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Geometric eonditions
of regularity

in some kind of milnimaliime problems

Abstract

The work is devoted to the problem of reaching a closed subset of a Hilbert space in minimal

time from a point situated near the target subject to a constant convex dynamics. Two types

of geometric conditions gua.rarrteeing existence and uniqueness of the end point of an optimal

trajectory are given. We study the mapping, which associates to each initial state this end point,

and under some supplementary assumptions prove its HOlder continuity outside the target.

Then we estabilish the (HOlder) continuous differentiability of the value function in an open

neighbourhood of the target set and give explicit formulas for its derivative. Flom the same

point of view we treat the close problem with a nonlinear Lipschitzean perturbation a.nd obtain

some regularity results for viscosity solutions of a kind of Hamilton-Jacobi equations with non

trivial boundary data.
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Imrma classe

ondig6es geom6tricas
de regularidade

de problemas de tempo minimo

Resumo

O trabalho 6 dedicado ao problema de se atingir um subconjunto de um espago de Hilbert
em tempo mfnimo a partir de um ponto situado pr6ximo do conjunto-alvo com uma din6.mica

convexa constante. 56o dados dois tipos de condig6es geom6tricas que garantem exist6ncia e

unicidade do ponto finat de uma traject6ria 6ptima. Estudamos a aplica4S,o que associa a cada

estad.o inicial esse ponto final, e sob algumas condig6es suplementares provarnos continuidade

de Holder da respectiva aplicagd,o fora do conjuntoalvo. Depois mostramos a diferenciabilidade

contfnua (de HOIder) da funEd,o valor tamb6m numa vizinhanga do alvo apresentando f6rmulas

explicitas para a sua derivada. Do mesmo ponto de vista tratamos o problema com uma per-

turbagfio nfio linear Lipschitzeana e obtemos alguns resultados de regularidade para solug6es

viscosas de um certo tipo de equag6es de Hamilton-Jacobi com dados na fronteira n5o triviais.
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Extended abstract

Lei H be a Hilbert space, F C H be a closed convex bounded set containing the origin in its
interior, and C C If be nonempty and closed. The main problem considered in Thesis is to
attain the (target) set C in minimal time from a point r close to C by trajectories of the control

system n : ,y, u e F. Denoting AV "E(z) 
the set of end points of all optimal trajectories in

this problem (so called time-minimum projection), we study first the conditions, under which

the mappin1 n e 
"6@) 

is single.valued and continuous in some neighbourhood of C. These

conditions have a geometric character a"nd involve some concepts of Convex Analysis sudt as

rotundity, uniform smoothness, curvature, duality mapping, which are introduced and studied in
the first chapter. One of the hypotheses guaranteeing the well-posedness of the time'minimum
projection is completely new, while the other is a sharp generalization of the assumptions known

for the case F : tr (B stands for the unit closed baJI in -Ff).

The next step in our investigation is the further regularity of the mapping r,-- r$(t).
Assuming, in addition, smoothness either of the target set or of the dynamics .F' we establish the

local (Holder) regularity of. rfl (.) first in a neighbourhood of a fixed boundary point z6 € C and

then in an open set around the target. It is proved that the well-posedness and the regularity
of the time-minimum projection are strictly related to the regularity properties of the value

function r ,.5[(r) (so called minimal time function)._In particular, we obtain some results

concerning the (Holder) continuous differentiability of 53 O near (but outside) the target.

In the last part of the work we apply the sarne technique to the perturbed optimization
problem (Pe) by adding a Lipschitz continuous function 0 (.) satisfying some controllability

assumption. Denoting Ay ntt (.) -rd u (.) the set of minimizers in the problem above and the

value firnction, respectively, we obtain results justifying the connection between the continuous

differentiability of the mapping u(-), on one hand, and existence, uniqueness and stability of

minimizers in n[0 (.), oo the other. Similarly to the case g : 0 the (Htilder) continuity of

both the (single-valued) mapping "tt (.) and the gradient V" (.) near (but outside) the set C
is proved under some natural assumptions involving the regularity of all three elements C, F,
g (.) * well as their geometric compatibility. The last results are specially important because

the value fi:nction u (.) is nothing else than the viscosity solution to a certain Hamilton-Jacobi

equation with a non a,ffine Lipschitzean boundary data, and it becomes the classical solution (at

least near the boundary) whenever our conditions are fulfiIled.

In Thesis we used the Geometry of Hilbert spaces as well as methods of Convex, Nonsmooth

and Variational Analysis. The obtained results develop a.nd generalize those known until now.

In the particular case -F. : B they reduce to the respective properties of the distance function
and the metric projection. However, we consider much more general dynamics F (asymmetric,

not necessarily strictly convex nor smooth) *rd very sharp sufficient conditions for the well-

posedness, which in some situations are close to necessary ones. On the other hand, by our

opinion there is a strong relation between the perturbed problem (Pe) and some minimal time
problem with a regular but nonconstant dynamics (the respective research is out of our Thesis

and we plan to occupy it in the nearest future).



The most of the results obtained in Thesis a.re new and were presented on va"rious national

and international scientific meetings and seminars. Among them let us indicate the following:

1. rrF\rnctional Analysis and Optimizationtr, Bedlewo (Poland), 16 - 21 September, 2007;

2. n4th Joint Meeting of CEOC/CIMA-IJE on Optimization and Optimal Control'r, Aveiro

(Portugal), 7 - 8 December, 2008;

3. 'rWorkshop on Control, Nonsmooth Analysis and Optimizationrr, Porto (Portugal), 4 - 8

May,2009;

4. r'51tt Workshop of the International Schooi of Mathematics "Guido Stampacchia" on Vari-

ational Analysis and Applications'r, Erice (Italy), 9 - 17 May, 2009;

5. Seminar of the Mathematicai Department, Universiti degli studi di Padova, Padua (Italy),

12 October, 2009, invited by Prof. G. Colombo;

6. Seminar of the Mathematical Department, Universitd, di Milano Bicocca, Milan (Italy), 19

October, 2009, invited by Prof. A. Cellina-

The essential part of the work is contained in the paper nV. V. Goncharov and F. F. Pereira,

Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionalsrr re'

cently accepted for publication in the Journal of Convex Analysis. The other Thesis' results

instead wilt be included into two papers, which a,re now in preparation (see [54, 68]).

The work is written on 133 pages. The bibliography consists of 84 items.

Key words: minimal time problem; metric projection; strict convexity; curvature; duality

mapping; uniform smoothness; proximal, Fr6chet, limiting and Cla,rke subdifferentials; normal

cones ; Hrilder continuity; Hamilton-Jacobi equationl viscosity solutions.

Mathernatical Subject Classification (2000) : 49J52, 49N15.
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Resumo alargado

Sejam I/ um espago de Hilberb, F C H um conjunto fechado convexo limitado que contem a

origem no seu interior, e C C H nda vazio e fechado. O problema principal considerado na

Tese 6 atingir o conjunto (afvo) C em tempo mfnimo a partir de r:m ponto r pr6ximo de C
atrav6s de traject6rias do sistema de controlo i:'tlt u e F. Denotando por rfi (r) o conjunto

de todos os pontos finais de traject6rias deste problema (chamado projecgSo tempo-mfnimo),

estudamos primeiro as condig6es, sobre as quais a apiicagS,o r ,- rfi (r) C de valor singular e

contfnua nalguma vizinhanga de C. Estas condig6es tem cardcter geom6trico e envolvem alguns

conceitos da Anr{,lise Convexa, que foram introduzidos e estudados no primeiro capftulo, tais

como rotundidade, suavidade uniforme, curvatura, aplicagS,o dualizante. Uma das hip6teses que

garante a boa posigSo da projecEso tempo-mfnimo 6 completamente nova, enquarrto a outra 6

,*u g"r"rulizagSo abra.ngente das condig5es conhecidas para o caso F : B (B representa a bola

unitriria fechada em I1).
O passo seguinte na nossa investigagdo 6 a regularidade mais forte da aplicaqS,o t ,-- r$ (t)-

Supondo ainda suavidade do conjunto-alvo ou da dindmica .F' podemos estabelecer primeiro a

regularidade local (de Hdlder) p*u 
"E 

(.) numa vizinhanga de um ponto fixado na fronteira
rs e C, e depois num conjunto aberto em torno do alvo. E provado que a boa posigS,o e a

regularidade da projecgSo tempo-minimo est6,o estritamente relacionadas com as propriedades

de regularidade da fung5o va.lor z ,-- 56 (z) (chamada fungd,o de tempo mfnimo). Em particular,

obtemos alguns resultados relativos A, diferenciabilidade continua (de Holder) pam5;f' (') pr6ximo

(mas fora) do alvo.
Na rlltima parte do trabalho aplicamos a mesma t6cnica para o problema de optimizagdo

perturbado (Po) adicionando uma fungdo Lipschitzeana 0 (-) que verifica alguma condiES,o de

controlabilidade. Denotando po, nfit (-) u , (.) o conjunto dos minimizantes do problema acima

e a fungi,o valor, respectivamente, obtemos resultados que justificam a ligaqdo entre a diferencia-

bilidade continua da aplicagS,o u(.) com a exist6ncia, unicidade e estabilidade dos minimiza.ntes

. nfiq (.). Analogamente ao c&so 0: O supondo algumas hip6teses naturais 6 provada a con-

tinuiJade (de Hdlder) da aplica4So un{voca "tt (.) e do gradiente Vu (.) pr6ximo (mas fora) do

conjunto C. Estas hip6teses envolvem regularidade dos tr6s elementos C, F,0(') assim como

uma sua compatibilidade geom6trica. Os rlltimos resultados s5,o especialmente importa.ntes

porque a fungio valor u (.) 6 u solugio viscosa de uma certa equagS,o de Hamilton-Jacobi com

dados na fronteira Lipschitzeanos nio afins, e torna-se a solugS.o cld,ssica (pelo menos pr6ximo

da fronteira) sempre que as nossas condigdes se verificam.
Na Tese usamos a Geometria dos espagos de Hilbert assim como m6todos de And,lise Convexa,

N5o-suave e Variacional. Os resultados obtidos desenvolvem e generalizarn os conhecidos at6

ao momento, e no caso particular F : E reduzem-se As propriedades respectivas para a fungSo

distA,ncia e para a projecgSo m6trica. Contudo, n6s consideramos dindmicas -F muito mais gerais

(assim6tricas, n6,o necessariamente convexas ou suaves) e condig6es suficientes para a boa posigS,o

muito abrangentes, que em certas situagSes s6o pr6ximas das necessdrias. Por outro lado, na

nossa opiniSo, existe uma forbe relagSo entre o problema perturbado (Pe) u algum problema

de tempo mfnimo com uma din6,mica regular mas n6,o constante (a respectiva pesquisa ndo se

encontra na Tese e pretendemos ocupar-nos disso no futuro pr6ximo).
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A maior parte dos resultados obtidos na Tese sio novos e foram apresentados em vdrios en-

contros cientfficos nacionais e internacionais e em semindrios. Entre eles indicarnos os seguintes:
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ational Analysis a^nd Applicationsrr, Erice (Itdlir), I - 17 Maio, 2009;

5. Seminr{,rio do Departamento de MatemS,tica, Universitd degli studi di Padova, Pridua
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A parte essencial do trabalho estri, contida no artigo ttv. V. Goncharov e F. F. Pereira,

Neighbourhood retractions of nonconvex sets in a Hilbert space via sublinear functionals" que

foi recentemente aceite para publicag5,o no Journal of Convex Analysis. Os outros resultados da

Tese ser5,o incluidos em dois a^rtigos que estd,o em prepaxaqio (ver [54, 68]).

O trabalho est6 escrito em 133 pr{ginas. A bibliografia consiste de 84 itens.

Palavras chave: problema de tempo mfnimo; convexidade estrita; aplicagSo dualizante;

suavidade uniformel subdiferenciais proximal, Fl6chet, limite e Clarke; cones norrnaisl con-

tinuidade de H<;lder; equagSo de Hamilton-Jacobi; solug6es viscosas.

Mathematical Subject Classification (2000) : 49J52, 49N15.
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Introduction

The question is: for apoint r insomespace I/ therewillbe a uniqueTin afixed Cc f/which
is more close to r? And how this 7 will depend on r?

The goal of the Thesis is to search the answer to this question specifying fI and C, and

giving a certain sense to the proximity. Let us first give a little of history.

We start with the case of a (real) normed space (I{,ll.ll) and a linear subspace C c I1. For

ar1y r € II the (possibly empty) set of best approri,mations (or nearest points) to r in C is
defined by

nc (*),: {a e C : llr- sll : ac (")},
where ac (r) :: inf {ll" - All, g e C}, r e H, is the distance functi,on associated with C, and

the set valued mapping rs : H ---+ C is called the metric projecti,on onto C' The subspace C is
said to be prorimal (respectively, Chebysheu) if. nc (") is nonempty (respectively, is a singleton)

for each r e H. The last concept was introduced by S. B. Stechkin (see [48, 49]) in honour of

the founder of the best approximation theory P' L. Chebyshev.

In 1859 P. L. Chebyshev showed that (in actual terminology) in the space H: C ([0,1]) of

continuous functions on [0, 1] the subspace C : Pn of polynomials of degree non greater than

n is a Chebyshev set. He also considered the set Pn^ of rational functions P"(') lQ,"('), such

that Q,,(.) does not have roots in [0,1], and proved that it is Chebyshev too (we refer to the

papers 178,771for review of the classic P. L. Chebyshev's works).
Further on, the best approximation results were generalized to an arbitrary nonempty set

C C H. The definitions of the distance and the projection remain the same.

A Chebyshev set is necessarily closed. On the other hand, it is a long-staying problem

whether a Chebyshev set must be convex. In finite dimensions the answer is positive but in
infinite-dimensional setting the problem is still open. However, as was conjectured first by V.

Klee and proved. then by E. Asplund [1], if a Hilbert space contains a nonconvex Chebyshev set

then it contains also one whose complement is bounded and convex (so called Klee cauern).

Another problem, in some sense symmetric to the problem above, involves the farthest points.

Namely, given a point r in a normed space If the elements of the (possible empty) set

xc @),: {, e c : llr - yll :::g ll, - "lli



are called farthest points frorn r in a bounded subset C. The set C is said to he remotal if
Xc @) # A for every ,r € f/ and unr,quely remotal rf yg (r) is a singleton for every r € 11. An

important question is: under what conditions on the space /1 does every uniquely remotal subset

of fI reducetoasinglepoint? Inotherwords,inarrgood'rspace H,if.C isnotasingletonthen
it must have a rf central" point which admits at least two farthest points in C.

This problem is strictly related with the problem of convexity of Chebyshev sets, and it is

not also resolved till now. There are some opinions (see, e.g., [59, 25]) that the solution of one

of them leads to the solution of the other.

Returning to the nearest points, we are interested to find necessary and suficient conditions

for their existence and uniqueness. Many sufficient conditions for a closed set to be Chebyshev

and also for a Chebyshev set to be convex have been obtained. We pay the main attention for

the first question, while for the second we refer to [50, 59, 1,3, 79,24,81, etc.], giving here some

brief comments only.
In 1961 V. KIee [59] found the first condition in infinite dimensions guaranteeing convexity

of a Chebyshev set. Namely, he showed that in a Banach space which is both uniformly smooth

and uniformly strictly convex) every weakly closed Chebyshev set is convex. Thus, in such a

space a set is closed and convex if and only if it is a weakly closed Chebyshev set.

In the same year N. V. Efimov and S. B. Stechkin (see [50]) proved that in an uniformly convex

and smooth Banach space each Chebyshev approrzmati,uely compacfl set is convex. Applying
their criteria, they, in particular, established that the set Pn- of rational functions (see above)

does not satisfy the Chebyshev property in the space 1/ [0,1], p > 1.

It was also V. Klee who proved in [59] that in a smooth reflexive Banach space a Chebyshev

set is convex if the associated metric projection is both continuous and weakly continuous. Later
E. Asplund in [1] essentially weakened the Klee theorem for Hilbert spaces showing that if a
metric projection onto a Chebyshev set is (norm to norm) continuous at all points then the

set is convex. Further, the last result was refined in [3, 79] where the authors proved that for

the convexity of a Chebyshev set it is enough that the set of discontinuity points of the metric
projection is at most countable. Finally, the papers [24, 81] contain another type of conditions

for the convexity of a Chebyshev set involving differentiability of the distance function.

As we already said, in IRn the classes of Chebyshev and convex closed sets coincide (see,

e.g., [78, 8]). Observe that in order to prove the existence of projection in this case it is not
necessary to assume convexity (which is needed, however, for uniqueness) . Furthermore, J. M.

Borwein and S. Fitzpatrick proved in [11] that every nonempty closed subset of a Banach space

11 is proximal if and only if I1 is finite-dimensional. Thus, in infinite dimensions the convexity

is important for the existence as well. In fact, it is sufficient for the proximality in each reflexive

Banach space (see [11]). Later some generic results were obtained in the lack of convexity. For

instance, NI. Edelstein proved in [46] that in an arbitrary uniformly convex Banach space 11 for

each nonempty closed subset C C H the mappin1 lTc : H '---, C is well defined and single-valued

1A set C is said to be approrimatiuely com'pact if any sequence yn e C with ll"-g*ll + d<;(r) admits a
subsequence converging to an element of C.



the outside curvature of the set, while the others take a sense in more general setting. Speaking

about the curvature we mean the following: for each r € AC and each normal vector u to C
at r there exists a sphere with radius tl Qp (r)) centred in the half-line r { \u, } > 0, which

touches C at the point r only. Thus, this is a local property (some kind of an external sphere

condition) but as we will see later it can be treated as a global one.

The class of p-convex sets inclucles all ctrnvex sets and the sets with C,fl-boundary, i.e.,

those having the form {r e H : g (r) ( 0}, where the function g (.) is continuously differentiable

with locally Lipschitzean gradient (we rigorously prove this fact in sequel). Moreover, if for

each 16 € AC there exists a neighbourhood U("d such that either C nU (rs) is convex or

AC nu(r6) is of class Cl;! tn"" C is <p-convex as well. As a simple example of a g-convex

set, which does not satisfy any of these two properties (even locally) we can consider the set

{re R.":maxlr,l <t, E*?> 1}. Foralesstrivialexampleof ag-convexset (ininfinitedi-
mensions) we refer to [16, Theorem 1.8 and Proposition 1.9].

Let us recall some important results regarding g-convexity. In [16] it was proved that the

metric projection onto a (p-convex set C is a single-valued mapping defined and locally Lip-

schitzean near C. This result was obtained earlier by H. Federer (see [53]) but only for C C IR",

while F. Clarke, R. Stern and P. Wolenski considered in l2a) its infinite-dimensional uniform

version. The last authors showed also that the distance function ac (') it of class C!;) in a

neighbourhood of C (assuming C to be g-convex with a constant P ( )). Later the complete

characterization of rp-convexity was given (see [71, 27)). In particular, it was proved that C is
g-convex if and only if there exists an open setU ) C such that each r e U has a unique metric

projection rc (r), and the mapping fr r'-+ n6 (r) is continuous in U. Moreover, this is equivalent

to the continuous differentiability of the distance function ac(') on the set U\C.In this case

the Fr6chet derivative V dc (.) is given by the formula

Vac(r) :" -."7,\'), reu\c, (1)
dc lr)

being Lipschitz continuous in a neighbourhood of each point r € U\C with the Lipschitz constant

tending to infinity as u goes to the boundary 0l/. This is the reason why (p-convex sets are said

to be also proximaly smooth.

Let us observe that the distance function and the metric projection can be interpreted in
another way. In fact, for C c U and r € I/ the distance ac (") is nothing else than the minimum
time necessary to reach the set C starting from the point r by trajectories of the control system

i(t):u(t1, llu(r)ll S t, (2)

while the projection rc(r), for r not in C, is the set of all points in 0C, attainable from r for

the minimal time. Slightly extending this problem we can consider in the place of the closed unit
ball in (2) (denoted further t V B) an arbitrary closed convex bounded set F C ff, containing

the origin in its interior (we need the last condition in order to guarantee controllability). So



that, given a point r e H we are led to study the following time optimal control problem with

constant dynamics:

-ir{f }0:fr(') ,r(7) €C, r(0) :r,andr(r) €r, a.e.in t0,"]} (3)

Taking into account this interpretation, we refer to the sets F and C as the dynami,cs and

the target sel, respectively. The value function in this problem (clenoted further bV 5;3(') and

called the m,inimal time functi,on) is the suitable substitute of dc ('). While the set of the

terminal points r(T) for all functions r(.), which are minimizers in (3), called further the

time-m,ini,mumprojection of r onto C (with respect to -F,) and denotedby n[(r), generalizes

the metric projection trc @). We keep the same name and notation for the unique element of

"E @) in the case when it is a singleton. Since each terminal point can be achieved by an affrne

trajectory (due to convexity of .F), gEO can be also given as

rE @): inf {t > o : cn (z * tn + W,

or, in other words,
r3 @) : itLp, 

(a - ,) ,

where pr (.) is the Mi,nkowski' functi,onal (or gauge functi'on) of the set F,

pp (€) :: inf {} > 0 : ( e )F}.

clearly, if F : B then pr @), g3 @) and r$ (r) are reduced to the usual norm llrll, to the

distance ac @) and to the metric projection nc @) of r onto C, respectively. Observe that in
general we do not suppose the set f' to be either symmetric or smooth or strictly convex unlike

this particular case. The generic properties established by M. Edelstein [46] and I. Ekeland [51]

for the metric proiection were subsequently generalized in [43, 19, 20] to the function zrfl (') with
an arbitrary dynamics .F,, even in Banach spaces.

Some conclitions guaranteeing the well-posedness of the time-minimum projection (i.e., exis-

tence, uniqueness and continuity of the mapping r # 
"5@D near the target were obtained in

[31], which turned out to be appropriate for the regularity of the value function g3O as well.

These conditions combine p-convexity of the target set C (with g : const) and some type of
uniform strict convexity of F controllable with a parameter 7 ) 0. Then a neighbourhood of C,

where the well-posedness takes place, is given by some relation between g and 7. However, these

hypotheses are not so sharp as for the usual metric projection and can be essentially refined.

The first part of the present work is devoted to this question.

On the other hand, in [20] a relationship between the existence of time-minimum projection

and the directional derivatives of the minimal time function was proposed. Namely, under

suitable suplementary conditions on the dynamics (including a kind of uniform convexity) it
was proved that r € H\C admits a unique time-minimum projection onto C if and only if
Df[(r) (u) : t for sorre u e AF. Here and further on we denote bv D/(")(r) the directi'onal



d,eriuati.ueofthefunctionfrH--*lRU{+o"}atredom/,dom/,:{*eH:f(r) <+oo},
with respect to (w.r.t.) the vector u e H, i.e.,

Dl@)(u) ::.r,ry,flal{:flc. (4)
A+U+ A

It is interesting to observe that the rrsymmetricrr property @f3 (") (r) : -1 for some u € -Af)
is equivalent to the existence of at least one projection.

There are many papers devoted to the study of the subdifferentials of the distance function

dc (.). For example, in [12, 15] the authors give explicit formulas for the Clarke subdifferential

of dc (.) under various hypotheses on the closed (not necessarily convex) set C C H and on the

normed space 11. These formulas link the Ciarke subdifferential either with the Clarke normal

cone to C at the point r (in the case r e AC), or with the respective normal cone to the sublevel

set {9 e H : d,c (g) < ac(r)} (if r e .FI\C), both generalizing the well-known relationships in

the case of convex C. The similar relationship for the proximal subdifferential of ac @) in Hilbert

spaces and r does not belonging to C was obtained in 124), while in [13] the proximal and the

Fr6chet subdifferentials (for both cases r e 0C and r / C) it a normed space were considered.

Further, the formulas for the various (Clarke, Fr6chet and proximal) subdifferentials of dc (')

were generalized to an arbitrary dynamics f, and to the respective minimal time function 5fl (')
(see [80, 29] for IR" and [30, 31] for an infinite-dimensional Hilbert space). Recently, the case of
a Banach space, or even of a normed space without completeness, was treated (see [83, 82])'

Let us pass now to once more interpretation of the distance function (and of the minimal
time function as well), which comes from partial differential equations. We start by considering

the general first order equation in finite dimensions

r € Q, with the boundary data

I (r,u(n),Yu(r)) : O,

u(r):0(r), neAQ,

(5)

(6)

where f : O x R x lR" --+ R and d : 0 * lR are given functions, f) C lR.z is an open bounded

set with the closure O, and Yu(r) means the gradient of u(.) at r. A function z , O - IR'

of class C' (O) satisfying both (5) for all r € Q and (6) is said to be a class'ical solution of
the boundary value problem (5)-(6). As simple examples show this problem may not admit

any classical solution (for instance, the equation lvz(r)l :1with u(r):0 on the boundary

never has such solution). So that we are led to another weaker concept. Namely, we say that
a Lipschitz continuous function , , Q -* lR' is a general'ized solution of the equation (5) if
the relation (5) holds true for almost each (a.e.) r € 0 (observe that the gradient V" (') exists

almost everywhere by the Rademacher's theorem [52, p. 81]). But in this way we lose uniqueness

of solution in most of the cases. So that one needs an intermediate definition.

Observe that (5) is the stationary version of the (time-dependent) Hamilton-Jacobi-Bellman
equation

t"r,r*f(t,r,u,Vu):9, (7)



appearing as a necessary condition of optimality in an optimal control problem. The first
attempts to defrne a class of solutions to (7) , where existence and uniqueness (and may be some

regularity w.r.t. the initial data) take place, are due to O. A. Oleinik [68] and A. Douglis [45]

in the scalar case. Their definitions were based on some kind of rrsemi-decreasing[ property of

solution, which is usefull in the study of nonlinear conservation laws. Later S. N. KruZkov studied

the stationary equation (5) (see [61] and the bibliography therein) motivating his research by the

problem arising from the geometrical optics. In particular, when n : 3 and f (*,u,p) : lpl - a,

with a constant a ) 0, one has the so-called ei.konal equation describing the propagation of a
light wave from a point source placed at the origin in a homogeneous medium with refraction

inclex 1/o,. If, instead, this medium is anisotropic and has constant coefficients of refraction of
light rays parallel to the coordinate axes (say ci) then the propagation of light can be described

by the (more general) eliptic equation

J

D"7"?,,- 1:0.
i:7

If, besides that, the medium moves with a constant velocity - : (rut,utz,ut) then the equation

(8) contains a linear additive term and admits the form:

tJ

Y 
"?u1, 

+? @,u,) -1 : o,

fi," c'

where c is the speed of light in a vacuum. Extending more) one gets the Hamilton-Jacobi

equation (5) with the hamiltonian I in IR." do not depending of r and z and convex w.r.t. the
third variable. For such type of equations (and with some dependence on r and u as well)

S. N. KruZkov looked for solutions in the class .E (0) of locally Lipschitzean functions with a

supplementary property involving the uniform boundedness of its second order finite differences.

In such a way S. N. KruZkov proved existence and uniqueness of solution in E (0) and its stability
w.r.t. the so-called viscosity approximations. Observe that he was the first who related well-

-posedness of a solution with the rrvanishing viscosityrr, proving that each solution 
" 

(') e E (0)
(Q c IR" is a bounded domain) is the uniform limit of the sequence of solutions u" (') of the

respective problems for the nonlinear elliptic equations3

I (r,u,V") - e!u:0, (9)

as 6 ---+ 0* (notice that the equation (9) has a unique classical solution for each e ) 0 small

enough in accordance with Theorem 3.2 [61]). This construction itself can be admitted as the
definition of solution to the boundary value problem and it was motivated by the method of

'rvanishing viscosityrr in fluid mechanics.

Much later M. Crandall and P.-L. Lions (see [34]), considering the general problem (5)-(6)

without convexity assumptions and basing on the same idea of 'rvanishing viscosityr', introduced

(8)

":2#
'rA is the Laplace operator



a new notion of solution, called ui,scosi,ty soluti,on. In [34, 32] also other equivalent definitions

appeared. The exact definitions of viscosity solution will be given in Chapter 4, while now let us

mention that two of them use the suitable test functions (similarly as the notion of the generalized

solutions of linear PDE in the sense of distributions), and the other involves a generalization

of the gradient of a continuous function at the points of nondifferentiability. Notice that so

introduced solutions need not to be differentiable anywhere (they are supposed to be continuous

only). Nevertheless, as follows directly from the definitions, a function u (') € C' (O) is a classical

solution of the problem (5)-(6) if and only if it is a solution in the viscosity sense.

At present, Theory of Viscosity Solutions is a very developed and powerful field of the modern

mathematics having numerous applications in partial differential equations as well as in control

theory, differential games and so on. The fundamental results in this theory besides its creators

M. Crandall and P.-L. Lions were obtained by such mathematicians as L. Evans, H. Ishii, G'

Barles, M. Bardi, I. Captzzo-Dolcetta and many others (see, e.g., [32, 6, 38, 33, 63, 7, 5]). The

large bibliography concerning this theory can be found in the last three books.

To summarize everything said above about viscosity solutions in finite-dimensional spaces

we refer to the excellent tutorial lessons by A. Bressan [14] where the following properties were

emphasized (E3(CI) denotes here the family of viscosity solutions):

(i) for each suitable boundary data 0 (.) a unique solution ?, (.) € 2f (CI) of the problem (5)-(6)

exists, and it is stable with respect to both 0 (') and f (');

(ii) the solution u (.) € 2f (CI) is also stable with respect to the rrvanishing viscosityrr apprG

ximations. Namely, denoting by ,'(.) the (unique) solution of the equation (9) one has

,' (*) -- u(r) as 6 ---+ 0+ uniformly in r e f);

(iii) whenever (5) is the Hamilton-Jacobi equation for the value function in some optimization
problem, the unique viscosity solution ?, (.) € 2f (Cr) should coincide exactly with that
value function (see, e.g., [7]).

Afterwards, the concept and the main results concerning with the viscosity solutions were

generalized to some classes of infinite-dimensional Banach spaces (see, e.g., [35, 36, 37,7)).
Notice that passing from finite to infinite dimensions one meets three main difficulties. First,
in order to prove uniqueness of a viscosity solution in flnite-dimensional setting, one essentially

uses the fact that continuous functions attain their maximal and minimal values on a closed

ball, which is false in infinite dimensions. However, in [35] the authors have proposed another
way to do this basing on the Radon-Ni,kodym property (briefly, (RNP)), which is equivalent

to attainability of maxima and minima for arbitrarily small linear perturbations of continuous

functions (see [36] and bibliography therein). In what follows we have this property because.Fl

is always supposed to be Hilbert, and Hilbert spaces (and even reflexive ones) possess the (RNP)
(see [44, p. 100]). Let us only mention here that the case of Banach spaces without (RNP) was

treated in [37]. However, in this case an (alternative) coercivity condition for the mapping f (')
should be posed. Next, in infinite dimensions the property (ii) above has no sense by the simple
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reason that the Laplace operator is not defined. So that we can not use more the "vanishing
viscosityrr argument to motivate the necessity of introduction of such type of solutions. The

motivation, however, comes now from the Theory of Differential Games. The third dificulty
appearing in infinite dimensions is concerned with the Arzeli,-Ascoli theorem which is no longer

applicable in this case. So, one needs an alternative Convergence Theorem proved in [36].

Let us return now to the eikonal equation (with f (*,u,p): llpll). It follows from (1) that
the clistance function d6 (.) with C: /1\Q is a generalized solution of the problem

llvz(z)ll -1:0
with the boundary condition

u(r):g' re0Q'
Moreover, it turns out that the distance is exactly the unique viscosity solution.

The existence of viscosity solution to (5)-(6), when I (.) is an arbitrary (continuous) function
of the gradient, was investigated, e.g., in [18, 39], in the finite-dimensional case. Denoting by

F the closed convex hull of the set of zeros {( e A ,f (€) : 0} the authors of the first paper

reduced (5)-(6) to the following specific boundary value problem

lpr"(-Vr(r)) -1:0 ifre Q

t "(") 
:0(r) if re 00,

(10)

where F' means the polar set. They proved that under appropriate conditions involving a kind
of geometric compatibility of F, 0 (-) and the domain O the (unique) viscosity solution of (5)-(6)

exists and coincides with the viscosity solution of (10). Moreover, this solution can be given by

the formula
u(r) : 

ri.$ {nr (y - ") + o (a)} .

Notice that already S. N. KruZkov (see [61]) considered the function (11) as the candidate for
solutions to eikonal equation or to its generalizations belonging to the class .E (O) introduced
by him. We postpone the direct proof of this fact and the study of the function (11) to the

Chapter 4, while now let us observe that the viscosity solution of (10) (consequently, of (5)-(6))

is the further generalization of the minimal time function f5O, being reduced to this function
whenever 0 :0. Probably, M. Bardi (see [ ]) was the first who characterized the minimal time
function as the unique solution to a Hamilton-Jacobi equation using viscosity methods.

In the second part of Thesis we are interested in attainability of the infimum in (11), in
uniqueness of the minimum point as well as in the regularity of the function u('). As in the

case of the time-minimurn projections we will see that these three questions are linked each with
other. Furthermore, the answers for them permit to make the conclusions about resolvability
of the problem in the classical sense. On the other hand, due to the dynamic programming
principle the gradient equation in (10) is ihe Hamilton-Jacobi equation for the minimal time

(11)
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problem. Therefore, the study of such equations (with an arbitrary enough regular boundary

function 0 (.)) has also an independent interest due to possible applications to Optimal Control

or to Differential Games Theorv.

