough to apply either Corollary 3.3.5 with
8= -Qi—a or Corollary 3.3.3. W

Observe that although the assumption (iii’) of the last theorem is really more general than
the alternative hypotheses (iii), we obtain a stronger regularity for the minimal time function
(a > 32-). This happens because the normal vector v (-) in (iii’) depends on a moving point
z¢C 1tse1f while in (iii) it is a composed function involving the projection.

The following statement is the global version of the theorems 3.3.6 and 3.3.7. Notice that
in order to formulate the regularity result in global setting we should reduce all the Holder
exponents of the gradient VIZ () obtained earlier to the common one. So we have

Theorem 3.3.8 Let us suppose that the pair of sets (F,C) satisfies either the condition (A)
or (B) at each point o € OC, and that the target set C is prozimally regular (in particular,
@-convez). Moreover, we assume that given 0 < 8 < 1 in a neighbourhood of each zo € 0C

either the mapping y — v (y) := —N% (7) N1 Np (;—%) NOF°, 5 := wE (y), is single-valued
and Holder continuous with the exponent 3, or the hypothesis (ii) of Theorem 3.3.7 is verified,

where o = f if at zg the condition (A) holds, and o = ;—fl under the condition (B). Then

there exists an open set $4(C) D C such that the minimal time function T5 (-) is of class Cllo’f
on U(C)\C.

Proof.
This is immediate consequence of two previous theorems taking into account that the equality
o= /;Tﬁl is equivalent to 8 = ;2. W

Since 98
2 B,
ﬁ +1
we formulate another version of the global result, which does note make differences between
Holder exponents in the case of the hypothesis (A) or (B).
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Theorem 3.3.9 Let us suppose that the pair of sets (F,C) satisfies either the condition (A) or
(B) at each point Ty € C, and that the target set C is prozimally reqular. Assume, in addition,
that either C' has smooth boundary and the mapping z — ng (z) is locally Hélderian near C
with the exponent o, or F is uniformly smooth (at each point) and Vpg (+) is locally Holderian
near F' with the same exponent . Then the minimal time function ‘Ig (1) is of class Cllocﬁ on
HU(C)\C where 4(C) is an open neighbourhood of C.

3.4 Examples

Here we illustrate the regularity results obtained in the previous sections by simple examples
which have already been treated in this work but for other purposes. For the sake of clarity we
consider only the finite dimensional case.

Example 3.4.1 Let

Fo={(&,&) eR¥ g <1-¢1, -1<¢, <1}

1\? 1 1\? 1
= 2: < mi 2 . - - - )
C {(ml,m) € R?:z; < min <m2, <x2 2) + 5 <:v2 + 2) + 2)}

Notice that the same dynamics F' was used also in the examples 1.4.2 and 2.4.3, while the target
set C is similar to that considered in Example 2.4.4, but simpler because it does not contain
an "inward corner" point. Then F is closed convex bounded with 0 € int F'; and C is closed,
p-convex with ¢ (-) given by

1 1

) ) .'L':(l'l,IL'Q),
2
V1 + 4z \/14-(2352—1)2

¢ () = max

(see (2.73)). Furthermore, C' has smooth boundary at each point except b* := (%, :i:%) with
the unit normal vector

\/HI_W (1, —2z9) if |zo| < %
3
1 1 : 3
—_— {1, -2 (22 — 5 if 29 >3
ne (z) = 1+4(z2_%)2 ( ( 2 2)) 273 (3.53)
et (1,2 (2 + 1)) if @z < =3,

and the vector v (z) := —n¢ (z) /ppo (=n¢ (z)) is well-defined for z € 8C, z # b*.

Proceeding as in Example 2.4.3, we conclude that the condition (B) holds for each zy =
(29,29) € 6C\ {b*}. Moreover, F is smooth at each point 7 = (1;,7;) € OF\ {(%1,0)} with
the unit normal Vor ()

PF\N
upin) = =
) = e = VieR T

being the function 7 +— npg () locally Lipschitzean.

(477:1;7 sgn (712)) 3
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On the other hand, it is easy to see that for each zg, g # b*, with |:1:g| > 1/8 and for some
8 > 0 small enough there is no z € Cjs (zo) with n = Jp (v (z)) = (£1,0). Indeed, choosing an
arbitrary x € 0C close to g and assuming z > 0 (the other case is symmetric) we consider
two cases. In the first one (when 1/8 < z3 < 3/4) the vector v (z) is given by (2.68), and for

€= (&1,€y) = Jr (v (x)) we have

1
f= -5 e [-L0)
1 2'.’1)2|1/3

(see (2.69)). Otherwise (i.e., if z3 > 3/4) from (3.53) we find

(—1;212 - 1)
viz) = ,
@) = 1.2, = 1)

where

3+ 44/3 |1 — 2,y |*/3
44/3 |1 — 2z9|"/3
and for & = (£;,&,) € Jp (v (z)) simple calculations give

3

PFo (—1,2.'132 - 1) =

1
T 41/3(1 - 239)8

£ €[-1,0] and & =(1-¢}).

Thus, in these two cases np (-) is Lipschitz continuous near each Jr (v (zo)) and the time-
minimum projection 75 () is locally Lipschitzean near zo by Theorem 3.2.3 (ii). Furthermore,
according to Theorem 3.3.7 (ii)b the value function T (-) is of class Cl1 O’Cl. Notice that here we can
also apply the condition (i) of Theorem 3.2.3 (as well as the hypothesis (ii)a of Theorem 3.3.7)
because C has smooth boundary near zg with ng () locally Lipschitzean (see (3.53)). However,
if |x8l < 1/8 then to guarantee Lipschitz continuity (which takes place as well) we can use only
the last conditions, i.e., the local regularity of OC since in this case £ := Jr (v (z9)) = (£1,0),
and the smoothness of 9F at ¢ fails.

Finally, at the points ¢y = b% the boundary of C' is not smooth. Nevertheless, calculating
also the normal cone to C at these (singular) points we see that OF is smooth at each point
n=3Jr(n*), n* € -N% (z) N 9F°, z € C5(xp), where d > 0 is small enough, and the respective
normal np (-) is Lipschitz continuous. Consequently, also in this case we conclude that w5 (-) is
Lipschitzean near zo, and T (-) is of class Cllc;cl in some neighbourhood U’ (zy).

Thus, joining together everything said above we see that the projection 7Tg () is locally
Lipschitz continuous near C. Moreover, the value function T% (-) is Fréchet continuously diffe-
rentiable, and its gradient VT (-) is also locally Lipschitzean on some neighbourhood 4 (C)) of
the target set.

Example 3.4.2 Let

={(En6) R B+ (6 - 1P <4, & <1);
{(ml,mz) eER?:z; < f(mg)}
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where f: R — R is given by

-t-1 ift<-1
FR)={ —VI—& if —1<t<¥3
-3 if t> Y3,

Observe that F' is closed convex bounded with 0 € int F', and C is closed, y-convex with
p(z) = % Furthermore, C has smooth boundary in all the points except in (0, —1), (—%, 3@)
with the unit normal vector given by

(—z1,—z9) if —1<z3< 3@

ne (z) =< (1,0) if @ > Y3
71_1—0-(3, 1) if xp < -1,

z = (z1,x9) € OC.
For an arbitrary dual pair (¢,£%), £ € Jr (£*), £€* € OF°, we have

[ 2kl if €520
RS2 o @r v @r e i g <o

It is obvious that for each & = (§;,1), §&; € ]-2,2[, and the (unique) normal vector £* =
(0,1) € OF° to F at £ the curvature s (£,£) is equal to zero, while s (£,£%) = ZII%"W for each
£ = (£1,€3) € OF° with £ < 0 and the unique £ € Jp (£%). Finally, if €5 > 0 and &7 # 0 we
have 3 (§,£%) > m, where again £ = Jp (€*). In the last case, obviously, i (£, £%) = +o0.

Given zg = (x?, xg) € 0C let us consider the various cases.

(i) F-1<2) < —%, z9 > 0 then for z = (a1, x3) enough close to 2o we have

@ (V1Imdm)

0 = — = € 0F°,
S Y ) N
and £ = (—2,1) is the unique element of Jp (v (z)). Since v (z)| < ||F°|| pPro (b (z)) =1
we have scp (€,0(z)) > 1/4.

(ii) If =1 < 2§ <0, 25 < 0 then for each z = (21, z3) near zy we find

(Ve

2+$2

v(z) =

and there exists a unique £ € OF such that the (unique) normal vector to F' at £ belonging
to OF° is exactly v (z), i.e., £ = Jr (v (z)). So that

-1
4flo (@)l —

sep (€0 (2)) 7
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(iii) The case z = —1 (and z§ = 0) is reduced to the previous cases because every neigh-
bourhood of zg intersects both semiplanes {z2 > 0} and {z; < 0}, while for the point
z = (—1,0) itself v (x) = (—1/2,0), £ = (-=2,1) and »r (¢,0(z)) = 1/2.

(iv) If 20 > 0, 2§ < —1 then for each z from some neighbourhood of zg we have

-1
b(z) = io—1 (3,1)

and for the unique € € Jr (v (z)) we have

e (€0 (a) = — = VIO

CAfe@]  4vI0
(v) If 2 = -1 29 > 3§ then for each x from some neighbourhood of zyp we have v(z) =
(=1/2,0), and £ = (—2,1) is the unique element of Jr (b (z)). So that again sr (£, (z)) =

1/2.

