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In the last decade, forest fires have become a natural disaster in
Portugal, causing great forest devastation, leading to both economic
and environmental losses and putting at risk populations and the liveli-
hoods of the forest itself. In this work, we present Bayesian hierarchi-
cal models to analyze spatio-temporal fire data on the proportion of
burned area in Portugal, by municipalities and over three decades.
Mixture of distributions was employed to model jointly the propor-
tion of area burned and the excess of no burned area for early years.
For getting estimates of the model parameters, we used Monte Carlo
Markov chain methods.
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1 INTRODUCTION

According to the National Forestry Authority (Direcção Geral dos Recursos
Florestais), Portugal has the largest number of forest fires among five Mediter-
ranean countries (Portugal, Spain, France, Italy and Greece). In order to
look for spatio-temporal patterns of fires, we can model the proportion of
burned area (Y), which is a (0,1)-restricted continuous variable, assum-
ing naturally a beta distribution [4] or Gaussian distribution and a Skew-
Normal [2] distributions after a logit transformation, i.e. log(Y /(1−Y )).
In addition, we can use Bayesian hierarchical models to take into account
spatially correlated random effects [6] and excess zeros in the proportion of
burnt area by municipalities and years [1]. Our aim is to present a spatio-
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temporal analysis of forest fires in 278 Portuguese municipalities between
1980 and 2006, from a Bayesian perspective and using Monte Carlo Markov
chain (MCMC) methods to make inference on the parameters of interest.

2 SPATIO-TEMPORAL MODELING

Let Yi t the proportion of burned area in municipality i and year t, i =
1, . . . , n, t=1, . . . , T . Assume Yi t or log(Yi t/(1−Yi t)) has a probability distri-
bution with mean µi t and varianceσ2. [6] suggest that µi t can be expressed
by

µi t = α+ S0(t) + Si(t) +φi, (1)

where S0(t) can represent a nonlinear temporal effect, Si(t) is the temporal
effect by region i and φi a random effect of the spatial variation associated
with region i. If φi = bi + hi, component hi represents the unstructured
spatial random effect with Gaussian priori distribution, i.e.,

hi ∼ N(0,σ2
h≡τ

−1
h ), (2)

and bi the spatially correlated random effect with priori distribution, p(bi|τb =
σ−2

b ), chosen in terms of a conditional autoregressive model (CAR) [3], i.e.,

bi | b−i,σ
2
b ∼ N(b̄i,σ

2
b/mi), (3)

where b̄i is the mean of the random effects related to the “neighbors” of the
region i, mi the number of adjacent regions to region i and σ2

b the variance
component.

Upon the occurrence of zeros, the distribution of the proportion of area
burned (Yi t is considered a mixture of distributions with probability function
f (yi t), denoting f1(yi t) = f (yi t |yi t 6= 0), i = 1, . . . , n, t = 1, . . . , T . Define
Vi t as a Bernoulli random variable such that, Vi t = 0, with probability pi t0

,
and 1, with probability pi t1

≡ 1−pi t0
, where pi t0

represents the probability
of non-burned area in the region i in the year t. Vi t indicates the existence
of the burnt area in the region i in the year t. Thus,

f (yi t) = f1(yi t)
Vi t (1− pi t0

)Vi t p1−Vi t
i t0

. (4)

The probability of no burned area in the region i at time t is modeled as,

log
� pi t0

1− pi t0

�

= β0 + β1 t +ψi, (5)

whereψi is also a CAR model. We use assigned highly dispersed but proper
priors. In fact, one typically assumes independent normal prior for the re-
gression coefficients. For the variance component hyperparameters, one
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usually assigns an inverse gamma prior, e.g., σ2 ∼ IG(r1, s1), σ2
b ∼ (r2, s2),

σ2
h ∼ IG(r3, s3) and σ2

ψ
∼ IG(r4, s4) with kernel density given for

x−(r+1)ex p(−s/x), x > 0.