Besides this Introduction, Thesis consists of four chapters, conclusion and bibliography com-

ments. Throughout the whole work we assume I1 to be a Hilbert space, F C H (dynamics)

to be a closed convex bounded set with the origin in its interior, and C C n (the target set)

to be nonempty and closed. Our main goal is to obtain local conditions on f' and C, which

would guarantee the existence of a neighbourhood of C, where the time-minimum projection is
well-posed (i.e., continuous as a single-valued mapping), providing, furthermore, Lipschitz (or,

in more general, Holder) regularity of the time-minimum projection rfi (.) and the differentia-

bility of the value function tEO. Moreover, we generalize these conditions for the respective

problem with non linear perturbation P (').

The Chapter 1 is an auxiliary one, having nevertheless an independent interest. Our purpose

here is to bring together various concepts concerning the geometric structure of convex solids in
a Hilbert space, to study quantitatively their dual properties such as rotundity and smoothness,

and to put the introduced numerical characteristics into general settings of Convex Analysis.

In the Chapter 2 we present two types of geometric conditions on both F and C, which
guarantee existence and uniqueness of the time-minimum projection locally (i.e., in a neigh-

bourhood of the target), and the continuity of the mapping "5(.) as well. One of the main
tools used for proving of our theorems is the Ekeland's variational principle (see [51, Corollary
11]), which enables to establish some regularity property of minimizing sequences in the respec-

tive problems. Besides that, we strongly use the fuzzy calatlus of the proximal subdifferentials
of lower semicontinuous functions, which permits to prove the well-posedness theorems in the

most general setting. Any way we give the exact formulations of these fundamental principles of
Analysis in the preliminaries. Under these conditions we prove first a local retraction theorem

(Theorem 2.2.1). In the case of (p-convex target this result Ieads then to the explicit formula
for the neighbourhood of C where the retraction is defined (or, in other words, where the well-

-posedness holds) . In the last section we concretize the obtained results for the case when either
0C is smooth (theorems 2.3.1-2.3.3) or 0Fo is of class C2 (Theorem 2.3.4).

Using the same geometric conditions as in Chapter 2 and the same technique (involving, in
particular, the fuzzy sum rule) we show in Chapter 3 that under some natural extra hypotheses

the regularity of the time-minimum projection 
"5 O can be essentially improved. Namely, we

prove Lipschitz (or, in more general, Holder) continuity of n[(.) in a neighbourhood of C.

Finally, we study differentiability of the value function 53 O near the target and give explicit
formulas for its (Fr6chet) gradient. Based on these formulas we conclude that Vg[ ( ) is locally
Lipschitzean (or Holderian) as well.

In the last chapter we study the problem of minimization of the Minkowski functional with
some additive nonlinear perturbation (see (11)), adjusting the existence and uniqueness results
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of the Chapter 2 for this case. Under appropriate assumptions we obtain also a local regularity
result for the corresponding mapping 

"30 
(.), which associates to each r e H the (unique)

point where the minimum in (11) is attained. lVe prove, in fact, that r ,'. n\t (r) is Lipschitz

continuous near C, deriving then the classic differentiability of the viscosity solution z (').

In comments we give some remarks regarding to the place of our work among other investiga-

tions in this area. We clearify various intersections with the results known in the literature and

compare our hypotheses with the known ones. We give also a more detailed and more concrete

(related more to our particular problems) historical sketch than in Introduction.



Chapter 1

Rotundity and smoothness in a
Hilbert space

This chapter is devoted to some notions of Convex Analysis that will be used in sequel. First of
all we give in Section 1.1 the basic deflnitions and some notations concerning with the geometry

of convex solids, which is the main technique throughout the whole Thesis. Further, in Section

1.2 we introduce some moduli of local rotundity for the convex set F that seem to be more

suitable for our objectives. They are inspired essentially by the geometry of Banach spaces

(see, e.g., [65]) and adapted here for the case of "asymmetric norms". By using of one of these

moduli we define then the concept of strict convexity graduated by some parameter o > 0 and
associated with a dual pair of vectors (€,€-). The main numerical characteristics resulting from
these considerations is the curvature (and the respective curvature radius), which shows how

rotund the set .F' is near a fixed boundary point watching along a given direction. The Section

1.3 is devoted to the dual notions. Namely, considering the polar set F' we define the so'called

modulus of smoothness of ,F'' and local smoothness (also associated with a dual pair, in this case

((.,0). In particular, we prove here the local asymmetric version of the Lindenstrauss duality
theorem quantitatively establishing the duality between local smoothness and local rotundity.
Thus, the curvature of F can be considered also as a numerical characteristics of the polar set

F", showing how sleek F" is in a neighbourhood of a boundary point (. if one watchs along a
direction (. Applying this theorem, we obtain a characterization of the curvature of F in terms

of the second derivative of the dual Minkowski functional. In the last Section 1.4 we give some

examples.

1.1- Basic notations and definitions

Let us consider a Hilbert space f/ with the inner product (.,.) and the norm ll'll, a closed convex

bounded set F C 11 such that 0 € intI ("int" stands for the interior of F), and denote by Fo

its polar sef, i.e.,
Fo i:{€. e fr' ((,(.) < 1 V€ € .F,}.

13
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Together with the Minkowski functional pp (') defined by

Pr(€)::inf {l > 0: ( e )F}, € € H,

we consider the support functi,on op : H -* lR+, or((-) :: suP{((,€-) : ( e F},
that (see [31, Proposition 2.1])

and, consequently,

pe(0:op"(€), €eH,

1

ffi ll€ll s pF (€) s llF"ll ll€ll , € e H,

and observe

(1.1)

(1 .2)

where llFll :: sup {ll(ll : ( e F}. The inequalities (1.2) mean that pr,(.) is a sublinear functional
llequivalentrrto the norm ll.ll. It is not a norm since -F I F in general. As a consequence of
(1.1) and (1.2) we have the Lipschitz property

lpr ((r) - pe(€)l < llr,ll ll(r - (zll v(',(2 e n. ( 1.3)

In what follows we use the so-called dualitg mappi,ng 3p : 7Fo --- 0F that associates to each

€* e 7Fo the set of all functionals that support F' at (* :

Jr (€.) ,: {( € 0F : l(,€.) : 1}.

We say also that (€, €.) is a dual pa'ir when €* e 0F" and ( e Jr (6-).

Remark L.L.L Noti,ce that Jr ((-) * A for euery (* e 0F". Indeed, fi,red (* € 1Fo let us

consider a sequence {("} c F such that

'l

!: pFo (€-) :;EF (€-,y) < (€., €") +;, n € N. (1.4)

Since F is obuiously weakly compact, {{"} admits a subsequence conuerging weakly to some

€ e .F. Passing to limit i,n (1.!) we obtain

(€-,() > i.

On the other h,and,

1 < ((*,O S s.,P (Y.,() : Pr (O < 1,
g* €Fo

whi.ch implies that pp (O : f , i,.e., € e AF.

Let us denote by Nr (() the normal cone to F at the point ( € F and by )pr (() the

subdifferenti,al of the function pr (.) in the sense of Convex Analysis. Notice that for each

€* e OFo the set 3r (€.) is nothing else than 7pp" (€*), and Np (€) n AF, is the pre-image of
the mapping Jp, (.) calculated at the point ( e AF. Here we use the following result



1.2. LOCAL STRICT CONVEXITY AND CURVATURE

Remark '1,.2.t In the aboue formulas the i,nfimum can be taleen for n e AF. Let us proue this

for the mod,ulus er (r,(,(.), the others are similar. We haae always the i,nequality

er(r,€,€.) <inf {((-r7,€.) :qe0F, ll€-qll >r}.
Now we suppose that the equality does not hold. Then there erists \ € intF wl,tn ll( -qll
such that

(€ - ,, €-) < ,LtI (( - q, €.) '

ll€-qll>,

Then by the separat'ion theorem there erists a li,ne passi,ng through 11, whi,ch does not intersect
the open ball { * rB. Since 4 € int F, this l'ine meets 0F at eractly two points, let r11 and q2.

Consequently, there erists \ € [0,1] withrt: ]r7r + (1 - \)r12. Hence

G -n,(*) : A(€ - ?1,€*) + (1 - 
^) 

(€ - q2,€") > (6 - i,€*),

that contradicts ( 1.8).

Remark 1.2.2 Obserae that for all r ) 0 the i,nequali,ty A[(r,€,(*) ) dp(r, () holds. Indeed,

for eachn e F with pp (ri - €) ) r by (1.1) we haue

dr (r,€) <2- pp(€+ri <2(€,€.) - (€+?,(*) : ((-rl,€.) .

But the opposite inequali,ty is uiolated euen'in the simplest cases. For erample, if F : B,
ll€.ll : 7 and 6: €* (Jr ((.) : {€} i,s singleton) then di,rect calculations giue

6r(r,€):inf {2-ll€+ rtll, rt€s, ll€-qll : rl:--L.-'r - 2a g-p'
whi,te afi (r, €, €.) : er (r, €, (*) : *, O . r I 2.

Due to (1.2) we also have the following inequalities:

16

(1.7)

)r

(1.8)

(1 .e)

The Definition 1.2.2 suggests another concept of strict convexity. Namely, the set F is said
tobe strictly conuer at the point { e 0F w.r.t (* e J;'(() if ep(r,€,€-) > 0 for all r ) 0.

The modulrr ep(",€,€*) here can be, certainly, substituted by A*(r,(,(*) (see (1.9)). This,
obviously, implies that ( is an erposed point of .F., and the vector (" erposes ( in the sense that
the hyperplane {4 e H : (r7,(*) : ,r ((-)} touches tr. only at the point (, or, in other words,
that Jp (€-) : {(}. Therefore, we can speak just about the strict conuerity w.r.t. the uector (*
(do not refering to the unique € e Jr (€.)).

The following statement characterizes the local strict convexity in terms of the duality map
ping (and of the dual Minkowski functional as well).

.i (lFn,r,r-) < er (,,€, (.) < e* llr'll r, (, (*) , r ) 0.



1.2. LOCAL STRICT CONVEXITY AND CURVATURE

Proposition 1.2.1 The set F i,s stri,ctly conuer w.r.t. €* e 0F" i,f and only if one of the

following assert'ions holds:

(i) ( is a strongly exposed point o/ F w.r.t. €*, i.e., 3r (€.) : {€} and each sequence

{€,} C F such that \(n,(.) * (€,€-) =1, n ---1 oo, conuerges to ( stronglA (l€"-(ll * 0

as n -- q);

(ii,) the duality mapping Jr (.) is Hausdorff continuous at (* with Jr (€.) : {€}, which i,n this

case rneans
sup llrT - €ll * o as r7* -' €*, r]* e 0F" ;

nele0t*)
(1.10)

(iii,) the function pr" O is FrEchet differentiable at (* and,Y pp. (€.) : €'

Proof.
Let us show first that the strict convexity of .F, w.r.t. (* is equivalent to the property (i).

Assuming that the unique point ( e Jr(€.) (here and further on we write ( :1r (€-)) i.
notstronglyexposedforF (w.r.t. €*) *ucanchoosee > 0arrrdasequence {€"} C Fwith
ll(, -6ll >-" rr"t that ((-€,,6*) --* 0 as n-+ 6. Hence,0 < e.(",€,(.) S (€-€,,€*) * 0,

and the strict convexity is violated. On the other hand, if Cp (r, €, €-) : 0 for some r > 0 then,

byDefinition!.2.2,thereexistsasequence{("}cFsuchthatll("-€ll >rand((-6,,,€*) t0
as n ---+ oo. But this is impossible if (* strongly exposes € e 0F.

The equivalence (i)<+(iii) was proved in [70, Proposition 5.11], while the equivalence between

the conditions (iii) and (ii) follows from [2, p. 460] where general properties of the convex

functions in topological vector spaces were studied. However, let us give here an alternative

direct proof, which is useful from the methodological point of view (its idea is due to [65]).
(iii)+(ii) Assume that there exist e ) 0 and sequences {qL} c 0F", nln * €*, \" e 1r (ni,)

suchthat pr(qn-€) > lln"-€ll/llF'll ) €,n:1,2,.... Letusfixn€N. Using (1'1) wecan
choose ui e 0.F" with

\'tn-€,'i)>''
By Fr6chet differentiability of pr" O there exists t > 0 such that

pp"(€. +tui) - PFo((.) - \€,t i) s*.t-2

On the other hand,

: (?,,, €* - ,l;) + (\n - €,tui) + (€,tri) ,

and combining with (1.11) and (1.12) we obtain

(1.1 1)

( 1 .12)

et I (qn,€- - rrl) < Utn- €,trl) * |ln,€. - ni) S f,

17

Therefore

f, s h,,?; -€-) I pp"(ql -€.),
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which contradicts the convergetce ppo (q!" - €.) "-+ 0, n ---+ oo.

(ii)+(iii) By the Lipschitz continuity of. pp. (') we have

pp. (€* *tu*) ) pF"(€.) - llrll lltu-ll - 1 - llF'll, > 0,

so that pr"(€" *tu*) l0 for all u* € B and for t ) 0 small enough. Moreover,

t'+tu* -* €* as t --+ 0-|
Pr. (€* * tu*)

uniformlyinu* €E. Fixe ) 0 andby (1.10) choose d >0suchthat

l(,? - (, u.)l < ll,t - (ll llr.ll < 
"

for all q € 3r (4-) and u* € B, with 4* € AF" such that lh- - €-ll < d. In particular, we have

(rt-€,r*) <efor all 11 e Jr((€.+ tr*)lpr"(€.+tu-;;, u* e Band0 <t< d. I'orsuchf, u*

and 4 we have

(€, tr*) : (€, (* * tu*l - (€, €.) I pF" (€. + tr.; - pr" (€-) .

On the other hand, by the definition of the duality mapping we can represent

pr" (€* * tu*) : (T, €* * tu") ,

and, consequently,

pp"(€* *tu") - pFo (€.) : (q,6.) * (r1,tu*) - pFo (€.) < (rt,tr*| .

Finally, from (1.13) and (1.14) we conclude that

01 pp" (6- +tT.,-) - pF" (€.) - (6,rr*) < (,7 - {,tu*) l et

whenever 0 < , < d and u* € B-, and the Fr6chet differentiability follows. I

>From Definition !.2.2 we get also a rrstrict monotonicityrr inequality:

lr*h*
\q - €,?" - €') ) Cp (r, €, (.) + {r (r,rl,rl")

( 1.13)

(1.14)

(1.15)

whenever 6 € Jr ((-) and 11 e Jr (4-) with ll€ - rlll ) r, which permits to prove an uniform
version of the previous statement. Namely, given U C AFo let us call the set F uniformly strictly
conaer w.r.t. the set U if.

gu ?):: inf {e" (r, €, €.) , €- e u} > o

for all r ) 0. Here as usual ( denotes the point Jr (€.) for respective (* € U.If., in the definition
above, [/ is a neighbourhood of a point €6 e ?tr,-'then we say that F is uniforunly strictly conuer

w.r.t. {f,. This property makes sense mainly in infinite-dimensional spaces, where it is stronger
than the strict convexity w.r.t. all the vectors near (fi.
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Proposition L.2.2 If the set F is uniformly strictly conuer w.r.t. U C 0F" then the duality

mapping 3r (.) ,, single-ualued,, uniformly continuous on U and coincides with the gradient

vpF" (.).

Proof.
It is enough to show only the uniform continuity of the mapping 3r (') on U . Let us assume

the contrary, i.€., that there exist e ) 0 and two sequences {€;}, {qli C [/ such that ll([ - r/lll *
0 as n -+ oo but llJr(€;) - leltilll > t, n : !,2,,... Denoting by (, :: JF((i) and

\,-i:JF (ql), it follows from (1.15) that

(nn - €n,rt; - €;) > er (t,(,, (;) * 0p (e, qn,n;) > 2gu G) ,

which implies

o < 2gu G) < \n* - €n,ni- (l) s ll,r" -("ll llql - €;ll s z llrll ll'il - (lll * 0,

but this is a contradiction. I

Let us give now a stronger (graduated) concept of (local) strict convexity.

Definition L.2.3 Fi,r {* €.)Fo, and let { be the unique element of 3e(€.). Th.e set F is said

to De strictly convex of order a ) 0 (at the point (/ w.r.t. (. i/

19

ip.*(€,€*) ,: . liminf

[ui]ll?,..'#:
and a is the least number such that (1.16) holds.

Y!frI), o, ( 1.16)

Remark 1.2.3 The condition (1.16) n'Leans that for some 0 ) 0 and 6 > 0 the inequality

Cr (r, q,q*) ) ?rd (1.17)

takes placewheneuer llq--(.ll < d, lL!-€ll < 6,\ €Jp(rt*),q* e AF" and0 ( r ( 6. By
the monotonicity of the Junction r r-+ Q)p (r,rl,rl*), dimini,shing iJ necessary the constant 0 > 0,

we nxaA suppose that (1.17) is ualid for all positiue r. In fact, Cr(r,€,€*) : *a wheneuer

r > 2ll,F ll and for d ( r ( 2llPll we ltaue

e. (r, rt,n\ >e" (d, rt,\*) > 06o :, (i)o ,o Z, (rfu)" ,"

Hence, F is uni,formly strictly conuer w.r.t. (*, and by Proposi,tion 1.2.2 the duality mapping
'is s'ingle-ualued and uni,formly continuous in a neighbourhood of (*. In part'icular, the condition

\ -- € in (1.16) is superfl,uous.

The numbers i4o (€,(.) in (1.16) possess the following invariantness property (we do not
assume here that 0 e intF).
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Proposition 1.2.3 Let g1,Az € intF, € e 0F and €i € J;lv, (€-gi) . Then there erists a

unique €i e Ji'-or(€ - Az) colinear wi,th {\ and such th'at

ffir.-r,,. (( - sr, (i) : #r.- o,,o(€ - az,€i) ,

foreacha>0.
Proof.

First notice that €i e (f -yr)o implies (A-yr,(i) < 1 for each g € intF. Therefore

1+(yr-s2,(l)>0.
Now setting €i :: ;qffor ru we see that (i has the same direction as (i and

@ - az,€i) : G6: r;fl tu - az,€i)

: .,--1--r- (fu - ar,€l) + (vr - sz, €l)) S 1
rf(Ut-U2,1t)

for all U € F, which implies that (| € (F- y2)o atd' (t-Uz,€i) :1, i.e., €i €}i'-or!-yz).
Given rt e AF close to (, r/i e li'-o,?t-a) close to (i and setting ni,: tfi!;,r-J (which

belongs to some neighbourhood of (i) *" obtain, directly from Definition 1.2.2,

#u.-r, (r,\-az,n;): wffie inr{(a -a,\;):ve F,ll"r-vll >'}
1: ffi t"t{(q-a,qi),a e 4lln-Yll >'}
1^: 

ll'lill 
at-"' (''\ - auqi) 

'

1^1
w;ll 

or-o, (',n - a2,n;): ffi cr-s, (','t - Yt'qi)

for all r ) 0. Dividing both parts of (1.19) by ro and passing to liminf as r ---+ 0*,4 ---+ 6,
qi - €1 (and, consequently, ,ti - €il we easily come to (1.18) (see (1.16)). f

Observing that the common direction of the vectors (i and (i from Proposition 1.2.3 is

normal to F at the point ( (since obviously Nr-yo (€ - yr) - Np (€), i : 1,2), we may extend

the concept of strict convexity for the case of an arbitrary closed convex bounded solid (do

not assuming that 0 e intF). Indeed, given ( € AF and v € Nr (€), llrll : 1, we say that
F is strictly conuer of order a ) 0 (at the point () w.r.t. the uector z if the translated set

F - y is strictly convex of order a (at the point ( - y) w.r.t. the same direction rz (or w.r.t.
u I pg_y1" Q) e 0 (F - A)" , see Definition 1.2.3), where g is an arbitrary element from int F. We

use such generalization in Section 2.3 (see Proposition 2.3.5 (i)). Furthermore, since this is a
local property, it can be extended also for the case of an unbounded set.

In what follows we use the strict convexity of order a:2 only denotin1ip,z(€,(-) simply

by ir (€, €-).

I.e .,

(1.18)

(1.le)
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( 1.20)

and

frr (€ F*) :: I , . (1.21)
' 
t s '/ '- 2hr (€, €.)'

are said, to be the (square/ curvature and the curvature radius of the set F at the point € e 0F
w.r.t. (*, respectiuely.

Roughly speaking, the curvature shows how rotund the boundary 0F is in a neighbourhood

of ( (watching from the end of the vector (*). As follows from Proposition 1.2.3 it does not

depend on the position of the origin in int .F, and can be defined also when 0 f int F. By using

(1.21) we give the following geometric characterization of the curvature radius.

Proposition L.2.4 Giuen € e 0F and, {* € J;' ({) we haue

mI!{-1,€.) : limsup inf {r)0:Fn(q+eB) c \-rrt**rllrt.llB} (t.22)
ll€. ll (e,q,a. )*(o+,4,€. )

q€JP(n*)'rl* eoF"

Proof.
Let us prove first the inequality rr<rr in (L.22) assuming without loss of generality that the

right-hand side (further denoted by n) is finite. Taking an arbitrary p > R we can affirm that
for each e ) 0 small enough and for each dual pair (4,4*) from a neighbourhood of ((, (-) the

relation
inf {r ) 0 : Fn (ri+etr) c q -rn* *rllrl.lltr} < p

holds' In particular' 
r n (zl + eB) c rr - p\* +p ll,i- ll B,

implying that
ll( - q t p,t*ll' < p' ll,t.ll'

whenever ( e tr, with ll( - rf ll : e, or, in another form,

Curvature

Finally we are able to define curvature (and the respective radius of curvature),

Definition t.2.4 Fir € e AF and (* € J;l Q). Th,e numbers

hr (€,€*) ': fr1. (€, (-)

,
(q-e,r.)a 

ro.

Ifu.r€fisanarbitrarypointwithll.-lll )ethensetting(::,\'tt'+(1 -A)qeF,where
\:: elllr-qll ( 1, we have ll(-rlll : e and \n-C,?*) : ^(q- 

w,\*). Using (1.23) we

obtain 
*=^ (n-,-,n.)s{rt-w,\*),2p- \

(1.23)
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and therefore (see Definition 1.2.2)

I - e, (e,rl,rl*)
zP = ----7-'

Hence, passing to liminf as e t 0*, (n,n*) -, ((,€.) and p --+ R* we conclude the fist part of

the proof.
In order to show the opposite inequality let us assume that .R > 0 (in the case ,? : 0 it is

trivial). If now 0 < p ( B then by the definition of lim sup there exist an arbitrarily small e > 0

and a dual pair (q,rt*) arbitrarily near ((,(*) such that

inf {r ) 0 : Fn (n+ee) c rt - rrt*+r llrr.lltr}, p.

Thereforetheset f n(n+"tr) isnotcontainedir?- pn*+pll,l.llB-,o.,inotherwords,there
exists ( e F with ll( - r1ll < e such that

ll( -,1 + prt.llz > pzllrt.f .

Consequently, setting , ,: ll( - Tll < e we have

2 \rt - C, prt*) < ll( - ,tll2 : ,2

that implies

(1.24)

Passing in (1.2a) to liminf as r -* 0*, (rt,rt.) -* (€,(-) and then to limit as p --+ R- we prove

the inequality "2" in (1.22). I

Besides of ir (€, €.) i. what follows we also use the one-sided characteristics 7fi ((, (.) and

?; ((, (.) defined by the same way as (1.16), (t:2,but with the modulus ep (r, 11,4*) substituted
bV Ai (r,n,\*), respectively. However, they do not satisfy the invariantness property given

by Proposition 1.2.3 (see Example 1.4.3 from Section 1.4), being connected with the 'rtruerl
curvature through the inequalities

#f he(€'€.) <tmsll.ll2 )'e(€'€.)

(see (1.9) and (1.20)).

According to Remark 1.2.3 it makes sense to define

?r ((,€*),: r"n{a ) 0 : le > 0 such that ep (r,\,\*) 2 0r2 whenever llr/-(ll < e,

llr?.-(.ll <-e,\ e Jr(q.) ,\* eO-Fo and r>0), (1.25)

or, in a compact form,

22

zr (€,(.) : 
tr,i,.Hitlr.r ig6 

g++4
n€.Jr0l*),q* €?Fo

(1.26)



1.2. LOCAL STRICT CONVEXITY AND CURVATURE 23

and

Remark L.2.4 We see d,irectly from the d,efinition that the function (€, €.) - 'y F (€, €-) is lower

sem'icontinuous (and, the functio,ns (€,€.) r- ip(€,€-) and, ((,(.) - ?; (€,(.) o, welt)' In fact,
by (1.25), for each u ) 0 small enough there euist 0 > 0 and e ) 0 such that

'vr((,{)30+u

er (r, ,l,rl*) 2 0r2

wheneuer lh-6ll <e,llq* -€.ll < €,\e Je(n*),r7* €7Fo andr)0. Now,letusfi,aC* e 0F"
and,( eJr((.) suchthatll€-(ll <€12,ll€--(-ll< rl2.Thus, foreaeryq e Jr(q*), \* €)Fo
wi.thllrt-(ll < el2, lln. -(.ll < ef2 and r ) 0 the inequality (1.28) holds, sincellq -€ll < r,

llri. - €.ll { e. Consequently,

te(C,e.) > o.

Combr,ning this with (1.27) and passing to Iiminf os ((,(*) -- ((, {*) and u --0* we obtain

7r (€, €.) S lim inf rr ((, (-) .

((,(.)*(€,(. )
(e3r.((-), <* eaF"

Furthermore, arguing as in Proposition 1.2.4 we have

1a

z1r1q,E1: (r,|.Tjt:.-) 
inf {r ) 0: F cq-rq* +'ll'7.llB}'

rlelp(q*)'q* eoF"

It follows readily from (1.19) that

,p(€,€*) ,: jFf,

(1.27)

(1.28)

(1.2e)

( 1 .30)

is invariant with respect to translations similarly to the curvature hr (€,(.). O, the other hand,

,r (t,(*) and

(1.31)

are not only local characteristics of the boundary 0F at the point ( but depend also on the size

of the set F. In particular, gtp (€,(-) can not be too small, namely (see (1.29)),

9tr ((,(*) 2 tr, (1.32)

where tp ) 0 is the Chebysheu radiusr of F (lotice that, 1/ llF"ll ( tp ( llFll). This dis-

tinguishes it from therrtruerr curvature radius frr(€,(-). In what follows we sometimes call

nr (€,(*) and ltr ((, (*) scated curuature and scaled curuature rad'ius, respectively.

LThe Chebgsheu radius rs of a bounded set K C.[/ is defined as

16 :: inf {p > O, 
=k 

€ H such that X c X + pB}.

ltr (6,€*) ': n#, *.,
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1.3 Local smoothness

As well-known (see 12, 56, 62, 64,65, 66, 70, 84] and others) the strict convexity of a convex

closed bounded set F with 0 € int f is strongly related to the smoothness of its polar set Fo.

Here we are interested in quantitative aspect of such connection. In particular, we found some

relationships between the functiorrr fi (€, (-) introduced in the previous section and the local

characteristics of Po.

Definition 1.3.L Letusfi,r{* e OF" and(eJr,(€.) C0F. Forteild-wedefineamodulusof
smoothness of the set .F' at the point (* w.r.t. ( bg

5p, (t,(*,€) ,: sup{pr" (€. +tT.) - pFo (€.) - t(€,rl*) : q* e Fo}. (1'33)

Since ( e Jr (€.) :lpl" (€*), *" always have 5p, (t,(.,€) ) 0. By Proposition 1.2.1 (iii),
if F is strictly convex w.r.t. (* then pp, (.) is Fr6chet differentiable at (* and consequently

,5r, (t, (., () (1.34)

where ( is the unique element of 3r (€.). In the case of the condition (1.34) holds we say that

Fo ts uniformly smooth at (* w.r.t. (.

Rernark L.$.L Notice th.at the unifor-m smoothness of F" at (* (u.r.t. Q) is equiaalent to th.e

Fr€chet d,i,fferenti.abi,tity of the functional pp" (.) ,, €.. In turn i,t follows from the Proposition

1.2.1 (see the equi,ualence (tl) # (iii)) th.at the gradi,ent VpF. (.) should, be continuous at this

point. Consequently, by the same result the uni,form smoothness of Fo at {* w.r.t. Q is equiualent

to the strict conuerity of F at ( w.r.t. {*. In thi's case we haue

lim
t+0 -0,

(see Section 1.1). Then

and consequently

3r (€.) : oPF" (€-) : {vpF, (€.)}

0f'n Np" (€-) : {vpr" ((.)}

nF.((*) ':#ffi
is the uni,que (unit) normal uector at the set, Fo at the poi,nt (*

There is a relationship between the modulus of smoothness and the modulus of rotundity
given by the following statement, which is nothing else than a one-sided local version of the

L'indenstrauss duali.ty theorem (see [62, Theorem 1]).
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Proposition 1.3.1
equalities

hold.

Let(e 0F and€* e0F" besuchthat({,€*) :1. Thenforeacht)0the

(5p, (tt,6*, () : sup {tr - Ai (r, €, €*) ' , > 0} (1'35)

Proof.
Let us prove the equality (1.35) for Cf (r, €, €*) only. The other one can be proved similarly.

Given 6 ) 0, from (1.33) we choose q* € Fo and 4 e F such that

: (rt - t,E.) +, (rl - €,q*) + e

S sup {tp. (,1 - () - (( - ?, €.)} + c
\€F

r)0: 
?lB {,, - a} (r, €, €.)} +',

and the inequality rr<rr in (1.35) follows.
Inordertoprovetheoppositeinequalityletusfixe)0andchoosefirstr)0,?€Fwith

pe(q - €) > r and then q* e Fo such that

,>b 
a,- -lq \''>': /J \i tt- t 

2

:',;: ; i}-,tl',i I'il i,i., .,

and the proof is concluded. I

If we put
I c] (r,(,(.)

cr (,, 6,6.) :: { o

I c; (-r, (, €-)

then (1.35) can be written in a more symmetric form

ifr>0
ifr:0
if r < 0

5r" (', €*, () : af, (',6, €*) ,

where rr*rt means the Legendre-Fenchel transform.

(1.36)
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Now, by using Proposition 1.3.1, we obtain a dual characterization of the second order strict
convexity, which makes more precise the equality (1.34).

Proposition l-.3.2 Let({,€*)b"adualpairotelements: €e0F,(* e 0F",6€JF({). Then

(€-p" (t,q*,q)
(1.37)

Proof.
We prove the formula (1.37) for 7fi (€,€.). The respective proof for 1, ((,(-) is similar.

While proving the inequality rr)rr in (1.37) we can assume without loss of generality that

7i ((,€.) > 0 (i.e., F, is strictly convex of second order w.r.t. (.). Then the mapping Jr (')
is single-valued and continuous in a neighbourhood of (* (see Remark 1.2.3), and taking an

arbitrary 0 < P < 7I (€,(*) one can choose e > 0 such that

26

limsup
a'yF (€, €.) (r,?,4.)*(oi,€,€.)

qe}p(n'),q* e0F"

Ai (r, Jr (ri-) ,rl*) ) gr2

for all 0 < r ( e and q* e AF" with ll4. -€-ll < e. As it is easy to see,

t2
sup{tr- aF(r,Jr(ri-),4*)' 0 ( r ( e} < sup {tr - Br2 : 0 < r < r) : 4p

for all 0 < I < 2eg. On the other hand, as Cfi (r, Jr (q-),rl*) : *oo whenever r ) D ::
2llF"llllI,ll (see (1.2)) and the function r r- Ai(r,3r,(l-),?*) is increasing, using (1.38), we

obtain

(1.38)

(1.3e)

sup {t, - a} (", Jr,(t-) ,n*) : € <, < D}
,2

tD-0e23i (1.40)' -4tJ
/-\

for all 0 <, < ZplD -t/Oz -r').Thus, applying the duality formula (1.35), we obtain from

(1.3e) and (1.40)
5r. (t, ?., Jr (?.)) . 1---F- = 40'

Hence, passing to limsup as t ---+ 0*, ?* --* (* and to limit as B --.1i(€,€*)- *" conclude the
first part of the proof.

In order to prove the converse inequality let us suppose that the right-hand side of (1.37)
(further denoted bV L) is finite. Then, taking ary P ) -L we can find e > 0 such that

l6p" (t,n*,ri < gt2 (1.41)

forall 0<r<eandforeachdualpair(q,n*)suchthatllrT-(ll <e, ll,i*-€-ll <e.Applying
the Legendre-Fenchel transform to (1.a1) we have

_2

sup {t" - a} (., Jr (q.) ,q*) : r > e} S

s

(1.42)
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0 < r < 2e0. Since the double conjugate function is always below the original one, it follows

from (1.42) and (1.36) that
.)

2 < ai" (r,,t*,l7) < a; (r,rt,rt*) .

4p

Dividing by 12, passing to liminf as 7 --- 0*,?* * €* \'-'+ € we obtain

),i (€, (-) a +,+P

and now by passing to the limit as B ---+ L* the desired inequality follows. I

Let us concretize the formula (1.37) in the case when the boundary of Fo is second order
smooth.