(vi) If zo = (0, —1) then N%, (z0) = {A1e1 + Ageq : Ay, Ag > 0}, where e; := (0,1), g := (3,1).
As it is easy to see for each £* € —IN%, (z9) N OF° there exists a unique ¢ € Jr (£*) and
we have s (€,£€%) > 1/4. But in each neighbourhood of zg there are points z either with
-1 <z <0, z2 <0, or with z; > 0 and 23 < —1. These cases we combine with (ii) and
with (iv), respectively.

vii) If zg = —l,ﬁ then similarly to (vi) N% (zg) = {Aies + Azeq : A1, A2 > 0}, where
2) 2 C

ez 1= (1,0), eq := (%,—@) For each £* € —NZ, (zp) N OF° we have Jp (¢*) = {(-2,1)}
and sp (€,€%) > 1/4.

Therefore the condition (B) holds at every zo € 8C, and the projection 75 (-) is well-
-defined on an open set i/ O C. Moreover, it is Holder continuous with the exponent 1/2.
In order to improve the Holder regularity of the projection as well as to show the smoothness
of the value function (if any) we should study the smoothness either of the target set or of

the dynamics. First, C' has smooth boundary in all points zo € 8C\ {(0,-—1) , (—%, ‘/75)}

and the function nc¢ (), which associates to each € Cjs(zg) the respective (unique) normal
vector ne (z) € N4 (2)NOB, is Lipschitz continuous. Hence, by Theorem 3.2.3 7E (-) is (locally)
Lipschitzean near such xy and by Theorem 3.3.7 (ii)a T (-) is of class Cllo’c1 in some neighbourhood
of zp. Considering the point zo = (0, —1) we see that F is uniformly smooth at ¢ := Jp (¢*)
(wr.t. &) for each £* € Usy (wo) (see (2.14)) with some &, 6’ > 0 and that the gradient
Vpp (§) being normal to F at the point ¢ is Lipschitz continuous in €. Thus we conclude by
Theorem 3.2.3 that 75 (-) is (locally) Lipschitzean near zy and TE () is of class ¢l in some

loc

neighbourhood of zy. Let us consider now the point z = (—%, 3@) Since the normal cone to C

at Z being contained in —Np (—2,1) does not touch the vertical semi-line R*e;, the condition
(A) at Z also holds. In turn this implies that the projection 7% (-) is not only Hslder continuous

with the exponent 1/2 but is (locally) Lipschitz continuous in fact in a neighbourhood of Z (see



3.4. EXAMPLES 95

Theorem 3.2.1). On the other hand, denoting e = (2, —1) observe that 7 (Z — ee) = {z} for all
£ > 0 small enough. Nevertheless, for z := Z — e the intersection

—NZ, (z) N\Np (—?‘”——) noF°
c@ONe o o)
is reduced to — {A1e3 + Ageq : A1, A2 = 0} N OF°. By the equality (3.40) obtained in Theorem
3.3.1 this intersection is exactly the Fréchet subdifferential 67T (). So that we have no the

Fréchet differentiability of the value function near the point T = (—%, 3§>



Chapter 4

The problem with a nonlinear
perturbation

In this chapter we exploit another view to the minimal time problem that allow us to somehow
generalize a part of the obtained results. Namely, we are interested in studying of the regularity
properties of the viscosity solutions to the equation

ppo (—Vu(z)) —1=0 in H\C, (4.1)

such that
u(z) =0 (z), zeC. (4.2)

Here as usual H is a Hilbert space, F C H (dynamics) is convex closed bounded and with
0 € int F and C C H is an arbitrary closed set. As we already said (see Introduction) in the
case § = 0 the unique viscosity solution of the problem (4.1)-(4.2) is exactly the minimal time
function TE (). Generalizing this problem we suppose that § : C — R is a non affine but
enough regular function. In what follows we assume 6 (-) to be well-defined not only on C but
on the convex closed hull @C or even on the whole space H. If H = R™ and @ C R" is an
open domain with the boundary C := 0} then (4.1)-(4.2) becomes the boundary value problem
for the Hamilton-Jacobi equation associated with some optimal control problem. Consideration
of this relationship is out of Thesis. Here we just occupy with the solution of (4.1)-(4.2) itself
and with their properties. First of all, in Section 4.1 we give the main definitions regarding the
theory of viscosity solutions. Furthermore, for the sake of completeness we place here the direct
proof of the well-known fact (see, e.g., [61]) that the (unique) viscosity solution of (4.1) is given
by

u(z) = inf {pp (y—=z)+0(y)}, z€H. (4.3)

As we will see later the regularity of the function (4.3), similarly to the case § = 0, strongly
depends on the attainability of the minimum in (4.3) and on the uniqueness of the point Z € C,
where this minimum is attained. So that we are led to study the (multivalued in general)

mapping = — Wg’g (z), where

wEl ()= {z e H:u(z)=pp(y—2)+0 1)},

96
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and give in Section 4.2 some effective (local) conditions guaranteeing that the above mapping
is well-defined, single-valued and continuous in a neighbourhood of the set C. These conditions
extend the hypotheses (A) considered in the chapters 2 and 3 to the case § # 0 and ensures the
Lipschitz continuity of wg’e (-) as well. The last Section 4.3 is devoted just to the regularity of
the function (4.3), and we prove here that u (-) is of class Cllo’c1 near the set C and give an explicit
formula for its derivative. This is similar to the respective results for the function TZ (-) (see

Section 3.3).

4.1 A short introduction to viscosity solutions and to Hamilton-
Jacobi equations

We start from the definition of viscosity solution given by M. G. Crandall and P.-L. Lions in
[34] for the general first order (nonlinear) partial differential equation

[ (z,u(z),Vu(z)) =0, z€qQ, (HJ)

in a finite dimensional space, where § is an open domain in R™ and I'(+,-,-) is a continuous
function.

Notice that such solution may be nowhere differentiable in classical sense, and its gradient is
understood by another way similar to the distributional derivative in the case of linear partial
differential equations. However, due to essential nonlinearity of the considered problems the in-
tegration by parts here is replaced by "differentiation by parts". Surprisingly, another definition
(see below) can be given in terms of the generalized (multivalued) differentials, which always
exist (but often can be empty).

Denoting as usual by C (ﬁ) the space of all real continuous functions defined on Q, for each
P eC (Q) we set

E, (9) = {yeﬂz¢(y>=sgp¢>0} and E_(9) = {y69:¢(y)=igf¢<0}-

Let us consider also the space C° (Q) of all (test) functions ¢ : @ — R of the class C*° (infinitely
differentiable) with compact support supp ¢ := {z € Q: ¢ (z) # 0}, and denote by C° (Q)* the
set of nonnegative functions belonging to C° ().

Definition 4.1.1 A function u € C (ﬁ) is said to be viscosity subsolution (respectively, super-
solution) of the equation (HJ) if for every ¢ € C° ()" and k € R

Jz e By (¢ (u(-) —k)) such that T <z,u (z), —%Vg@ (m)) <0, (4.4)
(respectively,
u(z) —k

dz € E_ (¢ (u(’) —k)) such that T (m,u(m) ,—————
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whenever the set Ey (¢ (u(-) — k)) (respectively, E_ (¢ (u(-) —k))) is nonempty. We say that

u € C(Q) is a viscosity solution of (HJ) if both implications (4.4) and (4.5) hold, i.e., u() is
both a viscosity subsolution and a viscosity supersolution.

Due to the following result an equivalent definitions of viscosity solution can be given (see
[32, Theorem 1.1}).

Proposition 4.1.1 Let u € C (). Then u(-) is a viscosity subsolution (supersolution) of (HJ)
if and only if for each ¢ € C* (Q) such that the function u(-) — ¢ (+) attains a local mazimum
(respectively, a local minimum) at zg € Q the inequality I (o, u (zg), Vi (z0)) < 0 (respectively,
T (zg,u (z0),, Ve (z)) = 0) holds.

In this simpler form subsequently the notion of viscosity solution was defined and studied
in an arbitrary Banach space with the Radon-Nikodym property (see [35, 36]). Further on,
naturally, we will consider only the case of a Hilbert space H (which possesses this property, see
[44, p. 100}), setting Q := H\C where C is the target set.

Once more equivalent definition in each (Hilbert) space can be given basing on the concept of
the Fréchet subdifferential 8w () (see Section 2.1) and the symmetrical Fréchet superdifferential
denoted by dfu (-). Let us recall the respective definitions

Tu(z) = i it ®) (@) = Py — 2) ,
8 u(z) : {pEH. lim inf T zo},

Opu () := {p € H: limsupu(y) —u(@) - {py-a) < O} .

y—o ly — =l

The following result was obtained already by M. G. Crandall and P.-L. Lions in finite di-
mensional spaces (see [34, Proposition 1.18]) and then was generalized to Banach spaces in (35,
Proposition 1].

Proposition 4.1.2 Let u € C (ﬁ) Then
(i) u(-) is a viscosity subsolution of (HJ) if and only if
I'(z,u(x),p) <0 VzeQ, Vpedpu(z);
(i) w (-) is a viscosity supersolution of (HJ) if and only if

T(z,u(z),p) >0 Vee®, Vpedu(z).

Remark 4.1.1 Notice that if both dju (z) and 8/u (z) are nonempty at some z then the function
u () is differentiable at this point and Osu (z) = o u(z) = {Vu(z)}.
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In what follows we consider only a particular case of (HJ), namely, the equation (4.1), and
use only the definition of viscosity solutions given by the latter proposition. According to general
existence and uniqueness theorems (see [36, Theorem 1.1] and [35, Theorem 1], respectively) we
can affirm that the equation (4.1) admits a unique viscosity solution satisfying the boundary
condition u|sn = u|c = 6 where 0(-) is a fixed function. -Furthermore, it is known that this
viscosity solution is given by the exact formula (4.3) (see [61, 18] in the case of R™). However,
for the sake of completeness let us prove the respective assertion.