Consequently, we can construct the related joint posteriori distribution and
use MCMC methods because the corresponding marginal posteriors are not
easy to get explicitly. Notice that these methods are implemented e.g. in
WinBUGS [5].

3 FOREST FIRES DATA ANALYSIS

Based on the models in section 2, we analyze the proportion Yi t of burnt
area due to forest fires in 278 municipalities (mainland Portugal) and over
27 years (1980-2006). Data were collected by Portuguese National Forestry
Authority. Three scenarios were considered for the data modeling:

A) Gaussian probability model: logi t(Y )∼ N(µ,σ2);

B) Skew-normal model: logi t(Y ) ∼ SN(µ,σ2,λ), where λ is a shape
parameter;

C) Beta model: Y ∼ Beta(a, b), with E[Y ] = µ, Var(Y ) = µ(1−µ)
γ+1

and
γ= a+b.

By using MCMC methods via WinBUGS, we used 15,000 iterations for all
fitted models, taking every 10th iteration of the simulated sequence, after
5000 iterations of burn-in. The model comparison can be based on the
Deviance Information Criterion (DIC), which handles hierarchical Bayesian
models of any degree of complexity, and is computed as the sum of two
components: the expected posterior deviance (D) and the effective number
of parameters (pD), measuring the goodness of fit and complexity of the
model, respectively [7]. It is often expressed as

DIC = 2 D(θ )− D(θ ), (6)

where D(θ ) and θ denote the posterior mean of the deviance and the model
parameter vector θ , respectively. Though we rely principally on this mea-
sure for assessing models in our application, the other measures are also
computed for comparison. In table 1, one can be observed some fitted mod-
els and, based on (6), the selected model is model M4. Note that S0(t) = ηt ,
in model M4, represents a second order random walk.
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Model pD DIC (×106)
M1(A) µi t = β0+β1 t+φi t+bi+hi 521 150.150

logi t(pi t) = δ0+δ1 t+ai

M2(B) µi t = β0+βi t+φi t+bi+hi 509 150.150
logi t(pi t) = δ0 +δ1 t + ai

M3(C) logi t(µi t) = β0+β1 t+φi t+bi+hi 581 149.996
logi t(pi t) = δ0+δ1 t+ai

M4(C) logi t(µi t) = β0+ηt+bi 411 149.995
logi t(pi t) = δ0+δ1 t+ai

Table 1: Model selection based on DIC.

For selected model (M4), the posteriori mean, standard deviation (SD)
and 95% highest posterior density (HPD) credible intervals (CI) of some pa-
rameters of interest are in table 2. Based on model M4, the spatio-temporal
risks of burned area, defined here by exp(ηt+ bi) for municipality i, were
used to produce maps in 1985, 1994 and 2001 in figure 1.

Parameter Mean SD 95% HPD CI
δ1 -0.169 0.007 (-0.183, -0.156)
γ 24.82 0.449 (24.02, 25.69)
σ2

b 0.334 0.051 (0.237, 0.437)
σ2
η

3.357 0.508 (2.424, 4.379)
σ2

a 0.194 0.060 (0.098, 0.313)
pi t0

0.143 0.003 (0.137, 0.150)

Table 2: Estimates of the model parameters (M4).

4 CONCLUDING REMARKS

The spatio-temporal analysis of the burned area proportion in 278 munici-
palities of mainland Portugal between 1980 and 2006 reveals an increasing
trend in the proportion of burned area, whereas the number of municipal-
ities without burned area trend to decrease. The space-time models stud-
ied here have smoothed estimates used in the production of maps that are
useful in the interpretation of spatio-temporal data. This analysis of the
Portuguese forest fires may isolate trends in small areas of administrative
knowledge for promoting an appropriate policy interventions to reduce that
national catastrophe.
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Figure 1: Spatio-temporal risks in 1985 (left), 1994 (middle) and 2001
(right).
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