As we know (see Remark 1.2.3 and Proposition 1.2.1 (iii)) if Z$((,€.) > 0 then pr.(') is

Fr6chet differentiable on Otr"O (€. + rB; for some € ) 0, and, furthermore, the Fr6chet derivative
Vpr" (') is (uniformly) continuous in a neighbourhood of (*. Remind that the functional pp" (.)
is said to be twice (Fr€chet) differentiable at (* e 0F" if there exists a (self-adjoint) linear
bounded operator Y2pr" (6.) ,11---+ If (called second Fr6.chet deriuatiue) such that

V pF" (€* * to*) - VpF" (€-)
-Y2pF" ((*)r* as t ---+ o*

uniformly in u* € F". Let us define the Fo-norm of the operator Y2pp" ((-) bV

llv' pr"(€.)11",':,:EF. (y' pr"(€.) r., r.) .

Finally, the boundary 0F" is said to be o/ class C2 (or second order smooth.) at the point

€* e 7Fo if. pp" (.) is twice differentiable at each point of a neighbourhood of (*, and the
mapping q* - Y2pp (?*) ir continuous near (* with respect to the operator topology. This
is the same to require the continuous differentiability of the (unique) unit normal vector to F"
near the point (* (see Proposition 1.2.1). Hence, in particular, the continuity of the functional
q. ,-- llY2 p.p,, (T*)11". i" a neighbourhood of (* follows.

Proposition 1.3.3 Assume that the boundary of the set Fo is of class C2 at the point (* e AFo ,

and ( e 0F is the unique element o/Jr (€-) (i,n other words t : Y pp. ({.)). Then

7I ((,(-) : rr ((,€-) :
2llv'pr" (€-)11""

(1.44)

Proof.
Given rl* e 1Fo in a neighbourhood of the point (* by the Taylor formula (see, e.g., [10, p.

75]) for each u* € Fo and t ) 0 small enough we have
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(1.43)

t

pp" (tl**tu*) : pFo(t.) + t(rt,r*) * [ (v'or" (\* + ru*)u*,r-) (i - r) d,r,
,l
0

(1.45)
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where r.,.:Vpp" (rl*) : Jr(ry.).Hence, by using the mean value theorem for integrals, given

t ) 0 and u* e Fo we find T* =T(t,r*),O < r* < t, such that

t12

I (o'or" ?t. + ru*) u* ,a*) (t - ,) o, : T (Y'p"" (n* + r"u*1r* ,r*) .

0

Then (see (1.33))
6F"(t!rl.,q) -! srrp (V2pp"(?*+ r*u*)u*,u*). (1.46)

72 2 o*6ipo, 
I

By continuity of the second derivative we have the convergence

Y2 pp" (q* + r*r*7 -* V2pr. ((*)

as r7* * (*, ?* € 0F", and as t ---+ 0* in the operator topology uniformly in u* € F". Therefore,

lim sup s,rp (V2pp " (rl* + r* u*) u* , u*)
(r,r,?.)+(0+,{,{*) o*€Fo
q€lr(q*),\'e1F"

(t,a,a.)+(0+,€,(*) u.€Fo
n€lp(n'),n'eoF"

: llY'pr" (€.)11.. .

Since the reverse inequality is obvious, we conclude that

to :,,,,,,1i8?Il 
,r.,tuYc 

: f,ll',' o'' (€.) 
ll r'

q€3eOl*)'r7* eoF"

(see (1.37)). In order to find the same representation for ?;(€,(.) it is enough to apply the
Taylor formula (1.45) for t ( 0 instead of t > 0. I

L.4 Examples

Example L.4.L In aHilbertspace H for afi,redue H,llrll :1,0( 0 <7 anda)l letus
cons'ider th,e set

F :: {( e H : (u,6+r; > 0 ll€+rll"}.

Clearly, F is convex closed bounded with 0 € int F,. We prove that it is uniformly strictly
convex (w.r.t. the whole 0F") and even strictly convex of second order with curvature uniformly
bounded from below whenever 1 ( a ( 2, while in the other case (" >_2) the curvature of f is

bounded from above, admiting the value 0 at some point. Indeed, for ( :: -u e 0F setting

7* .- -u - _",* '- p"o (-r) - v
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(the unique normal direction at 0 we directly have

e.(r,t,E-) : inr{((-,7,e-):q€F, lle -qll >'}

: 'ii.u',*r'i:' '" oF' llu +'ill 2 ')

and, consequently, itp G,f-) > 0 if a<-2 ar.d hp (f,€-) :0 otherwise.
Takinginstead {e 0F,€*-o,noticethatthefunction h(y):: llyll'i.of classeC2near(

with

vn(y):ffiy ard. (vrn(a)w,w):"[r# -(2-", ,*#] , we H.

Then for q e 0F enough close to ( we obtain by the second order Taylor formula (see, e.g., [10,
p. 751)

lln + ';1" - lle +'ll" - l*liil", ('? - €, ( + u)

: "i [#HE* -(2-")ffffi#l r,-r)dr
1

where \, :: r\+ (1 - r)€ e F, r e[0,1], if 1 < a ( 2, while in the case a > 2 analogously we

have

ll,r +,11" - ll€ +,11" - *;|f_. \,t - €,( +,y

1

0

Observe that Np(0 : Vg(€)lR.+ where g(6) ,: dll€+rll" - @,(+u). It follows from
(1.47) and (1.48) that

(€-n,vg(()) : (*-r, "rdfu -')
: ((€+'; - (ry+ u)'-u). ,r#F-(( -'r'€+u)

f.,l: a 
fttr 

+,11" - ll( +,;;" - 
I€ -,,r_. 

h - t,€ *,)]
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forl<a(2and

\€ - ,t,vg (€)) , T r"- r) lh - €ll'z flrll + 1)a-2 (1.b0)

foro)2,respectively. Hereweusedthefactthat(,qe 0F,i.e.,g(O:g(q) :0. Moreover

llvg(0112 : trfu(€+',(+'1 -'r€:!-€*dr-.(€+',u) + llull2

: oror ll€ +,ll'"-' -,,r#p-a ll( + ull" + 1

: 
"o' llt + rll'"-' (" - 2) + 1 < 1

forl<a12,andllVg(€)ll >1ifa>2.Therefore,denotingby(*::Vg(0 lpe"(Vg(€))
from (1.6) and (1.49) (or (1.50)), we obtain for r ) 0 small enough

er(r,(F-)> 1 
^,li|",--l]=rrz, 

0o(o-r)- rz (1.b1)t\ ) '- pe" (Y g (€)) z 0rll * 1;z-" ' 2llFll fllr'll * 1;z-*'

if1<a12,
e. (r,€, (-) < * f"- 1) llrll 6lrll + t)o-z 12 (1.b2)

L

when a ) 2.

Finally, dividing both parts of the inequality (1.51) (respectively, of (1.52)) by r2 and passing
to lim inf as r * 0*, we find the estimates for the curvatures

xp(€,€.) >ffir0, L<a.-2,

and

he(€,fl=t;(o-1)llrll llr''ll ilrll +1)o-2 <+oo, a>2.

Example L.4.2 Let F,': {(€r,(r) e R',1(zl < l-€1, -1 <€r S 1}.

Observe that .F, is closed convex bounded with 0 € int f'. Let us estimate the curvatures
,p(€,(.) and h(€,€.) foranarbitrarydualpair(6,€.) (i.".,€* e AFo and(e Jr(€-)).Setting
€: (€r,€z) e R x IR, by symmetry we can consider, clearly, only the case when (2 > 0 and

€,<0.
If €z > 0 then the (unique) normal vector (* to -F at ( such that pp" (€.) :1is given by

6. : --1- (ae?. r) '
1 + 3€t \':r' -'l



1.4. EXAMPLES 3'l

>Flom Remark 1.2.1 we have, after some simple transformations,

er (''('€.) 
: '1[_ 

:,';]-i; 
u:',,\';,;ti:i]_l 

S r, < 1, ,( _ q* > "]

= #,,1 inr {('rr - (,)' ftr, - €,)'+

*4*(rtr-€r) +6€?] 'll(-rlll >", -1<,ir l1), r)0. (1.53)

Since

ll( -,rll2 : (?r -(,)' + (qt - eil' : (,?' -€,)'
and -1 < ?r S 1, we obtain the inequality

ll( - tll < 1,7, - €,1 ,

and the condition ll( - r7ll ) r can be writen as

f 
, * (r? + q?€t + rt$?,+ ei)'] ,

where E ((1) :: 1+

h,-€rl=$fl=tfu,

Consequently (see (1.53))

(( - q, €.) - (qr - 6r)' * 4fi (r1 - (1) + 6€?

l€-dit '

"tJt"ft;*n"fh+6(?l

(1.55)

Notice that the right-hand side in this inequality is continuous in (. Therefore, in order to obtain
an estimate of the scaled curvature from below it is enough only to pass to infimum in (1.55)
for r ) 0 (see (1.26)), while for the rrtruerr (local) curvature we let r - 0* (see (1.16)). Thus,

since ll(.ll : 1f 
t + 16€!/ (t + a6f), we obtain

k+Fg > tr* s€#r(€,) t"fu * n'fh + oe?]

3\-
/J

h:0
l€,1-)

(1.54)

Then, by (1.53),

2€?,e(t,€.):|Ff, > K((1) ::
,1/r + ro61>1 16,y

(1.56)
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and

i,e (€,6-) : it,,!€J,S.) > 3/( (6r) . (1.57)
ll(- ll

In the same way (employing the inequality ll€ -,ill > l€r - 4,l instead of (1.54)) we obtain

cr (r, €, (.)

: --1-, inr {(n, - (r)'1+ 3(t "" L\''r [lr, - (,)'+ 4*(,tt- (,) + 6(?] :-1 S\11, ll€-qll >,

6€?

/,. 16€?

: i4?2 + +E"+ o€?) 
'

and hence

,p (t,6.) < 2r (€, €-) < (1.58)

Combining estimates (i.56), (1.57) and (1.58) we see that the curvatures ,p (€,(.) and ,r(€,€.)
are of order O (g?) t* l€rl * 0). In particular, both Np arrd fup are equal to zero at the points

(0, +1).
If ( :: (-1,0) then we have

N" (() : {(rr,u2) e IR.2 : u11 -alrrl} ,

and for €* e ONr (€) UV the lower semicontinuity we can apply the same reasoning as above but
not for €* e intN. ((). In this last case we have ,rr(t,€-) : *oo (see (L.22)) while.rrp ((,€-)
is a finite positive number depending on the size of both sets F and .F'o, and on the proximity of
(* to the boundary aNr ((). To obtain a precise estimate we can proceed, €.8., ffi in the proof
of Theorem 2.3.4 below (see Example 2.4.3 in the Section 2.4).

Now let us give a simple example illustrating the lack of the invariantness property for

7f (6, (*) unlike the curvature (see Proposition 1.2.3).

Example L.4.3 Fi,r a e H wi,th llall 17 and cons'ider th.e set

F::{(ef/:ll(-rll <U.

It is easy to see that

pr,((.) :ar((*) : 
rre1,jfl<r(€.,€-o) 

+((*,r) : ll€.ll +((-,o) , €. e H.

This function is twice continuously differentiable at each (* f 0, and taking €* e OFo we have

1 + 16(f

vpF, (€.) :, * ffi
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and

y2pp"(€*)r. - ll€*ll2'*- ({-,'*){., u* e H.
ll€.ll3 )

The llF,'ll-norm of this operator (see (1.43)) is

llY'pr" ((-)11.. : 
,13g, 

(v'nr" ((*) ,* ,u*)

: 
,+ ,rp 

{ll€.112 llr.ll2 - (f*,r*)2 : (u*,a)+ llr-ll s ,}.

Appiying Lagrange multipliers after some calculations we find a vector u* e Fo giving maximum
to the quadratic form u* - (Y'pr" (€*)r*,u*), which satisfies the relations

(€*,r*) : - (€*,o) llr-ll

and

ll(-ll2 - 2(€*,o)2 + ll€-ll2 fuf +2 - (€-, o)')
llr.ll':

Hence

(rre 
. l'

(lle-ll' - (€*, ")') (ll,ll' lle.ll'

- (€., "l') (,

llv,pr"(6.)llr. : #||} (lte.ll, - ((.,,),)

: ---*t,-* (lle.ll' (t * tt'tl') - 2 ((* 
'a)2 

+
('- ll"" / tt< tr

*r ), (1.be),)

and the rotundity characteristics 7fi((,€.) can be found from Proposition 1.3.3. Here as usual

€ e 0.F is the unique point with (€,€-) : 1,. In particular cases when (* is colinear to a the
square root in (1.59) vanishes, and we obtain

( t-ll"ll

1iG,€.) : I ,.i,
[ --d-

- tl"ll')

if r*-_ a* s llall(1_lloll).

Thus, 7f (€, (*) depend essentially on a (on position of the origin inside the ball). Namely, they
tend either to 0 or to 1 as lloll * 1 whenever the origin is either more distant from the point ( or
more close to (, respectively. This distinguishes 7f ((, (*) from ir G,(-) (see Proposition 1.2.3).
observethatinthecasea:0theformula (1.59) gi"es llv2pr. ((.)11.,:1, and?i((, €.):712
for each €* e ff with ll(-ll : 1 and € : €* (see Remark 1.2.2).



Chapter 2

Well-posedness of the time-minimum
projection

We begin this chapter recalling some concepts regarding with the general (nonconvex) sets and
functions in a Hilbert space, in particular, definitions of various kinds of subdifferentials and
normal cones, which will be used throughout the work. We rigorously define (p-convex (proximal
smooth)_ sets and construct the functio" p (.) in the special case when the set has boundary of
class Cf"r. In the end of the first section we obtain a very useful property of minimizing sequences
in the minimal time problem, whose proof is based on the Ekeland's variational principle. In the
Section 2.2 we present two types of geometric conditions (on F' and C) guaranteeing the well-
-posedness of the problem. One of them essentialy generalizes the konwn hypotheses, employing
cp-convexity of the target set C and the second order rotundity of the dynamics F. The other does
not use any of these properties. The boundary of.C can even have'rinward corner'r points. We
just require a certain Lipschitz condition on the duality mapping and (simple) strict convexity
of F near given boundary points. Under these assumptions we prove a general (local) retraction
theorem (Theorem 2.2.7) by using the property of minimizing sequences mentioned above. In
this section we also give an explicit formula for the neighbourhood of C where the time-minimum
projection "5(.) is well-posed (although in the case of a (p-convex target only). The obtained
results are then concretized for the case where either 0C is smooth (see theorems 2.3.1-2.3.3 in
Section 2.3) or 0.F.'is of class C2 (Theorem 2.3.4). At the end of the chapter we present some
examples (see Section 2.4).

2.L Properties of nonconvex sets. Auxiliary results

Subdifferentials and normal cones

We start with definitions of some subdifferentials to a lower semicontinuous function $ : H --,
Ru {+oo}.

Forr€dom/i:{reH:S@)(*oo},theprorimalsubdifferenti,al 7pd(r)isthe(possibly
empty) convex not necessarily closed set (see [23, p. 29])

lpd@): {,,t4 } 0, o) 0 so that d@)>-d@)+(C,y-r) -olla-*ll' -\Ys€r+qB|.
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The Fr\ch.et subd,ifferentlal 014 (r) is defined by

oto@):{e ,riminr{ffirr}
and it is convex and closed (see [13, Proposition 3.1]).

The limiting (Mordukhoui,ch) subdifferentl,al 0t$ (z), in the case of a Hilbert space, is given
by (see [66, p. 240])

O'O@):{--.lim (;, (;eteQ@), ri-1 z, 4(*)-d(r)}, (2.1)
L ?+oo )

where lrtu- lim " denotes the weak limit. If d (.) is locally Lipschitzean around z then At 0 @) + A
i+oo

(see [66, Corollary 2.25)).
If d(.) is Lipschitzean near z then the Clarke subdi,lJerential 0"$ (r) is the nonempty convex

closed bounded set given by (see [22, Proposition 2.1.2])

i(z) : {, ' 
,,,, ,,p Wilp> ((,,) v, € H} (2.2)

l' f-,J*' t - "' 
)

Given sequences {r;} and {(l} i" }/ such that (; e 0"d (ri), if ri -+ tr and {(;} converges to (
weakly as i ---+ oo, one has ( e 0'd@) (see [22, Proposition 2.1.5]). We say that the multivalued
mapping A"0O has stronglyxweakly-closed (or briefly s x'ru-closed) graph. Moreover, it was
proved in [23, p. 88] that

0"Q@): - {'- i$ {,, (n e leS(xn) , *,'-' *} (2'3)

and that
oPQ@) c ar Q@) c otQ@) c o'g(r) (2.4)

for each r e dom /.
If / is a convex function then all subdifferentials coincide with the subdifferential a/ (.) in

the sense of Convex Analysis.

Since the target set C C .I/ is assumed to be nonempty and closed we obtain the various
concepts of normal cones to C at a point r € C through the respective subdifferential of its
i,ndicator functi.on 16'(.) at r (which is equal to zero on C and to *oo elsewhere). Namely, the
prorimal norrnal cone, the most used throughout the work, is the convex (not necessarily closed
and possibly trivial, i.e., equal to i0)) cone defi.ned by (see [23, p. 25])

Noc(") ,: {, e H :3o) 0 suchthat \u,A-r) < ollA - *ll2 for ally € C).

The FrEchet normal cone \s the closed convex (and hence weakly closed) cone in Il defined
by (see [13, p. 229])

" ( / ,,-rc \ lN5(") ,:{r€11 :limsup (r,fi)=Ol
I t";A \ lls - ,,, )
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The li,miting (Mordukhoui,ch) nortnal cone, in the case of a Hilbert space, is given by (see

[66, p. 240])

N', (r) ': {, - ,tgg (,, (, e N! (r,) , rn + n, ** e C} (2.5)

can be trivial (see [66, Corollary 2.24]) and is not necessarily convex (see [66, p. 5]) neither
closed, in general (see [66, p. 11]). However in IR" the mapping Nb (.) has closed graph (see

[66, p. 11]).
The Clarke nortnal cone defiied as 0"16r (r) satisfies the following useful property (see [23,

p. 881)

Nb (") : e6Nb (r).
It can be proved that

NB (") c N6 (r) c N!, (r) c N! (r), yr € C.

If C is convex then all cones coincide with the normal cone Ns (.) in the sense of Convex
Analysis.

Proximal convexity

For each u e N! (*),u 10, let us define the function

,/,c @,r) ,: # ,.:"\1,rffi ( *oo

that measures the degree of rrprominencerr (or rrcavityrr) of the set C at the point z with respect
to the direction u.

Recalling the distance function ac (") :: inf {ll, - all, a € C} in the case ,l,c(*,u) > 0 we
have another representation:

1

,wro;Gi - sup {} > 0, dc (t*.\u) : r llrll},
i.e., each sphere centred on the half-line {* + \u: ,\ > 0} and touching the boundary 0C at r
has radius , < Whil. Otherwise (it4;s(r,r) { 0) such sphere can have a radius arbitrarily
Iarge. Setting

,lrc @,r) , 
1 '' (''a - t)': ll,,ll "Hio l6:W

we get a local characteristic of the set C. Observe that C is rtconcave" at r with respect to the
direction u wheneven1,"@,u) > 0, and;6ft, is the rrconcavity radiusrr.

^ 
For some purposes (compare, for instance, with the definitions of the Section 1.2) the number

-rlrc (r,u) can be interpreted as exterior (negative) curvature of the (nonconvex) set C. It is
convenient to set alsolt6(r,0) : A"@,0) : O. Since r/c, @,r) < foo iff rlrc(*,u) < +oo (see

[23, p. 25]), we have
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NL (r) : {u e u ,rbc @,r) < *..}

lf. tlts (r,u) is majorized by some continuous nonnegative function (try p (.)) uniformly in
u e Npr(r) (i.e., ,bc@,u) 3p (r) for all r € 0C and u e N[(r)) then the set C is said to be
g-conaer (or prorimally smooth). In this case we have

(r,a-r) 3p(r) llrll lla-"112 Yr,y € C and Vu e N!(r).
Another definition in terms of rralmost monotonicityrr of the normal cone can be given. Namely,
a closed set C C I/ is g-convex iff for some continuous function g : C -> lR.+ the inequality

\u -.,r - y) 2 - (e(")ll,ll + p@) ll.ll) ll" - af
holds whenever u, A e C, u € Ne' (r) and ?, € Ne, (y). L l27l it was proved (see Theorem 6.3)
that g-convexity is equivalent to the following geometric property: for each r e C there exist
r ) 0 andp ) 0 such that for all 11, 12 € Cn ("+rB) one has

/ r'' + rr\
d, (1T:1 ) = 

oll,, - ,zll2 .

If C is convex then we clearly set rp (r) : 0. Since all the normal cones defined above to a
(p-convex set coincide (see, e.g., [77,27)), there is no ambiguity to write Nc(") in the place of
NL (").

Finally, we say that a closed set C C H has smooth (or Cl) boundary at the point rs e 0C
if there exist e ) 0 and a continuous mapping n:0C n (ro+"tr) * 0B such that n(z) is the
unique vector in Nb (z) with lln (r)ll : t. If this property is satisfied globally (i.e., N!, (r) n 0B
is a singleton continuously depending on n e AC) then the boundary of C is said to be smooth.

Let us define the ttreducedtt boundary

0*C :: {r e 0C: Ne, (r) I {0}} ,

which is dense in 0C (see [23, p. 49]).

A special case

Let us consider now the case when the set C is represented via some regular function and prove
its g-convexity.

Let ussupposethat C,: {re H: f (") S0} where f , H -rlR is adifferentiablefunction
with local Lipschitz continuous derivative V/ (.) such that V f (") I 0 for all r € 0C (following
the tradition we write / (') € C,f"l;. tt is is the most simple and natural example of a non convex
but g-convex set (see, e.g., [16, 17]). Since it often appears in the further considerations and
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examples, we think that it will be opportune to set here the complete proof of the g-convexity
of. C.

Let us fix re € 0C and d : d(zo) ) 0 such that V/(.) is Lipschitzean in rs *dB with the
Lipschitz constant L : L (re). We prove first that there exists p: p ("0) > 0 such that

(r,rz - rr) S p llrll ll"r - ,rll' (2.6)

for all n1,nz € Cn(ro+dB) and u e Ne"(r1). Then we construct a continuous function
g : C -- lR* such that the inequality

(r,y - r) < p(") llrll lly - ,ll2 (2.7)

takes place whenever r, U € C and u e NP, (r).
To prove (2.6) we assume that N! (") * {0} (otherwise (2.6) holds trivially for anyp > 0).

Consequently, 11 e 0C. Since / (.) ir continuously differentiable at 11 (it is obviously locally
Lipschitzean), we have 0"/(rr) : {V/("r)} I {0} (see [23, p. 78]). Hence (see [22, p. 56])

{o} * N'c (r,) c Na (rr) : [J.rv/1r1;
,\>0

which implies
Nrc (",) : [J,rvy (zr).

.\>0

Observing that /(rr) :0 and f ("2) ( 0, we find by Lagrange theorem A: \rt + (1 - \)*2,
.\ e (0,1) such that (V/(y),rz-rtl : f ("2) -/("r) < 0. Therefore, by the Lipschitz
continuity of V/ (.),

Now let us fix u € NA (r1) different from zero (in the case u : 0 there is nothing to prove).

Then u : .\V"f (r1) for some ) ) 0, and by (2.8) we obtain

/u \ 1

(lp-ll, ", - *, ) : *ii"lT (v/ (,r) ,rz - rr)

s x,on*T-, ll*z- *,112.

Certainly, we should choose d > 0 sufficiently small (remind that V/(rs) l0).
Thus we choose n ,: pVfiy=A and the inequality (2.6) is proved. The point 12 in (2.6)

can be any point from C in fact (it is not necessary that 12 is close to 16). Indeed, given
r € Cn (ro +dB), u € NA(r) and y € C\(ro +dB) we obtain

(,,a -r) S llull lls -,ll = ] tt,tt lla -,112 < p(ro) ll,ll lly - *ll2 ,
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where p(ril ,: p * *.
Notice that in the case ro € intC we can choose d: d(ro) > 0 arbitrary small such that

ro * dB c C. Then (2.6) in this point clearly holds as well.
The sets (ro + d (ro) B) )C, rn € C, form an open covering of the paracompact set C (C is

a closed subset of a metric space). Therefore it admits a locally finite refinement {U;}n r. For
each i € .I let us choose a point 16 e C such that

U'iC(q+5(r1)B)nC'

If {ei(.)}n., is a continuous partition of unity associated to {l,l.i};q (see, e.g., 147,p.23]) then
we set

p(x) :D"n@)p(r;,).
ieI

>Flom the local finiteness of the covering {Ut}a and the continuity of each function e; (.) it
follows that the function g: C ---+ R+ is well defined, finite and continuous. For each r € C arrd
ie lwith "t(")* 0wehave reUi,and

(r,a - r) a p ("t) llrll lly - ,ll' Yy e C.

Multiplying each inequality by e; (r) and summing them we obtain

(r,y -r) : I ei @) (u,a - nl S t et @) p(rr) llrll lls - "ll' : p (r)llrll lls - *ll'
ieI

that proves (2.7).

i€I

A property of minimizing sequences

Let us formulate three fundamental results of nonsmooth analysis that will be used in sequel.

Theorem 2.1.1 (Fuzzy sum rule [23, p. 56]) LetS1,Qz, H ---+ RU{foo) belower semicon-
tinuous functions, not identically equal to la , rs € dom /1ndom $2 , and let ( €. 0p (h + Q) @o) .

Suppose that either $1 and $2 are lower sem'icont'inuous w.r.t. weak topology on H (automa-
ti,cally the case if H is finite di,mensi,onal) or one of the functions is Lipschi,tz cont'inuous near
ro. Then, for any e )0, there erist poi,nts r;€ rs *eB, i:1,2, withlh@o)-d,i@t)l < e
such that

C e oPh ("r) + ooQz@z) * eB.

While in the case of limiting subdifferentials we have the following exact sum rule:

Theorem 2.L.2 (123, p. 62]) Let Sr,dz, H ---+ IR U {+*} be lower sern'icontinuous funct'ions,
not identi,cally equal to {a, 16 € dom$1ndomS2. If one of Qt, S2 is Lipschitz continuous
near x,O, then

o' (d, + d) @o) c otdt(ro) + otQr@o) .
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Theorem 2.1-.3 (Ekeland's variational principle [51, Corollary 11]) Let $ : .I{ --+ IR. U

{+*} be a lower semicontinuous function, not identically equal to *a. If rs € H is such that

d@o)si2is@)+e,

then there eilsts T e H such that

O@)sd@o);
llz-"oll <G;
d@) < d(il + Gllr - all, va *d.

The following lemma is crucial for proving the main theorems contained in the next sections.

Lemma 2.1.L LetC cH be anonempty closedset, ze H\C, and{r"} CC be o minimizing

sequence for the function r *+ pF@- r) on C, 'i.e., such th,at pp(*n- z) * 5[(z)+ as

r? --+ oo. Then there erist another minimiz'ing sequenc" {"'"} C C and sequences {r'l), {r"},
{(i} such that un € NA @'"), €i" e 1pr @l - z) and

ll"'" - ""ll + l\'l - z,ll -* o,

ll," + pe @i-,)6ill -- o,

asn-+@,

Proof.
Given an arbitrary sequence s", --+ 0* with p]- (r* - ,) < (fE Q))' + e2*, by Theorem 2.1'3

there exists {a"} c C satisfying the conditions

p2p (an - z) s (r$ 111)2 + ,2,;

ll""-a"llae";
pT(a"- z) < pzr(a - z)+enlly -a"ll Ys e C,

n:1,2,... . The inequality (2.12), in particular, means that gr, minimizes the functional

F (y) :: p2p (a - z) + e,"lla - a"ll + lc (a)

on.I{, where 16(.) is the indicator function of the set C. Then we obviously have 0 e}eF(y")
(see [23, p. 37]). According to Theorem 2.1.1
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(2.e)

(2.10)

(2.11)

(2.12)

0 e oer6 (r'^) + a (pT @l- z) + enlV'i,-s"ll) +e"B

: NL (ri,) * 2pp (ri - 4 Lpr @i - ") + ,-m* e,B

c Nb ("i,) + 2pp ("'i, - ,) 7pF ("'; - ,) + zenB
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for some sequences {"|} c C ar.d {ril} c H,ll"'"-y"ll 1€nt ll"'l-A"ll < en, n e N. We

are able to apply Theorem 2.1.1, since the function tr > pe@- z) and the norm are convex

and, consequently, locally Lipschitzean. Therefore we can find vectors ur, € Noc ("i) and (| e

0pe@'l - z) such that

ll," + pe ("i - ,) €!"ll < ,",
and the property (2.10) holds. It follows from (2.11) that {rl} is a minimizing sequence of
rapF@-r)onC:

pp (r'n - r) t pe @'* - a,) + Pr(vn - z) < s5 Q)+ (1 + llF'll)"",

and (2.9) is also valid. I

Remark 2.L.L The relation (2.10), in parti,cular, shows that rtn belongs to 0*C for alln large

enough, since otherwise either €; -- 0 or fr" -- z, but both are impossible si,nce (i e )Fo (see

Proposi,tion 1.1.1), whi,le rtl-'. z would imply An"'+ z and z ee : C.

Remark 2.L.2 The uectors an in Lemma 2.1.1 can be chosen such th'at

pp. (-un) : p, (r,,!, - z) , (2.19)

n : 1,2,... . Ind,eed,, setting u'n :: u* ffi € NA @t*) we haae, by the Lipschitz continuity

of pr"O (see (1.3)) andby (2.10),

ll,- - ,',ll : #"1p, (,',1- ,) Pr,((;) - pe, ?,,)l
s llr'll llrll llp, @i - ,) €; + u,ll --- s,

and, therefore, u'n can subst'itute un.

Remark 2.L.3 In the case when all the basic normal cones to the set C coincide (e.g., if C is
g-conuer), in the proof of Lemma 2.1.1 we rnaA use the limi,ting subdifferential (see (2.1)) in
the place of }nF (y), and apply the precise sum rule (see 2.1.2) instead of the fuzzy one. In this

waA we obtai,n a stronger statement of Lernma 2.1.1, which giues r'n: r'1.

2.2 Neighbourhood retractions to nonconvex sets

Basic hypotheses

Let us introduce two types of local hypotheses for the sets F and C.

We say that the pair of sets (F, C) satisfies the conditi,o" (A) at a point rs € 0C if there

existsd>0suchthat

(A1) the mapping r + 3F (-Ne" (r)n Ef') is single-valued and Lipschitz continuous on
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Ca(ro) ': {r € 0.C :llr - "oll 
< d};
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(Az) .F is uniformly strictly convex with respect to

Uad, (*o) :: \Fo f) U [-NpC (r) n aFo + 6'q Qil)
a€Ca(xo)

for some d/ > 0.

Alternatively, we say that (F,C) satisfies the condi,tio" (B) at rs € 0C if for some d > 0

(B1) the function ,bc (r,u) is upper bounded on the set

{(",r) : r € C5(*o),, € Ne' (")i

(or, in other words, C is proximally smooth in a neighbourhood of the point 16);

(B2) there exist d/ ) 0 and K > 0 such that

Ne (3r (€.) , €.) ) K f.or all (* e iu1, (ro) ,

where
06,5, (rs) :: \Fo o U [-N,c @) n aF'+ d'q . (2.15)

oeC5(os)\{os}

We are ready now to formulate the main results of this chapter.

Main results

Theorem 2.2.L Assume that at each point rs €. AC the pair of sets (F,C) satisfies either the

condition (A) or (B). Then there erists an open setU : C such that for each z € U the

time-mini,mum projection r[ (z) i,s a singleton, and, the mappi,ng z ,- r$ (z) is continuous on

u.

Proof.
We prove first that given rs € 0C one can find an (open) neighbourhoodU (rs) such that

for an arbitrary z e l,l (rs) each minimizing sequence {r"} of ne pF@- r) on the set C is a
Cauchy sequence.

Case L. The condition (A) holds at the point rs. Then we set

u (*o) ,: {, e H : llz- ,oll < , rE Q). ;} , (2.16)

where L>0 istheLipschitzconstant of.r--+ Jr(-Npr(r) n0f") onCt(r6) (see(A1)). Fix
z €l,l ("0)\C and a minimizing sequence {**} c C. Let us choose {*L} c 0*C, {rtl} c H,
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u,x € NA (rl) and €i, e 7pe @i - z) as in Lemma 2.1.1 and such that pe @'.!" - z) : pp" (-un),
n:1,2,... (see remarks 2.1.1 and 2.L.2). Since by (1.2)
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: llrll (pr @^ - ,) - rE @) + ll, -,oll + llFlls\ Q)

and pp (rn - ,) - fE Q) ---+ 0*, ll*" - "'"ll - 0 as n ---1 oo, we can suppose, without loss of
generality, lhat rt* e Cg (rg) for all n: L,2,... . Consider a decreasing sequence vr, ---+ 0* such

that

(2.17)

(2.21)

(2.23)

ll"" - ""ll + ll,i - **ll 3,^;
pe@!*- z) <rfie)+u^;

ll,, + pr (,,i,- ,) €;ll ,i"t ("),n,

n:1,2,... (see Lemma 2.L.L). It follows, in particular, from (2.20), (2.18) and from

s5 Q) 1 pp (,n - z) < ilr'll ll"il - *"ll + pp (ri - z)

that

ll*a .*tll' ;ffi'^ < ffi'I)n s un,

for every n large enough. Furthermore (see Proposition 1.2.2), the hypothesis (A2) implies

that the (single-valued) mapping 3r (.) is uniformly continuous onU6,5, (ze), and, therefore, the
(decreasing) sequence

0n:: sup llJr (€.) - Jr (,1.)ll

,)tl,;{l',iU,
tends to zero as n --+ oo.