Proposition 4.1.3 Let 6 : ©oC — R be a Lipschitz continuous function such that 9°¢ (z) c —F°
for all z € ©C. Then the function u(-) defined by (4.8) coincides with 6(-) on C and is the
(unique) viscosity solution of (4.1) with this boundary condition.

Proof.

Let us prove first that u (z) = 6 (z) for all z € C. The inequality u (z) < 6 (z) is obvious.
In order to prove the opposite inequality let us fix y € C. Then by the Lebourg Theorem (see
(22, Theorem 2.3.7]), there exist n = Az + (1 — A\)y € ©C, A € (0,1) and n* € 8°6 (n) C —F*
such that

0(z)-0(y) =" z—y) < Sup, €y —2)=pply—a). (4.6)

Hence, passing to infimum in y € C, we have
u(z) = inf {pp (y —2) +0(y)} = 0 (2).
yeC
Thus
u(z)=0(x) VreCl. (4.7)

The function u(-) is continuous. It is even Lipschitzean on whole H with the Lipschitz
constant ||F°||. Indeed, taking arbitrary z, y € H and € > 0 we find w € C such that

u(y) > pp(w—y) +0(w) —¢,
and hence

u(z) - u(y)

IA

o (w =)+ 0 (w) = pp (w —y) — 0 (w) + ¢
pp(w—2) = pp(w—y) +e
1F°ll Iz -yl + <.

IA

Letting € — 0+ we obtain the Lipschitz inequality.
In order to prove that u (-) given by (4.3) is the viscosity solution of (4.1), let us verify the
conditions (i) and (ii) of Proposition 4.1.2.

(i) We have
u(y) —u(z) = inf {pp(z—y)+0(2)} — inf {pp(z —2) +0(2)}
b zigg{PF(Z"y)—PF(Z—x)}
> inf {pp(2—y) —pr(z—y) — pr(y— )}

zeC
—pr (y — ) (4.8)
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for every z,y ¢ C.

Let us fix z ¢ C and p € 9yu (z). Then for an arbitrary € > 0 there exists 6 > 0 such that

u(y) —u(@) - (py—2 ___ly=al
pr (y = ) T pr(y—a)

for all y # z with |ly — z|| < 4. By (4.8)

). y=z \__ly—al
! <p’PF(Z/—51”)>S pr(y—z)’

and passing to supremum we have

3 z—y ly — =i
14+ sup P, <eg sup .
lly—=l||<d pr (Y — ) ly—zi|<s PF (y — =)
siee Iy —al 21
y—z z
sup ———— =sup —~ = || F||
ly—zl<s PFY—2) 0 P (2)
and

Yy - T
pro (—p) =sup(z,—p) = sup <—p, —-———> :
2€F lly—al| <8 pr (y — )

(4.9) implies that
—1+ppo (=p) < e F||

(4.9)

and letting £ — 0+ we obtain pp. (—p) < 1, proving that u (-) is a viscosity subsolution of (4.1).

(i) Let us fix z ¢ C and p € 8/u(z). We should prove that ppo (—p) > 1. Let us suppose
the contrary, i.e., ppo (—p) < 1, and let € > 0 be so small that pp. (—p) < 1 —e. Then by using

the definition of Fréchet subdifferential we find § > 0 such that

uly)—u(@) ~ (py—2) 2 —Spr W —2) G u(@ —u(y) ~ (-py-2) < gor ¥ —2) (410)

for all y # z, ||y — z|| < 4. Assume, moreover, that (:c +6B) N C = §. On the other hand, let

z € C be such that
€d

u(w)ZPF(z—wH@(Z)-W,

and, consequently,

)

u(z) —uly) = pp(z—w)+9(Z)—m—pF(z—y)—

)

0 (z)

= pp(z—w)—pp(z—y%m vy ¢ C.

Since ||z — z|| > 4, there exists A € (0,1) with ||[§ ~z| = % where 7 := Az + (1 — A) 2.

(4.11)
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Notice that
pr@—2)=(1—-Npp(z—3) and pp(z—7)=rop(z— 1)

and consequenlty

pr (=) = pe e = 1) = pr (7 - 2) 2 Ll = oo (4.12)

Therefore, applying successively the inequalities (4.12), (4.11) and (4.10), we obtain

b (§2) - gor —-pT =0 = o (z=a)=op(e=T) = gy~ (P T-2)

< u@-u@-(-pi-a)<zppF-7). (“13)

On the other hand, since pgo (—p) > <—p, ;;E(:x—

__w)> by the choice of € we have
(—p,¥—2z) <pr(—x)(1-¢).
Combining this with (4.13) and (4.12) we obtain

eé €
ppr@-1) < zrmrt(-pI-B)+pp(F-e

~pr (=) + 2o (=) +pp @ —7) (1~ ¢)
= pr@-2)(1-%),

which is a contradiction. So the proposition is proved. W

4.2 Existence, uniqueness and Lipschitz continuity of mini-
mizers

Our goal in this section is to prove existence and uniqueness of minimizers in the problem

min {pp (y — ) +6(y) : y € C}

for = from some neighbourhood of the target set, and then to establish the Lipschitz regularity
of these minimizers w.r.t. z. The main condition used here is the relation

0°0 (z) C —vF°, (4.14)

which holds for all z € @6C, where 0 < v < 1 is some fixed constant. In particular, this implies
that

—0% (z) +nB C yF° + (1 —v) F° = F°, (4.15)
where 7 := ﬁ (in sequel we frequently use this constant). Oberve that if & (-) is dej?;@d in, al
neighbourhood of C and is such that 88 (x) C —yF? then (4.14) automatically holds. Tndeed?:
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any £ € 8'4(z) can be represented as the weak limit of a sequence §, € P60 (z,) C —vF°,
Tn — T (see (2.1)). Thus 8'6 (z) C —7F°, and (4.14) follows because 9°9 (z) = c60'0 (z) and F°
is convex. The condition (4.14) implies obviously that 6 () is Lipschitzean with the Lipschitz
constant v || F°||.

Notice that for z € C we always have wg’e (z) = {z}. Indeed, as we have already shown

(see Proposition 4.1.3) u (z) = 0 (z) and, consequenlty, = € wg’e (z). On the other hand if there
exists y € C, y # z, with u(z) = 8 (z) = pp (y — ) + 0 (y) then by the Lebourg Theorem we
find g = Az + (1 — Ny € coC, A € (0,1) and n* € 9°0 (n) C —vF* such that

pr(y—z)=0(2)-0(y) = (-1 y~2) < S €y —z) =vpp(y—1x). (4.16)

But (4.16) is possible only if y = .
Now we emphasize the hypotheses guarateeing that the infinum

u(z) = ;gg{pp (y—=)+0(y)}

is also achieved at a unique point if 2 ¢ C but enough close to C. First we prove the following
auxiliar lemma (similar to Lemma 2.1.1).

Lemma 4.2.1 Let C C H be a nonempty closed set and 6 : H — R be a function of class chl,
Let z € H\C, and {z,} C C be a minimizing sequence for the function x — pp (z —z) + 0 (z)
on C. Then there exist another minimizing sequence {z,} C C' and sequences {z}}, {vn}, {£3}
such that v, € V0 (z},) + N (z,), &, € Opp (2, — 2) and

|25, = znl| + [|25 = 2alt = 0, (4.17)
lvn +&all = O, (4.18)
as n —r Q.

Proof.
Given an arbitrary sequence e, — 0+ with pp (zn — 2) + 0 (zn) < u(2) + €n, by Theorem
2.1.3 there exists {y,} C C satisfying the conditions

pr (Yn — 2) + 0 (yn) < u(z) + n; (4.19)

Zn — ynll £ VEn;

pp(Yn—2) +0(yn) S pr(y—2) +0(y) +Venlly —wll V¥ €0, (4.20)
n=1,2,.... The inequality (4.20), in particular, means that y, minimizes the functional

F(y)=ppy—2)+0@) +Veuly —val +1c (v)
on H. Then we obviously have 0 € 8PF (y,) (see [23, p. 37]). According to Theorem 2.1.1

! — " .
Oeapp(mz—z)+\/aﬂa;;_—z”+8p(9+1(;) () + Ve B
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for some sequences {z’,} € C and {z} C H, ||z}, — yull < V/&n, 20 —ynll £ VEn, n € N. In
the same way as in the proof of [23, Proposition 2.11, p. 38] but using the Lipschitz continuity
of V8 (-) instead of the differentiability we obtain

8P (8 +1c) () = VO () + N% (z,) . (4.21)

Therefore .
0 € dpp (2 — 2) + VO () + NE, (z7,) + 2v/E:B.

Consequently there exist vectors v, € V8 (z},) + N7, () and &, € Opp (x5, — 2) such that
lon + &1l < 2V/en,

and the property (4.18) holds. It follows from (4.19) that {z,} is a minimizing sequence of
z— pp(z—2)+6(z)onC:
pr (%5 = yn) + pp (yn — 2) + 0 (ya) + b el — Ynl|
w(2) + (I1F°l +b) [|on = vall + €n
w(2) + (1F°) + b) Ven +en,

where h > 0 is the Lipschitz constant of 8 (-), and (4.17) is also valid. W

pr (zh, — ) + 60 ()

ININ A

Remark 4.2.1 The vectors v, in Lemma 4.2.1 can be chosen such that —v, € 0F°, n=1,2,....

Indeed, setting o oo — V6 () . (x, )
" proyve) (= (va — VE(21,))) "

we have
PFRo4vo(al) (“ (U;z - Vo (‘”;1))) =1,
i.e.,

— (vl — VO (2,)) € 0 (F° + V6 (7))
and consequently —v!, € OF°. On the other hand, taking into account that

Proyve) (En+ VO (27)) =1

we obtain
- Vo ()
vn—u| = |lvn-— L — V0 (z,
” | PFoyvo(a) (— (va — VO (21,))) ()
|vn — VO (27,)|l

T Prervea) (— (W — VO () ’pF"‘“V"(%) (- (U" = V6 (7)) - 1’

< [P+ VO @) I(F° + V0 (2,)) |l | (va = VO (21,)) + (€7 + VO (27))
|1F° + V8 () || [|(F° + V8 (23)) ||||vn+sn||~o,

and, therefore, v, can substitute v,.
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Theorem 4.2.1 Assume that 8 : H — R is a function of class C'! such that V8 (x) € —yF°
for all x € T6C, with the constant 0 < v < Wg,ﬂ Let us fix zg € OC and suppose that for
some § = § (zg) > 0 the following conditions hold

(i) the mapping = — Jr (— (VO (z) + N% (z)) N OF°) is single-valued and Lipschitz continu-
ous with the Lipschitz constant L := L (x9) >0 on

Cs () := {& € C : |lo — m|| < 6, N (z) # {0}},

and

(it) F is uniformly strictly convexr with respect to

Usy (z0) :=0F°n | [-(V6(z)+ N5 (2)) NOF° +§'B]

Z‘EC'5($0)
for some §' > 0.

Then there ezists a neighbourhood U (zg) such that for each z € U (xo) the set Wg’e (z) is
singleton, and the mapping z — wg’e (2) is continuous on U (o).

Proof.

Whithout loss of generality we can assume that 6 > 0 is such that

1—9|FI|F°
syl < L IELEL
We set
A—~lFIIFI) S 1~ [IF|IF|
Z/{(wo):z{zEH: z— x|l < , , u(z) < + 6 (z0) = 57| F°| ¢,
Iz = 2ol < 5 prpEey > *) . (20) - 67 IF°]

(4.22)
where L > 0 is the Lipschitz constant of z — Jp (= (V6 (z) + N% (z)) N 8F°) on Cs (zo).

Fix z € U (z¢) \C and a minimizing sequence {z,} C C for 2 — pp (z — 2)+ 6 (z) on C. Let
us choose {2/} € 8C, {z"} C H, vn € VI (z},) + N% (z;,) and &}, € Opp (z, — 2) as in Lemma
4.2.1. Moreover, by Remark 4.2.1 the vectors v, can be chosen so that —v, € 0F°, n=1,2,....
Similarly as in Remark 2.1.1 observe that z/, in fact belongs to 0*C for all n large enough, i.e.,
N2 (x7,) # {0}. Indeed, otherwise v, = VB( 1) € —vF° C —int F°.

By the definition of u (-) (see (4.3)) we have

£ — ol op (2n

—xp) K pplan—2)+pp(z—x0

(pr (2n = 2) + 0 (zn) = u(2)) + pp (2 — 20) + o (20 — 2) + 6 (20) — 0 (za)

)
(b (& — 2) + 0 (zn) — u(2)) + (pp (2 =~ z0) + u(2) — 0 (z4))
)
(pr (20 = 2) + 0 (zn) = u(2)) + 21| F°|| 12 = zoll + 7 | F°[| [lz0 — 2nl

IN A
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which implies
1

(WF_II - IIF"II) |z — zo|l € (pp (Tn — 2) + 6 (za) — u (2)) + 2 [|F°|| |2 — 2o} -

Since pp (zn — 2) + 0 (zn) — u(2) = 0+, ||@n — @,|| — 0 as n — oo, we can suppose, without
loss of generality, that

2[|lFeLF]
=y IFelIF|
for all n = 1,2, .., which implies that z/, € Cs (z¢). Consider a decreasing sequence vn, — 0+
such that

|z, — x0|| < 1 | |z — zo]| <4, (4.23)

H"E;l - :L‘nH + Hmﬁ - -'En“ < vnp; (424)
pr (zh = 2) + 0 (z},) < u(z)+ Va; (4.25)
lvn + &Il < vn, (4.26)

n=1,2,... (see Lemma 4.2.1). By hypothesis (ii) the (single-valued) mapping J (-) is uniformly
continuous on Uy g (o) (see Proposition 1.2.2), and, therefore, the (decreasing) sequence
Bni= sup  |IJr (€)= 3Ir ()l

l€* —n*l|<vn
£* m*eU;s 5(0)

tends to zero as n — oo. .
Observe that &) € Opp (z), — z) = Np (p—;g{—f—z—)-) N OF° and hence
zn — 2
pr (7, — 2)
(recall that 35! (€) = Np (§) N OF° for £ € OF). By (4.26) we have &, —vn € Us 5 (20), and,
consequently,

=Jr (&) (4.27)

137 (62) = Jr (—vn)l € By n=1,2,.... (4.28)
Given m > n we obtain from (4.24) and (4.25)

o (2 — 2) — pr (2 — 2)]
< o (el = 2) = pp (2l — 2)| + |pp (@) — 2) — pp (2 — 2)| +
+pp (zh = 2) = pp (2 — 2)|
< 2P vn + |pp (3 — 2) + 6 (2},) —u(2)] + 16 (a},) = 8 (2n)] +
+lor (& = 2) +6 (zh) = u ()]
< 20|F°|| vn + 2vn + Y F) |25, — 20| (4.29)
and by (4.23) we have
172 [Jem = @l + pp (27 — 2)
| F2|| vn +u(2) — 0 (zh,) + va
I1F vn + u(2) = 8 (o) + v | F° |27 — 2ol +vn
| F°ll vn + u (2) — 6 (z0) + 67 | F°|| + vn.

PFr (a:;,n. - Z)

IAN N IN A
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Then using (4.27) we obtain

1z, = zall = llpp (2 = 2) IF (€)= pr (2 = 2) IF (€)]]
< pr (2 — 2) 137 (&) = 3r € + |pr (27 — 2) = pr (20 — 2) [ I P
< ((IF°) + 1) va +u(2) = 6 (z0) + 0¥ [FI) I3F (€m) — IF (€a)Il +
+ 2(IF°) + D v+ [1Fl |2h — za]) IF1]-

Now by using (4.24), (4.28) and the hypothesis (i) we obtain

2 — 2]l < 2vn + |am — 20|
< 2w+ ((|1F°) + 1) v + u(2) = 8 (0) + 7 || F°ll) (28, + L ||z, — zh|) +
+ 2(IF°) + 1) vn + YN FL |2 = 25 ]) 11

which implies
(1 = ((IF°) + 1) v+ (2) = 0 (z0) + Sy | FOI) L = v [ FNIFI) [Jam — @nl| < pa

for some p,, — 0 as n — oo. Hence, by the choice of z we conclude that {z,} is a Cauchy
sequence.

Let us pass now to the second part of the proof. Denote by

U= Ju()oC,
zo€C
where we put U (zp) := int C for zg € int C. Given zg € 8C, z € U (zo) \C and a minimizing
sequence {z,} C C of  — pp (x — z) + 6 (z) on C we find a minimizer of this function as the

limit of {z,}, which exists because {z,} is a Cauchy sequence. Assuming that there are two

elements z,y € ﬂg’o (2) with = # y we consider the sequence {z,} whose odd terms are equal to =

and all even terms are equal to y. Since {z,} is a minimizing sequence for z — pp (z — 2) +6 (z)
on C by the same reasons we also conclude that {z,} converges to £ = y. In order to show

the continuity at z € U it is enough to observe that for each z, — 2z the sequence {Wg’e (zn)}

minimizes = — pp (z — z) + 6 (z) on C. Indeed,

u(z) < pp(ng (z) = 2) +6 (v’ (20)

Pr (wgﬁ (2n) — zn> +pp(zn—2)+0 (Trgﬂ (zn))
w(2) +2[1F°| flon = 2l| = u(2) +.

IA A

Thus ﬂg’e (zn) — ﬂ_g,a (z), and the theorem is completely proved. B

Notice that similarly as in Section 3.2 the regularity of the minimizer wg’a (z) with respect
to  can be essentially improved.

Theorem 4.2.2 For fized xg € OC under the same hypotheses as in Theorem 4.2.1, the mapping
Wg’e (+) is locally Lipschitzean in some neighbourhood of zg (outside of C).
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Proof.
We set
1 IEIIFeY) 5
U (zg) : ={z€H:z—-x0 <( ,
(z0) I = ol < ey e
1-— F || F°
u(e) < I g o) — 5 ||F°n} U (a0).

Let us fix z € U (z9)\C and let 7 > 0,0 < < W be such that

-yl ENIE
L b

u(z) =0 (zo) + oy | F°|| +7 <

z+ 6B c U (zp)\C.

Take arbitrary z,w € = + B, z # w, and set § := ﬂz_;lu_ﬂ >0;z:= 71'5’9 (z) and W =: wg’a (w).
By the condition (ii), there exists 0 < v < ¢’ such that

13F () = 3Jr () < B, (4.30)

whenever u,v € Us g (o), with [Ju —v|| < v. We set also

. T
g = mln{-Q—HF—o”,l/,/B} .