Observe thai (i e \pp ("i - z) : Nr (iffi) n OFo (see Proposition 1.1.1), and hence

ffi-;: rr ((i) Q'22)

(recall that J"1 (€) : Nr (€) n AF' for { e Ep'). By (2.21,) we have €i, - *fr;; e tJ5,6, (rs),
and, consequently,

lli' re;r - u (-;" r-,-:-t) ll = 
,", n:1,2,

Given m) n we obtain from (2.18) and (2.19):

lp, @'h - z) - pe @i - ,)l
s llPll ll"[ - ";ll + lor (*'* - z) - or (*'n -z) | + llr'll ll"i, - ""ll
S 2 ll-F''ll un | 2un

(2.18)

(2.1e)

(2.20)
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and
pr ("',i, - z) 3 llr"llll"i" - "*ll + pF (r; - z) 3 llF'll r* + 5[ (z) + u".

Notice that here we use the fact that (u,) is decreasing. Now by using (2.22) and (2.23) we

obtain

IVL - "ill : llpo @',i" - z) 3r(€;) - pr ("i-,) Jn (€l)ll
< pe@'i*-,)llle (€;) -Jr(€i)ll +lcr@'L- ") - or@',i,-,)lllril
s (llr"ll unrun+53Q)) llJr(€l) -Jr((l)ll +211r11 (llr"ll *L)un

< r3 Q) llJr (61) - Jr ((l)ll + qu" llFll (llr'"ll + 1)

< r3 Q) lli, (-*#rr) - i. (-*#D) 
ll 
.

+ 255 Q) 0* * 4un llr'll (llr''ll + 1) . (2.24)

Since -*ii;; € -NA @'.)n0.F,, applying the condition (A1) we find from (2.18) and (2.24)
that

g - mg e)) ll",^ - *"ll s ,'"

for some sequence utn-0*, as r, ---+ oo. Hence, by the choice of z (see (2.16)) we conclude that

{ri} (and {2,} as well) is a Cauchy sequence.

Case 2. If at the point 16 the condition (B) holds then we set
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(2.25)

where the constant M >0 is such that lt6(r,r) < M for all r € Ca(*o) and u € Ne,(r). Let
z e l,l(ro)\C and {r,} C C be a minimizing sequence of r r+ Pp@- r) on C' Everything
is already proved 1f. rn ---+ tr1, rL ---+ @. Otherwise, as we'll see in sequel, there is no loss of
generality to suppose that 16 is not a cluster point of { r, } , and that the sequence {p e @" - ,)}
is nonincreasing. By using Lemm a 2.1.7 similarly to the Case 1 we choose sequences {rt^) C 0. C ,

{"i} c H, un € N'c(ri) and €i e 7pe@'l- ") satisfying (2.9), (2.10) and (2.13). Observe

that, in virtue of the hypothesis (Bt), u simpler version of Lemma 2.1.1 holds that gives r'* : r'i
(see Remark 2.1.3). But, for the sake of uniformity, we prefer to keep all the notations. We can

assume, certainly, that 0 < ll"'"- "oll 
I 5, n:1,2,... (see (2.9) and (2.I7)). Let us choose a

decreasing sequence un ---+ 0* satisfying the inequalities (2.18)-(2.21), and assume that un 4 6t,

n € N. Since zl e Cd (ro) \ {ro} and -unf pr" Grn) € -NeC @'") n 7Fo, we obtain from (2.2i)
that (i €06,6, (16) (see (2.15)).

For convenience we introduce the following notations:

pni:pF@i-z);
Gn:: z * pnF;

t f:) : ---J- (see (1.30), (i.3r));Rn:: 
ll€;ll 

a, (€",c;) : 
2.tF G*,€;)

4)n:: rbc (*'n,on) .

u (,0) ,: {, e H : llz- ,oll < m#IF- , s5 Q) . #} ,
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Here {, ::3p ((i) can be found as in the Case 1 (see (2.22)), because (82) implies that F is
uniformly strictly convex w.r.t. the set 05,5, (26) and, by Propositior- !.2.2,3r (') is single-valued

on the same set. Combining the hypotheses (B1) and (82) we have from the above arguments:

1

2R.-rEe)|€;|,b* : il$il (EffiP -s5e),p, (*'^,,,))

By (2.20), (2.18) and (2.19), respectively,

ll,,ll s *"t Ul un * Pp (,i -,) ll€;ll

s i"t Al u, + (llF"llu* +eT(z) + z,) ll(ill

s sE Q) 116lll + p",

for some pn + 0 as n ---+ oo. Using this, (2.26) and the boundedness of the sequence {{"} *u
can choose u'^ > 0 such that

l
*;T;i- ll'"ll $n>u (2'27)

for n € N large enough (assume that for all n).
Let us consider the approximate curuature centre of the set G, (at the point r[)

zn :: r[ - p" (R* + ,,") ti. e.2g)

We claim that for each m ) n

ll"" - ,'hll <ll^ - "ill + 2llr'll llFll,". (2.2e)

Indeed, the monotonicity of the sequence {pr@* - z)} implies

Pm : Pr @'i. - ')

On the other hand, from the definition of G,,, from (1.29) , (2.22) and (2.28) we obtain:
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Gn c z + p* (1(€;) - (n" + /") e;+ (,q" + u;) ll€;ll B)

- ri- p"(R"+u")€i,+ p,(R*+u;) Il(;llB
: zn*lv'l- 

""11tr.
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Since the sequence {llr" - riill} i. bounded (due to (2.28), (2.18) and (2.19)), by the claim above

(see (2.2e))

ll,^ - "kll' s ll," - "'ill'z 
+ ui

for some pll * 0 as n --+ oo. Now recalling (2.30), we can write the estimate (2.32) in the form:

* 2 (unll"L - "ill + u'z") .

Hence, by the a priori estimate (1.32), we have

Gr*rrn- /,, ll"ll) ll";- *'*ll2 <F*'

for some Fn - 0 as n ---+ oo. The Cauchy property of the sequence {ri} (and of {2"} as well)
follows from this inequality together with (2.27)-

Let us pass now to the second part of the proof. Denote by

u: Uu(rs))C,
ts€C

where we put U("0):: intC for rs e intC. Given rs e 0C, z e U ("0)\C and a minimizing
sequence {*"} c C of r + pF@ - ,) on C, in the Case 1 (i.e., when the condition (A) is valid
at 16) we immediately find the (unique) projection 

"3Q) as the limit of {2,}, existing since it
is a Cauchy sequence. Otherwise (when the condition (B) holds) we choose first a subsequence

{rn*} such that {pp(rx* - z)} is nonincreasing, and rs is not a cluster point of {*u}. Being
a Cauchy sequence it converges to an element r e r[(z). Assuming that r,A €n[(z) with
r * A we consider the sequence {rrr} whose odd terms are equal to r and all even terms are
equal to g. Since {p, (r^ - z)} is now stationary, we can again apply the first part of the proof
and conclude the convergence of {r"} to r : g. Notice that the above arguments are applicable
also if one of the points r or A coincides with rs (because for a pair of natural numbers n and m
with rn ) n we utilize the hypothesis (B2) at the point rl only). In order to show continuity at
the point z € l,l let us observe that for each {z*} C l,l converging to z the sequerce {tr[ (2")]
minimizes r e pF @ - ,) ot C. Indeed,

pe("5Q) - r) s pr@5Qi - "n) + pp(,n- z)

s r3 Q) + 2 llr''ll ll"" - ,ll -- 53 Q) + .

Thus, by the same reasons as above, each subsequence of {r[(2")] admits a subsequence
converging to r$ (z). So "5Qi 

-- n3 (z), and the theorem is completely proved. I
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Thus we have two types of local assumptions guaranteeing the well-posedness of the time-
-minimum projection in a neighbourhood of a fixed point rs e 0C. The first one (the condition
(A)) provides regularity of the superposition operator involving both the proximal normal cone
to C and the gradientYpp" (.), while the other involves the curvatures of F and C being square
characteristics of these sets. Therefore, we can refer to (A) and (B) as to the first and to the
second order condition, respectively. Although there is a large class of problems, which satisfy
bothhypotheses(forinstance,if.F,:BandC:{reH:f(") S0},where/(.) iralocally
C1,1 function with V/ (r) I 0 for r e 0C), simple examples show (see Section 2.4) that none of
the two ((A) and (B)) implies the other. At the end of Section 2.3 we amplify a little bit this
list of local conditions including some extreme cases.

If the set C is proximally smooth then we can give an explicit formula for a neighbourhood
where the continuous retraction rfi (.) is defined, which has, however, mainly theoretic interest
due to the fact that it involves approximations to the projection itself. To this end let us consider
a slightly stronger hypothesis than (82). Namely, we say that (F, C) satisfies the conditi,o" (B'2)
at a point rs e 0C if there exist d,d/ > 0 and K ) 0 such that

Np (1r (€.) ,6-) > K for all (* e [/5,5, (rs) ,

where the set U5,5, (rs) is defined by (2.LQ.

Theorem 2.2.2 Assume that C C H is g-conuer wi,th a cont'inuous function g: C -+ JR.+, and
at each point rs e AC the pair (F, C) satisfies the conditio" (BD. Then the mapping z e 

"E Q)
is s'ingle-ualued and cont'inuous on the open set2l.(C) of all points z e H, which either belong

to C or satisfy the i,nequali,ty

Iiminf {rr(1, (€.),(.) -r3Q)p(r)} > 0,

whereS(r), , $. C, is ttte filter in H3 generated by the sets

{(*,r,€*) ,pr,@- r) <g3Q)*e, r €AC, u € Nc(r), ll€-+rll <€, (*,-u e0F'), 6 } 0.

Proof.
In order to prove openness of 2l (C) Iet us take first z e 2l (C) \C and choose u ) 0, e > 0

such that
Nr (3r((.),(-) - r3 Q) v @) > u (2.34)

whenever r e AC with pp (" - r) |; 5;5 Q)*e and u € N5, (r), €*, -u e 0F" with ll(. * ull < e.

By the a priori estimate (1.32) the function p(.) is bounded on the set of r satisfying (2.34),
say 9 @) < &/ with some M > 0. Set

€' :: min { ,,'= ,-.9. X 
', 
}.

\ a llr"ll' 2' 2M llF"ll I '

Assuming, moreover, that (z +e'B) I'C:0, for each z' e. z +e/B let us define the set

(2.33)

P (r'),: {* € 0C : pe (, -,') < 55 Q') + r'} * A.
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For each r e P u'':,i:::;""="t 

",-oY)r+ 

rr*, ,,, - ,,
s sE Q') + et + llr"llu'

s rE Q) + e'(t + 2 llF"ll)

Then,by(2.3a) forarbitraryvectors €*,-u€aFo withue Nc(r),ne P(z') andll(-+rll <

e' I €, we have

which implies that zt e%(C).
Let now z i: ro e 0C. By the hypothesis (B/r) and continuity of the function I (') there

exist 6,d/ > 0 andpositiveconstants K, M suchthat Nr(3r (€-),€-) ) K for all(* e U6,5,(ts)

and g (") 1 M for all r e Ca (16). Set

, t.l K d_\
e' i: i,mtnf llFly' liFillllFlEl

For zt€ (ro +e'e)\C and r e P(zt), taking into account that llFll llF'll > 1, we have

and

r5 Q) p @) allrll ll,o - ,'ll M < llF'll ,'* < +
If, furthermore, u € Nc (r), pr" (-r) : 1, and €* e 0F" with ll(- +rll < e' < 6' then clearly

€* e (Jo,u, (rs), and we obtain the inequality (2.35) with z - K. Consequently, zt e 2l(c)
and therefore%(C) is an open neighbourhood of C.

Proving the well-posedness of the projection 
"5 

(.) we can proceed as in the proof of Theorem

2.2.1 with some minor changements. Let us fix z e U.(C), z ( C, and take a minimizing
sequence {r,,} for rr-+ pF@- r) on the set C, assuming that {pp (rn- z)} decreases (may be

not strictly). Then we choose the sequences {rl} C OC, u,, € N5r (*'"), €!" e 7pp(*'"- z) from

Lemma 2.1.1 (see remarks 2.L.2 and 2.1.3). Observe that (2.10) implies that

sE Q) ll€;ll - ll,"ll < pp (,'n -,) ll(;ll - llu"ll '-* 0
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and

: (ll,"ll - pr (*'"- ,) ll€;ll) + z" ll(ill * 0.

Hence, ,i/e can choose a decreasing sequence un + 0+ such that, vn < 5' , ll*'* - *"ll I Ltnt

pe @| - z) < gE Q) f u,, and

lr3 A ll€;ll - ll,"lll < ,", (2.36)

n:7r2r...
Since -u,/ pp" (-un) € -Nc ("'") n 0F" and by (2.10)

ll 1" ,+e;ll -o
ll Pr" \-'^t ll

as n --+ oe, we find (see (2.33)) a number v > 0 such that

,r (1e (€;) ,6;) - s5 Q) e ("'") > 2u llFll (2-37)

for n ) 1 large enough (assume that for all n).
Notice that the vectors (i belong to the set [/6,5, (rl) where the mapping Jr (') is single-

-valued. Let us set, as usual, €n:3F ((i). Denoting by

t).- 1

- 2ll€;ll ,e (€,,€i,)

and gn ,: p (r'r) we obtain from (2.37)

1

2R^ - sE Q) ll(ill e" : ll(;ll (', (€*,€;) - 53 Q) e (r'")) > zv' (2'38)

Due to the estimate (1.32) the sequence {llR"} is bounded (and {9"} is bounded too as follows

from (2.38)). Taking into account the inequality (2.36), we come to (2.27), and the remainder

of the proof is exactly the same as respective reasoning in Theorem 2.2.1-. I

Remark 2.2.L In a finite-d,i,mensional space due to the compactness of the set U5,6, (rs), the

condition (Bt) can be substi,tuted by the second order strict conuerity of F w.r.t. each uector

€* e -Nc (16) n 0.F'". Howeuer, ,in general, we haue to require the local uniform,ity of this

property through lack of the strong conaergence of norrnals.

Following the definition given in [31, Definition 5.2] we say that a convex closed set F C If
is ystrictly conl)er (for some f > 0) if

(,i - €,?* - €*) 2 z lh - €ll',
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whenever t,n e F, (* e Nr (€) n B and 4* e Nr (ri) O B, or, equivalently, if

(q - (, t.) < -lll,r - 6112 .

The last inequality implies obviously that

xr (Xr (€.) , €-) > ; (2.3e)

for all (" e 0F", which is the global version of second order rotundity. In this case as an

immediate consequence of Theorem 2.2.2 we obtain the following well-posedness result.

Corollary 2.2.3 Let F C H be a closed boundedl-stri,ctly conuer set with 0 e int F, and let

C C H be anonempty closed, and,g-conuersetwi,th acont'inuous functiong:C -+W+. Then

th,e projection r[ (z) is a singleton cont'inuously dependi,ng on z € ts (C), where

[)
8(C)pfzeH: limsup pe@-,)p(r). ll Q.4o)

[ ,.1,-4-s$121+ " 
)

'is an open set containi,ng C.

Proof.
Let prove that !8 (C) c 2l(C). To this end fix z el6(C) \C. Then, by (2.39),

z sQ)

z ,16_21_s$(4+

and consequently z e U(C).
The openness of the set ts(C) can be shown by the same reasons as the openness ot2l(C)

in Theorem 2.2.2, arrd the statement of the corollary follows from Theorem 2.2.2. I

Remark 2.2,2 If the target set C i,s perfect, i.e., zt has no i.solated points, thenE(C), which

can be smaller than the neighbourhood%.(C), coi,ncides wi,th

ts (c) : {, e H : 5$ (,) e ("5 aD .;) Q.4t)

Let us take z from the set (2.11) and let {r^} be a mini,mizing sequence of r e pF(t- z) on

c, i.e.,
pp (rn - z) t gE Q) : p, (i - z),
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n:: r5Q) @e assume that the projection erists and is unique). We should proue that rn -+ -7'.

To thi,s endwe fi,r an arbitrary subsequence (denoted also by {""}) and construct its subsequence

conuerging to i. Si,nce t is not an isolated, point of C, tltere erists a sequence {"'"} C C, rtn ---+ i,
and such that rt^ f i, consequently, by the uniqueness of projecti,on,

pe@'^-z)>g5Q), n€N.

Si,nce pp(rn- r) -- fEQ), i,n part'icular, there erists a number k1 such that pp(*nr- r) <
pe@\- r). But we haue also pr@;- z) - fEQ). Therefore, one ca,n find, kt, ) kr with

pr (*,*, - ,) . pp (rn, - z). Ba the same reasons there erist k2 and, kL, kL ) kz ) kl such that

-r)
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Continui,ng this process we construct two subsequences {rt,} of {r^) and, {r'r,\ of {r'*}, res-

pectiuely, such that

( pr (rn^+, - z) < pr (r'r, - ,) . pp(rx* - z)

for each n. Let us define now another minimiz'ing sequence {A"} of r r- pp (r - z) on C
by setting A2n-7 : :Lpn and A2n : r/6, , n € N. Then by the preuious inequaliti'es we haue

pzn+t l pzn { p2n-t, px :-- pp (at - r) and g2n --+ i. By the continuity of V O we can suppose

that
r\Q),p(d.l (2.42)

for all n. Literally repeating the reasoning of Theorem 2.2.2 (see also the esti,mates in the proof

of Theorem 2.2.1) we can show thatlly*-Uz^ll tendsto zero asm)2n--o. SinceA2n+fr,
we h,aue also rpn : a2n-r --+ r as we need. Thus, the mini,mizing sequence {r*} itself conaerges

to i, and for all n € N large enough pp(*n- z)p(**) <112. In particular,

limsup pe@-r)e@)<l
pF@_4+s\e)+

and z e ts(C). The opposite inclus'ion is obuious.

2.3 Some particular and special cases

Let us concretize the results obtained in the previous section. First, we consider the case of a
(p-convex target set with smooth boundary, denoting by n (r) the unit normal vector to C at

the point r e 0C and setting

Pr (r'0, - ,) ,- Pp (r*, - z) < Pr (,'r,

or (''t"' *, - ')

pr'. (-n (r))'
(2.43)
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Theorem 2.3.L Let C be a closed set with smooth boundary, which is g-conuer with a conti-

nuous function g: C ---+ 1R+, and let F be a closed bounded set wi'th 0 e int F, whi,ch is strictly

conaer of second, ord,er w.r.t. each uector o (x), r e AC . Then the time-mi'nimum projection

"3(.) is well-defined on the (open) set2l(C) (see (2.33)), which in this case admits the form

53

(2.44)

We put naturally lim inf l,n (2.4t) to be equal to *m wheneuer z € int C .

Proof.
Let us show the validity of the condition (B/2) under assumptions of the theorem. Indeed,

for each ro € 0C and fixed
xr (3r (u ("0)) , u (ro))

>0

by the lower semicontinuity of the curvature at the point b (re) there exists 6' : 6'(ro) > 0 such

that
ll€--u(rs)ll <2dl

implies
xr (3r (€.) , €.) > Ne (3e (u ("0)) , u (rs)) - e.

On the other hand, by the continuity of u (') we find d : d (ro) such that

(2.45)

llo(")-u("0)ll Sa'

forall r €0C with llr-roll < d. Thengiven(* €(It,t, (zs) let uschoose re0C satisfying
both inequalities ll" - "oll 

( d and ll(. - u (")ll S d'. Since

ll(- - u ("0)ll S ll€- - p(")ll + llu (r) - o("0)ll < 26',

we have (see (2.45))

Nr (1r(€.)'(.) 
I ; l;f3;?;,:,|];lft"i,,, .lai:T>w.

Notice that, Jp (.) is single-valued and continuous near each b (*),, €.0C, due to second order

strict convexity.
Therefore the time-minimum projection 

"E O is well-defined on the (open) set 2l (C) given

by (2.33) which can be represented obviously as (2.44). I

{rr (7e(€-) , (.) - sE (4 e (d}, ,}
)
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Remark 2.3.L In terms of the time-minimum projecti,on itself (already defined and single-

-ualued on21.(C)) we can represent this neighbourhood as

u(c) : c t) {z e H\c : rfl Q) e @) < xp (Jr(u (r)), u (z))] (2.46)

where i:: r\Q). Indeed, let us suppose th,at z ( C belongs to the ri,ght-hand side of (2./16)

andfir aminimizi,ng sequence {r"} C 0C of the functionalrr+ pr@- z) onC andasequence

{€i} c 7Fo such that llo(*") - €ill * 0 and

liminf- {,r (1e(€.),€.) -rEQ)e@)} : _lip- {,e (3e(€;),€;) -stQ)p@")} .

pr(z-z)-t[(z)+' n+oo '
(* -u(r)+0

teac,e+ €aFo 
Q.47)

We should proue that rn --+ r. To this end we fir an arbitrary subsequence (d,enoted also by

{""}) and construct its subsequence conuerging to i. Proceedi,ng as in Remark 2.2.2 we can fi,nd

a sequence {*|} c C, ,',-'--+ -r with *; + i and, choose subsequences {r1"^} of {r*} ond, {r'u,\
of {**} such that {pe @* - z)} i,s strictly decreasing (here g2n-1 : frkn and g2n - xtk,^, n >- 7).

By the conti,nuity of g (') and b (.), and by the lower semiconti,nuity of the curuature we can

suppose that
sE Q) e (c") - ,, (3, (o ("i,)) , u (zi)) < o, vn € N.

Now usi,ng the esti,mates in the proof of Theorem 2.2.1 (see (2.31)-(2.32)) we show thatllA* - Az"ll
---+ 0 as m Z 2n --+ oo. Hence, rkn : Azn-L ---+ i (see Remark 2.2.2). Thus, the mi,nimizi'ng

sequence {r*} itself conuerges to i. Consequently, €I * o (n) and by using both the continuity
of p (.) and the lower sem'icontinuity of the curuature we conclude that

tim {Np(Jr(€l),(;) - rEQ)p@,)} z nr(Jr(u(z)),u(r)) - s5(4p(t) > 0.
n+oo -

Taking into account now the equality (2.47) we haue z e %(C). The opposite inclusion is

obuious.

Remark 2,3.2 If dim I/ I a then each mr,ni,mizi,ng sequence has a cluster point and conse-

quently the nei,ghbourhood (2.44) can be written in a si,rnpler form:

2t(c) : liminf
pF@-z)-s\e)+

r€0C

. (2.48)

Indeed, let us suppose that z belongs to the right-hand si,de of (2.48) and fin a minimizing
sequence {rr} c 0C of thefuncti.onalrr- pr@-z) onC and a sequence i€l} c 1Fo such

thatllo("*) - €lll * 0 and the equality (2 /r7) ltolds. Talcing a cluster point r e 0C of {r.,-} we

assume wi,thout loss of generality that rn "+ r, and, by the hipothesis, in particular,

{,,u,
{r, (;r(u (r)) , o (r)) - rE Q), (,,} , o}

r i: dF (3r (u (")) , u (r)) - s5 Q)p (r) > 0. (2.4e)
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On the other hand, by conti,nuity o (r") --+ o (r), rl, ---+ oo' So that (i - ! (r), and, by Proposition

1.2.1 also Jr((i) --+ Jr(u(")) as n -+ oo. Hence, by the continuity of p(.) and the lower

semicontinuity of the curaature we haue that

xe (lr(u (,)) , u (,)) - rE Q) p @) S xr (1r((;) , (;) - t5 Q), @*) *tr
for n) 1 sufficiently large. Thi.s together with. (2./19) giues

xr (3r (€;) , €;) - rE Q) p @,) 2
T

,,
Finally, passi,ng to the limit as n --+ @ u)e conclude

{re (1e (6-) , €-) - rE Q) e @)\liminf
pF@_z)+sEe)+

{*-o(o)r0
te)C, (* e0F"

'i.e., z e%(C). The opposite inclusion is obu'ious.

Concretizing now the local result given by Theorem 2.2.1 we have

Theorem 2.3,2 Let C be a closed g-conaefi set wi,th smooth boundary and such that for each

point rs e 0C one of the following assumptions holds:

(i) the set F i,s uni,forrnly strictly conuer w.r.t. the uector u (zo), and the (single'ualued')

mappi,ng r * Jp (u (r)) is Lipschitz cont'i,nuous near no;

(ii) the set F is strictly conaer of second order w.r.t. u(zo).

Then z - nr\ Q) i,s a neighbourhood retraction of the set C .

Proof.
The hypothesis (i) is nothing else than the condition (A) at the point rs specified for the

case of smooth boundary, while (ii) implies the condition (Bi) at rs, because (€, €-) =, ,(F ((, (-)
is lower semicontinuous (see Remark 1.2.4). Notice that, in this case, (B'2) is equivalent to (B2).
Thus, we are able to apply directly Theorem 2.2.1. I

Notice that if at each point rs € AC the dynamics satisfies the hypothesis (i) from the above

theorem then we can entirely avoid the <p-convexity assumption for the target set.

Theorem 2.3.3 Let C be a closed set wi,th smooth bound,ary, and let F be uni,formly strictly
conaerw.r.t. eachuectoro(r), r e AC. If, moreouer, the (single-ualued)mappingr + 3F (u ("))
is locally Lipschitzean on 0C then the statement of Theorem 2.3.2 holds.
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On the other hand, we can obtain the well-posedness of rfi (.) in a neighbourhood of a rp-

convex set C even with lack of the strict convexity of .F w.r.t. (- € -Np6 @) n 0F' for some

isolated points r € 0C where smoothness of the boundary is also violated (see Example 2.4.4).

Observe that the formulas (2.33), (2.44) as well as the neighbourhoodl,l given by Theorem

2.2.1 (see (2.25)) involve the function %p (t,(*), which can not be in general substituted by

thelrtrue" curvature )rr(€,€"). Let us propose a method to estimate %F(e,(*) from below

basing on the differentiability properties of the duality mapping Jr (.) similarly as it was done

foryf (€,(.) (see (1.4a)). This permits us to find a smaller neighbourhood of C, expressed in
other terms different from Np (€, (- ), where the well-posedness of the projection takes place. To

this end we assume that the set 0F'is second order smooth (at €. e 0F"). Let us associate to

each d ) 0 some positive number p (5,€.) such that

llY'pr" (ry.) - Y2pp" (6-)ll s d

whenever \* e AFo with ll4- -€-ll < B(d,€-). This number exists by the continuity of the
mapping \* *Y2pp, (4*) near (*. In particular, given d ) 0 and 0 <,\ < l the inequality

llY'pr" (n* + tr*1 - Y2 pp" ((.) ll < 6 (2.50)
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holdsforall 0 <r< (1 -A)P (d,€.) lllF"ll,u* e 1Fo and4* e AF" with ll4--(-ll < 
^B(d,€-).Recalling the proof of Proposition 1.3.3 we obtain from (1.46), (1.43) and (2.50) that

G p. (t, \*, rt) : t],rZy"(Y' 
p w Q7* + ru*) u*, u*)

s ( (V'p." (n* + ru*1 - V2 pp"(€-)) ,., ,-))* ( ,to (v'pr"(€*)r.,u*) + sup
z \u'€F" u'€Fo

f, (lo'oo" (€.)11." + 6 llr'll2) t2, (2.51)

where as usual \:: Jr (4*), and T : T(t,u*) is some number between 0 and t. Applying the
Legendre-Fenchel transform to both parts of (2.51) we obtain

6f,. (r, rt* ,rt) 2rro {r, - 
6F. (t,\* ,rl): 0 < t < (1 - 

^) ffi# }_r? suplrr- i (llo"r. (€-)11." +dllr,ll') * :0 <, < (1 - ^)ffi#),r-: ,(lo'or"(€-)ll.,+dllr;D' Q'52)

which holds true for all 0 < r ( (1 - 
^) 

q(d,€*), where

q (d, €.) ,: 0 (5,*-, llv2pr' (€-)llr" + d llr"ll2
llr''ll
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By using the duality between the moduli of local smoothness and of local strict convexity (see

(1.36)) we obtain from (1.9) and (2.52) that

12'- 
2llFll'(llo,r.. (€-)11.. + d llPll2)

whenever 0 < r < (1 - )) q(6,€.) ll,F,ll. Obviously, er (r, rt,T*) : *oo for, > lllI,ll, while in
the case (1 - l) q (d, €.) llF' ll < r 4 2llI, ll, bv the monotonicity of the function Cr (',4, ?*), we

have

(2.53)

(2.54)

ar ((1 - )) q (d, (-) llFll , rt, rr-)

((1 - 
^) 

q (d, €.) llrll)'

s llFll2 (llv'rr" (€.)11". + d llr"ll'z)

Finally, comparing the inequalities (2.53) and (2.54), which hold for all4* near €*, by arbitrarity
of ), 0 < ) < 1, we obtain (see (1.26)):

This estimate together with Theorem 2.3.1 permits us to formulate the following result.

Theorem 2.3.4 In addition to the hypotheses of Theorem 2.3.1 let us suppose that the polar

set Fo has bound,ary of class C2 near o(r) for each r e AC. Then, for a giuen 6 > 0, the

ti,me-minimum projection nfi (.) i,s wetl-defined on the (open) set

.yr (€,€.) : liminf ,fq 
gfQJr1)

tr,r.l-iq,e"l ;;b 12

qe}POt*),q* eoFo

- zllFll2 (llo"." (€-)11"" + d llr'll2) 
'-'- \ 4 '- ) 

. \-

(
I

uta(C): lz e H : Iiminf {O(d,€.) -rEQ)e@)}I p"@-z)-rfQ)+ -

I c* -u(c)*g( c€AC, €* eAF"

,,) , (2s6)
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where

o(d,(.) :: tFfum,,,, { , Q.57)

,-I
ffiI

We put naturally lim inf in (2.56) to be *a wheneaer z e int C .

Remark 2.3.3 From (2.57) and the defini,tion of P (5, €*) *" see that the nei,ghbourhood, Ua (C)
,is larger wheneuer the second d,eriaati,aeY2pp"(.) grows slower. Vargi,ng d > 0 we can control
slightly the si,ze of th,i,s neighbourhood.

The Theorem 2.3.1 perfectty works, i,n particular, when Y2 pp" (') 'i,s Lipschitz continuous

locally at each poi,nt (* e 7Fo (say i,n a eg. -neighbourhood of €. ) wi,th Lipschitz constant Lq. , in
whi,ch case we can choose B (d,€.) equal to min (d/lr. ,eg) (see Erample 2./r.3).

Concluding this section let us give two special hypotheses involving local convexity of the
target set, which also guarantee the well-posedness of the projection.

Proposition 2.3.5 Suppose that for a giuen rs € 0C one of the following conditions holds:

(i,) C has smooth bound,ary at rs, and, for sorne e ) 0 the set C n (ro +uB) has nonempty

interior, and it is strictly conuer of second order at rs (w.r.t. the corresponding normal
uector);

(ii) for some€)0 the setCn (ro+rB) is conuer, andF is strictly conuer oJsecond order

w.r.t. each u € -Nc @)n0F', where r e 0C withllr - roll < u.

Then the functi,on z t-. n$ (z) is si,ngle-ualued and continuous 'in a neighbourhood of rs.

Proof.
Let us consider each case separately.
(i) Without loss of generality (translating if necessary the set C) we can suppose that

0 e intG, where G :: Cn (r, +eB). tet us denote by

,o': -199 -,' 
PGo (n("0))'

where n(rg) is the unit normal vector to C (as well as to G, certainly) at the point rs. Since

G is convex, closed, bounded with 0 e int G and us e. OG" O Nc (ro) : Jc' ("0) (consequently,

Jc (ro) : {r0}), the number u i:1G (ro,ro) is well d:fined and strictly positive by assumption.

By(1.25) thereexist0>ul2anddl)0suchthatC6(r,r,u)>0r2wheneverllr-zsll <d',
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llr-roll 16',r:3c(r),ue)Go andr>0. Sincethemappingr_+ n(r)incontinuousina
neighbourhood of 16, setting u t:(L(*) lpc"(n(r)) let us find 0 < d < min{d',e} such that
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+ lln (rs)ll lpc" (n(")) - pc" (n("0))ll

"#ffi- 
llcll (lln(,,)ll + ll* ('o)ll) lln('o) -'(')ll

2llc'il2llGll lln ("0) - n (r)ll < d/

whenever ll" - "oll
Setting now

< d. So that 06 (r,r,u) > 0r2 forall r € 0C, llr- roll ( d, and all r > 0'

6_
U ("0) ,: q * iB,

where D::2llF"ll ll-F'll, takezeU(rs) andaminimizingsequence{r"}c 0Cofthefunction
r + pF @ - ,) on C. Similarly as in the proof of Theorem 2.2.1 we see that llr" - "oll 

< d. By
Definition 1.2.2,

ir' = 
0r2 Ae" (r, r,u) < (" - a,r) Vy € G, lla - "ll2 r,

whenever r e 0C with llr - roll < 6, u : n(*) I pc"(n(")) and r ) 0. In particular, substituing

into the above inequality

tr i: rn) , ,: -Llg\ t u i: nm, and r ,: ll*^ - r*ll,
PGo (n (rrJ.)

for sufficiently large m) n ) 1 we have

'roe t"@,))llr,. - ,.ll' a lr^ - nnt,tn (r,)) .