Since z minimizes the functional

Fy):=pp(y—2)+0() +Ic(y)

on H, by the necessary minimum condition (see [23, p. 37]) 0 € O0PF (Z). Then by using
the fuzzy sum rule (Theorem 2.1.1) we find 21,29 € Z + B with z; € §*C and vectors v, €
—OF°NoP (04 1¢) (21), & € Opp (22 — 2) such that

lve + 21l < e
Notice that the definition of u (-) implies
u(2) < pp (20 — 2) + 6 (20)
and, hence,

”EH;FW()“ pe (2~ 0) < pp (2 = %) + pr (2 — )
w(z) = 6(2) + pp (2 — 20)
pre (20 — 2) + 6 (20) — 0 (2) + pp (2 = 20)

21F°l NIz — zoll + v 1 F llzo —=II,

i

IN A
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which implies

1 o - o
(7~ 717°1) 1 = =oll < 21520 = = ol BNCED
Consequently
T 2 FeLYEN
21— zoll < o1 — 2| + 2= mo]| < e + z—zo| <6,

ie., z1 € Cs(zg). Since &5, —v, € OF°N (—87’ (0+1c)(z1)NOF° + d’ﬁ), by (4.30), we obtain

I3F (€2) = 3r (—v )l < B

(see (4.21)). Similarly, considering w and W in the place of z and Z, we find w1, ws € W+ ¢€B,
wy € 0*C, and

vy € —OF°NOP (0 +1c) (w1), &, € 0pp(wr—w),
satisfying ||v, + €5|] < €. By the same reasons as above we show that [|3r (£,) — Ir (—vu)| < 8.

Joining together the last two inequalities and taking into account the hypothesis (i), we have
(see (3.13))

I3F (§3) = Ir (€ S 286+ L (2 +|Z—w]). (4.32)
On the other hand,
lop (@~ w) + 6 (@) - (op (- 2) + 0 (2))] + 16 (W) - 6(2)|
lu(w) —u(2)] + [ F°) @ -2
[EY 1z = wil + v |F°)| [w — =],

lpp (@ — w) — pp (Z — 2)|

IAIA A

which implies

lop (wy = w) — pp (22 — 2)| < |pp (w2 —w) ~ pp (@ —w)| + |pp (Z— 2) — pp (22 — 2)|
+|pp (W —w) — pp (Z — 2)|
< NFY (lwe = @] + (|2 = 22ll) + [1F°( Iz — wl| + v [|F°| [|w - Z]|
< NF°Y e+ lz —wl)) +y 1) [w -7 - (4.33)

By using the Lipschitz continuity of both u(:) and 8 (-) we have

pr(za—2) < pp(za—%) +pp(Z—2)
< FY e — 2| +u(2) — 6(2)
<

1F°ll e +u(z) + | F°l 1z — zll = 6 (zo) + 7 [ [ |2 — o -
Since (4.31) implies, in particular, that ||Z — zp|| < &, by the choice § and e of we obtain

1F?ll € +u(z) + [|IF°]| 6 — 6 (o) + v | F°|| 6

pr(22 —2) <
< u(z) — 0 (xo) +||FO 6+ . (4.34)
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By Proposition 1.1.1 Jr (§3) = ;f(?z;—f—z—) and Jr (&) = E:E(zzug'—wﬁ_)' Hence, by using, respec-

tively, (4.34), (4.32) and (4.33) we obtain

IZ = zalf + | z2 — wall + [lwz — |

2 +[I3r (62) pr (22 = 2) = JF (§,) pr (w2 — w)[| + ||z — v

2¢ + pp (22 = 2) 13F (€2) = Ir (E) + 137 (€ lop (22 = 2) = P (w2 — w)| +
+lz =

2 + (u(z) — 0 (z0) + Y [IF°|| 6 + 7) (28 + L (2¢ + ||z — @)

+IF(F2) 26 + llz = wll) + v |1 F) @ - Z]1) + {|2 — wl].

Iz - |

VAN VAR VAN

(A

Now taking into account the definitions of 8 and ¢ we obtain
(1= (u(2) = 6 (z0) +Y[IF°I[ 6 + ) L=y IF°NIFI) |2 — @] < Ellz = w],

where
t=2(1+[|F|IF°]) + (u(z) = 8 (zo) + ¥ | F°6+7) (1 + L).

In the case z = w the same inequality holds due to uniqueness of the minimizer. Thus, ﬂg’g (+)
is Lipschitz continuous on x 4 6B with the Lipschitz constant ¢/v, where

vi=1—(u(z) —0(z0) + Y |F°| 6 +7) L=y |E°IH|F]l > O.
]

Remark 4.2.2 Notice that the Lipschitz constant of the mapping wg’e () depends essentially on
the distance from the boundary of the neighbourhood U (xg) controlled by the parameters T and

v, tending to +o0o whenever the strict inequality u (z) < liHELMEO—H + 8 (zo) — 6 || F°|| tends to
become an equality.

4.3 Regularity of the viscosity solution near the boundary

In this section we study the differentiability of the function w (-) through the regularity of the

mapping Trg’e (-). Here we assume that 6 (-) is defined and continuous on the whole space H and

satisfies the relation 870 (z) C —vF* for all z € TC, where 0 < v < 1 is some suitable constant.
We start with a technical result, adapting Proposition 2.6 and Corollary 2.7 from (31].

Lemma 4.3.1 Suppose z ¢ C.

(i) For all§ € F andt >0
u(x —t€) <u(zx)+t.

(i1) Assume that Wg’o (z) = {7}. For & := pﬁ%fz) €OF and 0 <t < pp (T —x)

u(m—i—tg) <u(z) -t
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Proof.
(i) Let £ € F,t >0 and € > 0. There exists y € C such that pp (y — z) + 6 (y) < u(z) +e.
By subadditivity and positive homogeneity of the Minkowski functional, we have

u(z—t€) < pp(y—a+t€) +6(y) < pp(y—2) +tpp () +0(y) <ulz) +e+t.
Letting & — 0+ proves (i).
(ii) Let us define y; := = + t£, t > 0. We have

T—
pr (T — x)

= o (S5 r -0 -0) +0(@)

r(T—z
= pp(@—2)—t+0(@) =ulz)—t,

AN

w () )+o@

pr (T — ) +0(T) =pp <T—m't

and the lemma is proved. W

Theorem 4.3.1 Let us fir x ¢ C and assume that the mapping z — Wg’e (z) is well-defined
and single-valued in some neighbourhood U (z) of = where also the following "one-point” Holder
property holds: there are constants K = K (z) > 0 and % < B <1 such that

|76 @) - @)|| < Ky =2l for ally eV (a).

If the function (8 +1¢) (-) s prozimally regular at each point y € Cs (%) := 0C N (T + éB) for
some 6 > 0 where T := ﬂ'g’e (x) then the function u(-) is Clarke (and lower) regular at z.

Proof.
Let us prove the following equalities

Ou(z) = 8u(z) = —0pp (T—2) N (0+1c) (F). (4.35)
We divide the proof into several parts.

(i) We start proving that 8/u(z) C —8pp (Z — z). Notice that, by Proposition 1.1.1,
T—zx
0 T =8FOHNF<——__——>
PF ( ) oF (CE _ IL‘)

Let us fix v € 0/u (z) and £,8 > 0 such that

u(y) —u(z) —{v,y — =)
lz - yll

—¢ (4.36)
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for all y € z + 6B. Now fix f € F and denote by y; := z — t£, t > 0. By Lemma 4.3.1 (i) we
have u (z — t€) — u (z) < t. So, by (4.36), we get

L+ (0,6 _ (vt
9] i€l
L ul@—t8) —u (@) + (vt)
- Ez3f
wly) —u@) = wp-a)
lly: — =l -
for every t > 0 small enough. By letting ¢ — 0+ we obtain

and consequently

pro (—v) =sup(-v,§) < 1.
¢eF

For the opposite inequality remind that by Proposition 4.1.3 w () is the (unique) viscosity
solution of (4.1). This implies, in particular, that pgp. (—v) > 1 for all v € 0fu(z). Hence

8fu(z) C —OF°. Now let us fix v € 8/u(z) and prove that v € N (§) where €= ;1%'

Choose again €,6 > 0 such that the inequality (4.36) holds for all y € = + 6B. Consider
yi =z +t€, 0 <t < pp (T — ). By using Lemma 4.3.1 (i) and (4.36) we obtain

u(z)—t = u(y)
> —ellz -l + o5 - 2) +u ()
= —st|]§||+t<v,§>+u(m),

implying that B _
12 e+ (0B).
Now passing to the limit as ¢ — 0+ we find (v,€) < —1 and, consequently (see (4.37)),
(v,@ = -1,
On the other hand, as we have already shown (—v,£) < 1 for every { € F. So that
<'—'U,§ —E> = <—'U,§> - <—’U7_§-> < 0
for all £ € F, which means —v € Npg (E)

(ii) Now we fix v € 8/u(z). Let us denote by ys := s —Z +z, for s € C. Since T € C,
Yys —  is equivalent to s — 7 and

u(ys) < pp (s —ys) +0(s) = pp (T— ) +6(s)
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we successively obtain

AN - /!
0 < limineE) =) ,<"’x 2)
i o -

< lmige L) = v )~ (3 =)

s lz — ysll
< limin

seC
(P (T=3)+6(s) = pp(E—2) = 0(F) - (v, )
s—T ”S—-T”

seC
_ limipfe(s) - 6(7) —_(v,s—x)
e s3]

seC
= hmige @ Ie) () = (0 +16) (®) = (v, s —7)

5T ls — Z||

?

concluding that v € 8 (8 + I¢) (F). Thus, we have already proved that
u(z) C —8pp (T—2)N O (0 +10) (F). (4.38)

Furthermore, since the mapping z — wg’e (z) is well-defined and single-valued in some neigh-
bourhood U (z) of z we have

8'u(y) C —0pp F—y) N (8 +1c) (@) (4.39)
for every y enough close to z.