In accordance with Lemma 2.1.1 and remarks 2.1..2 and 2.1.3 we do not Iose generality if suppose

that for some vectors (i € )pp (** - z) : NF (ffi\) naf" and for some sequerlce I)n ---+ 0*
the inequality

(2.58)

(2.5e)llu(",) -(;ll < ffi,
n : 1,2, ..., takes place, where u (r") is given by (2.43). In fact, Lemma 2.1.1 affirms the
existence of another minimizing sequence {r'"} C C close to {r,} (due to Remark 2.1.3 we

can set r'l : rL) and of the vectors (l e Nr (ffi) i aF,o and u,, € N'c (rl) such that

llr, * pe @'" - ,) €lll * 0, n --. oo. By the smoothness we obviously have u, : -u (rr) pp (r" - z)
(see Remark 2.1.2). Therefore we can consider the sequence {r"} itself in the place of {zl} and
(i satisfying the equality (2.59). Let us set

pr,. (-n (r"))),::
pc" (n(*"))
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and zn i: nn*,\,(i. Hence, by (2.58) and (2.59), we obtain that

(rn-rn,r^- nn) : ),[(0 (*n),r*-nn) *(€i -u (rn),r*- *^))
. l / n(r-\ \ ,, -* , \,, ,r .'l

: ill"* - *,ll' - ^"#;llr,. - 
,^ll (2.60)

*g\.)

for all m,) n 2 1. On the other hand, (| is anormalvector to theset z* pr(rn- r)F at the
point r,, and r,n belongs to this set by the eventual monotonicity of {pe@"- z)}.Therefore,
(rn - ,n, r^ - rn) : ), (€1, r* - rn) ( 0, and combining this with (2.60) we find

ill"*- r,ll. ffi^",
for all m ) n ) 1. Hence {2"} is a Cauchy sequence because {,\"} is bounded, and the remainder
follows by the same line as in the proof of Theorem 2.2.1.

(ii) In this case we set

u (,0):: uo * {lF4l!lTrtr
andshowdirectlytharr[(4fAforeachzel,l(rs). Indeed,if{r,}CCisasequencewith
pr(rn- z) 3gEQ)+7ln then by the boundedness there exists an its subsequence converging
weakly to some r e H. Hence

rn e cn (, * (rt Ur. *) .) c c . (,0 + "tr) (2.61)

for n ) 1 large enough. In fact, the relation, or (ffiq;) 
= 

, and {r,} c C imply that

rne cn(,* ("tur.*) .) ,

and for every s € C n (, + (f$ @ + *)F) we have

znll + 1\ * llz - rsll I e, (2.62)

for every n large enough. Since the last set in (2.61) is weakly closed, we have r € C. On the
other hand, choosing a sequence Un e z+S[(z).F, such that pp(*n-U,) SLln we observe

that the weak limit of some its subsequence is equal to r too. Notice that such subsequence
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exists because {g,} ir bounded, and its weak limit belongs to the weakly closed set z *5[ (r) F.
Hence r e (z +55Q) F)nC : rfi(z). Therefore we prove that rfi(r) *A for each z e t,t(rs),
as we want.

Let us assume now that the projection rfl (z) consists at least of two different points, say

r and g. As we said above r,U € (z+5[Q)f) oC. Also similarly as (2.62) we have r,U e
zo *eB impling that z,a e G :: C i ("0+rB). By the convexity of z+5[(z)F and
of G the projection 

"EQ) 
contains the whole segment {Ar*(1 -^) y:\e [0,1]]. Fix some

i::\r*(, - i)9with0 < i ( 1. Thenbeingf e rfilzl thepoint i minimizesthefunctional

U + pp (A - ,) + Ic (y) on f/. Consequently

0 e 0 (pp (i - r)+ Ic (r)) - 1pe G' - r)+ Nc (t) .

Hence, there exists a unit normal vector i e Nc (i) such that

(2.63)
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o ,: *fihy e opr@ - ,)- Np (trfl naF',

or, equivalently, 0 € J,.' (@ - ,) lf\ @). In fact (i - ,) ISE @ is the unique element of 3r (u)

because F is strictly.trr,r"*of secondorder w.r.t. u e -Nc @)nlP" and i € (ro+etr)naC.
It is easy to see that the vector u is orthogonal to the vector subspace

( r-z,,:\^ffa+(1 - \ff6, ,\€R) q6
Indeed, for each ru e L, we have

(u,,o) : 
^ 

(u, rTe 7*r)+ (1 - 
^l 

(u, ffi - utre) = 
o,

since u € Nr ((t - ,) ISE @), and, on the other hand, 6 e -N6 (6) that implies

(u,tr) : d6[)(u,r-t) +(1 -)) \6,a-t)] >0.

Thus frp (Jr (u) , 6) : *oo contradicting the condition of theorem and showing that 
"6 Q)

is singleton for each z e U (rs) .

Finally, let us consider a sequence {r"} c U ("0) converging to some z e U (tn). By the
arguments above, without loss of generality we may suppose that {zrfl (r")), being a minimizing
sequence for r r* pr@ - z) on C (see the end of the proof of Theorem 2.2.1), converges weakly
to the unique projection 

"5Q).So 
it remains to show that convergence is also strong. Setting

i:: r5(z), from the relation (2.63) we find again a normal vector i e Nc(i) such that
(i-r)lf\Q) istheuniqueelementof lp(u) where t'::-ilpe (-fi).Sincebyassumption
F is strictly convex of second order w.r.t. u then (see Proposition 1.2.1(i)) (t - ") 155 (z) is a
strongly exposed point of F. So that the weak convergence of { (zr$ (r") - ,") 153 Q)} c F
to (tr[(r) - ") lS3@ implies its strong convergence, and the continuity of the mapping z >
rE Q) follows. r
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2.4 Examples

Example 2.4.L InaHilbertspaceH forafinedue H,llrll :L,and0<d<lletusconsider
the conuer closed cone
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whose polar cone is

K,,o :: {x e H : (u,r) 2 0 ll"ll},

K1,e : {, e u: (-u, x) 2 1/1 - sz ll"ll} .

Talcing now 0 101 z-02 1!, we define C ,: H\Krn and F i: (Ku,gz - u) n B,

The set C neither has smooth boundary, nor is <p-convex, and, moreover, the origin is its rrinward

corner" point, NA (0) : {0}. On the other hand, F is not strictly convex, because the boundary
0F contains a lot of linear segments.

However, the hypotheses of Theorem 2.2.7 are fulfilled, and nfi (.) is a (global) continuous
retraction of C. Indeed, let us represent thetarget set inthe form C: {r€H:f (")<0}
where f (r) :: (r,*) - d, ll"ll. Then

N5 (r) : v"f (r)R* : (, - ,,ffi) n.

for each r e 0*C: aC\{0}. In particular, taking r e 0C\{0} and (- e
have

-NE (") o 0F' we

-e?),

for some ,\ >

ll(.ll' :
so that

(-,, (*) : tFl ll(-ll > ,[, *Zrc.ll,
i.e., (* e intKf,rr. Since

€* e Kf,,ern OF" - N6 (0) n AF' - Np (-r) n 7Fo :3r' (-")
then -u e Jr (€-) and consequently (€-, -r) : 1 and, on the other hand,

(* e int Kl,s, + (€-, g) < 0 Vg e K,,ar\ {0}
+ l€*,A - u) < 1 Vg e K",ar\ {0}
:+ (€.,€) < 1 V( e .F,\ {-r},

so Jr (€.) : {-r}. Therefore the mapping r r, Jr (-N3 (z) n 0f') is constant, and the
condition (A1) is satisfied trivially at the point rs : 0 (with arbitrary 6 > 0). In order to justify

(A2) let us choose o, $-//'r<o < fjr,and d'> 0 such that

(-,,(*) :,r(-,, -u*01ffi) :.r(r+ffi,-,,,1) :.r(r
0, and

^'(-, * 
r,#t,-u + erffi) : 

^' 
(, * rffi \-,,,) * t?) : l2 (1 - o?),
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forall€*e0F"and4*€11 withllq--(-ll<26'.If,moreover,€*€-Nb(") iAFo,re0C,
z f 0, then

(-r,\*) }ollq.ll . Q.64)

Now for each 17* €(J6,6, (0) (see (2.L4)) we have q* e 7Fo, and there exists €* e 1Fo such that
(- € -Noc(r) and ll€- -r7-ll < a'. Therefore llq. +t'u -€-ll < 25t ardby (2.6\ the inequality

\-r,rt* * 6tu)> o ll?- + d'ull, [- e'rlln- + d'rll

follows, or q* +6'u e Ki,,er.Hence, lbr each \* €[J5,6, (0) and each 4 € F by duality of the cones

we have (\* +6'r,u+\) ( 0, and recalling that Jp(rl.) : {-u} and u*qe Ku,6rwe obtain

0r (r, -u,\*) : inf {(-u - q,n*) : r7 e F, llu + qll 2 r}

which means the uniform strict convexity of f' w.r.t. the set of directions t/5,6, (0). In this
example, certainly, it is easier to observe directly the uniform continuity of the mapping Jr (q-) =
-u on t/a,a,(0) (this is what we really need for proving Theorem 2.2.1) than to construct an

estimate of the modulus 0p.

Example 2.4.2 Let us modi,fy slightly the preui,ous erample, taking arbitrary u e H wi,th llull :
1; 0 < 01,02 <-1; 1 < ot 12 and setting

C :: {r e H : (u,r) < 0t llrll"};
F :: {( e H : (u,( + u; 2 ezll€ + rll"} .

Clearly, .F' is convex closed bounded with 0 € int r,, and C is closed admitting at each point
r e dC\ {0} an unique unit normal vector directed as

V/('):u-oet=lu-/ L 
ll"ll'-"

(here /(r) :: (r,*) - Pr ll"ll"), which is also continuously extendable up to the origin (we have
V/ (0) : o). So that N!, (") : V/ (r) R+, r e 0C, and the boundary of C is smooth. However,
Ne' (0) : {0} (as it is easy to verify there is no point except the origin itself whose metric
projection onto C is 0), while U3 (") - Nb (r) at other points r € 0C. Therefore, C is not
(p-convex, and the condition (B) can not be applied (at least in a neighbourhood of the point
0). Notice that in Chapter 1 we already considered the set F and its rotundity properties (see

Example 1.4.1). We showed there that F is uniformly strictly convex (w.r.t. the whole A.F.'). It
is even 'y-strictly convex with some 7 > 0. Therefore, the hypothesis (A2) is fulfiled.

In order to verify (A1) let us fix an arbitrary point r e 0C, r * 0, with the proximal normal
vector V/ (") and determine a (unique) ( e 0F such that -V/ (r) is normal to F at (. Since
Nr (€) : Vg (O JR+, where
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g (€) ,: €zll€ + rll' - (u, ( + u) ,
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solving the equation find immediately that .\: 1 and

iL - u.

Thus, the (single-valued) mapping

r P JF(-NA (r) n or') : G)* * -,
is Lipschitz continuous on Cd (0) with d > 0 arbitrarily large, and the Lipschitz constant is

t : (U)'- Applying now Theor em 2.2.! we can affirm that n[(.) is a neighbourhood

retraction defined on the open set (see (2.16))

The following example (in the space ,Ff : IR2 for the sake of clarity) illustrates the second

order condition (balance between the curvatures).

Example 2.4.3 Let

F': {(€r,€r) e R,'l€zl S 1-#, -1 S6r < 1}

and
C :: {(q,r2) e R2 , q < rl} .

Observe that C is closed and has smooth boundary with the unit normal vector

-V f ("): lve (€), 
^ 

) 0, we

': (a)-

u: 
{, 

e H :rfiUr. (?)*]

1
n (r) : 

m(7, -2r2) , x) i: (q, rz) € AC .

The target is also cp-convex with
1

'^ I *\ 
-Y\r')-@ (2.65)

NL (") we haveIn fact, for any r, U € 0C with ntt UL > 0 (the other case is similar) and u €

7,1
ffi (", a - r) : fu((r,-2r2) ,(yZ - ,3,a2 - *z))

: 
#r@Z+ *Z-2rzaz)

: lta-*ll,#w<lty-"Pfu,
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The closed convex bounded set F with 0 in its interior already been considered in the Example

t.4.2. Let us recall some estimates obtained there.
Let us fix an arbitrary dual pair ((,(.) (i."., €* e 7Fo and ( e Jr((.)) with (:,((r,(z)

€ IR. x R. By symmetry we can consider only the case when (z 2 0 and (1 < 0. If (2 > 0 then
we have (see Example 1.4.2)
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K ((1) ::

where E ((1) :: 1+

2€? <rp(€,e.1 :ffi<

ite,t-)' , and

(2.66)

(2.68)

relation o (r) e

(2.6e)

(2.67)

In particular, both Np aud ilp are equal to zero at the points (0,+1). Therefore, the set F is

not 7-strictly convex, and the results of [31] can not be applied here. Notice that the estimates
(2.66) and (2.67) are valid also at the point (: (-1,0) (i.e., when (2:0) with respect to
the normal vector €* : (-1, Ll4) € EFo, which belongs to the boundary of the normal cone

Np (-1,0).
However, there is a local uniform rotundity along the boundary of C that permits us to

apply Theorem 2.3.2 (ii). To be more precise let us estimate the respective curvatures. Direct
calculations give

if 16;l > +
if l(;l . +

Considering now r: (rr, r2) e 0C with lr2l > 118 we see that for the vector

( st€ita/.3= 1;6.;
pr" (€i,€i) : or((i, (l) : { aa/t6;l/t

I t€it

- al"rl'/1.- (-t,2r2) e oF"
3 + l6rf,/3 

\ -' -"

3/( (€r) < hr (€,e-) : ffi S

n (")
b(r) ::- pr" (-n (r))

there is a unique €: (6r,(2) € 3r (o(")), which can be easily found from the
Nr (€) where Nr (() : 1.1 (a6!, ssn (€z)) : ,\ > 0). Namely,

6, : ---1- e I-1,0[ and €z : (i - #) sgn (r2) .'1 - 2@21ft-t

Setting for simplicity X2 (€r) ( 17, from (2.66) we have at this point:

I lt2l1/3Nrl€,u (r)) 2 t?@

6€?

/+16d

1 + i6€f D2 (€1)

(2.70)
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Otherwise(if lz2l <1/8) thevector!(r) : (-1,212) belongstotheinteriorof thenormalcone

Nr (-1,0) : {(ur, u2) e R2 i u1 I -alrzl} , (2.71)

and the second order strict convexity also follows. In this case the curvature fup at €: (-1,0)
w.r.t. the vector u (r) is equal to *oo (see (L.22)),while xp ((, o (")) is a finite positive number

depending on the size of both sets F and Fo, and on the proximity of u (r) to the boundary

aNr (6). To obtain a precise estimate we can proceed, e.g., as in the proof of Theorem 2.3.4,

since pp. (.) is of class C2 at each €* e int N. (€). Namely, Iet us denote by d (r) the minimal

distance of u(r) from e* ,: (-1, +U4) that are extreme vectors among those (* € EF'with
Vpr, ((-) : Jr ((.) : [. Therefore, the function €* * Y2 pr" (€.) i. Lipschitz continuous (it is

to identical zero) on
OFo o (u (z) + a (r)E) c 0F" o Nr (-1, 0) .

Substituting llV'p."(o("))11.,:0; P(6,a(")) : d(r) (see (1.43) and Remark 2.3.3)) and

choosing a suitable d > 0 (e.g-., such that (2.55) gives the better estimate of the curvature from

below, namely g (d, o ("D lZ: 1) from the inequality (2.55) we obtain

d (r) (2.72)
4 llFll' llr'll llu (r)ll

where llFll and llF"ll can be found through the radii of two balls: one containing the set .F and

another contained in it. In our case, for instance, ll.Fll < 716 and ll.F'll < 9/8.

Summarizing everything said above, we affirm (by Theorem2.3.2 (ii)) that the time-minimum
projection "5(.) is well-posed locally (near C), and, furthermore, the inequalities (2.70) and

(2.72) together with (2.65) allow us to estimate the radius r(r) of a ball centred.at a given

r e 0C where such well-posedness takes place. In particular (see (2.25)),r(r):O (l"rltl') *
lz2l -* oo.

Notice that in this example the mapping r * 3p (u (r)) is locally Lipschitzean, and so we

are able to apply the condition (A) as well (see Theorem 2.3.3), which gives even a larger radius

r (r) : o (lrrln/') as lr2l --* * (see (2'i6) and (2'69))'

In the conclusion let us consider the mixed case (when there are points of both types: either

satisfying the condition (B) only, or the condition (A)) emphasizing the situation when the

boundedness of the curvature from below should be verified only in a neighbourhood of a given

point 16 € 0C but not at zs itself.
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Example 2.4.4 Let us d,efine two continuous real functions,f ' [-1,1] -- R.+ and g: lR+ -* lR.

as follows:

t -* ,f t * l-#,-+]
affine otherwise,

e (t) ::
Q-il'+i

Set

F ,: {(€r,€r) e R'' l€zl < /(€r), -t < €r I t};
C ,: {(q,r2) e 1R2 i 11 1g (l"rl)} .

In this modification of the previous example the boundary 0F has two affine pieces, and the

target set is neither g-convex (because it has anrrinward cornerrr point a: (-100-L,0)), nor

smooth (besides of the point a, where the normal cone is trivial, it has multiple normals at

a+ : (*,+i)1.
For each rs € 0C , ro * a,b+, we may proceed as in Example 2.4.3 since at these points both

conditions (A) and (B) hold. If rs - a then we can not apply (B) because the boundedness

of $c (.) near a fails. However, for each r e 0C close to a the (nontrivial) cone -Np" (r) is

contained in the interior of Np (-1,0) (see (2.71)). In particular,

3r (-N5 (r) n 0r') = (-1,0) ,

thereforethemapping$*> Jr(-N5(r)n0f') is (trivially) Lipschitzeanon Cd(") anduni-
formly continuous onU5,6, (a), for some d,d') 0, so the condition (A) follows (see the end of

Example 2.4.1). The well-posedness of r'fl (') near o follows from Theorem2.2.1.
Let now ro : b* (the symmetric point is considered similarly). Although at this point EC

is not smooth (the normal cone is generated by two noncolinear vectors er : (1, -Ll2) and
e2: (1.,-312)), the function rlrc (') is upper bounded in a neighbourhood of r0, namely,

/ (t) ::

if 0si<+
if i<t<1
,f t>l

1, 1

5' 100

*

(t
,lrc (*,u) ( max ( 

-

yL. \*, v t : ---*-_ 

IJTT 4Ar, ) =,,
(2.73)

r: (r1,r2) e C5(rs), t, e Nes(r), for some d > 0. Notice that Jp(-r*tA) ,"a

JF (-*fr;;) ur. different, hence the condition (A1) is violated. Also we have no strict

convexity of the set f. with respect to the vector -elpp" (-e), where

, ,: ((*)"' - (*)"' , (*) 
,,' 

- (*) "')

l*(2r2-t)2
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is normal to r' at the affine part with €, > 0 and belongs to the interior of -Ne, (b+), impeding

to apply the condition (Bi). Nevertheless, for each r € Ct (b*)\ {b+} the (unique) unit normal

vector n (r) to C (also belonging to N! (b+)) is far enough from ef llell, and F' is strictly convex of

second order w.r.t. b (c) :: -n (r) I pr" ?n(z)). Moreover, the curvature is uniformly bounded

from below, and the hypothesis (82) holds. In such a way constructing a neighbourhood of

lr0, where "EO is well-defined, we may take into account balance between_ (2.73) at the points

r e 0C near r0 and the curvature of F only at (€r, tz) e 0F with (1 . [- (i)'/t,-(t)'/'],
which are close to the end-points of the respective arc.



Chapter 3

Regularity results

We assume the same hypotheses as in the previous chapter, that is, I/ is a Hilbert space with
the inner product (',.) and the norm ll.ll, .t, c.Ff is a nonempty closed convex bounded set

with 0 € intF, and C C I/ is nonempty and closed. Based on the geometric conditions (A),
(B) used in Section 2.2 here we show that the time-minimum projectior rfi (') (well-defined

and single-valued near the target set) satisfles in fact stronger regularity conditions than simple

continuity (see Section 3.2). Namely, it is Lipschitz continuous under the hypothesis (A), while
under (B) it is only Holderian with exponent 712. However, as we will see in sequel the last

result can be essentially improved if either the target set, or the dynamics is supposed to be

enough regular (at least locally). Using these supplementary conditions in the next Section
3.3 we prove (Fr6chet) differentiability of the minimal time functior SI (') near the target C
and give explicit formulas for its derivative (which vary according to the hypotheses involved).

Observe that the results obtained in Section 3.2 also allow to prove the Holder regularity of the
derivatives. We finish the chapter with some examples (see Section 3.4).

3.1 Various concepts of regularity

Let us start this chapter by recalling some important properties of the subdiferentials of non

convex functions in a Hilbert space introduced in Section 2.1, which will be used in sequel.

Definition 3.L.L Let $: H ---+ RU{+oo} be a lower semicontinuous funct'ion, and r e H with

d@) < l-cx:. The function dO it said to be

(i/ proximally regular at r if 7pQ@): At6@);

(i,i,) lower regular at r if Al O @) : At d @);

(iii) Frlchet regular at r i.f 0p d @) : AI d @);

(iu) Clarke regular at r i,f at d @) : 0'Q @).

Since the target set C C f/ is assumed to be nonempty and closed that implies the lower

semicontinuity of the indicator function Ic ('), we are led to various notions of regularity for C
at a point r e 0C through the respective concept given for Ic (').
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Definition 3,L.2 A closed set C is sai,d to be

(i/ proximally regular at r € AC i,f NL (") : Nt,(");

(i,i,) normally regular at r if N5 (r) : N! (r);

(iii) Frlchet regular at r i,f N'c (r) : N5 (");

(iu) Clarke regular at r ifNl (") : Nb (r).

All the definitions of subdifferentials as well as of normal cones are given in Section 2.1.

Notice that the proximal regularity is a very strong property. Even the continuous (Fr6chet)

differentiability of d (') ,t a fixed point does not imply (in general) the proximal regularity at this

point. A simple example of such situation just in JR is given by the function A - - lrl3/2 *ho.u
gradient at r:0 is -!ffi, U,.t nevertheless 0e@ (0) : 0 (while }tOQ): {0}). However, if the
gradient Vd ( ) exists and is Lipschitz continuous near r then @ (.) is proximally regular (and

Clarke regular as well) at this point. Indeed it can be shown easily that }pd (g) : {Vd (g)}
for g close to r (see [23, p. 36] for the respective proof in the case of d (.) of class C2) then by

using the definition of the limiting subdifferential we obviously have 0t$(r) : {V@(z)}, and

0"d@): {VO(r)} as well. Observe that the lower regularity (normal regularity in the case of
sets) as well as Fr6chet regularity are weaker properties than the proximal regularity.

Let us emphasize specially the class g of functions @ (.) (the class It of sets C), which are

simultaneously proximally and Clarke regular, i.e., such that for them all the subdifferentials
(respectively, the normal cones) coincide at each point r € dom Q @ e 0C). In particular,
all g-convex sets (but not only) belong to 01. In turn the class of rp-convex sets contains all
convex sets as well as the sets C admitting at each point r e 0C a (proximal) normal vector,

which is locally Lipschitzean w.r.t. r (see Section 2.1). Similarly, the class $ contains all convex

functions as well as the (Fr6chet) differentiable functions with locally Lipschitzean gradient.

The class of functions with the last property, which are defined on an open set U C H, is

traditionally denoted aV Cl;l (U). Generalizing slightly this concept, we introduce the class of
functions d (.) € C' (U), whose gradient Vd (.) is Hcilder continuous near each r € U with an

exponent 0 < a ( 1, i.e., givenz € [/thereexist aconstant K: K (") > 0 ande ) 0suchthat

llvd("r) -vd(rz)ll S Kll"r- r2ll*

whenever ll"t - "ll { e, i : 1,2. In this case we say that the function d (.) belongs to the class

cl;i tul.

One of the purposes of this chapter is to study the regularity introduced above for the
minimal time functior.5;[ (.), and, in particular, to emphasize the conditions guaranteeing that
53 O is of class Cl;i for some 0 ( a ( 1 in an open neighbourhood of the target C.

First of all let us collect here well-known results concerning with the representation formulas
for the various subdifferentials of the distance function (as well as for the minimal time function)
and derived from them regularity properties.
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As was said in Introduction one should consider separately two cases: z e C and r € EC. In
the first case one kind of formulas links the subdiferential with the respective normal cone to the

sublevel set C(r) ,: {a e H : d.c (g) S r}, r:: dc (r), for the distance (or to the enlargement

set C(r) :: {A e n,53@)<r}, r,:5;8(r), for the value function 53(). Namely, for a

nonempty cloied set C C .I/ and r * C we always have the following relations (see [24, 13])

0p ac @): NL(,)(r)n EB,

or dc @): N5(,) (r) n 0n,

while in the case of an arbitrary dynamics
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orrfi @): Nrr(,) (z) n (-0F") ,

orrfi 61: Nf,r,l (r) n (-or')

(3.1)

(3.2)

(3.3)

as was proved in [31] (see Theorem 3.1). Since inverting the formulas (3.1) and (3.2) we can

equivalently write
NLr,l (r) : U xtrr,fi @)

l>0

and
*fr,r (") :Usa|rfl1r),

)>0

it follows immediately that the functio" 55 O is Fr6chet regular at r ( C if and only if the
respective enlargement set C (r), r :: 53@), is Fr6chet regular at the same point. Observe that
for the Clarke subdifferential the situation is more complicated: even in the case of the distance.

For the validity of the formula

0" ac (r): Nb(,) (r) n 0B

one should require some o pri,ori, regularity assumption (see [15, Theorem la]). The respective

regularity condition guaranteeng the validity of the relation

0"r[@): Nb(,) (r) n (-0r')
was studied, e.g., in [83].

Assume now that u e 0C. Then for the distance we have (see [13]):

0P ac (r) - Nec (r) n B,

ot d.c (") : N5 (r) n B.

Observe that in these formulas the whole bal B stands in the place of the sphere, which, in
particular, shows that the subdifferentials 0p ac (") and 0/ ac (r) can not be single-valued (equi-

valently, the distance is never differentiable at the boundary points). The respective formulas

for the value functionf;[ (.) are (see [80, 83, 82]):

onrfi @) - NeC (r) n (-F") , (3.4)
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orrfi P1- N! (r) n (-F') , (3.5)

which could be complemented with the similar relation involving the limiting constructions as

well (see [67, Theorem 3.6])
otr$ 1r1c Nb (r) n (-r") . (3.6)

Observe that in (3.6) we have only one sided inclusion, in general. In spite of this the following
(inverse) representation takes place

Nb (") : l)satrfi 1e ,

^>0

while it is obvious for other types of subdifferentials (as follows from (3.4) and (3.5)).

Hence, on one hand, we again see that 5;3(.) can not be differentiable at r e 0C while, on

the other, it is Fr6chet (proxirnally, lower) regular at some point r € AC if and only if the target

set C is Fr6chet (respectivelly, proximally or normally) regular at r.
As we see in the case of in-set points the subdifferentials of the minimal time function (in

particular, ofthe distance) split into two parts: one depends only on the target set (the respective

normal cone) while the other depends on the dynamics (minus polar set). For out-of-set points

instead we have a different situation. Indeed, the enlargement set C (r) involved into the right-
hand of (3.1)-(3.3) is defined by stirring the properties of both sets C and F. In order to avoid

this inconvenience we should, first of all, associate to each r ( C a point i e AC and then try
to represent the subdifferential of f,[(.) at r through the corresponding normal cone to C at r.
It turns out that this point i is nothing else than the (time-minimum) projection of r onto C,
and the one-sided inclusions for 0p53(r) and atf,fi1r) take the form (see [31, Theorem 3.3])

anrfi @) c NeC @) n (-7pp (t - ")) , (3.8)

alr\(r) c Nf (e) n (-ap. (" - ,)) , (3.e)

where A p e (.) is the subdifferential in the sense of convex analysis of the (convex) guage function,
which can be found by the formula

ope@ - r):*" (*EA) n u.".

Unfortunately, it is not possible to obtain the exact equalities in (3.8) and (3.9) with no sup
plementary regularity conditions for C andfor ,F.. But assuming such conditions we can prove

the reverse inclusions. For instance, if the target set C is supposed to be proximally (normally)

regular then by using a simple argument based on the necessary condition of optimality

o € a'r'(r) , (3.10)

where F (y) :: pr(A - r) +Is(il, A € Il, we deduce first that the right-hand side in (3.8)

(respectively, in (3.9)) is nonempty (see [31, Proposition 5.5]) indeed, by the well-known formula
for the limiting subdifferential (see Theorem 2.1.2)
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Then, taking into account that atb 111 : Nt (z), we see that the nonemptiness of the inter-
sections above follows from the respective regularity properties. In Section 3.3 we exploit this

fact to prove the equalities in (3.8), (3.9) and we even obtain there a stronger equality:

0"r[ @): N6 @) n (-7pp (n - ")) ,

which under some extra hypotheses would imply the (continuous) differentiability of the minimal
time function.

3.2 Hiilder continuity of the tirne-minimum projection

Let us consider separately the conditions (A) and (B) (see the beginning of Section 2.2).

The condition (A)

Theorem 3.2.L Let us fir a point rs € 0C. Suppose that the pai,r of sets (F,C) satisfies the

cond,ition (A) at rs. Then the time-min'imum projecti,o, r[(.) i,s locally Lipschitz continuous

in some neighbourhood of rn @utsi,de of C).

Proof.
We set

t/'(*o) ,: {, e H : llz-,oll < 2(F#[TT , rEQ). ;] ,

where L > 0 is the Lipschitz constant of the mapping r a 3F (-NA(r)n0f') on C5(rs)
(see (A1)). Notice that l,l' (16) is contained in the neighbourhood l,l (rs) defined by (2.16)

where 
"E O is well-posed, i.e., 

"5 @) is a singleton continuously depending on r e l,lt (16). Let
6,6') 0 and the open set [/5,6, (zs) be as in (A2).

Let us flx r € U' (*o)\C and let the numbers r ) 0, 0 < 6 < ffi U" such that

r3@)*r.1,

r + dB cUt (rs)\C.

Take arbitrary z1w € r+ dB, z * w, and set P ,: M# > 0;2 :: r5(z) and w:: r5(r). BV

the condition (A2), there exists 0 < u ( d/ such that

llJr (") - Jr (,)ll S 0, (3.11)

whenever u,u e Ua,t,(*o), with llu - rll S v. We set also

e :: min {n;,f , ,, p}
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Since 7 minimizes the functional .F,(y) ,: pr(A- z) +Is (y), by the necessary minimum
condition (see [23, p. 37]) 0 e 1pF (Z) and using the fuzzy sum rule (Theorem 2.1.1) we find
zl,22eZleB withzl e 0*C andvectors u,e-0F" nNAQi,€ie 0PpQz-r) suchthat

llu,+€lll <e.

Notice that the Lipschitz continuity of 5$ (.) implies

r5 Q) < llr'"ll ll, - ,oll , (3.12)

and, hence,

i.e., z1€ C5 (zs). Since (), -u, e AFo n (-N', (rr)n 0F" + d'B), by (3.11), we obtain

llsr (€l) - 1e (-u")ll < P.

Similarly, considering the point u., and its time-minimum projection ur in the place of z and2,
we find u)1,,u)2 € D+ eB, u1 e 0*C, and u., e -0F" n NA (.r), €1, e ?pp(*z- tu), satisfying

llr- + (;ll S e. By the same reasons as above we show that lllp (€;) - 3r (-r-)ll S B. Joining
together these two inequalities and taking into account the hypothesis (A1), we have

On the other hand, from the inequalities

lp, (r, - z) - r3 Q)l s llF'lle and lp, (., - u) - sE @)l < llr"ll "
it follows that

lpeQ,- z) - pe(wz - w)l S 2llr,ll e+lsfl(z) -tfl@)l

Also

s llF"llll,z -zll + rE @) + llF',ll ll" - ,ll
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By Proposition 1.1.1 Jr ((l) : fiffi and Jr (€;) : itr6 Hence, by using, respectivelv,

(3.15), (3.13) and (3.14) we obtain

+ llz - trll
s 2e +(5[(r) +r) (2fr+L(2e+ llz-zrll)) +llFll llr''ll (2e+llr-.ll) +

+ llz - trll .

Now taking into account the definitions of B and e we obtain

(1 - (sE (r) + r) r) llz - all s t ll, -.11,

where
t:2(1+ llr'll llr,"ll) + $5 (r) + z) (1 + r).

In the case z : u.r the same inequality holds due to uniqueness of the projection. Thus, zrfl 1'; is

Lipschitz continuous on z*6g with the Lipschitz constant fl O- F5@+r)L). I

The condition (B)

Theorem 3.2.2 Let us f,r rs € AC. If the pai,r of sets (F,C) sati,sfies the cond,ition (B) at rs
thenn[(-) is tocally Hiilder cont'inuous with erponenttl2 intlt(rs)\C for some neighbourhood

U'(*d of the point rs. Furthermore, if the mapping

r '* -Ne" (u) n NF (;6:d) n r.", where i = ,TE (r) ,

is single-ualued, say ir(")), andu(.) is Hiilder continuous near ro (outside of C)with an erpo-

nentT ( a ( 1, then"5O is locally Htild,er continuous withthe erponentV. t"particular,
the Lipschitz conti,nuitA ol u (.) impli.es the same property for nfl (').