(iii) Let us prove the inclusion —dpp (T — ) N8P (6 + I¢) (Z) C 8/u(z). To this end we fix
v from its left-hand side. Then there exist constants 7 > 0 and o > 0 such that both relations

O +Ic)(w)> O +1c) (@) + (v,w—T) —oljw—Z|* VYwez+nB (4.40)

and
pp(2) 2 pp(@T—2z)+(—v,z-T+z) Vz€H. (4.41)

hold. Setting in (4.41) z = § — y for y sufficiently close to  we have, in particular,

pr@—y)—pr(E-2)—(0,y—2) 2 (-0,§-7T).
Hence, by (4.40) and the Holderianity of Wg’e (-} we obtain

u(y) —u(z) —{v,y — )

lim inf
y—-2 ly — z|
_ N )
— liminf PP =Y +0@) —pp(@=2) ~0(T) ~ v,y — 2)
v ly — =
—— A — 9 =\ __ —
> limins T2 +0@) —6()
y—ozT lly -
T —
> liminf zolg =2 > liminf — o ||y — z||#71 =0,
y—x

voz [ly—z
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where b is the Holder constant of ﬂg’g ().

(iv) Finally, the inclusion 8/u(z) C 8°u(z) obviously holds (see (2.4)). In order to show
the opposite inclusion, similarly as in Theorem 3.3.1, we represent the subdifferential 0°u ()
through the proximal subdifferentials at close points (see (2.3)) and, using the relation (4.39),
we arrive at

0°u(z) = ©o {w — lim §;, &, € OPu(zy), z; — a;}
C E‘o‘{w—,lim §i,§i€8fu(:v,~),xi—>a:}
C ¢Co {w — lim ¢, €, € —apF (Tz - :L‘i) ﬂaf (9 + Ic) (Ti), T; — .’L'} . (4.42)

Since the subdifferential of the convex function pg (-) has strongly xweakly closed graph, by
using the proximal regularity of (6 + I¢) () near the point T and the definition of the limiting
subdifferential we deduce from (4.42) that

u(z) C @ (-0pp(E-2)N (0+1c) ()
= —pp(@-2)Nd (6+1c) (@).
The last equality follows from the convexity and the closedness of both subdifferentials 0pp (Z — )

and 8f (0 +1¢) (Z) = 8 (8 +1¢) (Z). Finally, from the proximal regularity and from the item
(iii) above we conclude

Ou(z) C —0pp(T—x)NOP (0 +1c) () C u(z) C 8% (z).

Since the inclusions 8fu (z) C 8'u (z) C 8°u (x) are always true (see (2.4)) we have, in fact, the
equalities

8/ u (z) = 8'u (z) = 8°u (z)
and the Clarke and the lower regularity of the function u (-) at z follow. W

Theorem 4.3.2 Let us fir ¢ ¢ C and assume that the mapping z + ﬂ‘g’e (2) is well-defined,
single-valued and Holder continuous with an exponent % < B <1 in some neighbourhood U ()
of z. Assume, moreover, that the function (6 + I¢) (+) is prozimally regular at each point y €
Cs (), where T := T(’g’a (z). Then the function u (+) is (Fréchet) continuously differentiable at x
if there exists a continuous mapping v : U (z) — OF° such that

-8” (6 +1c) () NNy (%) NOF° = {v (y)} (4.43)

where § := 75 (y), y € U (z). In this case Vu(z) = —v (z).
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Proof.
Similarly to the proof of Theorem 3.3.2, the statement follows from Theorem 4.3.1 taking
into account that (see Proposition 1.1.1)

_oP (0 +10) (7) N Opp (T —y) = —0P (6 +10) (@) NNr (;Fl@}y&—)) noFe

for every y € U (z). B

For convenience of further references let us formulate the following obvious statement.

Corollary 4.3.3 Under all the assumptions and notations of Theorem 4.8.2 suppose, moreover,
that the single-valued mapping

- g -y o
y— —0P(0+1c)(y an(——:——>ﬂaF
( 2 pr (¥ —y)
is Holder continuous with an ezponent 0 < a < 1 in a neighbourhood of ¢ C. Then the
function u(+) is of class C1* in this neighbourhood.

Remark 4.3.1 Notice that if the function 6 (-) and the set C are prozimally regular at x € oC
then the function (0 + I¢) () is also prozimally regular at z.

The condition (4.43) splits into the following two particular cases.

Corollary 4.3.4 Assume as in Theorem 4.3.2 that the mapping Wg’o () is single-valued and
Hélder continuous with an ezponent 1/2 < B < 1 in a neighbourhood U (z) of a point x ¢ C,
and that the function (6 + Xo) () is prozimally regular at each y € Cs (%), T = wg’g (z), § > 0.
Then the function u (-) is (Fréchet) continuously differentiable at z if at least one of the following
conditions holds:

(i) C has smooth boundary at T, and 6 (-) is of class C! at T;

(i1) F is uniformly smooth at £ := )"

Furthermore, in the first case we have
Vu(z) = VO (T) + Mn¢ (T) , (4.44)

where A = X (Z) > 0 is the unique positive root of the equation ppo. (—V8(T) — Anc (z)) =1 and
ne (%) is, as usual, the (unique) unit normal vector to 0C at T, while in the second

Vu(z) = ~Vop (W—T@I_‘“—@) . (4.45)
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Proof.
In the case (i) we have

&' (6 +1c) (§) = V6 () + N ()

(see [66, p. 112]) for every y enough close to z. Since C has smooth boundary at T then the
nonempty (see (4.35))

ol — Y-y o
9 (6 +1) () "N <_—pp = y)> NoF (4.46)

can be reduced to {—V8 (§) — Anc (§)}, where A > 0 is the such thatpg. (—V6 (Z) — Anc (7)) =
1. While in the case (ii), by Remark 1.3.1, we have

~8' (0 +1c) () "N (;;%_%) NOF® = {va (Ey@'——y'y_)»

>From (4.35) also the formulas (4.44) and (4.45) follow. Let us prove now the continuity of the
gradient Vu (-). We consider only the case (i). The case (ii) can be treated similarly. Given a
sequence {zn} converging to x we represent

Vu(z,) = VO (Zn) + Annc (Tn) (4.47)
for some A, > 0, n > 1. Since —Vu (z,) € OF°, we have

1 pro (=VO(Tn) — Aung (Tn))

> Anppo (—0c (Tn)) = pro (VO (ZTn))
A'n, o
> “—Fgl—I—VllFHNF I

and {\,} is bounded. Let A > 0 be its cluster point. Without loss of generality we assume
that A, — A. Hence, by the smoothness properties of 8 (-) and C we conclude from (4.47) that
Vu (zn) = VO (Tn) + Mng (Tn) converges to VO (T) + Ang (T) € —9F°. On the other hand, by
the definition of the normal cone to the convex set F' we have

Tp — Tn
- Vu(z,) ) <0 VyeF,
<y PF (Tn — Tr,) ( )> Y

where T, = Wg’a (zn) — ﬂ'g’g (z) = T by a hypothesis of theorem. Consequently,

<y - m,vﬂf) + Ang (T)> <0 VyeF

Since the intersection (4.46) is reduced to the singleton {Vu ()}, we finally conclude V0 (Z) +
Mg (Z) = Vu(z), and the continuity of the derivative follows. B



4.3. REGULARITY OF THE VISCOSITY SOLUTION NEAR THE BOUNDARY 116

Proving the next statement we need the properties of the Hausdorff distance between convex
closed sets. Let us remind some definitions. For nonempty sets A, B C H the Hausdorff distance
is defined by :

D (A, B) := max {sup dp (z),supda (y)} ,

z€A yeB

where, as usual, d4 (z) := inf {|z — y|| : y € A}, or, equivalently,
D(A,B) :=inf {r >0:ACB+rBand BC A+rB}.
>TFrom the last definition in the case of convex closed sets we can prove the useful inequality

D(A,B) > "51”1£1 loa(v) —op (v)]. (4.48)

Indeed, given any v € H with |Jv|| =1 and any 7 > 0 such that A C B + rBand BC A+rB
we have
oa(w)<op, g <op() +riv]|=0p()+r

and similarly og (v) < 04 (v) + r. Hence
oA ) — o8 @) <.

Taking the supremum in v and the infimum in r we obtain (4.48).

Corollary 4.3.5 Under the same hypotheses as in Corollary 4.3.4 the following statements hold

(i) if C has smooth boundary at T := Wg’e (z) and both ne (+) and VO () are Hélderian near T
with ezponents 0 < ac < 1 and 0 < ayy < 1, respectively, then u (+) is of class Cclef pear
the point =, where o := min {ag, ayg};

z—zx
pr(T—x)

0 < @ <1 then u(:) is of class Chbef near z.

(ii) if F is uniformly smooth at § := and Vpg (+) is Holderian near £ with an exponent

Proof.

Let us denote by hr = hx(2), he = be (T), br = hr(§) and bye = by (Z) the Holder
constants of the functions Wg’o (-), n¢ (), np (-) and VO (-) respectively.

(i) Let 8 > 0 be such that ng(-) and V6 () are well defined and Holder continuous on
z + 6B. Given z1, 2 € z + 0B by using the formula (4.44) we obtain

1V (21) = Vau (z2)]| < V8 (@1) = VO (@) + [Aanc (F1) — dane (Z2)]l,
where \; > 0 is the unique positive root of the equation
pro (=VO0(Ti) — Min¢ (Ti)) =1, i=1,2

But
V6 (1) — VO ()]l < bvo |F1 — T2/ < byehn ||z1 — 2al|*7*° (4.49)



4.3. REGULARITY OF THE VISCOSITY SOLUTION NEAR THE BOUNDARY 117

and
IAing (F1) = Aanc (F2)|| < M [Ing (F1) — ne (B2)]| + A1 = AellIne (@), (4.50)

with
ng (Z1) = ne (T2)|| < be |71 = T2)|* < behx (|21 — zo]| %% . (4.51)

By the definition of A;, i = 1,2, we have

PRo (=V§o (ffl) — Xing (_if,)) =1 & —-A\ng (?L'_z) € 0F°+ Vo (Tz)

& proyvoE) (—Ainc (@) =1
1

& proyveez) (—ne (T) = 1 (4.52)
and B 1 B )
pi = Prosve;) (—nc (Fi)) 2 TF+vo @] Inc (Z)ll = aTEVIFl (4.53)
Hence
M=l = ==l = pil
Lo proy 1
< @+ 1FN ([prosvoe (e (B2) = prosvage (—ro (E2)] +
+ ‘pF°+V9(E1) (—n¢ (F2)) — Protvo@E,) (—nc (T2)) ) - (4.54)
Now by (4.51) and taking into account that
Fl —
7o+ voz)y c 1ELE
et
(see (4.15)) we obtain
Prosve(E,) (—ne (1)) = Prosve) (—hc (T2))
< (F° + V8 (31))°|l Inc (71) — ne (Z2)]
F o
< Hhcb, llzy — za]| %P (4.55)

On the other hand, using the relation (1.1) and (4.48) we have

oo 0@ (=10 (32)) = Prosvages (—nc ()
|0 (porvo@)) (—1c (T2)) = 0(rorvo(E))° (—1C (Z2))|

”81”11)1 |0 (Fosvoz))° (V) — O(Fosves))° ()|
vl||=

< D((F°+ V8 (1)), (F° + V8 (%))

IA
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By Lemma 2 in [40] (which can be easily adapted to a Hilbert space) we have
’PF°+ve(~ ) (—n¢ (F2)) = Pretvo(E) (—7c (T2))

< ({2 v a0 - v e

< (LY host s = ol (4.56)

Therefore, by (4.54), (4.55), (4.56), respectively, we obtain

F
A — Aol < (1412 F)? ( 171 bew 21 — 72 *F + ( Ll ) bvobr |1 — x2||°‘V"ﬁ> ,

and by (4.50), (4.53), (4.52), (4.51) we have

[Mne (F1) — Aene (Z2)l
< 2 ”Fo” hehx ”-751 - CCQ”O‘C'B +
w1 Ly, (e 2o 4 2L

LE o= 28)) s = 2]

where
« = min {ag, aye} .

Consequently

IV (21) - Vu (@)l < [1V8(@) - V6 @) + [Mnc (31) — Aane (Z2)]

<
< Bllen— a2,

for some § > 0. _
(ii) In this case let us choose § > 0 such that

u(z) —0(z)

= =8
O+ vhrd” <
(P

and Vpp (-) is Holder continuous on

{—u— Yy €T+ EB} .

pr (¥ — )

Using the formula (4.45) for each z1,z2 € z + B and proceeding in the same way as in the
proof of Corollary 3.3.5 (ii) we obtain

1Vu (z1) = Vu(z2)ll < br lig1 — &%,

where hr > 0 is the Holder constant of Vpp (+) near &, and §; :=

Ti—I;

1 =1, 2. Moreover,
pr(Ti—=i)’

b+ llz1 = 22l ) a1 = 22,

¢ - &all < wgm<
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where py 1= pp (T2 — z3) = u(x2) — 6 (T2). Since
0 @) <7 |1 F°ll T2 — Tl + 8 (2) < ¥ba | F| 122 — 2]* + 6 (2)

we have

u(22) - 0 (Z2) 2 u (@) — |F°] = — zall = ¥hx [ O]l |z = 22]” = 6 (@)
> vi=u(@) - (IFN3+ b |F)3°) - 6(2) >0,

)

by the choice of 4. Therefore
IV (21) = Va (z2)l| <5 |21 — ]|,
for some constant h > 0. W

Notice that the previous statements were proved under assumptions that the mapping Wg’g ()
is enough regular (Holder continuous with an exponent 8 > 1/2) in a neighbourhood of a fixed
point. Applying now the results of Section 4.2 we can emphasize the hypotheses guaranteeing
such regularity and formulate global results.

Theorem 4.3.6 Assume that§ : H - R isa function of class CY! such that VO (z) € —yF°
for all € TC, with the constant 0 < v < |{F]||[F°|| Let zg € OC. Suppose that the sets F,
C and the function 0 (-) satisfy the same conditions as in Theorem 4.2.1. Assume, moreover,

that for each x ¢ C close enough to zo the function (0 +1Ic)(:) is prozimally reqular at each
F,0

y € (Z+0B)NOC, T =7y (), for some § >0, and one of the properties below holds:
(i) C has smooth boundary at T, and ng (-) is Hélder continuous near T with an ezponent
l<a<l,
(it) F is uniformly smooth at § := P—:(;z—x), and Vpp (-) is Holder continuous near £ with an
exponent 0 < a < 1;
(i) the mapping y — v (y) := —0P (8 +1g) (¥) N Np (;—ﬁ) N OF° is single-valued and

Hélder continuous near x with an exponent 0 < a < 1.
Then the value function u () s of class Cllo? in a neighbourhood of the point zo (outside of C).

Proof.

It follows from theorems 4.2.1 and 4.2.2 that the mapping 7rc () is well-defined, single-
valued and (locally) Lipschitz continuous (i.e., Holderian with B = 1) in some neighbourhood
U’ (zg) of zg. Consequently, all the assumptions either of Theorem 4.3.2 or of Corollary 4.3.4
are fulfilled. Then applying, respectively, Corollary 4.3.5 or Corollary 4.3.3, we complete the
proof. W

Finally let us formulate the global version of the previous theorem.
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Theorem 4.3.7 Let 6 : H — R be a function of class C1' such that VO (x) € —yF° for all
z € toC, with the constant 0 <y < H_lel_F_‘T Suppose that the sets F, C and the mapping 0 (-)
satisfy the conditions of Theorem 4.2.1 at each point =g € OC, and that the function (6 + Ic) (+)
is prozimally regular (this is the case, for instance, when C is @-convez (see Remark 4.3.1 )).
Assume, furthermore, that either C has smooth boundary and ng (-) is locally Hélderian with an
ezponent 0 < a < 1 near the target or F is uniformly smooth (at each point of OF) and Vpp (-)

is locally Holderian near OF with the same exponent a. Then the value function u (+) is of class
Cllc;? on U(C)\C, for some open neighbourhood LL(C) of C.

Proof.
The statement follows easily from the previous results. W



Comments

To Chapter 1

It was J. A. Clarkson who introduced in 1936 the notion of strict and uniform convezity of
a normed space intending the respective property of its closed unit ball. Roughly speaking,
the space is strictly convex if any sphere in it does not contain nontrivial line segments, and
it is uniformly convex if whenever the midpoint of a variable chord of the ball approaches the
boundary, the length of the chord tends to zero (see, e.g., [64, 62, 65]). If a normed space is
uniformly convex then it is strictly convex. Sometimes one says also that the norm is strictly
convez (or rotund) and uniformly convez (uniformly rotund), respectively. Notice that the term
"rotund" appeared only in 1958 in the M. M. Day’s book [42]. Further, A. R. Lovaglia introduced
(see [64]) a local version of the uniform convexity, requiring that one of the end points of the
variable chord remains fixed.

The notions above can be easily described by means of the so called moduli of rotundity (or
strict convexity). For instance, the modulus used by A. Clarkson is the function 4 : [0,2] — R™,

S (e) := inf {1 - “%ﬂ

2y €S|z -yl = } , (4.57)

and the uniform rotundity means that 4 (¢) > 0 for all € > 0 (see, e.g., {64, 62]).

In 1965 V. I. Gurarii (see [56]) defined a modulus of rotundity §(-) slightly different from
the Clarkson’s one substituting the midpoint in (4.57) by the point of that segment closer to
the origin. Namely, for ¢ € [0, 2] he put

B (e) :=inf {1 - teiﬁ)fl] ltz+ (1 -ty :z,ye S {lz—yll= E} .
Much later, in 1998, L. Sanches and A. Ullan (73] showed that
§(e) <B(e)<26(e) Veel0,2]
and found examples of spaces for which these moduli are different.

On the other hand, M. M. Day in 1944 introduced the notions of uniform smoothness and
the respective modulus of smoothness as its numerical characteristic (see [41]). He proved that
a Banach space X is uniformly smooth if and only if its topological dual space X™* is uniformly
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convex. While the first results on such duality involving the various types of differentiability of
the norm are due to the works by V. L. Smulian (see [75, 76]). It was then J. Lindenstrauss who
found in 1963 a nice quantitative version of that duality (see [62, Theorem 1}): the modulus of
smoothness of X is nothing else than the conjugate of the modulus of rotundity of X™.