Proof.
We set U'(ro)::U(ro) the same neighbourhood as in (2.16) which is given by

u (*o) ,: {, € H : llz- ,0il < F#rT- , r3 Q) . #}, (3.16)

where the constant M > 0 is such that11J s(r,r) S M for all r € Ca(*o) and all u e Ner(r)
(see (81)). Let us fix r € U ("0) \C and let r > 0 such that

s5@) *, . ff
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Now we fix 0 < 5 a ffi such that r+68 CU(rs)\C, and take arbitrary z,w €. r +5B.
Setting z :: r5 Q), a --: rE (-), by (3.12) we have

llz-"oll <ll,r'll pe@-z)+llz-"oll s(llF'||llr,ll +t) llz-16ll Sd,

i.e.,7 e C5(rs), and analogously tr,r e C5(rs).
Applying, similarly as in the proof of the previous theorem, the necessary condition of

minimum (but in the limiting form, i.e., the condition (3.10)) and using the fact that the

proximal normal cones to C at the points 7 ard 1D coincide with the limiting ones (since C is
p-convex in a neighbourhood of z6), we conclude that the sets

-N,c (z)o Nr (#63) n r", and - N,, (d) n NF, (ure+) n r"'

are nonempty (see the end of the previous section). Choosing an element from each of these sets

(say n, and n.,, respectively), we have ,l,c(2,-r") 1M (see (Bi)) and Nr(3r(n,),nr)2 K
(see (82)). Then, denoting by
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Dtr (Jr (n") ,n")
luz .- -- x 

'llln,ll
Q, i: Qc \2,-fl=) ,

1

Zlldl Ne (jp (n") ,n")'

Furthermore,let ut ) 0 be so small that

1

z1a,+,t1-s\Q)'l"ll,,"ll> '' (3'18)

By definition of R, and taking into account that ]e (n,) : ;G\ we have

, . *: ^ - 
(a, + r') r, + (R, + u') lln,llB.pplz-z)

Sirr.u ffi € r,, from the last inclusion follows, in particular, that

ll" -, * pe9- 4, (a - -) + pF(z - r) (R,+,')n,ll 
= 

r" (z - r) (n,+ r')lln,ll,
ll Peld-'u)' ll -

or, in another form,

we have

ll, -, *

h - rE e),t,,ll,"ll

(3.17)

Pp\z-z)
----i=----------iPp lw - ru)

12(, -.)ll s (, - ,))
(3.1e)

-2pF (z - r) (R" + r) (n", z - z * pFlz-z)
-------r=--------i
pF llu - u)
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The rest of the proof is divided into two steps.

Step 1: Assume that pp (Z - ,): pF?D - tu) and denote their common value by p.

By (3.19) we have

llQ - w) - (z -.)ll'

Combining this inequality with

llQ - -) - (z -m)ll' : ll, - *ll'-2(" -w,z - -) + llz -all'

we obtain

(t - zp (n" + r') rb,lldD llz - .f' < zp (R" t r') (n,,w - z) + 2llz - .llllz - Dll,

which implies

(;- - pl) 
"tt",ll) W - ,ll' I p (n",w - zl . # fi, - .llllz - nll'

So that by (3.18)

,llz -,|l' s p\n,,u - z) + jlt" -*llllz-Dll , (3.20)

where rp ) 0 is the Chebyshev radius of the convex set F (see (1.32)). Since n, € F', we can

rewrite (3.20) in the form:
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/
\

Therefore, one of the inequalities

llz - -ll s'/illp,{l llz - u11t/z

u llz oll < \/ plfllllz - wyt/z + * ll, - ?,ll , (3.21)

clearly, takes place. Observe that p:55Q) < llF''lld and llr-rll < d. The last follows from
the fact that z,w e l,l (16) and from the inequality llF, ll ll.F''ll > 1. Finally, from (3.21) we obtain

llz - Dll < tll, -.ll'/'
r llF'll 1 It. :: { 6 max 
{ llF"ll , :t:----:L I ,* }

!n" -,il) < p llF"ll ll" -.11.

(3.22)

(3.23)

where
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Step 2: Now let us fix z, w € r*6rB where 61 t: 71pffiq6f and denote by p",: pF G - z)

and p* i: pF (A - .) do not assuming more that p": pw.

For the sake of determinancy we assume that p. ) p". Wlitefr : u * P-u, with pp (r) : 1,

and let u)' :'t.D * (p- - pr)u.We have by [31, Proposition 2.6 (a)]

r3 @') : E3 @ * (p- - p")u) S 5$ (w + p.u) * p, : 55 @) * p" : p,,

and, on the other hand,

Observe that

ll- + @- - p,)u- "ll S ll, - "ll * (p- - p) ll"ll
ll, - "ll + ls\ @) - sE Q)l llrll . 6r + llr,,ll llrll lltr - zll

and also ll, - "ll < d1 < d-. Moreor"r, since

pr (d - -') : pe (ta * p-u -'tD - (p* - p,) u) : pp (p,u) : Pz : fE @'),

and tu' e t/(rs), we have ut: rE (tul). Thus, we can apply the Step 1 to the points z and wt.

Namely, by (3.22) we deduce

: r (ll, - .ll + @- - p) ll"lD'/'

where the constant t > 0 is given by (3.23).

Let us prove now the second part of the theorem assuming that the (single-valued) mapping

trn u(r) : -N3(z) nNp (m) nOFo is Hrilder continuous with an exponent 0 ( a ( 1

in the d-neighbourhood of rs.
We define t/'(*o)::tt(ro) (see (3.16)), fi*j e U(rs) \C and choose constants r > 0,d > 0

and y ) 0 as above. Then for given z, w €r *dB and for the associated normal vectors n" and
n- (see the beginning of the proof) we have Dz:'t) (z) and n* : u (w).

Let us consider first the simpler case when pe? - z): pr(A --):: p. As already shown

(see (3.20))

,llz -,,ll' < plu (,),u) - z)+ * ll, -.llllz- zrll .
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(3.24)
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By the same reasons changing the places of the points z and tl we obtain

, llz - nll' < p \u (*), z - w)+ * ll, -.llllz- zall

Now adding the last two inequalities we get

Therefore

+

where

where b > 0 is the Holder constant of u (') (i.e., the inequality ll, Q) -, (r)ll < Oll, -.|11"
holds for all z,ut € ro l- dn). So tfrat

1*o

llz -lrrll < tll" - wll-a- ,

2ullz -all2 S p \u (,,t) -, (z),2 - u) * *V - ullllz -ulll

2ullz -dP < phllw - ,il"+t * *W - utllllz -mll
/r\

llz -all lr,ll, - Dll - *lt, -.ll) < phllu - ,ll'*'

llz -mll < tFlW ,ll'* or 2ullz -rll a {pbl@ - 4l'* + !n, -,tt

lz -ntt ( max {lA,* (J6 * Jv-.il+)} 
',, 

- .l+ ,

r:: dts -,- 
{ 
JlFllb,ry. #}

(3.25)

(3.26)

(3.27)

In the general case instead (i.e., pe(Z - z) * pe@ -.)) we take arbitrary points z,w in a

smaller neighbourhood of r, namely, z,u e r * drB where O-, ,: qpffirp and proceed as in

the Step 2 above substituing the point with the larger minimum time value (say tu) by another
tu'whose projection "E@) coincides with D:rfi(w) and pp (luu-r'): pr(7 -z). In this
way employing the Holderian inequality already proved for the last case

llz -,rll <tll, - r'll+ ,

similarly as in (3.24) we obtain

llz -.ll < t (1 + llr''ll llr,ll)+" llz - wll# .

That concludes the proof. In particular, for cr : 1 we have that the Lipschitz continuity of u (')
implies the (local) Lipschitz continuity of r'fl ('). I
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Remark 3.2.1 Obserae that for prouing of the preuious theorem we need only that

xp (3r (€-) , (-) > K

for some K >O and, all€. € -Npc(7)nNF (reinOF", re l,l ("0)\C.

Now we consider another type of regularity hypotheses.

Theorem 3.2.3 Let us fir rs e. AC, and assume that the pair of sets (F,C) satisfies the condi-

ti,on (B) at rs. Moreouer, suppose that one of the followi,ng conditi,ons holds:

(i,) C has smooth boundary at the point rs, and the function ns (') which assoc'iates to each t e

Cd("il therespecti,ue (uni,que) normaluector nc(rr) € Nb(r) naB is Hdlder cont'inuous

withanerponent0<aS1;

(ii) F i,s unifomnly smooth (see Section 1.3) at €,:3r ({) (w.r.t. €- ) fo, each(* €U5,y (rs),
where the setUry @o) is giuen bA @.11), and the gradientVpp(') is Hdlder continuous

near ( with an erponent0 < a ( 1.

Then n$ (.) i,s (locally) HAlder cont'inuous near ro wi,th th,e erponent fi. In particular,

"3 
(.) i,s (localty) Li,pschitzean wheneuer ei,ther ns (') or Vpr (') is Li'pschitzean.

Proof.
Let us define the neighbouhood tt'(*o) of the targ_et set C as in Theorem 3.2.2 (seetg.lO))

and fix r e l,l ("0) \C. As usual take r ) 0 and 0 < 6 . ffi such that fE @) * r < fi, arrd

r + 5B c u/ (16)\C.
Let us prove first that the mapping z ) "EQ) is Holder continuous with the exponent

a. To this end given z,w € r +5B we set z :: nEQ), . :: r!(u;) and denote by ,"
(respectivel y, n-) the unique vector belonging to -N! (z) n Nr (;ai A OF" (respectively,

to -N[ (rll) n Nr (#il n ar").
We consider the cases (i) and (ii) separately.

Case (i): Since 7 e C5 (rs) as shown in the proof of Theorem 3'2.2 ar,d

NL (z)o 0B : Nb (z) o oB: {"c (z)},

we have clearly

and, similarly,

nc lz)
z '- pe" ?nc @))

nc VD)
'01D '- pr" ?nc @D'
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Now, taking into account that lln6(Z)ll : ll"c(A)ll :1 (consequently, ffi S Pr"(-nc (Z)) <

ll.F, ll and similarly for D), we obtain

s 2llF ll'llrfi llnc (z) - n6'(a)ll
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(3.28)

where ! is the Hcilder constant of n6r(.). In the case pF Q - ") 
: pp(ut -Trr) (denoted this

common value by p) we may proceed as in the second part of the proof of the previous theorem

and obtain (see (3.25)):

where

(see (3.17)). Hence, setting for the simplicity 1t, ::2p11 ll.F, ll ll.F"ll', we have the following chain

of implications:

yz - a1'-" (r, ur- D1 - ]v -,il) < t,1" - .tt

+ llz -rall'-' < 0"|1"- -ll)'-' or 2ullz -rll = *ll, - *ll + 0"11, - -ll)'

+ llz -.;llS max {uV- 
,,ll'-' ,* (r" * *M- ,ll'-") } ll, - ,,ll" . (3.30)

Sincep:53Q)SdllF,ll (sothat p,<26bllrll llF'll3),theinequalityin(3.30) canbewritten
AS

where

llz -mll <6|11" - -11",

l1'- 5'i"1o'r-a}6t (3.31)

and the constant tl' > 0 depends on the conditions of the problem and on the choice of the point
r e U (rs).

Inthegeneralcase(if peG-z)*pF_@)-r)) wetakearbitrarypoints z,uin thesmaller

neighbourhood r+61B where 51 ': 47ffir6 and proceed as in the Step 2 of Theorem3.2.2.

In this way using the inequality (3.24) -we obtain

llz -mll < 6 (1 + llr''ll llFll)" ll, -.11"

Case (ii): Since Z € C5(r6) ar,d n" € -N[, Q)nAF'we have n" e U5,6, (16) and by

assumption f' is uniformly smooth at (:: 3e(r"):;ffi.By Remark 1.3.1 we obtain

AF" n Nr (O : {Vpe, (€)},
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so we can represent nz arrd n. in terms of the gradient of pF (')' Namely,

n" ::Y pp (;@3) and n,,, i:rr, (#:6)
Then we have

tn"-n_n : llo,,(;€h) -or"(#b)ll
rr 

- 
tla, z-z 't,-w _ll (3.32)s oll;;a-l- pFc.-,ll'

where I is the Holder constant of Vpp ('). Now assuming that pp(z - r) : pp(. -.) (: p)

by the same arguments as above (see (3.25) and (3.29)) we find

zullz -all2

Here we use the numerical inequality

(a + b)' I ao + bo (3.34)

whichholdsforeverya)b>0and0(a(1. Infact,forarbitrary0(a(1andt>0wehave
1t + t;1-" > tt-o. This implies (t+ 1)'-' < lo-1 and consequently

1t 
l)o-t d'r 

' [' 'o-'d' 'Jo?*, -ro
whiclrisequivalentto 

(r+1)- _ 1 a t*tt+1)o < to+r.a a- a
Now for given a,, b > 0 setting t : t we obtain (3.34).

It follows from (3.33) that

/ ^ , . -\
llz -all" lr,U, -6f-" - r,ll, -,ll - ;tl" -,llllz -rll'-" ) 

< pllz -,ll'*'
=* llz -mll" I to' ll" - .ll'

or 2ullz -rllll'-' - t.tllz- ull - ]n, -.llllz- Dllt-' { 1}-a2 ll, -.ll
+ llz -lrtull S rr" ll, -.ll (3.35)

or llz -nll'-" (r,W -mll- ]Ur- ril) < ra(l-o) (u'-" + pt-.'+.,)V - rll,
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where LL i: p7-oh. On the other hand,

llz - -f'-' (r,Ur- ,ll - |W -,il) < ra(L-a) (r'-" * ut-a+az)fi, -,ll
+ llz - rll'-" ( po(l-o; ll, - rll'-"

or 2ullz -*tl - *ll, - rlla (r'-" + ut-a+az) il, -.11"
+ llz - ull < t,' ll" - .ll

Joining together the inequalities (3.35) and (3.36) we have

( ,'-* ( t+ ,o') , l
llz_all(maxl'p"ll"_,ll._",I-...ll,_.ll,_"}ll,_,ll".(3.37)

[- 
rr- *rr ' 2' ' 

""- 
*rr 

)"-
So that we are led to the Hcilder inequality

llz -ull <nll, -.llo ,

where the constant 5'for small d > 0 can be represented as

$ : 5G-")2 qr (8.38)

and !/ > 0 again depends only on the data of the problem and on r € U (rs) (compare with
(3.31)).

In the general case (when SB Q) and 5[ (Tr) are different) as usual we conclude that

llz - mll < 6 (1 + llr"ll llr'll)' ll, - -ll" .

Let us show now that the Holderianity above can be essentially improved. Observe that in
both cases ((i) and (ii)) we have

/ --* \
-N'" (r) n Nr (pFffi ) n ar": {u (r)},

where u (r) is either

respectively, T :: tr\@). Then by the first part of the proof the mapping u(') is Htilder
continuous ontl(rs) with exponent a2 as the composition of two H6lderian functions (either
n5r (.) or Vpr (.) and. r[ (')) both with exponent o. By Theorem 3.2.2 rfi (.) is Htilder continuous

with exponent $. Applying again the first part we conclude that the H6lder exponent of u (')
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is in fact b#b Continuing these iterations let us suppose that the time-minimum projection

"3O is Holder continuous with an exponent P* > 0. Therefore o(') is Holderian with the

exponent aBn, Theorem 3.2.2 gives H6lderianity of r[(') with the exponent gn+t r: #.
Setting naturally gr i: a, by induction we show that the sequence {0"} it upper bounded

(namely, B" < *) and increases. Consequently, {B,,} converges to the limit (equal to fr as

well), which is also the Hdlder exponent of zrfl(.) on the neighbourhoodl,l (16). The theorem is
completely proved. I

Remark 3.2.2 Noti,ce that in accordance with the representations (3.23), (3.27), (3.31) and

(3 38) the Hrild,er constant of the time-min'imum projection rfi (.) is proportional to some degree

of 6 > 0 showi,ng how distant the points are Jrom the target set C. On the other hand, this

constant depends essentially on the d'istance from the boundary of the neighbourhood U (rs)
controlled, wi,th the parameters r and, u, tend,i,ng fo *oo uheneuer the strict inequali,ty fE @ < #
tends to become an equality (see (3.23), (3.27), (3.30) and (3.37)).

3.3 Smoothness of the value function

In this section we study the differential properties of the minimal time function through the
regular projection "5(.). One of the versions of such connections is given by the following
theorem.

Theorem 3.3.1 Let us fir * e C and assume that the mappi,ng z ,--. rfi (z) is well-defined

and single-ualued i,n some neighbourhoodU (r) of r where also the following 'tone-pointtt Hrilder
propertyholds: th.ere are constants K: K (r) >0 and|<P <7 suchthat

ll"3 tal - "5 @)ll < zr lly - "ll? for att u € u (u) . (3.3e)

If the target set C i,s prori,mally regular ati:: "5@) 
then the functi,ong\O is Ctarke (and

lower) regular at r.

Proof.
Let us prove the following equalities

arrfi 1r1 : 0"53 @) : -7pr @ - ") n NA (7) . (3.40)

First of all, since the (unique) projection r :: 16 (r) exists, we have (see (3.9))

orr$ 1r1 c -opp (e - ") n N, (7)

and using the proximally regularity of C at r (Definition 3.1.2) we conclude that

otr,[ 1r1 c -0pp (a - ") n Ne" (z) . (3.41)
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Let us prove now the opposite inclusion in (3.41). To this end we flx ( belonging to the right-hand

side. Then by definition of proximal normals there exists o : o (7, O such that

(€,r-*)<ollr-"ll' YzeC. (3'42)

On the other hand, by the definition of subdifferential of a convex function

pr@)> pe(i-r)+ (-(,,, -i*r) Yu€ H. (3.43)

In particular, it follows from (3.43) that

pe@EQ)-,) - pe("5(") -") - (€,,-r) > (-€,"3Q) -rfi(r)) (3.44)

for all z enough close to r. Combining now (3.44) and (3.42) we obtain

riLTrW
,! : r pr("\e)-r)-pp("8(") -") -(€,"-r): llm InI";:;;'/ 

c*F, 'l'-"ll\ r: , " \-!, 
,,6 Yz) - "5 @))2llnlll)r-- ";:;' 

ll, - "ll
\ r:.--:_-r -"|,"5 Q) - r$ (r)ll2

rru-

where K is the constant from (3.39). Thus € e \tf[ (r), and we have proved that

-ope @ - ") n NA (z) c otrfl 1"1 . (3.45)

Furthermore, the inclusion atfS@) c 0"8[(r) obviously holds (see (2.4)). In order to
show the opposite inclusion we represent the subdifferential 0"5[(r) through the proximal

subdifferentials at close points (see (2.3)). Then by using the inclusion (3.8), the definition of
limiting normal cone in Hilbert spaces (see (2.5)) and the strongxweak closedness of the graph

of the subdifferential0pp (.) *" successively obtain

o'r[ @) : - {, -,I]l3€t, €t € onrfl @;) , *o - ,]

c - {.- .lim €r, €r € -Lpp (nE @n) - ,n) nN'" (r5 (r,)) , ,n -, ,}
L i--"''"' \ v\ -/ -/ 

)

c - (-ro, ("5 @) - ,) n Nb ("5 (")))

Since N!, (z) : NL (z) : Nf (r), from the closedness and convexity of the latter cone and from
(3.45) we conclude that

o"r,[ @) c -opr @ - ") n NA 61 c ortfl 61 ,
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(3.40) follows. Since the inclusions 7rSE @) c 0t5E @) c 0'5[ (r) are always true (see (2.4))

we have, in fact, the equalities

orrfi 1r1 : atst @) : o'53 @)

and the Clarke and the lower regularity of the functio" 55 (') at r follows. I

If, in the place of rrone-pointil Holder condition we have the usual Holder continuity of nfi (')
at z, i.e., if thereexistconstants K: K(r) > 0, + < P < l andaneighbourhood U(r) of r
such that

ll"3 tal - "3 e)ll < n lla - "llB
(3.46)

for all y,z e U (r) then we obtain the following smoothness result.

Theorem 3.3.2 Let us fir " ( C and, suppose that the mapping z a 
"3 Q) is well-defi,ned,

sr,ngle-ualued, and, Hdld,er continuous with an etponent L a B I 1 in some nei,ghbourhoodu (n) of
r, Assume,moreouer,thetargetsetCtobeprorimallyregularateachpointge Ct(t)::0Cf)
(z + dB) for some 6 > 0 where z :: nE @). Then the function EE O is (Fr€.chet) continuously

differentiable at r if there erists a cont'inuous mappi,ng u : U (r) ---+ )Fo such that
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(3.47)

where y :: rfl (il, y e U (r)\C . In this case V5[ (r) : -, (r).

Proof.
By assumption for each y e U (r) the intersection

-Ng(El nopr @ - il- -N," (s) nNr (;h) nr""

is reduced to the single vector z (g) (see (3.47) and Proposition 1.1.1).

On the other hand, since the (unique) projection A : nE (y) exists for each g enough close

to r and it is close to 7, the set C is proximally regular at such / furthermore, the Holder
continuity of rfi(.) on t/(r) implies therrone-pointrr condition (3.39) centred at each A near r.
So that by the previous theorem we obtain

or r5 @) : -opr (s - iln NL (U) .

Hence

ors5 @) - -0pr (g - il n N'c @) : {-, @)}

and the statement of the theorem follows. I

Remark 3.3.1, Obserue that in a finite d'imensional space we could require only that the mapping
u (.) in the Theorem 3.3.2 is single-ualued because conti,nuity follows immediatelA from the fact
that y ** -Nb (r) n Nr (;dil n OF" ad,mits closed, sraph (see Section 2.1).

' 7-g--) n u." : {, @)l-NL (sln NF (; \a - y)/
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For convenience of further references let us formulate the following obvious statement.

Corollary 3.3.3 Under all the assumptions andnotations of Theorem 3.3.2 suppose, moreouer,

that the si,ngle-ualued mapping

s/ ,, -N,' (r)n Nr (#65) n r",

is Hiild,er continuous wi,th an erponent 0 < a { 7 i,n a neighbourhood of r ( C. Thenthe

function 53 O is of class C1'" in this neighbourhood.

The condition (3.47) splits into the following two particular cases.

Corollary 3.3.4 Assurne as ,in Theorem 3.3.2 th.at the ti,me-minimum projecti,on"S O is single-

-ualued and Htilder cont,inuous with, an erponentll2 < P < L i,n a neighbourhoodu (r) of a point
r # C, and, that the set C is prorimally regular at each poi'nt y e C5(t),2 :: r3(r), d > 0.

Then the aalue function 5[ (.) is (Frech,et) conti,nuously d,i,fferenti,able at r if at least one of the

f ollowi,ng condi,tions hold :

(i,) C has smooth boundary ati;

(ii) F ts uni,for-mly snr.ooth at (:: #d
Furtherrnore, in the first case we haue

__D ,Y5[ (r) : nc (r)
(3.48)/ /-\\ 'pp" \-ng \r))
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where nc (t) is, as usually, the un'it normal aector to 0C at r, while in the second

vr$ @) - -Y po f -i;i-\ ."nt\pr(z-"))'

Proof.
In order to prove this statement it is enough to observe that

-N3 (s) n *" (r#5) n ao"

is contained either in

{*i:%} orin {o,.(#dil}
whenever the condition (i) or the condition (ii), respectively, is fulfilled. Since the set (3.50) is
nonempty, everything is proved. I

(3.4e)

(3.50)

Similarly to Corollary 3.3.3 we can formulate the following result on the Holder regularity
of the minimal time function.
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Corollary 3.3.5 Und,er all the assumptions and notations of Corollary 3.3.1 the following im-
plications hold

(i) if ns(.) is Hi;ld,eriannearz::r3 @) withanenponenl 0 ( o 11thenT\O is of class

CL'o1 near the point r # C;

(i,i,) ,f Vpr(.) is Hdld,eri,an near { r: 7ff6 wi,th an erponent 0 < a 1! th,enT[(') X of

class C7'o9 near r.

Proof.
(i) Take 5 ) 0 small enough such that all the conditions of Corollary 3.3.4 are fulfilled in

the neighbourhood r + dB, and let us fix il1,r2 e u + 6B\C. Using the formula (3.48) and

proceeding, e.g., as in (3.28) we obtain

llvgS ("r) - vrfl (r2)ll < zO" llrll llrll' llz, - zzll'

where bc > 0 is the Holder constant of n6: (') near 7. Since ri ,: r5@), i: L,2, we continue

this estimate:

llvrS (,,) - vrfi @2)ll < zvt" llFll llr,ll2 K' ll*, - *zlloe ,

where K > 0 is the Holder constant of zr$ (') near r.

(ii) Taking 0 < d < ffi uguin small enough such that all the conditions of Corollary 3.3.4

are fulfilled in r*5B, and using the formula (3.49) similarly as above for each n7,nz € u +5B
we have the inequality

llvsS ("r) - vrfl (r2)ll < r1. ll€r - €zll" , (3.51)
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where br > 0 is the Holder constant of.Vpp(.) near (, and qr,: ffi, i:1,2. Setting

Pt i: Pp (h - ,t), i: L,2, we have

ll€r - €zll : ! ll(r, - rt) pz - (2, - ,z) ptll
PtPz

S -l- f tt.tt llr'"llp, llr, -,r - (dz-rz)ll + nllrt- rt- (*z- *z)ll)
Pt Pz

EU#f (o W, - *rlll+ ll,r - ",ll)
1

ll_
5

llF +
)

I
2

llr,
TG

(x + 11"r- ",ll'-B) ll*, - ,zll1 . (3.52)

Since

rE @z) >rE @) - pr (rz - r) > r5 @)- llr''ll ll,, - *ll>rE @)- llr'll 6 >"3:")
2
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from (3.51) and (3.52) we obtain

llvs\ ("r) - vE[ (r2)ll < 611", - *zllo0 ,

for some constant 6 > O. f

Notice that the previous statements were proved under assumptions that the time-minimum
projection "3(.) is enough regular (Hrilder continuous with an exponent 0 > tl2) in a neigh-

bourhood of a fixed point outside of the target set. Applying now the results of Section 3.2 we

can emphasize the hypotheses guaranteeing such regularity. These hypotheses employ the first
and second order conditions studied in the previous chapter and allow us to formulate global

results.

Theorem 3.3.6 Let rn € 0C. Suppose that the followi,ng assumptions hold:

(i) the pair of sets (F,C) sati.sfi,es the cond,ition (A) atrs;

(i,i.) the target set C ts prorimally regular near ro;

(i,i,i,) for each r (. C enough close to ro one of the properti,es below takes place:

(") C has smooth boundary at r;: n5@), and the un'it normal "c(.) is Hiilder conti-
nuous near r with an erponent 0 < a S 1;

(b) F i,s uni,formly smooth at t :: 4,), and, V pp (.) is Hc;lder continuous near ( with
an erponenl 0 ( o ( 1; " Pplt-t

(c) the mappins u (y) :: -N'c (g) o Nr (ddil n AF" is sinsle-ualued, and, Hiild,er

cont'inuous near r wi,th an erponent 0 < a ( 1.

Then the ualue functionSfl(.) x of ctass Crl;i in a netghbourhood, of the point rs.
Here and in what follows by the di,fferentiabi,lity and the Htilder continui,ty of the gradient

V5[ (.)we mean that these properti,es hold true only outsi,d,e the target set.

Proof.
It follows from theorems 2.2.L and 3.2.1 that the projection "3O is well-defined, single-

valued and Lipschitz continuous (Holderian with 0 : L) in some neighbourhood Ut(26) of rs.
Consequently, all the assumptions either of Theorem 3.3.2 or of Corollary 3.3.4 are fulfilled.
Then applying, respectively, Corollary 3.3.3 or Corollary 3.3.5, we complete the proof. I

Theorem 3.3.7 Let rs e 0C. Suppose that the following assumptions hold:

(i) the pai,r of sets (F,C) satisfies the condi.tio" (B) at rs;

(ii) for each r ( C enough close to ro one of the properties below takes place:
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(o) C has smooth boundary atd:: 
"E@), 

and the unit normal "c(.) is Hdld,er conti-
nllous nearT with an erponent 0 ( a ( 1;

(b) F is uniformly smooth at { :: #d, and V pp (.) is Hiilder continuous near { with

anerponent0<a<1,.

then the ualue functionSfl (,) X of 
"to,x 

Cl.fi in a neighbourhood of the point l,6. Howeuer,

if in the place of the condi,ti,on (i,i) we assume that

(ii') the single-ualued, mapping A - u(y) ': -Nec (r)nN , (61nAFo zs Htild,er cont'inuous

with an erponent 0 < a 1L near r, for each r $ C close to rs,

then 5[ (.) is of class Cl;i near ro.

Proof.
Unlike the previous statement here we apply either Theorem 3.2.3 or Theorem 3.2.2 to be

able to use the results of this section. Then it is enough to apply either Corollary 3.3.5 with
g : * or Corollary 3.3.3. I

Observe that although the assumption (iii') of the last theorem is really more general than
the alternative hypotheses (iii), we obtain a stronger regularity for the minimal time function
(o > #;). This happens because the normal vector u (.) in (iii') depends on a moving point

" ( C itself, while in (iii) it is a composed function involving the projection.

The following statement is the global version of the theorems 3.3.6 and 3.3.7. Notice that
in order to formulate the regularity result in global setting we should reduce all the HOlder

exponents of the gradient V56 (.) obtained earlier to the common one. So we have

Theorem 3,3.8 Let us suppose that the pair of sets (F,C) sati,sfies either the conditio" (A)
or (B) at each point rs e AC, and that the target set C i,s prorimally regular (in particular,
g-conuer). Moreouer, u)e assume that giuen 0 < P 31 in a neighbourhood of each rs e 0C

ei,ther the mappins a a u (y) :: -N'c (g) o Nr (d$ n AF", g :: rfi (a), i, sr,ngle-ualued.

and Hiilder continuous wi,th the etponent B, or the hypothesis (ii) of Theorem 3.3.7 is uerifi,ed,

where o : g if at rs the cond,iti,on (L) holds, and a : ffi und,er the cond,i,ti.o" (B). Then

there erists an open set |t(C) ) C such that, the m'in'imal time function 5[ (.) X ol class C];!
on tt(C)\C.

Proof.
This is immediate consequence of two previous theorems taking into account that the equality

a: u2l, is eouivalent to B: ^9=. Ip+t z-d

Since
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2B
d,:: 

- 

) [J.{J+t-"
we formulate another version of the global result, which does note make differences between

Hcilder exponents in the case of the hypothesis (A) or (B).
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Theorem 3,3.9 Let us suppose that the pair of sets (F,C) sati,sfi,es e'ither the condition (A) or
(B) ai each point rs e 0C, and that the target set C is prorimally regular. Assume, in add,ition,

that ei,ther C has smooth boundary and the mapping r > nc (r) zs locally Hiilderian near C
with the erponent a, or F i,s uniformly smooth (at each poi,nt) and,Ypp(.) i,s locally Hi)lderian
near F with the same erponent a. Then the mini,mal ti,me functi,on 5[ (.) X of class Cl;! on

11(C) \C where U(C) is an open neighbourhood of C.

3.4 Examples

Here we illustrate the regularity results obtained in the previous sections by simple examples

which have already been treated in this work but for other purposes. For the sake of clarity we

consider only the finite dimensional case.

Example 3.4.1 Let

F::

C::

Notice that the same dynamics -F'was used also in the examples 1.4.2 and 2.4.3, while the target
set C is similar to that considered in Example 2.4.4, btfi simpler because it does not contain
an "inward cornerrr point. Then .F, is closed convex bounded with 0 € int-F, and C is closed,
p-convex with g (.) given by
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{(€r,€r) € IR2 : l€zl < 1-(14, -1 < (r S 1}

{t,',,r) 
€ IR2 : 11 ( min (.r,(., -;)' *;,(.,.;)'. ;) }

, r:(rt,rz),

(see (2.73)). Furthermore, C has smooth boundary at each point except b* :: ($,+t) witfr
the unit normal vector

(,
'p (r) : *u" 

t JTT 4*22,

"r,r, : 

{

fu6,-2r2) if l"rl < 1

if r2>f;
(3.53)

ffi(t,-z("r+il) if 12 < -f;,

and the vector b (r) :: -nc (r) I pr" ?nc (r)) is well-defined for r € 0C, r I b+.

Proceeding as in Example 2.4.3, we conclude that the condition (B) holds for each 16 :
("?,"8) € AC\{b+}. Moreover, F is smooth at each point 4: (?r,q) e AF'\{(*1,0)} with
the unit normal

,rr (r),: ffi : #(+,7!, sgn (,rr)),

being the function \ -, nF (4) locally Lipschitzean.

7+(2r2-t)2
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On the other hand, it is easy to see that for each 16, ro+b+, with lrll > Ll8 and for some

d > 0 small enough there is no r € Cd(*o) with 4:3r(D(r)) : (t1,0). Indeed, choosing an

arbitrary r e 0C close to rs and assuming 12 ) 0 (the other case is symmetric) we consider
two cases. In the first one (when Ll9 < 12 <314) the vector u(r) is given by (2.68), and for

€ : ((r, €) :]e (u (")) we have

c- 1

<r:-rr_1ln€t-1,0[

(see (2.69)). Otherwise (i.e., if 12> 314) from (3.53) we find

D(z) : (-1,212 - L)

pp" (-L,2r2 - 1.)'

where

pp" (-1,212 - 7) : I + 4+/z lt _ 2r.2r4/3

4a/s fl - 2rrf /z '

and for (: (€r,€2) € Jr (o (")) simple calculations give

s1 - 4t/3 (t - 2x)r/3
€ [-1,0[ and €z : (1 - €i)

Thus, in these two cases np (.) is Lipschitz continuous near each Jr (u ("0)) and the time-
minimum projection "5O is locally Lipschitzean near zo by Theorem 3.2.3 (ii). Furthermore,
according to Theorem 3.3.7 (ii)b the value function 56 O is of class C,f"1. Notice that here we can

also apply the condition (i) of Theorem 3.2.3 (as well as the hypothesis (ii)a of Theorem 3.3.7)
because C has smooth boundary r€&r rs with n5r (.) locally Lipschitzean (see (3.53)). However,
if luEl < ll8 then to guarantee Lipschitz continuity (which takes place as well) we can use only
the last conditions, i.e., the local regularity of 0C since in this case (:: Jr(u(ro)) : (+1,0),
and the smoothness of. 0F at ( fails.

Finally, at the points ro : bl the boundary of. C is not smooth. Nevertheless, calculating
also the normal cone to C at these (singular) points we see that 0F is smooth at each point

\: Jp (rt*), rl* € -Np" @)n0F", r e Ct (rs), where d > 0 is small enough, and the respective
normal np (.) is Lipschitz continuous. Consequently, also in this case we conclude that ?r5 (') is
Lipschitzear near us, and E5O is of class Cl;! i" some neighbourhood t/'(ro).

Thus, joining together everything said. above we see that the projection 
"5 O is locally

Lipschitz continuous near C. Moreover, the value function 53 O is Fr6chet continuously diffe-
rentiable, and its gradient V55 O is also locally Lipschitzean on some neighbourhood !l (C) of
the target set.

Example 3.4.2 Let

(, < 1)'
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r ': {(€r, €r) e R2 , (? + ((z - t)2 < 4,

C ,: {(q,rz) € R2 : ", < f ("2)}
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where / : IR -r R is gi,uen by

( -t-i ,t r<-1
I

f (t)::1-rn=e if -1<t<+
L -+ ,r t>+

Observe that F' is closed convex bounded with 0 € int .F', and C is closed, g-convex with
p(r): ]. Furthermore, C has smooth boundary in all the points except in (0,-1) ,(-+,4)
with the unit normal vector given by

(-q,-rz) if -1< rr.#
(1,0) if 12> S

(;>0

€;<0.

It is obvious that for each ( : (€r,1), €r € )-2,2[, and the (unique) normal vector (* :
(0, 1) € 1Fo to .F at ( the curvature zr ((,(*) is equal to zero, whiLe N (€, €.) : #T for each

€-: (€1,€i) e 0F' with(! ( 0 andtheunique€ € JF((-). Finally, if (| ) 0 and6i l0 we

haveN((,€.) ,UlS,whereagain(:Jr(€.). Inthelastcase,obviously, h(€,€.):*oo.
Given ro: (r1,rfl) e 0C let us consider the various cases.

(i) If -1 < r! < -i,"8 ) 0 then for z: (q,rz) enough close to r0 we have
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r: (rr,r2) e 0C.
For an arbitrary dual pair (€,(-),

Pr. (€i, €;): {
l.

(eJr(€-),€-eo

2lfil + (;

Fo, we have

1/T:@,,2)

+{i((i)2 + (€i)'?

if

if

u(z) :- (-
e aF",pr" (-n (")) zJT -7, + *z

and (: (-2,1) is the unique element of Jp(u(r)). Since llu(")ll < ll,F'"ll pr"(o(r)) : t
we have ,r (€, o (r)) > 1 I a.

(ii) If -1 <"? 1.0,12(0thenforeach *:(rt,r2)near 16weflnd

n (r)

!(r) :
(- t/r=ar,"r)

2*r2 '

and there exists a unique € e 0F such that the (unique) normal vector to tr, at ( belonging
to 1Fo is exactly u (r), i.e., € : Jr (o (r)). So that

11
+ llu (r)ll - a

xp (€, u (r)) :
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The case r? : -1 (and r! : 0) is reduced to the previous cases because every neigh-
bourhood of 16 intersects both semiplanes {rr> 0} and {*, < 0}, while for the point
r : (-1,0) itself u(r) : (-112,0), € : (-2,1) arrd. Np (€, u (")) :112.

If r! > O, *8 < -1 then for each r from some neighbourhood of rs we have

u (r) : ^j- 1a, ry2\/10-l''
and for the unique ( € Jr (u (")) we have
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(iii)

(i")

1

Nr (€, u (z)) : , ilob)il 
: zr/n - t

4Jto

(v) If *? : -i, "9 > # then for each r from some neighbourhood of r0 we have D (r) :
(-112,0), and €: (-2,1) is the unique element of Jp (u (r)). So that again nr (€,0 (r)) :
112.

(vi) If ro : (0, -1) then NL (ro) : {)1e1 * \2e2: .\1,.\2 ) 0}, where eL :: (0,1), e2 :: (3,1).
As it is easy to see for each (* € -Ne, ("0) n 0F" there exists a unique € € JF ((-) and
we have %F(€,€.)>-ll4.But in each neighbourhood of z6 there are points r either with
-1 ( rt .--0, 12 ( 0, or with 11 ) 0 and rz < -\. These cases we combine with (ii) and
with (iv), respectively.

(vii) If ", : (-i,#) tn"" similarly to (vi) N6(ro) : {,\1e3 *\zeq,:.\1,)2 }0}, where

e3:: (1,0), e4:: (+,-#). Foreach(- e -N6(ro) n IFo wehaveJr(€.): {(-2,1)}
and xp (€, €.) > U4.

Therefore the condition (B) holds at every r0 e 0C, and the projection 
"E 

(.) is well-
-defined on an open set U ) C. Moreover, it is Hcilder continuous with the exponent 712.
In order to improve the Holder regularity of the projection as well as to show the smoothness
of the value function (if any) we should study the smoothness either of the target set or of
the dynamics. First, C has smooth boundary in all points 16 € aCl{10,-1),(-+,f)}
and the function ,c (.), which associates to each r e C5 (rs) the respective (unique) normal
vector nc (r) € Nb (r)nEB, is Lipschitz continuous. Hence, by Theorem 3.23 n[(.) is (locally)
Lipschitzean near such 16 and by Theorem 3.3.7 (ii)a 53 O is of class Cl;) irrsome neighbourhood
of 16. Considering the point r0 : (0, -1) we see that ,F is uniformly smooth at ( ': Jr (€.)
(w.r.t. (*) for each (* e (Jt,d, (zs) (see (2.14)) with some 5, 6' ) 0 and that the gradient
Vpr (0 being normal to -F' at the point ( is Lipschitz continuous in (. Thus we conclude by
Theorem 3.2.3 that 

"5 O is (locally) Lipschitzean near zs and EE O is of class C,f"1 in ,om"
neighbourhood of rs. Let us consider now the point r: (-;,#). Sr""" the normal cone to C
at ll being contained in -Np (-2,7) does not touch the vertical semi-line lR*er, the condition
(A) at r also holds. In turn this implies that the projection 

"E 
(') is not only Hctlder continuous

with the exponent 112bfi is (locally) Lipschitz continuous in fact in a neighbourhood of - (see
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Theorem 3.2.1). On the other hand, denoting u: (2,-1) observe that "5 @ - ee) - {f} for all

e ) 0 small enough. Nevertheless, for tr:: i - ee the intersection

-N,,(-)nN" (##) nr""

is reduced to - {.\1e3 * \zeq,: }1, )2 > 0} n 0F". By the equality (3.40) obtained in Theorem

3.3.1 this intersection is exactly the Fr6chet subdifferentiat 0153(r). So that we have no the

Fr6chet differentiability of the value function near the point r : (-r,#)



Chapter 4

The problem with a nonlinear
perturbation

In this chapter we exploit another view to the minimal time problem that allow us to somehow

generalize a part of the obtained results. Namely, we are interested in studying of the regularity

properties of the viscosity solutions to the equation

pp"(-Vu(")) - 1 :0 in /{\C,

u(r) :0 (r), r € C.

Here as usual // is a Hilbert space, F C H (dynamics) is convex closed bounded and with

0 e int l' and C C H is an arbitrary closed set. As we already said (see Introduction) in the

case g : 0 the unique viscosity solution of the problem (4.t)-(4.2) is exactly the minimal time

function 53(.). Generalizing this problem we suppose that 0 ; C "-+ lR is a non affi.ne but

enough r"grrlu, function. In what follows we assume A (.) to be well-defined not only on C but

on the convex closed hull aoC or even on the whole space ,Ff. If H : lR' and Q C lR'" is an

open domain with the boundary C ::0O then (4.1)-(4.2) becomes the boundary value problem

for the Hamilton-Jacobi equation associated with some optimal control problem. Consideration

of this relationship is out of Thesis. Here we just occupy with the solution of @.1)-(a.2) itself

and with their properties. First of all, in Section 4,1 we give the main definitions regarding the

theory of viscosity solutions. Furthermore, for the sake of completeness we place here the direct

proof of the well-known fact (see, e.g., [61]) that the (unique) viscosity solution of (4.1) is given

by

such that

(4.1)

(4.2)

u(r):: ;2[{or(a- r)+e(y)}, r e H-

As we will see later the regularity of the function (4.3), similarly to the case 0 : 0, strongly

depends on the attainability of the minimum in (4.3) and on the uniqueness of the point i €C,
where this minimum is attained. So that we are Ied to study the (multivalued in general)

mapping * r- nlo (r), where

(4.3)

"tt @);: {r € H : u(r) : pp(a- r) + 0 (d},
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and give in Section 4.2 some effective (local) conditions guaranteeing that the above mapping

is well-defined, single-valued and continuous in a neighbourhood of the set C. These conditions

extend the hypotheses (A) considered in the chapters 2 and 3 to the case d I 0 and ensures the

Lipschitz continuity of nfie (.) as well. The last Section 4.3 is devoted just to the regularity of

the function (4.3), and *" pro,ru here that z (.) is of class Cl;! """r 
the set C and give an explicit

formula for its derivative. This is similar to the respective results for the function f$ (') (see

Section 3.3).

4.L A short introduction to viscosity solutions and to Hamilton-
Jacobi equations

We start from the defrnition of viscosity solution given by M. G. Crandall and P'-L. Lions in

[34] for the general first order (nonlinear) partial differential equation

I (r,u(r),Yu(r)) : O, r € O, (HJ)

in a finite dimensional space, where O is an open domain in lR" and f (',',') is a continuous

function.
Notice that such solution may be nowhere differentiable in classical sense, and its gradient is

und.erstood by another way similar to the distributional derivative in the case of linear partial

differential equations. However, due to essential nonlinearity of the considered problems the in-

tegration by parts here is replaced by "differentiation by partsrr. Surprisingly, another definition
(see below) can be given in terms of the generalized (multivalued) differentials, which always

exist (but often can be empty).

,1, e C (O) we set

and -E- (rb) ,:

Let us consider also the space Cf; (O) of ull (t"tt) fuI:jlgr!_pj f): R of the class C- (infinitely
differentiable) with compact support suppp,: {rt 0 : .p(r) l0}, and denote by Ci (O)+ tfre
set of nonnegative functions belonging to Cf (A).

Definition 4.L.L A functi,onue C (O) * saidto be viscositysubsolution (respectiuelg, super-

solution) of the equat'i,on (HJ) i,f for euel'A I € Cf (0)+ on.d k e lR

1r e Ea(e(r(') - k)) such that r (r,u("),-4!;v.p(r;) 5 o, (4.4)
\' e\r) "/

(respectiuely,

{, . 
n ,,1,@): ifif,l < 0} .E+ (rb),: 

{, 
e Q : {t (s) : sup/ > 0}

Denoting as usual by C (O) the space of all real continuous functions defined on f,), for each

r('''(')'1r e E- (e (" (') - r)) such that :r#v,p1,1) >07 (45)
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wheneuer the set E+(p("(.) - k)) (respectiuely, E-(e("(') - k))) it nonemptv. we say that

u € C (0) * o ,ircosity'soiution of (HJ) if both implications (4.0 and (1.5) hold', i.e., u(') is

both a uiscosi,ty subsolution and a uiscosity supersolution.

Due to the following result an equivalent definitions of viscosity solution can be given (see

[32, Theorem 1.1]).

proposition 4.1.1- Let u € C (O). Then u(.) is a uiscosity subsolution (supersolution) of (HJ)

if and, only if for each g e C1(0) such that the function u(') - g() attains a local marimum

(respectiuely, alocalmi,nimum) airse Qth.einequalityl (16,u(rs),Vp(ro)) 10 (respectiuely,

In this simpler form subsequently the notion of viscosity solution was defined and studied

in an arbitrary Banach space with the Radon-Nikodym property (see [35, 36]). Further on,

naturally, we will consider only the case of a Hilbert space I/ (which possesses this property, see

lq4,p. 100]), setting Q:: ff\C where C is the target set.

Once more equivalent definition in each (Hilbert) space can be given basing on the concept of

the Fr6chet subdifferential 0l u(.) (see Section 2.1) and the symmetrical Fr1chet superdifferential

denoted by }yu('). Let us recall the respective definitions

The following result was obtained already by M. G. Crandall and P.-L. Lions in finite di-

mensional ,p""", (see [34, Proposition I.18]) and then was generalized to Banach spaces in [35,

Proposition 1].

(t) "(') is a u'iscos'ity subsolution of (HJ) i'f and only if

I (r,u("),p) S 0 Vr € O, Yp e 7yu(r);

(l,t) u(') is a uiscosity supersolution of (HJ) ,f and only if

f(r,z(r),p) >0 Vr€O, Ype0fu(r).

Remark 4.1.L Noti,ce that if both 0p (r) and 0f u (r) are nonempty at some r then the function
u(') is d,ifferentiable at this poi,nt and lyu(r):0f u(r) : {Vu(z)}'

(
0l u(r) ,: { p e If : Iim inf

L s-'
(

1yu(r)::\p€H: limsuP
L g*r

Proposition 4.L.2 Let u € C (d). fnen

u(a) -
&

(")
u-

&

u (r)
llv -

u(a) -

u

I =o) '

,Y-fr)(p

il

=o)
,A-fi)(p

il
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In what follows we consider only a particular case of (HJ), namely, the equation (4.1), and

use only the definition of viscosity solutions given by the latter proposition. According to general

existence and uniqueness theorems (see [36, Theorem 1.1] and [35, Theorem 1], respectively) we

can affirm that the equation (4.1) admits a unique viscosity solution satisfying the boundary

condition u lao : uls :9 where A (.) is a fixed function. Furthermore, it is known that this

viscosity solution is given by the exact formula (4.3) (see [61, 18] in the case of IR'"). However,

for the sake of completeness let us prove the respective assertion'

Proposition 4.1.3 Let 0 : doC -- lR. be a Lipschi,tz continuous functi,on such that 0"0 (r) C -Fo
for all r e dC. Then the functi.on u(.) defined by (lt-?) coincides with 0(') o" C and is the

(unique) uiscosity soluti'on of (4.1) with this boundary condi,tion.

Proof.
Let us prove first that u(r) : g(r) for all r € C. The inequality u(*) < d(r) is obvious.

In order to prove the opposite inequality let us fix g € C. Then by the Lebourg Theorem (see

[22,Theorem2.3.7]),thereexistt.:\r+(1 -A)yecoC,)€(0,1) and4*eA'0(n)c-p'
such that

e@)-0(v): \\*,r- r) =,::F,(€.,v- 
r): pp(a-') ' (4'6)

Hence, passing to infimum in g € C, we have

u(r): iyL{pr(v - ") +o(a)} > e@)'

Thus
u(r) : 0 (r) Yt e C. (4.7)

The function u (.) is continuous. It is even Lipschitzean on whole ff with the Lipschitz

constant llF'll. Indeed, taking arbitrary r,A e -Ff and e ) 0 we frnd tu e C such that

u(y)> pr0u-a)+0Qa)-e,

and hence

: pe?u-r)-pr(.-A)+€

Letting e --' 0+ we obtain the Lipschitz inequality.
In order to prove that u(.) given by (4.3) is the viscosity solution of (4.1), let us verify the

conditions (i) and (ii) of Proposition 4.1.2.

(i) We have

u(y) - u(r) : i2!"{or Q - il + 0 (z)} - )tL{prQ- r) + e Q)}

z€U
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trary e ) ereexistsd>0suchthat
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for

(a-")

)

g-n llv - ,ll
pr(a-, pr (v - t)'

and passing to supremum we have

- / r-ti \ lla-"ll
-'*,,,11f. ,\''f1r!a) s' 

rr,1lf., 1iffi (4'e)

since 
sup llv - rll - sup r+ : ll.ll

lls-,ll<d PP \U - t) z*o Pr \z)

and / a-r \pe" Gp): ::B k, -p) : 
rrr1tf., \-n,ffi ) ,

(4'9) implies that 
-! * pp"(-p) < , rrr,

and letting e --* 0* we obtain pe" ?p) ( 1, proving that u (.) is a viscosity subsolution of (4.1).

(ii) Let us frxr ( C and p e 7lu(r). We should prove that pe"?p) ) 1. Let us suppose

the contrary, i.€., pr"?p) ( 1, and let e ) 0 beso smallthat pe,?p) < 1-e. Then by using

the definition of Fr6chet subdifferential we find d > 0 such that

u(il -u(r) - \p,y - "l > -Zpr@ - *)e u(r) -u(y) - (-p,a - r) Sior@ - r) (4.10)

for all y * r,llg - ,ll < d. Assume, moreover, that (z + dB) l, C :0. On the other hand, let

z e C be such that
u(*)> peQ-r)+0(,) -dh,

and, consequently,

,A: prQ-r)-prQ-a)-EnFn va#c. (4.11)

Since llz -"ll > d, there exists .\ e (0,1) with llr- rll : f where ! :: ),r+ (1 - A),z.
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Notice that

pr(U-r) :(1 -\)peQ-r) and prQ-a):\peQ-r)

and consequenlty

prQ - r) - prQ -il: pF(a - r) 2ll9- "ll : -L.llr'll - 2 llF ll 
' (4.t2)

Therefore, applying successively the inequalities (4.12), (4.1i) and (4.10), we obtain

'gdt-\/\,/-\edlpr@- 
") - 818,il - Fp,a -*) : peQ-r)- peQ--a) - ilFn - \-p,a -x)

On the other hand, since pe" ?p) = 
(-r, ddd> by the choice of e we have

Fp,T-r) < pr(a- r)(1-e).

Combining this with (4.13) and (4.12) we obtain

: pe@-"1(t-i),

which is a contradiction. So the proposition is proved. I

4.2 Existence, uniqueness and Lipschitz continuity of mini-
mizers

Our goal in this section is to prove existence and uniqueness of minimizers in the problem

min{pp (a - ") + 0 (y) : y e C}

for r from some neighbourhood of the target set, and then to establish the Lipschitz regularity
of these minimizers w.r.t. r. The main condition used here is the relation

0"0 (r) C -1F", (4.14)

whichholdsforallr€e6C,where0<1(lissomefixedconstant. Inparticular,thisimplies
that

-0"0 (n) + ryB c 1F" + (t - r) Fo : Fo, (4.15)

where ? ,: Ft (in sequel we frequently use this constant). Oberve that if A (') it tt}:d l"i,*,,, .

neighbourhold of C and is such that 0p0 (r) c -lF then (4.t4) automatically hoDd'. Indee$iii?.

- 'i,, ,',, ,, ,r -,i1,1;;!

;iiilrtiru,urpll-., ,r\ U,
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any ( e Atl(r) can be represented as the weak limit of a sequence €n e 0e0(*.") C -'YFo,
*n" - r (see t) ill Thus 6id (r) c -1Fo, and (4.t4) follows because 0"0 (t) : co0t0 (r) and F'
is convex. The condition (4.14) implies obviously that d (.) is Lipschitzean with the Lipschitz

constant ? llF,"ll.

Notice that for r e C we always huu" nle (r) : {r}. Indeed, as we have already shown

(see Proposition 4.1.3) u(r):0(r) and, consequenlty, r e "3t @).On the other hand if there

exists a e c,a * r, with u(r) : 0(r): pr(a-r)+0 (y) then by the Lebourg Theorem we

find 4 - )z* (1 - )) y edoC,,\ e (0,1) and \* e A"0(d c -lF' such that

pe@ - r) : 0 (") - 0 (a) : \-rt*,a - r) S 
€.r.T., 

(€*,a - r) : 1pp(a - *). (4.16)

But (4.16) is possible only if a : r.

Now we emphasize the hypotheses guarateeing that the infinum

u (r) : i2l{nr (a - ") + e @)}

is also achieved at a unique point if r ( C but enough close to C. First we prove the following

auxiliar lemma (similar to Lemma 2.i.1).

Lemma 4.2.L LetCCU beanonemptyclosed,setand,0:H'--+lR bea functionof classCt'L.

Let z € r/\C, and, {rn} C C be a minimi,zing sequence for the functi,on r t--+ PF @ - ,) + e @)

on C. Then there erist another mini,mizing sequence {"'"} C C and sequences {"i} ' {""}, {€i}
suclt that un e Y0 ("'") + NL ("1,), €i e 7pe @'l - z) and

lll," -,"11 + ll,X -,,11 * o, (4'17)

llr, + (ill r 0, (4'18)

&s n --+ 6,

Proof.
Given an arbitrary sequence en --+ 0* with pp (**-r)+0@") < u(r) *e,r, by Theorem

2.1.3 there exists {y"} c C satisfying the conditions

pp (a* - z) + e @) <- u (z) * en; (4'19)

ll""-a"ll3.'/e";
pp(a,- z)+0(a) < pp(a - z) +0(il+ Je"llu -v"ll Yv e C, (4'20)

n:1,2,... . The inequality (4.20), in particular, means that yn minimizes the functional

F (y) :: pe (a - z) + 0 (u) + J€.lly - a.ll + Ic (s)

on f/. Then we obviously have 0 e ApF (g,) (see [23, p. 37]). According to Theorem 2.1.1

o e Lpp (*i - a * 't^ffi+ oe @+ rc) (,*) + 
'/-r,F
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for some sequences {*'n} c C and {"i} c H,ll"'"-a"ll < Jr", ll"i-a"ll 3 r/^, n € N. In
the same way as in the proof of [23, Proposition 2.11, p. 38] but using the Lipschitz continuity

of V0 (.) instead of the differentiability we obtain

tr (0 +tc) ("'") :vQ ("'") + NA (z;) (4'2t)

Therefore
o e opp (",i, - ,) + ve (r'") + NA @) + 2r/-u,F.

Consequently there exist vectors u,, € V0 (r'") + Np, (rl) and tL e 7pe @i - z) such that

ll'" +€;ll < 2'F;,

and the property (4.18) holds. It follows from (4.19) that {r/"} is a minimizing sequence of

r*+pF@-r)+e@)onC:

where b > 0 is the Lipschitz constant of d (') , and (4.17) is also valid. f

Remark 4.2.L The uectors un 'in Lemma 1.2.1 can be chosen such that -un e 0F", n: L,2,....

Indeed, setti,ng
t l)* - V0 (r'")u*':ffi+vo(r;)

we h,aue

Pr"+v01,;1e @; - vd (r;))) : 1'

i.e.,

- (r" - vo (r'")) € A (F" +vo (r;))
and consequently -ut* e AFo. On the other hand, taking into account that

PF"+ve@n (g; + va ('i)) : t

we obtain

: r*"ffilPr.+v01,;1 F @* - v o (r;))) -'l
s llr'+Y0(r'*)ll ll(r" +v0(r',))'ll ll(* -v0(r;)) + (€;+vP(r;))ll
: llr'+ ve (r;)ll ll(r" +v0 (n;))"ll ll"" + (lll * 0,

and, theretore, u'n can subst'itute un.
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Theorem 4.2.L Assume that 0 : H - lR. is a functi,on of class C|'t such th,atY?(r) e -1F'
for atlr e 6c, wi,ththe constant 0 < 7 < nqillF"1 

. Letus fi**o €. ac and supposethat for
some 6: d (ro) > 0 the following conditi,ons hold

(i.) themappingr,-Jr (-(VB(r) +Ner(")) n0F") iss'ingle-ualuedandLi,pschitzcontinu'
ous with the Lipschitz constant L :: L (rs) > 0 on

Cd(*il ': {, e 0C : ll" - roll < d, Ne, (") I {O}i,

and

(ii) F is uniformly strictly conuen with respect to

ud,r @o) :: 0F" (\ U [- (va (r) + Ne, (")) n aF" + 6'q
t€Ca(so)

for some d' > 0.

Then there erists a nei.ghbourhood, l,l (rs) such that for each z e U (rs) the set nle 1r1 It
singleton, and, the mapping , ,'. n[e Q) i,s continuous on tl (rs).

Proof.
Whithout loss of generality we can assume that d ) 0 is such that

drllr',ll < t-rll{ll llr"ll

We set

U(*o).:{,eH:||z_,oll<ffiu,uQ).4fl+0(rg)_arllF,ll},
I zilfililf_il L 

@.22)
where L > }is the Lipschitz constant of r + Jo (- (V41"; + N3 (r)) n 0-F") on Ca (ro)'

Fix z € U("0)\C and a minimizing sequence {r"} c C for r - Pp@ - r)+0(t) on C. Let

us choose {"|} c 0C, {ri} C H, un e V0 (rt") + NA (zi) and €i" e )pe @i - ,) as in Lemma

4.2.1. Moreover, by Remark 4.2.7 the vectors un carr be chosen so that -un € }Fo, n: L,2, ... .

Similarly as in Remark 2.1.1 observe that rtn in fact belongs to 0*C for all n large enough, i'e.,

NL ("i,) I {0} Indeed, otherwise un : Y0 (r'") e -tF" C - int F'.
By the definition of u (.) (see (a.3)) we have

ll"" - "oll

: be@*- z) +0 (r") - "(r)) + beQ - ro) +u(z) - 0 (""))

S (pe @* - z) + 0 ("") - "(r)) + pFQ - ro) * pp (ro - z) + 0 (*o) - 0 (*")

S (pe@n- z)+0(*") -"(z)) +2llr'"ll ll, - "oll+? llPll llro - r"ll ,
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which implies

/7 . \
(m -7llr"ll) ll"*- "oll 

< (pr@^-z)+0("")-"(r)) +2llF'll ll'-"oll'

Since pp (r*- r)*0(n*) -r(r) * 0*, ll*"-"Lll - 0 as n -' oo, we can suppose, without

loss of generality, that

##ifihrrz-rsrr <d'll""- "oll s I
for all n: L,2,.., which implies thal rt* e C6(rs). Consider a decreasing sequence I/?1

such that

ll"; - ""ll + l\'l - **ll a,";
pe (r'" - r) + e ("1") < u(z) + un;

llr"+€i"llar",

(4.23)

-+ 0*

(4.24)

(4.25)

(4.26)

(4.27)

-un e [/5,6, (16), and,

(4.28)

n:7,2, ... (see Lemma 4.2.L). By hypothesis (ii) the (single-valued) mapping 3r (') it uniformly

continuous on(15,6, (16) (see Proposition \.2.2), and, therefore, the (decreasing) sequence

0n i: sup llJr (€-) - Jr (rt.)ll

,)tf,4,)t,i?,t

tends to zero as n -+ oo.

Observe that (i e lpr @i - ,) - Np (ffi) n AF" and hence

"i , " ,: Jr (€l)
Pr \ri - z)

(recall that J.l (€) : Nr (€) n a,F' for ( e 0F). By (4.26) we have (1,

consequently,

llSr (€l) - Jr (-u")ll 3 P"' n:7,2,'.'
Given m ) n we obtain ftom (4.24) and (4.25)

lp, @'1, - z) - p, (r'l - ,)l

+ler (*'*- z) - pe ("i - ")l

+ lpF (r'^ - r) + e ("'") - " Q)l
S 2llF''ll unr2un+?llr"ll ,,,z,"-*"ll 

@.2e)

and by (4.23) we have

llr"llll"|" - C^ll + pp (r'^ - z)

llF"ll r" + u (z) - o (r'^) + u"

llF'll r* + u (z) - 0 (ro) + ? llr,ll ll,,; - rrll + r"
llP"ll r" + " (r) - o ("0) + fi llF"ll + u".
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Then using (4.27) we obtain

l\h- "'lll: llp, @i"- z) Jr ((;) - pr ("'1,- ,)Jr (€l)ll

< pr (r'i. - ") llle (€;) - 3r (€i);1 + lrr @|" - z) - or @'l -,)l llrll
< ((llr,ll + L) u^ +u(z) - 0 ("0)+ d7 llF'll) llJr ((l) - Jr ((l)ll +
+ (z1;1r"1; *1)un+'v llr,ll ll,*- ";ll) llrll

Now by using (4.24), (4.28) and the hypothesis (i) we obtain

r (z 11;r"1; * t) un + r llr"ll lv'* -,;ll) llr'll ,

which implies

(1 - ((llr"ll + t) u, + u (z) - 0 ("0) + d7 llF'll) L - 1 llF"ll llrll) ll"* - "'"ll S u"

for some Lrn + 0 as n --+ oe. Hence, by the choice of. z we conclude that {rr} is a Cauchy

sequence.

Let us pass now to the second part of the proof. Denote by

u- l)u(rs))c,
to€C

where we put U("0):: int C f.or rs e intC. Given ro € 0C, z e l,l (ro)\C and a minimizing
sequence {r*} cC of r--+ pp@-r)+0(r) on C we find aminimizerof this function as the

limit of {r,,}, which exists because {zr} is a Cauchy sequence. Assuming that there are two

elements r,A e "tt Q) with r * A *" consider the sequence {rr} whose odd terms are equal to r
and all even terms are equal to g. Since {r,} is a minimizing sequence for r r* pp (r - z) + 0 (r)
on C by the same reasons we also conclude that {2"} converges to r : A. Il order to show

the continuity at z e l,l it is enough to observe that for each zn ---+ z thesequence {"8t t^l}
minimizes r r-+ pF @ - ,) + 0 (r) on C. Indeed,

,(") s or ("f,0 Q*) - ,) + e ("t' AS)

Thus zrf'a Qn) -- ntu Q), and the theorem is completely proved. I

Notice that similarly as in Section 3.2 the regularity of the minimizer "3t @) with respect

to z can be essentially improved.

Theorem 4,2,2 For fi,red rs e 0C under the same hypotheses as'in Theorem 1.2.1, the mapping

"t'(') i,s locally Li,pschitzean in some neighbourhood, of rs (outsi.de of C).
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Proof.
We set

t/'(*o) , : {re H:llz-rnll < (1 -7!]j{ll ll=F"ll)d.

L *urr - 4llFll llr''ll '

u(z) <ry + o @s)- dr llF'll | .u Po1.

Let us fix r € l/'(ro)\C and let r > 0, 0 < t a 6-r, be such that

,(*) - 0 (ro)+ d7 llF'll + r <l:cffi'
r + 68 cU' (rs)\C.

Take arbitrary z)u € r+58, z * w, and set g r:M4 > 0;2,: nte (z) and a:,ntq @).
By the condition (ii), there exists 0 <u 1dl such that

llJr (") - ]e (,)ll a 0, (4.30)

whenever u,u €.Ud,d,(*o), with llu - rll S v. We set also

€:: min {n;,,, ,,p}

Since Z minimizes the functional

F (s) :: pe @ - z) + 0 (y) +Tc @)

on fI, by the necessary minimum condition (see [23, p. 37]) 0 e )pF(Z). Then by using

thefizzy sum rule (Theorem 2.1.1) we find 21, z2 e Z *eB with zt € 0*C and vectors u, €
-AF" n 0p (0 + Ic) Q), €i e 0pp (rz - ,) such that

llu,+€)ll Se.

Notice that the definition of u (') implies

u(r)<pr(ro-z)+0("0)

and, hence,

llf'll
: u(z)-o(z)+peQ-ro)
S pr(ro - z) +0("0) - 0(z) + peQ - ro)

107



4.2. EXISTENCE, UNIQUENESS AND LIPSCHITZ CONTINUITY OF MINIMIZERS 108

which implies

Consequently

ll,r - ,oll < ll,, -zll + llz- ,oll < '* t'ffiffi llz - 16ll S d,

i.e., z1€ C5 (16). Since (], -u, e AF" n (-Ap (0 + Ic) (rr) n OF" + d'B), by (4.30), we obtain

llsr (€]) - 1r (-u,)ll < P

(see (4.21)). Similarly, considering u and D in the place of z and Z, we find u)l,'til2 € D*eB,
tl1 € 0*C, and

u- € -0F" n Ap (0 + Ic') (u1) , €; € )pr (-z - u)) ,

satisfying llr,, + €;ll < e. By the same reasons as above we show that llJr (€;) - 3e (-r-)ll a 0.
Joining together the last two inequalities and taking into account the hypothesis (i), we have

(see (3.13))

llsr(€l) -3r(61)ll<2P*L(2e+llz-Dll). e32)

On the other hand,

which implies

*lPpltu-u)-Pplz-z)l

By using the Lipschitz continuity of both u (.) and 0 (') we have

peQz- r) S PrQz-z) + pF(z- z)

Since (4.31) implies, in particular, that llz - "oll 
( d, by the choice d and e of we obtain



4.3. REGULARITY OF THE VISCOSITY SOLUTION NEAR THE BOUNDARY

By Proposition 1.1.1 3r ((]) : i#i and Jp (€X,) : #6 Hence, bv using, respec-

tively, (4.34), (4.32) and (4.33) we obtain

llz -mll S llz - ,zll + llrz - .zll + ll.z -mll

+ llz - wll

+ llr'll 0lF"ll Qe + llz-,rll) +r llF'll ll?I] -zll) + llz - ull .

Now taking into account the definitions of B and e we obtain

(1 -("(")-0("0) +7llF"ll 6+r)L-1llr"ll llFll) llz-mll<tllr-.ll ,

where
t:2(1+llr'll |Ir''ll) +(u(r) -0("0)+7llr"ll 6+r)(1 +r).