All the moduli considered above as well as the geometric characteristics of the closed unit
ball in a Banach space can be applied to an arbitrary subset of this space with suitable properties
(permitting to associate to this set something like an equivalent "asymmetric norm"). Namely,
restricting ourselves to the case of a Hilbert space H we consider a convex closed bounded set
F C H containing the origin in its interior in the place of the closed unit ball B. Notice that
F is not necessarily symmetric (i.e., F' # —F) in contrast to B. In spite of this one can extend
all the concepts concerning the norms to the set F' through its Minkowski functional (see, e.g.,
[60, 43]). It should be mentioned that by the properties of Hilbert spaces the ball B is both
uniformly rotund and uniformly smooth while F' is not so, in general. Furthermore, the notions
above can be specified taking into account various normal directions in a fixed point §{ € F
where the modulus is determined (this does not appear in the case of the ball B since at each
point ¢ € B there is exactly one unit normal vector £* = £). Thereby we obtain the so called
(local) modulus of rotundity (of smoothness) associated to the pair (¢,£") (where £ € F and {7
is a normal direction to F at §).

The notions of the curvatures and the respective curvature radius similar to those introduced
in Section 1.2 appeared in the past even in spaces more general than Hilbert (see [72, 21]). How-
ever, the authors applied these concepts to (not necessarily convex) finite-dimensional manifolds
imbedded in a Banach space. Besides that unlike the definitions given by E. R. Rozema and P.
W. Smith in [72] we take into account also the structure of the boundary of F' at points near £,
which is watched along the normal vectors to F close to £* (see (1.16) and (1.22)). This gives
the lower semicontinuity of the curvature w.r.t. (£,£*) that is essentially used throughout the
work.

Another approach to definition of moduli of rotundity and smoothness for convex sets was
proposed in [84] based on the Gurarii’s modulus. The authors considered also the duality
between these notions, proving some inequalities of the Lindenstrauss’ type (see Proposition
1.3.1 in Section 1.3).

To Chapter 2

The idea to use the Ekeland’s variational principle for proving that each minimizing sequence
of the function y +— pp(y — ) is in fact a Cauchy sequence was taken from [26] where the
target set C' was supposed to be gp-convex and F = B, i.e., the case of metric projection
was treated. It should be said that by using another technique the existence and uniqueness
of the metric projection onto a ¢-convex closed subset of a Hilbert space was proved first in
[16]. Moreover, an open neighbourhood of the target C where such well-posedness takes place
was explicitly given. Notice that the open set 2(C) from Section 2.2 (see (2.40)) reduces to
the neighbourhood constructed in [16] whenever F' = B. Subsequently, G. Colombo and P.



123

Wolenski in [31] considering the case of v-strictly convex dynamics F' and ¢-convex target o
(with a constant function ¢ (z) = ) proved the well-posedness of the time-minimum projection
in an uniform open set around C, which is given by a balance between v and ¢. Our well-
-posedness condition (see Corollary 2.2.3) involves also the case of the continuous function ¢ (-),
while for ¢ (z) = ¢ it admits the form 2¢TE (2) < v, which is slightly weaker than the hypotheses
of Theorem 5.6 in [31]. The minimal time problem with a constant dynamics and a convex target
set was detaily studied also in [31]. In Theorem 4.2 the authors used a simple argument based on
weak convergence, which permitted us to prove existence of a time-minimum projection in the
convex case (see Proposition 2.3.5 (ii)). However, [31] does not contain any result on uniqueness
for a convex target, while in Proposition 2.3.5 we treated two alternative hypotheses when the
uniqueness (and stability as well) takes place.

To Chapter 3

Various results concerning the regularity of the time-minimum projection in the case of -
strictly convex dynamics appeared in [31]. Namely, the authors have already proved that w5 ()
is always Holder continuous with the exponent 1/2 in the neighbourhood of C' defined by a
balance between the curvatures of C' and F, where 75 (z) is a singleton (see [31, Theorem 5.7]).
In the same theorem they consider also some special cases when the mapping ﬂg (+) satisfies even
the local Lipschitz condition. Notice that in Section 3.2 we study Holder continuity with various
exponents 0 < a < 1 and under much more general assumptions. Proving the Holder regularity
in theorems of Section 3.2 we reduce the general situation (with arbitrary points z,w € z +0B)
to the particular case when T5 (2) = TE (w). This argument, which simplifies essencially the
respective estimates, was used earlier in [31, Theorem 5.7].

The regularity result given by Theorem 3.3.1 in Section 3.3 is close to {31, Theorem 5.12].
However, the authors assume there much stronger "one-point" Lipschitz condition for the time-
-minimum projection around a fixed point. It should be noticed that the proof of Theorem 3.3.1
was partially inspired by the reasoning in [58, Theorem 22].

The continuous differentiability of the value function (and the Lipschitz continuity of its
gradient) appeared also in [31] (see Theorem 5.14 and Remark after it) but again under stronger
hypotheses than those formulated in Section 3.3. Besides that, our results are more graduated
(in the sense of arbitrarity of a Holder exponent).

Let us emphasize once more that all the results obtained in chapters 2 and 3 are regarded to
the well-posedness of 7 (-) and to the regularity of the value function T& (+) in a neighbourhood
of the target set. We refer to [28], where these properties were studied near an arbitrary point
z ¢ C, and the complete characterization of the well-posedness of the time-minimum projection
by means of differentiability properties of TE (-) was obtained. In the case of the distance of the
metric projections (even in Banach spaces) these questions were treated, for instance, in (12, 58].



Conclusion

Let us emphasize the main results obtained in Thesis.

1. Properties of convex closed solids in a Hilbert space such as rotundity and smoothness
are quantitatively studied. A new concept of curvature is introduced and placed into the
general setting of Convex Analysis.

(a) A local asymmetric version of the Lindenstrauss duality theorem is proved.

(b) A relation between the curvature of a convex closed solid and the second derivative
of its dual Minkowski functional is found.

2. The minimal time problem with a constant convex dynamics and a closed target set in a
Hilbert space is studied. The conditions guaranteeing the well-posedness of this problem
near the target are obtained by using the concepts of curvature and duality mapping.

(a) Tt is proved that under those conditions for each point from a neighbourhood of the
target there exists a unique point on the boundary of this set (called time-minimum
projection), which is attained for a minimal time. Stability of this point with respect
to small perturbations also follows.

(b) A theorem on connection between the regularity of the time-minimum projection and
the regularity of the value function is proved.

(c) A series of results on the Holder regularity of the time-minimum projection as well
as on the (Holder) continuous differentiability of the value function is obtained.

3. Regularity of viscosity solutions to some kind of Hamilton-Jacobi equations in a Hilbert
space near the boundary is studied. The approach developed for proving of the local
regularity of the time-minimum projection is adapted to this problem, which is treated as
a minimal time problem with an additive Lipschitzean perturbation.

(a) Under certain compatibility condition involving the duality mapping of the dynamics,
on one hand, and both the normal cone to the target set and the gradient of the
boundary function, on the other, the local existence, uniqueness and stability of
minimizers in the perturbed problem are proved.

(b) A connection between the regularity of the (unique) minimizer in the perturbed pro-
blem above and the regularity of the respective value function is clearified.
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(c) Some results on the (Holder) continuous differentiability of the viscosity solution to
a kind of Hamilton-Jacobi equation close to boundary are obtained.

The obtained results are illustrated by series of examples in finite-dimensional as well as in
infinite-dimensional Hilbert spaces.



Index

Chebyshev radius, 23
continuous retraction, 4
curvature

scaled, 23
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curvature radius
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Fréchet, 15
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dual pair, 14
duality mapping, 14
dynamics, 6

eikonal equation, 8
Ekeland’s variational principle, 40

Fréchet superdifferential, 97
fuzzy sum rule, 39

gauge function, 6
gradient, 15

Hamilton-Jacobi equation, 7
classical solution, 7
generalized solution, 7
viscosity solution, 9, 97
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viscosity supersolution, 96

indicator function, 35

Klee cavern, 2

Legendre-Fenchel transform, 25
Lindenstrauss duality theorem, 24

minimizing sequence, 40
minimum time function, 6
Minkowski functional, 6, 14
modulus of

local directional rotundity, 15

local smoothness, 24

local uniform rotundity, 15

normal cone
Clarke, 36
Fréchet, 35
limiting (Mordukhovich), 36
proximal, 35

point
exposed, 16
strictly exposed, 17
projection
metric, 2
time-minimum, 6

Rademacher’s theorem, 7

regularity of mappings
Clarke regularity, 68
Fréchet regularity, 68
lower regularity, 68
proximal regularity, 68

regularity of sets
Clarke regularity, 69
Fréchet regularity, 69
normal regularity, 69
proximal regularity, 69
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retract, 4

set
approximately convex, 4
approximatively compact, 3
Chebyshev, 2
~-strictly convex, 50
locally directionaly strictly convex, 16
locally uniformly rotund, 15
locally uniformly smooth, 24
O(2)-convex, 4
p-convex, 4, 37
perfect, 51
polar, 13
proximal, 2
proximally smooth, 4, 37
remotal, 3
strictly convex of order o, 19
target, 6
uniformly strictly convex, 18
uniquely remotal, 3
with smooth boundary, 37
subdifferential
Clarke, 35
Fréchet, 35
limiting (Mordukhovich), 35
proximal, 34
support function, 14
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