In the case z : tu the same inequality holds due to uniqueness of the minimizer. Thus, "tt (')
is Lipschitz continuous on z * dg *ith the Lipschitz constant tf u, where

u::1. - ("(") -0("0) +Tllr,lld+r) L-t llr'"ll llFll > 0.

I

Remark 4.2.2 Notice that the Lipschi,tz constant of the mapping "tt (') d,epend,s essentially on

th,e dr.stance from the boundary of the neighbourhood U (rs) controlled by the parameters r and

u , tend,'i,ng to loo wheneuer the strict inequality u (r) < f='iryUm + 0 @s) - dr llI.'ll tend's to

become an equali,ty.

4.3 Regularity of the viscosity solution near the boundary

In this section we study the differentiability of the function u (.) through the regularity of the

mapping "3t (.).Here we assume that 0 (.) is defined and continuous on the whole space y'{ and

satisfies the relation 0p0 (r) C -.y Fo for all r € 6C , where 0 < 7 ( 1 is some suitable constant.

We start with a technical result, adapting Proposition 2.6 and Corollary 2.7 from [31].

Lemma 4.3.L Suppose r (. C.

(i) For all ( e F andt) 0 
u(r -t€) su(r) +t.

(i,i) Assume that "3t @): {r}. For(:: ffi e 0F and,0 < t < pr(T - r)

u(n*tE) <"(r)-t.
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Proof.
(i) Let(e F,t)-0ande>0. Thereexists ye C suchthat pe(y-r)+0(y)<"(r)+e.

By subadditivity and positive homogeneity of the Minkowski functional, we have

u(r - t€) < pe@ - *+r() + 0 (y) < pr(a - r) +tpp(() +0 (a) < "(r) +e+t.

Letting e --r 0* proves (i).

(ii) Let us define at i: r + t(, t > 0. We have

\ PF\r-r)/
: pr(@-o(t- ,t ,)\+a1zy

\ \' pr(t-")))'
\I r-u \: P, \; @:dbr @ - r) - t) 
) 

+ o (r)

: pp(i - r) -t+ 0(i): u(r) - t,

and the lemma is proved. I

Theorem 4.3.L Let us fir r e C and. assume that the mapping z ; "tt Q) is well-d,efined'

and s,ingle-aalued in some neighbourhoodU (r) of n where also the following ttone'pointtt Holder
property hold,s: there are constants K : K (") > 0 and | < P < 7 such that

ll"t' t l - nt'(")ll 
= 

Klla - "ll1 for att v eu (r)'

If the functi,on @ +Ic)(.) is prori,mally regular at each poi,nt y e C5(d) ::0C n (r+ 6B) for
some 6 ) 0 where * r: ntg @) then the function u(.) is Clarlce (and,lower) regular at r.

Proof.
Let us prove the following equalities

0"u(r):0Iu(r):-7pe@-")n0t@+rc)("). (4.35)

We divide the proof into several parts.

(i) we start proving that 0lu(r) c -0pp(z - ").Notice 
that, by Proposition 1.1.1,

opr @ - r) : oFo .N" r-+;j-\-vt '"o \p.(e-"))'

Let us fix u € }lu,(r) and e, d > 0 such that

u(y) - u(r) - lu,a - r) ,_ _, (4.36)
|r-y|
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for all a e r+dB. Now fix€ e r and denote by yr,: r-t€,, > 0. By Lemma4.3.1 (i) we

have u (" - t€) - u(r) ( t. So, by (4.36), we get

1*(u,0 : t+(u,r€)
llfll ll,€ll

u(r-i€) -u(r)+(",r€)

: u(yt) - u(r) - (u,at - r) , _,
lla' - *ll

for every t ) 0 small enough. By letting e ---+ 0* we obtain

1 > (-', €)

pe" ?r) - sup (-r, () < 1.
e€F

(4.37)

and consequently

For the opposite inequality remind that by Proposition 4.1.3 u(') is the (unique) viscosity

solution of (4.1). This implies, in particular, that pr"?u) 2 1 for alJ u € 0f y(r). Hence

0f u(r) c -AF'. Now let us fix u e Tlu(r) and prove that u € Nr (E) *h"tu ( ,: ffii;1.
Choose again e,d > 0 such that the inequality (4.36) holds for all y e r * dE. Consider

!1 :: a, + ra, 0 1t I pp (" - ,). By using Lemma 4.3.1 (ii) and (4.36) we obtain

u(r)-t Z u(at)

: _:J'fi-,il tl [ ?;'],i),1"'"'
imPlYing that 

-1 2 -e llEll + (r,E).

Now passing to the limit as e --+ 0f we find (r,t) . -1 and, consequently (see (4.37)),

(r,(): -t.
On the other hand, as we have already shown (-r, €) ( 1 for every ( € F. So that

(-r,( -0 : (-r,€) - (-r,O S 0

for all ( e F, which means -u e Np ($.

(ii) Now we fix u € }tu,@).Let us denote by y"': s-z1- r, for s e C. Since 7 e C,

Us ---+ T is equivalent to s --+ r and

u(s") S peG-a")*o(r) :pr@-")+d(s)
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we successively obtain

0 < liminf
tl-t

s+u
s€C

s+r
s€C

,(r') - "(") - (u,rt - r)
ll" - "'llu(A")-"(")-(u,A"-r)
ll" _ g,"ll

po @ - r) + 0 (s) - p, (z - r) - 0 (r) - \u,s -a)
ll, - zll

llv -,ll
p, (g - a) + o (T) - p, (e - r) - e @) - \u,y - r)

lls -,ll

,. .rd(r) -0(d)- (u,s-7)
: uiiriirl-

":x ll, - Zll
se(/

r. .r@+rs)(r) -(d+rc)(E) -(u,s-r): IlLlrrlr 
'

concluding that u e 0l (e1 Ic) (z). Thus, we have already proved that

0ru(r) c -opr@ - ")naJ @ +rc) (z). (4.38)

Furthermore, since the mapping z # "tt Q) is well-defined and single-valued in some neigh-

bourhood U (r) of z we have

0r " 
(il c -0pp (T - il n 0t @+ rc) (I) (4.3e)

for every g enough close to r.

(iii) Let us prove the inclusion -\pp (z - ,)nfrp (0 + Ic) (t) c Olu(r). To this end we fix
u from its left-hand side. Then there exist constants 4 ) 0 and o ) 0 such that both relations

(0+I5') (r) 2 (0+Id(z) +(u, w-rl-"11.-rll' Vuei+r7B (4.40)

and
prQ)> pp(T-r)+(-r,"-i*r) Vze H.

hold. Setting in (4.41) z:T -y for y sufficiently close to r we have, in particular,

pp (0 - a) - pr @ - *) - (r,a- r) > \-r,T -T) .

Hence, by (4.40) and the Holderianity of ,r!0 (.) *u obtain

(4.41)

u(a)-"(")-lr,a-*)
Iiminf

Y+t

: lim inf
g+t

\,. . (-r,g -z) + 0 (g) - 0 (T)
/ trrll rlll 

-

L *;:;' 
lly - "ll

a-r lA - Il Y-I
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where ! is the Holder constant of r!0 (').

(i") Finally, the inclusion 0f u(") c O"u(r) obviously holds (see (2.4)). In order to show

the opposite inclusion, similarly as in Theorem 3.3.1, we represent the subdifferential 0"u(r)
through the proximal subdifferentials at close points (see (2.3)) and, using the relation (4.39),

we arrive at

O"u(r) : - {, - n[t€,, €r € leu(x) , *, -. *]

c m { -- hm €r, €r e }lu(r;), ,, -* ,}
L z+oo )

c -{--.lim €r.,€te -\pr@r-*)not@+rc) (*n),r,i-*r} . @.42)
I i-oo -- -- )

Since the subdifferential of the convex function pp (') has stronglyxweakly closed graph, by

using the proximal regularity of (6 * Ic) (.) near the point 7 and the definition of the limiting
subdifferential we deduce from (4.42) that

The last equality follows from the convexity and the closedness of both subdifferentials Opp (z - ")
and 0/ (0 +I,c) (z) : At (e +Tc) @). Finally, from the proximal regularity and from the item
(iii) above we conclude

0" u (r) c -0 p r @ - ") n Ae P + Ic) (r) c 0I u (r) c 0'u (r) .

Since the inclusions 0f u(r) c 7tu(r) c O"u(r) are always true (see (2.4)) we have, in fact, the
equalities

0lu(r):7tu(r):0"u(,)
and the Clarke and the lower regularity of the function ?, (') at r follow. I

Theorem 4.3.2 Let us fir r * C and. assume that the mapping , ,. nfie Q) is well-d,efined,,

single-ualued and, Hcild,er continuous with an erponent i a g <. I in some neighbourhood U (r)
of r. Assunle, Tnoreol)er, that the function (0 + Ic)(.) is prorimally regular at each poi,nt g e
Cd (") , where r ,: n30 @). Then the function u(.) is (Frechet) continuously d,i,fferentiable at r
i,f there erists a continuous m.app'ing u : U (r) -- 1Fo such that

-ap (o1rc)(r) n Nr (;@5) n r." : {'@)}

where g :: rfl (il, a e U (r). In this case Yu (r) : -u (r).

o"u(r) c -(-uor@-r)natd+rc) 121)

: -ope@- *)nar (o +rc) (z).

(4.43)



4.3. REGULARITY OF THE VISCOSITY SOLUTION NEAR THE BOUNDARY

Proof.
Similarly to the proof of Theorem 3.3.2, the statement follows from Theorem 4.3.1 taking

into account that (see Proposition 1.1.1)

-op (0+rc) (il n Lpe @ - il : -0p (0 +rc)(y) n Nr (#h) n r.'

foreverygeU(r). I

For convenience of further references let us formulate the following obvious statement.

Corollary 4.3.3 Und,er all the assumptions and notations of Theorem 1.3.2 suppose, moreouer,

that the single-ualued mapping

a ,-- -op (o +rc)(r) n Nr (#ffi) n r""

is Hijld,er continuous wi,th an erponent 0 < o I 7 in a neighbourhood of r ( C. Then the

function u(.) is of class C|'o in this neighbourhood.

Remark 4.3.L Notice that if the function 0 (.) and, the set C are prorimally regular at n e 0C

th.en the functi,on (0 +Ic) (') is also prori,mally regular at r.

The condition (4.43) splits into the following two particular cases.

Corollary 4.g.4 Assurne as in Theorem 1.3.2 that the mappi,ng "tt (') is single-ualued, and

Hdld,er continuous with an erponentLl2 < B 3t in aneighbourhoodU(r) of a pointr * C,

and, that the function (0 +Is) (.) i,s prori,mally regular at each a € Cd(z), z ,: n?t (r), d > 0.

Then the functi,onu(.) i,s (Fr€.chet) cont'inuously di,fferentiable at r if at least one of the following
cond'it'ions holds:
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(i,) C has smooth boundary atd,

(ii) F is unifomnly smooth at (::

and 0 (.) is of class CL at i;
d-s

Furthermore, in the first case we haue

Vu (r) : V0 (7) + )nc (r) , (4'44)

where):)(z) >0 istheuniquepositiaerootof theequatzonpe"?Y?(z) -Inc'(z)) :Land
nc (lr) ,is, as usual, the (uni,que) unit normal uector to 0c ati, whi,le in the second

/ r-r \
vu (z) - -v pr \;;e=a )

(4.45)
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Proof.
In the case (i) we have

Ot @ +Ic) (r) :v0 (il + Nrc (r)

(see [66, p. 112]) for every y enough close to r. since c has smooth boundary at r then the

nonempty (see (4.35))

-o' (o1rc) (r) n Nr ( g,J o 

=.r) 
n a.' (4.46)'/ - ' \pr(r-a)/

can be reduced to {-vd (r) - 
^nc 

(p)}, where .\ > 0 is the such thatpp" (-va (u) - ,\n6'(e)) :
1. While in the case (ii), by Remark 1.3.1, we have

-o' (oa rc) (y) n Nr (#A) n a.' : {or" (#h\
>From (4.35) also the formulas (4.44) and (4.45) follow. Let us prove now the continuity of the

gradient V"(.). We consider only the case (i). The case (ii) can be treated similarly' Given a

sequence {rr} converging to r we represent

Yu(r*) :V0 (i*) *,\,,n6'(2,) (4.47)

for some )r, ) 0, n ) l. Since -Vu (r") e 0F", we have

1 - pp" (-V0 ("") - A"n6r (2"))

'- llPll

and {,\,} is bounded. Let ) > 0 be its cluster point. Without loss of generality we assume

that .\,, ---+ ,\. Hence, by the smoothness properties of 0 (.) and C we conclude from (4.47) that

Yu(r*) : V0 (r*) * )nnc (r,") converges to V0 (r) * )n5' (z) e -1Fo. On the other hand, by

the definition of the normal cone to the convex set F we have

/ in-^ \(u- )" -" <,Vu(r,,) )<0 vye F,
\" Prli"-r") '-'/-

where tn : ntq (r,) -* "tt @) - 7 by a hypothesis of theorem. Consequently,

\I r-r \

\t - ;d:d,vo (r) * )nc' (')i < o vY € F

Since the intersection (4.46) is reduced to the singleton {Vu(r)}, we finally conclude V0(z) +
)n5,(Z) : Vu (r) , and the continuity of the derivative follows. f
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proving the next statement we need the properties of the Hausdorff distance between convex

closed sets. Let us remind some definitions. For nonempty sets /, B c H the Hausdorff d,istance

is defined by 
1 r

D (A, B):: max { sup da (r) , sup ae (y) | ,

[zeA aeB )

where, as usual, aa (") :: inf {ll" - gll a e A}, or, equivalently,

D (A,B):: inf {, > 0 : A c B+rB and B c A+rtr'}'

)Fyom the last definition in the case of convex closed sets we can prove the useful inequality

D(A,B) > 
rrilil, 

l"e@)-"n@)1. (4'48)

Indeed, given any u e Hwith llull : 1 and a\y r >0 such that A c B +rB and B c A+rB
we have

oA(u) S, o*,u(4 < oB(u) + r llrll : oe (u) + r

and similarly oB(u) < oe(r) *r. Hence

loe(r) - os (u)l < r.

Taking the supremum in u and the infimum in r we obtain (4'48)'

Corollary 4.3.5 tlnd,er the same hypotheses as in Corollary 1.3.1 the followi,ng statements hold

(i) ,f C has smooth bound,ary atd :: "Dt @) and, both ns (.) and" VP (') are Hdlderian neari
witherponents0laca! and,0;-"ayou-l,respectiuel,y,thenu(') is of classCr''? near

the poi,nt t, where a:: min {oc,ove};

(i,i) xf F is uniformly smooth at ( :: #6 andY pp (') i,s Hdlderian near € with an erponent

0 < a 1L then u (') zs of class CL'o? near r.

Proof.
Let us denote by b,, : bn(r), bc : bc(t), be: br(€) and lvB : bve (Z) the Hrilder

constants of the functions "tt (.), nc (.), np (.) and vd (.) respectively.

(i) Let d ) 0 be such that n6r (') and Vd (.) are well defined and Holder continuous on

r + dB. Given rt,12 € r *5n fy using the formula (4.44) we obtain

llVu (r1) - Yu(r2)ll S llVP (zr) - Va (72)ll + ll)1n5' (zr) - '\2ncr (22)ll ,

where .\,; ) 0 is the unique positive root of the equation

pp" (-Y0 (zn) - );nc'(71)) : 1, i:1,2.

But
llv0 (21) -V0 (72)ll S bv, llz, - zzll""' { bvebnllq - *zll""a (4'49)
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and

lllrnc (zr) - ),2rts (e2)ll < Ir ll'c (rr) - nc (e)ll + l,\t - )zl ll"c (72)ll , (4'50)

with
ll'c (er) - nc (zz)ll < Ilc llrr - ,rll" < bcbnll", - *rll""0 ' (4'51)

By the definition of ,\;, i :1,2, we have

pe" ?V0 (a) - 
^inc 

(ri)) : 1 <+ -'\nc (rr) e 0F" +V0 (7,i)

e pF.+ve(ii) (-);tc (7r)) : 1

1

€ pF"+vo(,1) (-"c (zr)) : i, @.52)

and

pi i: pFo+ve1a,; (-nc (zt)) ) llr,#rGrT ll'.c (zr)ff > 6ii1r+' (4'53)

Hence

l)r-)zl : ! br-orl
PrPz

s 1t + r)' llr''ll' (1r."*or,o,) (-nc (er)) - Pr"+ve1e11 (-nc (72))l+

-tlpr,+ve@,) (-nc (ez)) - pr"+ve621 1-"t (zr))l) @'54)

Now by (4.51) and taking into account that

(F'+ Vd (21))' . gU
(see (4.15)) we obtain

ll
lPr"+ve1e11 

(-nc (zr)) - pF"+v0(1,1 (-nc (zz))l

On the other hand, using the relation (1.i) and (4.48) we have

t,
lpF"+ve@t)(-nc 

(r2)) - Pp"+y\(ir) {-nc (zr))l

: lou,"ave@t))" (-nc (zz)) - o1r.+vo1e21)" (-*c (zz))l

S sr,p lo1r.+v0(e1))" (u) - og,+ve("rl)'(r)l
llull:1
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By Lemma 2 in [40] (which can be easily adapted to a Hilbert space) we have

lrr"*rurorr(-,tc 
(zz)) - Pp"+v.(tr) (-nc ('r))l

\ I -'yl
(4.56)

Therefore, by (4.54), (4.55), (4.56), respectively, we obtain

llr - )zl < (1+ ?)2 llrll2 (go"o, ll,, - ,rllo"e. (g)' hor',nll'r - *rll"'u) ,

and by (4.50), (4.53), (4.52), (4.51) we have

ll)r*c ("r) - \2ns (e2)ll

+ (1+ i2lrfSn, (,,' {zo)("" -o)g *flng;'-")B (2d)) ll,, - 'rlloe '

where 
a:: min {ocrove}.

Consequently

forsomeb>0.
(ii) In this case let us choose 6- > 0 such that

6+$t*6P '*EFP
and Vpp (.) is Holder continuous on

{ !,:o r:y€r+ra}\p"(g-a) " )

Using the formula (4.45) for each r1,r2 € z + dB and proceeding in the same way as in the

proof of Corollary 3.3.5 (ii) we obtain

llvu (r1) - vu ("2)ll < br ll€r - €zll* ,

where br > 0 is the Hcilder constant of Vpp (.) near (, and qn r: ffi, i: L,2. Moreover,

1€r _ €zff 
= 
e#f (0, * 1,, -,,11-r) 1", - *,|e ,
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where pz i: PF (iz - *z) : u(rz) - 0 (r2). Since

e @z)S z llr"ll llzz - oll + 0 (z) I tvt*llF,ll ll,z - "f + 0 @)

we have

pz : u(rz)-0(zz)> u(r)- llr'"ll llr-rrll- trt*llr"ll ll'-"rll? -0(d)

by the choice of d-. Therefore

llVu (r1) - Vu ("2)ll < 6" ll", - rrlle* ,

for some constant b > 0. I

Notice that the previous statements were proved under assumptions that the mappin g"3e (')
is enough regular (Holder continuous with an exponent P > ll2) in a neighbourhood of a fixed

point. Applying now the results of Section 4.2 we can emphasize the hypotheses guaranteeing

such regularity and formulate global results.

Theorem 4.3,6 Assumethat0:H -+IR zs afunctionof classCl't suchthatY?(r)e -1F'
for allr €6C,wi.ththe constant 0 < ry < IF#FII . Letrs€0C. Supposethatthesets F,

C and, the functi,on 0(.) satisfy the same condr,ii,ons as'in Theorem 1.2.1. Assurne''Inoreouer'

that for each r $ C close enough. to rs the function (g + IC) (') is prorirnally regular at each

y e (i+ 63) nOC, , r: ntg @), for sorne 5 ) 0, and, one of the properties below holds:

(i) C has smooth bound,ary at i, and n5r (.) zs Hrilder cont'inuous near r with an erponent

0(o(1;

(ii) F is uniforrnly smooth at (:: #d, and,Ypp(') is Hi;lder continuous near ( with an

erponent0<a<1,.

(ii) the mappi,ns a e u(s) ,: -Ap @+ Ic) (r) n Nr (d*il n 0F' i,s sinsle-ualued, and,

Ht)ld,er cont'inuous near r wi,th an etponent 0 < o:! 1.

Then tlte aalue functi,on u(.) is of class Cl;i ln a neighbourhood of tlte point rs (outside of C)

Proof.
It follows from theorems 4.2.1 and 4.2.2 that the mapping "*' (') is well-defined, single-

valued and (locally) Lipschitz continuous (i.e., Holderian with 0 : 1) in some neighbourhood

t/, (ro) of rs. Consequently, all the assumptions either of Theorem 4.3.2 or of Corollary 4.3.4

are fulfilled. Then applying, respectively, Corollary 4.3.5 or Corollary 4.3.3, we complete the

proof. I

Finally let us formulate the global version of the previous theorem.
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Theorem 4.3.7 Let 0 : H --+ lR be a functi,on of class Cl't such that V0 (r) e -1Fo lor all

r e d6C, wi,th the constant 0 < t < IFfrFII. Suppose that the sets F, C and the mapping 0(')

satisfy the cond,itions of Theorem 1.2.t at e'ach point rs €. OC, and that the function (9 + IC) (')

is prorimally regular (this ls the case, for instance, when C i,s g-conuer (see Remarlc 4.3.1)).
Assume, furtherrnore, th,at either C has smooth boundary and n6 (') is locally Hdlderian with an

erponent 0 < o 1l near the target or F is uniformly smooth (at each point of 0F) and VpF (')

is locally Hdld,eri,an near 0F with tlte sarne erponent a. Then the ualue functionu() is of class

Cl;i on g (C) \C, for some open nei,ghbourhood LI(C) of C.

Proof.
The statement follows easily from the previous results. I
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Comments

To Chapter L

It was J. A. Clarkson who introduced in 1936 the notion of. strict and uniforrn conueti,ty of.

a normed. space intending the respective property of its closed unit ball. Roughly speaking,

the space is strictly convex if any sphere in it does not contain nontrivial line segments, and

it is uniformly convex if whenever the midpoint of a variable chord of the ball approaches the

boundary, the length of the chord tends to zero (see, e.g., [64, 62, 65])' If a normed space is

uniformly convex then it is strictly convex. Sometimes one says also that the norm \s strictly

conuer (or rotund,) and. uniformly conuer (unifomnly rotund), respectively. Notice that the term
rrrotundrr appeared only in 1958 in the M. M. Day's book [42]. Further, A. R. Lovaglia introduced

(see [64]) a local version of the uniform convexity, requiring that one of the end points of the

variable chord remains fixed.

The notions above can be easily described by means of the so called moduli of rotundity (or

strict convexity). For instance, the modulus used by A. Clarkson is the function d : [0, 2] -, IR'+,

d(e) :: r"r {r -llryll ',,, € s,llr - ril :,} , (4.57)

and the uniform rotundity means that d(u) > 0 for all e ) 0 (see, e.g., [64, 62]).

In 1965 V. L Gurarii (see [56]) defined a modulus of rotundity 0 O slightly different from

the Clarkson's one substituting the midpoint in (4.57) by the point of that segment closer to

the origin. Namely, for e € [0,2] he put

Much later, in 1998, L. Siinches and A. Ullin [73] showed that

d(r) S B@) !26(e) Ve e [0,2]

and found examples of spaces for which these moduli are different.

On the other hand, M. M. Day in 1944 introduced the notions of. unifonn smoothness and

the respective mod,ulus of smoothrress as its numerical characteristic (see [41]). He proved that
a Banach space X is uniformly smooth if and only if its topological dual space X* is uniformly

fr (e) ::i"r 
{r - ,:iil,, lltr 

+ (1 - t) all : r,y €s, ll, - sll : ,} .

t2r
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convex. While the first results on such duality involving the various types of differentiability of

the norm are due to the works by V. L. Smulian (see [75, 76]). It was then J. Lindenstrauss who

found in 1963 a nice quantitative version of that duality (see [62, Theorem 1]): the modulus of

smoothness of X is nothing else than the conjugate of the modulus of rotundity of X*.

All the moduli considered above as well as the geometric characteristics of the closed unit

ball in a Banach space can be applied to an arbitrary subset of this space with suitable properties

(permitting to associate to this set something like an equivalent rrasymmetric normr'). Namely,

restricting ourselves to the case of a Hilbert space If we consider a convex closed bounded set

F C H containing the origin in its interior in the place of the closed unit ball B. Notice that

P is not necessarily symmetric (i.e., F + -F) in contrast to B. In spite of this one can extend

all the concepts concerning the norms to the set -F'through its Minkowski functional (see, e'9.,

[60, 43]). It should be mentioned that by the properties of Hilbert spaces the ball B is both

uniformly rotund and uniformly smooth while F is not so, in general. Furthermore' the notions

above can be specified taking into account various normal directions in a fixed point ( e .F'

where the modulus is determined (this does not appear in the case of the ball E since at each

point ( e B there is exactly one unit normal vector (- : O. Thereby we obtain the so called

(local) modulus of rotundity (of smoothness) associated to the pair ((, (*) (where € e F and (*
is a normal direction to F at O.

The notions of the curvatures and the respective curvature radius similar to those introduced

in Section 1.2 appeared in the past even in spaces more general than Hilbert (see [72, 21]). How-

ever, the authors applied these concepts to (not necessarily convex) finite-dimensional manifolds

imbedded in a Banach space. Besides that unlike the definitions given by E. R. Rozema and P.

W. Smith in [72] we take into account also the structure of the boundary of F at points near (,
which is watched along the normal vectors to F close to (* (see (1.16) and (1.22)). This gives

the lower semicontinuity of the curvature w.r.t. (€,(-) that is essentially used throughout the

work.

Another approach to definition of moduli of rotundity and smoothness for convex sets was

proposed in [84] based on the Gurarii's modulus. The authors considered also the duality
between these notions, proving some inequalities of the Lindenstrauss' type (see Proposition

1.3.1 in Section 1.3).

To Chapter 2

The idea to use the Ekeland's variational principle for proving that each minimizing sequence

of the function A a pp @ - ") is in fact a Cauchy sequence was taken from [26] where the

target set C was supposed to be p-convex and F : E, i.e., the case of metric projection

was treated. It should be said that by using another technique the existence and uniqueness

of the metric projection onto a p-convex closed subset of a Hilbert space was proved first in

[16]. Moreover, an open neighbourhood of the target C where such well-posedness takes place

was explicitly given. Notice that the open set 21(C) from Section 2.2 (see (2.40)) reduces to
the neighbourhood constructed in [16] whenever F : B. Subsequently, G. Colombo and P.
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Wolenski in [31] considering the case of 'y-strictly convex dynamics F and (P-convex target C
(with a constant function p (r) = p) proved the well-posedness of the time-minimum projection

in an uniform open set around C, which is given by a balance between 1 and g. Our well-

-posedness condition (see Corollary 2.2.3) involves also the case of the continuous function P('),
while for p (r) :- p it admits the form 2ef5 Q) < l, which is slightly weaker than the hypotheses

of Theorem 5.6 in [31]. The minimal time problem with a constant dynamics and a convex target

set was detaily studied also in [31]. In Theorem 4.2 the authors used a simple argument based on

weak convergence, which permitted us to prove existence of a time-minimum projection in the

convex case (see Proposition 2.3.5 (ii)). However, [31] does not contain any result on uniqueness

for a convex target, while in Proposition 2.3.5 we treated two alternative hypotheses when the

uniqueness (and stability as well) takes place.

To Chapter 3

Various results concerning the regularity of the time-minimum projection in the case of 7-
strictly convex dynamics appeared in [31]. Namely, the authors have already proved that zrfl (')

is always Holder continuous with the exponent Ll2 in the neighbourhood of C defined by a
balance between the curvatures of C and F, where 

"3@) 
is a singleton (see [31, Theorem 5.7]).

In the same theorem they consider also some special cases when the mapping ?r5 (') satisfies even

the local Lipschitz condition. Notice that in Section 3.2 we study Holder continuity with various

exponents 0 < a ( 1 and under much more general assumptions. Proving the Hdlder regularity
in theorems of Section 3.2 we reduce the general situation (with arbitrary points z,u € r*dB)
to the particular case when S3Q) - g\(u.,). This argument, which simplifies essencially the

respective estimates, was used earlier in [31, Theorem 5.7].

The regularity result given by Theorem 3.3.1 in Section 3.3 is close to [31, Theorem 5.12].

However, the authors assume there much stronger rrone-pointI Lipschitz condition for the time-

-minimum projection around a fixed point. It should be noticed that the proof of Theorem 3.3.1

was partially inspired by the reasoning in [58, Theorem 22].

The continuous differentiability of the value function (and the Lipschitz continuity of its
gradient) appeared also in [31] (see Theorem 5.14 and Remark after it) but again under stronger

hypotheses than those formulated in Section 3.3. Besides that, our results are more graduated

(in the sense of arbitrarity of a Hcilder exponent).

Let us emphasize once more that all the results obtained in chapters 2 and 3 are regarded to

the well-posedness of zrf (.) and to the regularity of the value function tfl (') in a neighbourhood
of the target set. We refer to [28], where these properties were studied near an arbitrary point
r ( C , and the complete characterization of the well-posedness of the time-minimum projection

by means of differentiability properties of ffl (.) was obtained. In the case of the distance of the

metric projections (even in Banach spaces) these questions were treated, for instance, in [12, 58].



Conclusion

Let us emphasize the main results obtained in Thesis'

1. Properties of convex closed solids in a Hilbert space such as rotundity and smoothness

are quantitatively studied. A new concept of curvature is introduced and placed into the

general setting of Convex Analysis.

(u) A local asymmetric version of the Lindenstrauss duality theorem is proved.

(b) A relation between the curvature of a convex closed solid and the second derivative

of its dual Minkowski functional is found.

The minimal time problem with a constant convex dynamics and a closed target set in a
Hilbert space is studied. The conditions guaranteeing the well-posedness of this problem

near the target are obtained by using the concepts of curvature and duality mapping.

(a) It is proved that under those conditions for each point from a neighbourhood of the

target there exists a unique point on the boundary of this set (called time-minimum
projection), which is attained for a minimal time. Stability of this point with respect

to small perturbations also follows.

(b) A theorem on connection between the regularity of the time-minimum projection and

the regularity of the value function is proved.

(") A series of results on the Holder regularity of the time-minimum projection as well

as on the (Holder) continuous differentiability of the value function is obtained.

Regularity of viscosity solutions to some kind of Hamilton-Jacobi equations in a Hilbert
space near the boundary is studied. The approach developed for proving of the local

regularity of the time-minimum projection is adapted to this problem, which is treated as

a minimal time problem with an additive Lipschitzean perturbation.

(a) Under certain compatibility condition involving the duality mapping of the dynamics,

on one hand, and both the normal cone to the target set and the gradient of the

boundary function, on the other, the local existence, uniqueness and stability of
minimizers in the perturbed problem are proved.

(b) A connection between the regularity of the (unique) minimizer in the perturbed pro-

blem above and the regularity of the respective value function is clearified.

2.

3.
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(c) Some results on the (Htilder) continuous differentiability of the viscosity solution to

a kind of Hamilton-Jacobi equation close to boundary are obtained.

The obtained results are illustrated by series of examples in finite-dimensional as well as in

infinite-dimensional Hilbert spaces.



Index

Chebyshev radius, 23

continuous retraction, 4

curvature
scaled, 23

square, 21

curvature centre, 45

curvature radius
scaled, 23

square, 21

derivative
directional, 7
Fr6chet, 15

distance function, 2

dual pair, 14

duality mapping, 14

dynamics, 6

eikonal equation, 8

Ekeland's variational principle,

Fr6chet superdifferential, 97

fuzzy sum rule, 39

gauge function, 6

gradient, 15

Hamilton-Jacobi equation, 7

classical solution, 7

generalized solution, 7

viscosity solution, 9, 97
viscosity subsolution, 96

viscosity supersolution, 96

indicator function, 35

Klee cavern, 2
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Legendre-Fenchel transform, 25

Lindenstrauss duality theorem, 24

minimizing sequence, 40

minimum time function, 6

Minkowski functional, 6, 14

modulus of
local directional rotundity, 15

local smoothness, 24

local uniform rotundity, 15

normal cone

Clarke, 36

Fr6chet, 35
limiting (Mordukhovich), 36

proximal, 35

point
exposed, 16

strictly exposed, 17

projection
metric, 2

time-minimum, 6

Rademacher's theorem, 7

regularity of mappings
Clarke regularity, 68

Fr6chet regularity, 68

lower regularity, 68

proximal regularity, 68

regularity of sets

Clarke regularity, 69

Fr6chet regularity, 69

normal regularity, 69

proximal regularity, 69
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retract, 4

set
approximately convex, 4

approximatively compact, 3

Chebyshev, 2

7-strictly convex, 50

locally directionaly strictly convex, 16

locally uniformly rotund, 15

locally uniformly smooth, 24

O(2)-convex, 4

g-convex, 4,37
perfect, 51
polar, 13

proximal, 2

proximally smooth, 4, 37

remotal, 3

strictly convex of order a, 19

target, 6

uniformly strictly convex, 18

uniquely remotal, 3

with smooth boundary, 37

subdifferential
Clarke, 35

Fr6chet, 35

limiting (Mordukhovich), 35

proximal, 34

support function, 14
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